
Modeling Design Constraints and Biasing in Simulation Using BDDs

Jun Yuan Kurt Shultz Carl Pixley
Motorola Inc.

5918 W. Courtyard Dr.
Austin, TX 78730

yuan,shultz,pixley @adttx.sps.mot.com

Hillel Miller
Motorola Inc.

1 Shenkar Str. E.
Herzelia 46120 Israel

hillelm@msil.sps.mot.com

Adnan Aziz
ECE Dept.

University of Texas at Austin
Austin, TX 78712

adnan@ece.utexas.edu

Abstract

Constraining and input biasing are frequently used techniques
in functional verification methodologies based on randomized
simulation generation. Constraints confine the simulation to a
legal input space, while input biasing, which can be considered
as a probabilistic constraint, makes it easier to cover interesting
“corner” cases. In this paper, we propose to use constraints and
biasing to form a simulation environment instead of using an ex-
plicit testbench in hierarchical functional verification. Both con-
straints and input biasing can depend on the state of the design
and thus are very expressive in modeling the environment. We
present a novel method that unifies the handling of constraints
and biasing via the use of Binary Decision Diagrams (BDDs).
The distribution of input vectors under the effect of constraints
and input biasing are determined by what we refer to as the con-
strained probabilities. A BDD representing the constraints is first
built, then an algorithm is applied to bias the branching probabil-
ities in the BDD. During simulation, this annotated BDD is used
to generate input vectors whose distribution match their predeter-
mined constrained probabilities. The simulation generation is a
one-pass process, i.e., no backtracking or retry is needed. Also,
we describe a partitioning method to minimize the size of BDDs
used in simulation generation. Our techniques were used in the
verification of a set of commercial designs; experimental results
demonstrated their effectiveness.

1 Introduction

A typical integrated circuit interacts with its environment. Dur-
ing simulation-based functional verification, the environment is
modeled by a testbench. In this paper we provide an alterna-
tive approach to environment modeling — we introduce a tool,
SimGen, and an associated methodology which employs user-
specified constraints to model the interaction between the design
and its environment. Constraints are Boolean formulas involv-
ing the design signals. Note that constraints can depend on state
variables. So input constraints can change depending upon the
current state of the design.

As an example, we have employed the following constraint in
the verification of a bus interface unit:

st != 2’b11 ? IN_a == st_PREV_a :
(!IN_b & !IN_c) ? IN_u == st_PREV_u : TRUE;

It implies that when st is 11, and inputs IN_b,IN_c are
both low, then the input IN_u should be equal to the value of the
state variable st_PREV_u.

Constraints are specified in a declarative manner, as opposed to
the imperative approach of testbenches, and thus need less effort
on the part of the user. This is especially helpful in a prototyping
stage when all that is known about the environment are some ab-
stract specifications in the architecture book. Furthermore, con-
straints form a modular and more formal interface documentation
about design blocks; they automatically convert to properties to
be monitored at a higher level of hierarchy. By contrast, testbench
modules constitute an unmaintainable and unverifiable documen-
tation of the environment.

SimGen also supports user-specified dynamic biasing on the
inputs, i.e., assignment of probabilities to individual input bits
depending on the current state. Dynamic biasing can facilitate
discovering difficult “corner” cases. Given a current state in the
design, and a set of constraints and biases, SimGen automatically
generates random inputs according to a probability distribution
which satisfies the constraints and respects the biases. If there
exists an input satisfying the constraints, SimGen will generate
it directly, without backtracking. When no input exists, SimGen
flags an error and halts. The following construct illustrates dy-
namic biasing:

setbias1(in7, addr_state == IDLE ? 0.9, 0.5);

This sets the probability of the input in7 having value 1 to 0 9
when addr_state is IDLE, and to 0 5 otherwise.

Our contribution is that we handle constraints and biasing in a
unified way via the use of Binary Decision Diagrams [1] (BDDs).
We pay special attention to handle the BDDs in an efficient man-
ner, to avoid the BDD size explosion, which is a common prob-
lem in BDD-based formal verification [2]. We stress that we
employ BDDs only for representation of constraints and biasing.
In symbolic model checking (SMC), a complete traversal of the
state space is performed using a BDD representation of the next
state logic, and the reached state set [3, 4]. Thus our procedure is
not as susceptible to the BDD explosion problem as SMC.

Related work in random test generation includes the following:
Freeman et al [5] present a static-biased random test generation

0-7803-5832-X /99/$10.00 ©1999 IEEE.

technique in a tool called RIS. RTPG in [6] and AVPGEN in [7,
8] implements dynamic-biased instruction generation and utilizes
constraint solving techniques tailored for specific instructions. A
problem is that one may need to backtrack and perform heuristic
search to resolve the “dead end” cases.

Binary graphs were used by Blum et al [9] to probabilistically
check equivalence of Boolean functions. In their work, a prob-
ability distribution of the output of a function is computed re-
cursively from the input probabilities. A similar approach was
adopted in [10] to compute exact fault detection probabilities. We
use an algorithm similar in spirit to the above, though for a dif-
ferent purpose, namely, the computation of biases under input
constraints.

The rest of this paper is organized as follows. In Section 2
we describe a mechanism for simultaneously considering envi-
ronment constraints and input biasing. Section 3 contains details
of the vector generation procedures in SimGen. Experiments and
a case study are discussed in Section 4. We summarize and point
out future research topics in Section 5.

2 Constraints and Input Biasing

A constraint is a Boolean formula involving any signals occurring
in a design, including inputs to the design. Involvement of design
signals other than the inputs makes constraints state-dependent.
Furthermore, auxiliary memory-elements (registers) can be in-
stantiated in the design to remember the “past state” so that con-
straints referring to these registers can define inputs based on the
history of the design.

The Boolean formulas of constraints are represented by BDDs
defined over input and state variables. In the sequel, the con-
straint BDD refers to the conjunction of the BDDs of all con-
straints, unless otherwise stated. Observe that for any given state
of the design, the legal input space is simply the cofactor of the
constraint BDD with respect to that state. If the set is empty, we
define the design to be in an illegal state. We call these deadend
states because the simulator cannot proceed if it is in this state.

A biasing on an input variable is specified by a function map-
ping the state space to real number in 0 1 . If the function is a
constant, the biasing is said to be static; otherwise, it is dynamic.
We denote an input ui’s biasing towards the value 1 and 0 by
p ui 1 and p ui 0 , respectively.1

Given an input vector , the term
i

p ui i will be
referred to as the “weight of the input vector ”, and denoted by

. Given a set of constraints and input biases, and a state of
the design, the distribution of an input vector can be defined as
the constrained probability as follows:

Definition 1 Let u0 un 1 be the design inputs, and Us be
the legal input space under state s. The constrained probability of
an input vector 0 n 1 , at the state s, is 0 if Us.

1Note that the biasing function is restricted to biasing on individual input vari-
ables, rather than cubes or more general subsets of the Boolean space of inputs.
We discuss this issue at the end of the paper.

Otherwise, the constrained probability is

Us

Conceptually, the constrained probability of an input vector is
the weight of that vector divided by the sum of the weights of all
vectors that satisfy the constraint. With our definition, an input
vector is legal if and only if its constrained probability is greater
than zero. Also, the constrained probabilities are closely corre-
lated to input biasing as we will show in Section 3.

3 Vector Generation

In this section, we develop the p-tree algorithm. This takes a
state, a constraint BDD, and a set of biases, and then employs
two procedures, namely Weight and Walk, to generate a ran-
dom input vector according to the distribution given by the con-
strained probabilities at that state. Weight labels BDD nodes with
branching probabilities; Walk traverses the BDD according to the
branching probabilities. The resulting path represents a vector
whose distribution matches its constrained probability as given
by Definition 1. Since the p-tree algorithm is called at each simu-
lation cycle to generate an input, it is imperative that Weight and
Walk be fast. Both theory and experimental results show this is
the case.

The Branching Probabilities

Generating vectors from a constraint BDD is analogous to evalu-
ating the BDD for an input vector and a state, except that in the
former we need to probabilistically select an input value, rather
than looking up its value when deciding what branch to take.
In the following, we define the “branching probabilities” upon
which we base our selections.

First, we define what we mean by the weight of a BDD node
for a particular state. The weight of the constant ONE node is 1,
and the weight of the ZERO node is 0. The weight of a nonleaf
node, j, corresponding to variable vi, given the weight of its
then node, t j, and the weight of its else node, e j, is given by the
following:

w j

p vi 1 t j p vi 0 e j if vi is an input variable
t j if vi is a state variable, and vi = 1
e j if vi is a state variable, and vi = 0

Conceptually, the weight of a node is the sum of weights of
vector suffixes represented by the set of paths from that node to
ONE. By induction on the length of the paths, the weight of the
root node is Us

, where Us is the set of vectors satisfying
the constraints.

The then and else branching probabilities of j are defined to
be p vi 1 t j w j, and p vi 0 e j w j, respectively. Note
that they add up to 1.

Weight(node,cur st)
if (node == ONE) return 1;
if (node == ZERO) return 0;
if (node is visited) return node.wgt;
set visited(node);

if (node.var is a state variable)
if(cur st[node.var] == 1)

node.wgt = Weight(node.then,cur st);
else

node.wgt = Weight(node.else,cur st);
return node.wgt;

else
t = Weight(node.then,cur st);
e = Weight(node.else,cur st);

node.wgt =
p(node.var=1,cur st) * t + p(node.var=0,cur st) * e;
node.then branch =
p(node.var=1,cur st) * t / node.wgt;
node.else branch = 1 - node.then branch;
return node.wgt;

Figure 1: Computing branching probabilities.

The Weight Procedure

Weight computes node weights and branching probabilities
bottom-up in the constraint BDD, as shown in Figure 1. We use
the following notations: node.var is the variable associated with
a BDD node; node.then and node.else are the two child nodes
(branches) of node, taken when node.var is assigned to 1 and 0,
respectively; p(var=0/1,cur st) returns the input biasing of var
under the current state cur st. In the implementation, an input
biasing, being a Verilog expression, can be evaluated by the sim-
ulator dynamically.

A straight-forward upper bound on the time complexity of
Weight is O n , where n is the number of nodes in the constraint
BDD. Note, however, that the procedure traverses only a subset
of the BDD nodes, dependent on the current state. As a result, in
practice, even when the constraint BDD is quite large, Weight is
fairly efficient.

The Walk Procedure

A vector is generated by the procedure Walk in a top-down traver-
sal of the constraint BDD as follows: at a state node, take the then
(resp. else) branch if the corresponding state variable is assigned
to 1 (resp. 0) in the current state; at an input node, take a branch
according to its branching probabilities, and set the value of the
corresponding input variable accordingly.

Since on any path in a BDD, a variable can be visited at most
once, the procedure Walk is guaranteed to terminate within m
steps where m is the number of input and state variables in the
constraint BDD. At end of the traversal, we must be in one of the

cmd 3 : 0 weight of vector const. prob.

1000 1 2 2 3 3 4 4 5 24 120 24 50
0100 1 2 1 3 3 4 4 5 12 120 12 50
0010 1 2 2 3 1 4 4 5 8 120 8 50
0001 1 2 2 3 3 4 1 5 6 120 6 50

Table 1: Computing constrained probabilities.

following situations:

1. We are at the ZERO node, which indicates an illegal state —
exit the simulation.

2. We are at the ONE node. We just generated a legal input
vector.

An input that is not visited at the end of the above traversal is
randomly assigned according to its biasing. The default bias, 0 5,
is used for an input if its biasing is not given by the user.

Correctness and Properties

Recall that our goal was to generate input vectors according to
their constrained probabilities. The following theorem (the proof
of which is omitted for brevity) demonstrates that the p-tree al-
gorithm achieves this goal:

Theorem 1 At a given legal state, p-tree will generate a random
input vector with a probability equal to its constrained probabil-
ity.

The p-tree algorithm enjoys the following properties.

Lemma 1 For a given state, the probability of generating an in-
put vector in which ui equals 1 monotonically increases as
p ui 1 increases.

Lemma 2 The probability of generating an input vector is inde-
pendent of the input and state variable ordering of the constraint
BDD.

An Example of the p-tree Algorithm

The constraint below specifies that when the state “reset” is 0,
exactly one bit of the 4-bit input cmd must be 1.

!reset->((cmd[3:0] == 4’b1000)||
(cmd[3:0] == 4’b0100)||
(cmd[3:0] == 4’b0010)||
(cmd[3:0] == 4’b0001)));

Assume that under any state in which “reset” is 0, the
user-specified input biases evaluate to: p cmd 3 1 1

2 ,
p cmd 2 1 1

3 , p cmd 1 1 1
4 , p cmd 0 1 1

5 . By
Definition 1, we compute the values for the constrained probabil-
ities, as illustrated in Table 1.

Now we show how the p-tree algorithm generates vectors
matching the distribution in Table 1. The constraint BDD is
shown in Figure 2. Each node is labeled with its weight under

cmd[1] 1/4

cmd[0] 1/5

cmd[2] 1/3

cmd[3] 1/2

Ordering and
input biasing

reset

ONE
 1

ZERO
 0

 5/12

 5/12

 2/5

 3/5

13/30

7/20

1/5 4/5

r

a

c b

e d

g f

Constraint BDD

Figure 2: A constraint BDD labeled with node weight.

the state “reset”=0. Solid and dashed arcs represent the then and
else branches, respectively. The variable ordering and input bias-
ing are shown to the right of the BDD, with each variable lined
up with its BDD nodes.

To illustrate the procedure Weight, consider node f:

weight(f) = p(f.var=1) * 1 + p(f.var=0) * 0
= 4/5 * 1 + 1/5 * 0 = 4/5

Similarly, weight g 1 5. Now we compute weight e :

weight(e) = p(e.var=1) * weight(f) + p(e.var=0) * weight(g)
= 1/4 * 4/5 + 3/4 * 1/5 = 7/20

Consider the input vector 0 1 0 0 . The probability that Walk
chooses this vector is the product of branching probabilities along
the path a, c, d, f, ONE :

1 1 2 13 30
5 12

1 3 3 5
13 30

1 1 4 4 5
3 5

1 1 5 1
4 5 6 25

As expected (cf. Theorem 1) this is exactly equal to the con-
strained probability we calculated for vector 0 1 0 0 in Table 1.

Finally, recall that only a subset of the nodes in the constraint
BDD is visited in Weight — in this particular example, if the
state was “reset”=1, then Weight would only visit the nodes r and
ONE.

Constraint Partitioning

The time complexity of Weight is closely linked to the size of
the constraint BDD. Recall that the constraint BDD is the con-
junction of all the BDDs corresponding to the user-specified con-
straints. Intuitively, when we are given constraints which have
no input variables in common, we should be able compute an
input vector by computing the component inputs with the p-tree
algorithm on each constraint separately, and then concatenating
the results to form a global input. For brevity, we omit a formal
proof of the fact that the vectors generated in this manner have
the same probability distribution as those generated when apply-
ing p-tree to the monolithic constraint BDD. We partition the set
of BDDs corresponding to constraints into sets with disjoint input
variable support as follows:

1. for each input variable ui, create a partition;

Example Vars Constraints Cons Vars

block-1 76 13 26
block-2 178 10 59
block-3 1437 11 153
block-4 446 33 175
block-5 407 34 297
block-6 185 107 156
block-7 1396 171 677

Table 2: Design & constraint statistics.

2. for each constraint c j, if c j depends on ui, put c j in ui’s
partition;

3. merge all partitions that share a constraint until each con-
straint appears in at most one partition.

It is possible that the conjunction of all the constraints is empty
while none of the constraint BDDs of the partitions are empty.
However, if for a given state, s, each element of the partition
allows a partial input vector, then there is an input vector for
the conjunction of the constraints. So if the conjunction of con-
straints is vacuous this will become apparent immediately after
the vector generation starts — for some element of the partition
the Walk procedure will generate no vector and exit, since there
is no legal state, as described in Section 3.

4 Experimental Results

SimGen has been developed at Motorola. This has given us ac-
cess to a suite of meaningful examples. We present experimental
results on seven real designs. All experiments were conducted on
a 233 MHz UltraSPARC-60 machine with 512 MB main mem-
ory. Simulation was performed using Verilog-XL.

Constraint BDDs

Dynamic variable reordering was enabled in all experiments. Ta-
ble 2 reports the statistics of the designs. The column labeled
vars denotes the total number of inputs and latches in the de-
sign; Column 3 gives the number of constraints, and Column 4,
the total number of input and state variables which appear in the
constraints.

The result of building constraint BDDs without partitioning is
shown in Table 3. Note that block-4, block-5, and block-7 each
have close to 100 000 nodes in the final constraint BDDs.

Table 4 shows the effectiveness of using partitioning. Col-
umn 5 lists the total number of constraints, and the number of par-
titions formed. Partitioning gives modest improvement to BDD
size for block-1, block-2, block-3 and block-6; it dramatically
reduces both time and space complexity for the larger designs,
namely block-4, block-5 and block-7. The complexity of the
designs and constraints, together with the size of the constraint
BDDs demonstrate that our technique is feasible for medium or
even large designs.

Example time peak final

block-1 0.0 6312 54
block-2 5.0 5110 119
block-3 26.0 6132 774
block-4 885.5 303534 110858
block-5 727.7 181243 82405
block-6 8.3 19418 4094
block-7 365.0 218708 98658

Table 3: Building the constraint BDD without partitioning.

Example t(sec) peak final part

block-1 0.0 1022 43 13/5
block-2 4.0 5110 103 10/7
block-3 20.3 6132 609 11/9
block-4 38.0 13286 1595 33/10
block-5 33.4 22484 1962 34/9
block-6 2.0 10220 2722 107/16
block-7 53.0 33726 12535 171/18

Table 4: Building the constraint BDDs with partitioning.

A Case Study

We discuss in detail the experiment with block-5. This is a bus in-
terface unit. Conceptually, it consists of three FSMs, namely the
master, data, and address units, together with considerable glue
logic. Our goal was to fully “exercise” the states in these FSMs.
Specifically, the individual units issue Read/Write requests un-
der various conditions, and we wanted to generate as many such
requests under as many different conditions as possible.

It took about two person-days to write the constraints accord-
ing to the (English language) specification for the block and its
interface. The end result was a concise specification of the envi-
ronment in a 200-line Verilog file consisting of 34 constraints.

The benefit of constraining the input space cannot be overem-
phasized. Unconstrained random simulations invariably pro-
duced false negatives when checking properties in simulation.
We observed that in unconstrained simulations X values were
constantly generated on tri-state buses, indicating bus con-
tentions, which made the simulations meaningless.

Developing input biasing was straightforward. For instance,
we wanted to limit the frequency of external errors when test-
ing the essential functionality of a design. This was expressed
as setbias1(error, 0.2);. There were also cases where
we needed to employ dynamic biasing. For example, even after
we statically biased over a dozen critical input signals, the three
FSMs stayed largely idle (that is, they did not generate Read-
Write transactions) through simulation runs. After studying the
design for about an hour, we were able to find a set of dynamic
input biases that stimulated many more Read-Write transactions.

Table 5 shows the effect of biasing on the number of Read-
Write transactions made by the master, data, and address units
over the course of simulating an input sequence of length 1000.
The dynamically biased simulation resulted in 130 times as many
transactions as the unbiased simulation.

biasing R/W requests t (sec)

none 14 6.8
static 811 6.2

dynamic 1918 6.3

Table 5: Effectiveness of biasing.

setting Total time (sec) SimGen overhead

random 44.9 12.0%
SimGen 48.2 21.3%

SimGen with dump 63.6 16.0%
SimGen with monitors 635.6 1.7%

Table 6: Overhead of SimGen.

Of course, the true test of a verification tool is not simply that
it excites more behavior — it is the number of bugs found. In this
specific example, SimGen, together with a simulation monitor-
ing tool, discovered 30 design bugs. These were found not only
by assertion failures in the HDL, but also by the design entering
states where the set of legal inputs was empty.

To conclude the case study, we conducted an experiment on
the run time overhead of SimGen on block-5 with partitioned
constraint BDDs and dynamic biasing. The result is reported in
Table 6. All simulations consist of the application of 10000 in-
puts. Row 1 shows that even with a pure random generation, there
is a certain amount of overhead associated with the interaction
between the generator and the simulator. Row 2 shows the re-
sult of a SimGen-driven simulation with no other activities. Row
3 presents the case where the SimGen-driven simulation dumps
signal values to a file for post-processing. In the final case, a set
of multi-cycle properties are monitored during the simulation. It
can be seen that the overhead of SimGen is fairly low.

5 Conclusion and Future Work

We have described a dynamically-constrained and dynamically-
biased random simulation generation method, its algorithm, im-
plementation and application to commercial designs.

An area of future work is to provide a feedback mechanism
between simulation coverage and SimGen to provide some quan-
titative guidance so that SimGen can readjust the input biasing
dynamically to focus on as yet unexplored design behaviors on-
the-fly.

In its current form, the mechanism for specifying probabilistic
biases on the input space is quite simple — biases are restricted
to individual bits. A natural extension of this would be biases on
subsets of the entire Boolean space of inputs. For example, one
might want to write a bias to the effect that the probability of an
input op-code being an ADD is 0 9.

Probabilistically generating input vectors which simultane-
ously satisfy a set of biases on subsets of the input space will
be difficult, since the biases may be mutually inconsistent. Ob-
serve that, in general, checking for consistency is at least as hard
as checking whether the intersection of a collection of subsets

B1 B2 Bn of the input space is empty: simply assign bi-
ases of 1 to each set — the intersection is nonempty iff a proba-
bility distribution exists on the input space simultaneously satis-
fying the constraints. When the subsets B1 B2 Bn are rep-
resented as BDDs, the problem of checking if their intersection
is empty is NP-hard; this follows directly from the NP-hardness
of 3-CNF-SAT.

In practice, we would expect that the subsets B1 B2 Bn

would be very “simple”. For example, the biases may be only
on input cubes, e.g., the probability of u0u1 00 is 0 9 and the
probability of u1u2 01 is 0 2. In this case one might hope that
an efficient algorithm exists for probabilistically generating in-
puts according to the biases. However, Koller and Megiddo [11]
show that even when the cubes contain no more than two literals,
finding a distribution satisfying the biases is NP-hard.

Nevertheless, we have continued working on heuristics for the
problem of probabilistic generation of inputs satisfying biases on
subsets of the input space given as BDDs, because we view this as
an important problem, with implications towards using SimGen
as the underlying engine for an instruction level test generation
tool.

Acknowledgements

The authors would like to thank Tom Shiple (Synopsys) for find-
ing several mistakes in an earlier version of this paper, and San-
jeev Arora (Princeton) for suggesting we look at [11].

References

[1] R. Bryant. Graph-based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, C-
35:677–691, August 1986.

[2] R. Ranjan, J. Sanghavi, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. High Performance BDD Package
Based on Exploiting Memory Hierarchy. In Proc. of the
Design Automation Conf., Las Vegas, NV, June 1996.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill.
Symbolic Model Checking: 1020 States and Beyond. Infor-
mation and Computation, 98(2):142–170, 1992.

[4] C. Pixley. A Computational Theory and Implementation of
Sequential Hardware Equivalence. In E. M. Clarke and R. P.
Kurshan, editors, Proc. of the Workshop on Computer-Aided
Verification, pages 293–320, June 1990.

[5] J. Freeman, R. Duerden, C. Taylor, and M. Miller. The
68060 microprocessor functional design and verification
methodology. In On-Chip Systems Design Conference,
pages 10.1–10.14, 1995.

[6] A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M. Lei-
bowitz, and V. Schwartzburd. Verification of the IBM RISC
System/6000 by a Dynamic Biased Pseudo-random Test
Program Generator. IBM Systems Journal, 30(4):527–538,
July 1991.

[7] A. K. Chandra and V. S. Iyengar. Constraint Solving for
Test Case Generation - A Technique for High Level Design
Verification. In Proc. Intl. Conf. on Computer Design, pages
245–248, 1992.

[8] A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair,
B. Rosen, M. Mullen, J. Yoon, R. Armoni, D. Geist, and
Y. Wolfsthal. AVPGEN - A Test Case Generator for Archi-
tecture Verification. In IEEE Transactions on VLSI Systems,
volume vol. 3, no. 2., pages 188–200, June 1995.

[9] M. Blum, A. Chandra, and M. Wegman. Equivalence of
Free Boolean Graphs Can Be Decided Probabilistically in
Polynomial Time. In Information Processing Letters, pages
10:80–82, 1980.

[10] R. Krieger, B. Becker, and R. Sinkovic. A BDD-based Al-
gorithm for Computation of Exact Fault Detection Probabil-
ities. In International Symposium on Fault-Tolerant Com-
puting, pages 186–195, 1993.

[11] D. Koller and N. Megiddo. Constructing small sample
spaces satisfying given constraints. SIAM Journal on Dis-
crete Mathematics, pages 260–274, 1994.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

