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ABSTRACT

This paper describes a new procedure for generating very large
realistic benchmark circuits which are especially suited for the
performance evaluation of FPGA partitioning algorithms. These
benchmark circuits can be generated quickly. The generation of a
netlist of 100K CLBs (500K equivalent gates), for instance, takes
only two minutes on a standard UNIX workstation. The analysis
of a large number of netlists from real designs lead us to identify
the following five different kinds of sub-blocks: Regular combi-
national logic, irregular combinational logic, combinational and
sequential logic, memory blocks, and interconnections. Therefore,
our generator integrates a sub-generator for each of these types
of netlist. The comparison of the partitioning results of industrial
netlists with those obtained from generated netlists of the same size
shows that the generated netlists behave similarly to the originals
in terms of average filling rate and average pin utilization.

1. INTRODUCTION

The evaluation of the performance of various EDA tools is gener-
ally based on the comparison between different sets of experimen-
tal results obtained by the application of the tools on benchmark
circuits. The increasing size of circuits and systems requires new
partitioning algorithms capable of handling netlists with up to sev-
eral million gates. Therefore, benchmark circuits of approximately
the same size are needed.

Various benchmarks exist in the literature. For several reasons
they do not have the characteristics required:

� Existing benchmark suites such as those collected by
ACM/SIGDA, or those maintained and distributed by the
CBL1 [11] appeared in numerous papers in the past. They
are, however, too small when compared with netlists to be
handled by the new generation of partitioning algorithms. In-
deed, the biggest netlist from the benchmark Partitioning93
contains 2904 CLBs2 after its implementation on the XC3000
family of Xilinx FPGAs [13]. Only one benchmark from
ACM/SIGDA has more than 26000 cells [17].

1Collaborative Benchmarking Laboratory
2The CLBs (Configurable Logic Blocks) provides functional cells that

implement the users’s logic inside an FPGA.

� The results obtained with these benchmarks for various par-
titioning tools are difficult to compare. As reported in [3], all
of these benchmarks were originally designed for testing ei-
ther placement or synthesis tools. Before using them to test
partitioning tools, they have to be translated into partitioning
formats. The result is that, in various publications, the same
circuit has been shown with different properties.

� Real industrial netlists which have the required size cannot be
used for benchmarking due to patent rights.

Recently, Alpert described in [1] the ISPD98 benchmark suite.
It consists of 18 circuits varying from 13K to 210K modules in a
hypergraph description format obtained by translation from inter-
nal IBM designs. Unfortunately, important information concern-
ing circuit functionality, timing and technology has been erased
by the transformation process which was obviously necessary to
comply with patent rights. Due to the representation format of the
circuits, the performance of the following partitioning algorithms
cannot be determined correctly by using the ISPD98 benchmark
suite:

� Algorithms, such as [14], which are based on the method
of functional replication need information about the module
functions.

� Algorithms, such as [15][16], with an objective function
which aims at minimizing the length of the critical path need
information about module delay and sequential modules.

� Partitioning algorithms for FPGAs, such as [6][12], are based
on netlists of CLBs. These CLBs are characterized by a fixed
number of input and output pins. As the benchmark circuits
do not comply with this constraint, they cannot be used in the
hypergraph format, but have to be transformed into netlists
of CLBs. As the functionality of the various modules is not
available, it is impossible to synthesize a netlist of CLBs from
an ISPD98 benchmark circuit.

� A certain number of external connectors (up to 90% [1]) in
the benchmark circuits are bidirectional. In order to apply
a partitioning algorithm that uses the orientation of the nets,
like cone algorithms [4] or algorithms based on the max-flow
min-cut theorem, such as [7][20], it is necessary to transform
these connectors into directional ones. The area of research is
open as to how this can be done without changing the struc-
ture of the netlist.

Furthermore, due to the increasing size of netlists, which can
reach several million gates nowadays, a benchmark suite of fixed
size, with at most 210K cells, will rapidly become obsolete. Only
a generator of heterogeneous netlists covering a large spectrum of
circuit types and sizes is able to respect all required demands: It
would be able to quickly create a large number of netlists of vari-
ous sizes with different structural characteristics, while complying
with patent rights.
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Figure 3. Hierarchical construction process

in the analyzed netlists have a fanout of three or less. To stay close
to the observed structure of real controller designs, the intercon-
nections are generated as follows: We start with an arbitrary linear
ordering of the cells. The proximity measure for two cellsvi and
vj according to this linear ordering isji� jj. The neighborvj of a
randomly selected cellvi is determined with a probability depend-
ing on the fanout of the net used to interconnect them. In the case
of a net with fanout of three or less, we select the neighborvj of
vi with a probability decreasing with the distanceji� jj. In Part-
Gen, we used a gaussian distribution funtion. In the case of a net
with a fanout greater than three, the neighbor is determined with
a uniformly distributed random function, which favours global in-
terconnections. In addition, the following constraints must be re-
spected while generating a macro-controller:
� Direct interconnections between primary input pins and pri-

mary output pins, as well as between FFs, are unusual and
therefore forbidden.

� The number of pins of all the nets has to be greater than or
equal to the sum of the primary input pins, the primary output
pins, the input and output pins of FFs and the input and output
pins of combinational CLBs. Indeed, in order to facilitate
the generation process, we allow the fanout distribution after
the interconnection process to differ slightly from the initial
fanout distribution.

� Each net must have exactly one driver in order to avoid short
circuits.

� Each input pin of a combinational CLB, a FF, a primary input
or a primary output has to be connected to exactly one net in
order to avoid non-connected pins and short circuits.

� Loops on the same cell are forbidden.
� The length of the critical path must be less than a given sig-

nificant value.
� Nets with a small fanout have to be connected locally.
� Nets with a big fanout are used for global interconnections.
� Interconnections must be random.
� The construction process has to be as fast as possible.

� Constructing a macro-controller
A high level description of the construction algorithm is shown

in table 2.

(1) Generate the combinational logic cells, the sequential
logic cells, the primary inputs and the primary outputs.

(2) Generate the nets and distribute the fanout among them.
(3) Connect all nets to a primary output pin or to one input

pin of either a combinational or a sequential logic cell.
(4) Route all interconnections of the macro-controller with

respect to the constraints mentionned above.

Table 2. Construction of a macro-controller netlist

(1) The first step consists of the generation of all the cells of the
netlist. They are concatenated in a linear chained list, one for each
type of cell. A table provides quick access to a cell and facilitates
the random choice of a cell during the connection process.
(2) At the second step, the total number of nets is generated. Each
net randomly obtains a certain fanout according to the fanout dis-
tribution of the original real netlist. Furthermore, one clock net is
generated and connected to the clock pins of the sequential cells.
(3) During the third step, each net is connected to exactly one input
pin of one cell or to a primary output pin. The result of this step
is a net connected to the first input pin of each cell. In this way,
we avoid non-connected nets as well as non-driven cells. Note that
this result is only possible because the number of primary input
pins is equal to the number of primary output pins.
(4) The last step builds interconnections between the different
cells.
The interconnection process is presented in detail in figure 4.

The length of the critical path is respected by the choice of a
depth-first search algorithm for the cell interconnection, beginning
with the primary output pins. During the routing process, we select
a cell which has to be connected to another one by using a random
number generator. This random number generator determines an
index for the table of cells. The cell which is located at the cor-
responding index is chosen. The proximity of interconnections is
achieved through the use of a gaussian random number generator
when routing nets with a fanout smaller than three. In this case, the
index of the current cell is used as an average value. Nets with a
fanout greater than or equal to three are routed globally by the use
of a uniformly distributed random function when selecting cells
that have to be interconnected.

� Interconnecting the macro-controllers
After generating the macro-controller netlists, we have to inter-

connect them according to the hierarchical structure similar to the
one presented in figure 3, in order to obtain one controller netlist.
Experimental results show that the generation process is very reli-
able and extremely fast for big netlists on a standard UNIX work-
station: a controller netlist of 20K CLBs takes 6 seconds to gen-
erate, while a 300K CLBs netlist (1.5M equivalent gates) takes 9
minutes.

2.6. Generator for interconnections
The aim of PartGen is the generation of one netlist containing var-
ious instances or modules, created with the generators described
above. As we can now generate various netlist modules, we next
need to develop an interconnection generator to connect these
modules in order to obtain a single netlist.
The first step is to determine the number of primary input pins
(PIreal) of the netlist. This number can theoretically vary between
one and the sum of the primary input pins of the various modules
PImax:

1 � PIreal � PImax where PImax =

X

8modules

PI

To keep a certain depth to the netlist, we fixed the upper limit of
PIreal as the sum of primary input pins of the modules divided
by the number of modules.PIreal can then be determined using a





Irregular combinational logic Regular combinational logic
FPGA #CLBs F P T cpu #CLBs F P T cpu F irr / F reg

XC3064 4417 16.2% 73.2% 12 s 5298 48.3% 64.4% 9 s 0.34
XC3090 4417 12.5% 66.5% 12 s 5298 44.7% 69.7% 8 s 0.28
XC3064 9103 17.7% 72.3% 43 s 10218 45.2% 66.4% 23 s 0.39
XC3090 9103 13.9% 67.1% 43 s 10218 42.0% 69.8% 21 s 0.33
XC3064 25595 12.7% 63.2% 281 s 24858 48.7% 71.4% 121 s 0.26
XC3090 25595 13.4% 76.5% 297 s 24858 40.7% 69.6% 109 s 0.33

Table 3. Test of the irregular combinational logic netlist generator

RBA FBB DPRP
Netlist F F/Fo P Tcpu F F/Fo P Tcpu F F/Fo P Tcpu

indust 1 44.1% 1 61.7% 122s 32.5% 1 66.5% 12min 62.3% 1 89.6% 350s
PartGenbest 50.5% 1.15 73.5% 111s 35.7% 1.10 65.7% 38min 52.2% 0.84 95.0% 345s

PartGenworst 45.5% 1.03 68.3% 126s 33.9% 1.04 64.9% 30min 49.7% 0.80 96.3% 358s
GEN best 19.3% 0.44 72.6% 177s 15.5% 0.48 62.6% 72min 28.5% 0.46 98.2% 555s

GEN worst 18.9% 0.43 69.9% 170s 15.1% 0.46 62.5% 64min 27.3% 0.44 97.9% 561s
random1 14.3% 0.32 74.5% 322s 11.0% 0.34 63.2% 141min 18.2% 0.29 97.9% 993s
indust 2 52.2% 1 62.4% 188s 52.8% 1 64.8% 61min 67.5% 1 91.2% 562s

PartGenbest 45.2% 0.87 71.5% 194s 33.3% 0.63 65.4% 48min 55.0% 0.81 96.7% 555s
PartGenworst 43.4% 0.83 71.8% 218s 30.8% 0.58 62.3% 69min 52.5% 0.78 96.8% 588s

GEN best 15.3% 0.29 63.6% 382s 14.6% 0.28 70.6% 107min 24.7% 0.37 96.9% 1018s
GEN worst 14.7% 0.28 62.1% 388s 14.1% 0.27 68.7% 113min 24.2% 0.36 97.3% 1020s
random2 10.4% 0.20 60.5% 615s 9.6% 0.18 62.7% 239min 16.2% 0.24 97.8% 1749s
indust 3 42.2% 1 72.1% 245s 26.4% 1 66.9% 38min 41.0% 1 89.6% 1407s

PartGenbest 44.9% 1.06 72.9% 302s 33.6% 1.27 65.0% 183min 56.5% 1.38 96.1% 1391s
PartGenworst 42.0% 1.00 68.4% 295s 31.9% 1.21 63.7% 249min 54.8% 1.34 95.6% 1470s

GEN best 15.2% 0.36 73.8% 539s 12.5% 0.47 63.8% 283min 21.5% 0.52 97.6% 1749s
GEN worst 14.6% 0.35 71.1% 554s 12.2% 0.46 62.3% 284min 20.7% 0.50 98.7% 1722s
random3 11.6% 0.27 63.3% 627s 10.6% 0.40 63.8% 454min 17.9% 0.44 97.6% 1980s

Table 4. Validation of the generator of netlists containing combinational and sequential logic

considering the partitioning results of these types of netlists in real
industrial designs. This permits the use of GEN for generating
irregular combinational logic netlists.

3.2. Combinational and sequential logic generator

To validate the generator of combinational and sequential logic,
we compared the partitioning results in terms of average filling
rates (F) and average pin utilization (P) of netlists generated with
PartGen with the results of industrial netlists of this type. We also
compared our results with those obtained for clone netlists of the
industrial netlists generated using GEN8 [9], and with the results
obtained from partitioning of randomly generated netlists of the
same size. The experimental results are shown in table 4. The
size of the real netlists are 16893 CLBs (indust1), 20718 CLBs
(indust 2), and 22578 CLBs (indust3). Five different netlists of
the same size have been generated with PartGen and with GEN for
each industrial netlist and partitioned to examine the sensitivity of
both generators with respect to to the random generation process.
We display only the best and the worst results obtained. Beside the
recursive bipartitioning algorithm (RBA) [18], we used two other
algorithms. The first one is a recursive application of the FBB al-
gorithm described in [20] with a balance criterion of 25% of the
cells in each partition. We slightly modified the algorithm by do-
ing a breadth first search to obtain source and sink nodes as far
from one another as possible. The second algorithm is the DPRP

8A software tool named CIRC permits the extraction of statistical infor-
mation about a netlist. The generator GEN takes into account this informa-
tion during the generation process. The result is a clone netlist supposed to
reproduce the same statistical information than the original one.

algorithm applied to an ordering obtained with the scaled cost cri-
teria [2].
The results presented in table 4 show that the partitioning of the
netlists generated with PartGen achieves an average filling rate and
an average pin utilization comparable to the partitioning of the in-
dustrial netlists for three different partitioning algorithms. How-
ever, the average filling rates obtained for the randomly generated
netlists, and the netlists generated with GEN, differ significantly.
Indeed, the ratio(F / Fo) between the average filling rates of the
generated netlistsF , and of the original netlistsFo, of XC3064
FPGAs lies close to1 for the netlists generated with PartGen. The
best results were obtained for algorithm RBA where the average
filling rates of the generated netlists deviates less than 17% from
the original ones for all three industrial netlists. FBB and DPRP
achieve good results for netlist indust1, and satisfactory results
for the two other netlists. The worst results in terms of average
filling rate are 0.58 (FBB) and 1.38 (DPRP) times the average fill-
ing rate of the corresponding industrial netlist. Note that in the
best case, the average filling rates obtained for the netlists gener-
ated randomly without any structural or topological information
and the netlists generated with GEN do not exceed 0.44 (random)
and 0.52 (GEN) times the average filling rates of the industrial
netlists.
Incidentally, the ratio(Tpg / To) between the CPU times for the
partitioning of the netlists generated with PartGenTpg and of the
original netlistsTo is close to 1 for RBA and DPRP, and exceeds
3.2 only once for FBB. However, the ratio(Tr / To) between the
CPU time of the partitioning of the randomly generated netlistsTr

and of the original netlists is under 2.5 only once.



We conclude, therefore, that the netlists generated with Part-
Gen have nearly the same hierarchical structure as the industrial
netlists. The partitioning results for the various generated netlists
also prove that our generator is stable enough to reproduce nearly
the same properties regarding the partitioning algorithm. This
shows that our generator is able to create netlists with partition-
ing properties similar to industrial netlists, thus validating our ap-
proach.

3.3. Generator for interconnections
The generator of interconnections links module instances created
with the sub-generators in order to obtain a unique netlist. It does
not introduce physical cells into the netlist and it cannot create
netlists without the other sub-generators. The interconnections of
real netlists depend on the modules it contains. There are no ”typ-
ical” interconnections between modules. For all these reasons, the
generator of interconnections cannot be validated separately. The
influence of the generated interconnections on the partitioning re-
sults remains an open area of research.

3.4. Generating benchmark circuits with PartGen
We used our generator to create 30 benchmark circuits. Their size
varies from 10K to 1M CLBs. Their composition is varied. Each
combination is respected; from a single type netlist to a netlist that
contains at least one instance of each netlist type. The resulting
netlists are flattened netlists consisting of several modules. These
netlists have been partitioned using RBA. The memory blocks
were treated separately by a partitioning into SRAM-banks with
a capacity of 512K words� 8 bit. The rest was partitioned into
XC3064 FPGAs. The partitioning results of some of these netlists
are presented in table 5.

#Cells Circuit composition #Circuits
15000 3 mult, 1 counter 113 XC3064
20000 2 mult, 1 counter, 3 glues 226 XC3064
40000 1 mult, 1 glue, 1 memory 295 XC3064, 32 SRAM
60000 1 mult, 1 glue, 2 memories 453 XC3064, 48 SRAM

Table 5. Partitioning mixed benchmark circuits

4. CONCLUSION AND PERSPECTIVES

We have described PartGen, a generator of very large FPGA
netlists for building partitioning benchmarks. Our approach has
been validated experimentally by comparing the behaviour of the
generated netlists to real netlists with respect to partitioning. For
all examples treated, the results have appeared to be very similar.
Among the possible ways of improving PartGen, we mention fur-
ther refinement of the netlist types by identification of sub-types
and the variation of the interconnection structure to realize BUS-
like interconnections between two modules. We also intend to use
PartGen to create a set of benchmark circuits of large sizes which
are available atftp://ftp-asim.lip6.fr/pub/misc/partgen.
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