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ABSTRACT 
In this paper, we propose a novel storage requirement estimation 
methodology for use in the early system design phases when the data 
transfer ordering is only partly fixed. At that stage, none of the 
existing estimation tools are adequate, as they either assume a fully 
specified execution order or ignore it completely. Using a 
representative application demonstrator, we show how our technique 
can effectively guide the designer to achieve a transformed 
specification with low storage requirement. 

1. INTRODUCTION 
Many embedded HW/SW systems, especially in the multi-media and 
telecom domains, are inherently data dominant. For this class of 
applications, data transfer and storage largely determine cost and 
performance parameters. This is the case for chip size, since large 
memories are usually needed, performance, since accessing the 
memories may very well be the main bottleneck, and power 
consumption, since the memories and buses consume large 
quantities of energy. During the system development process, the 
designer must hence concentrate first on exploring the data transfer 
and storage to achieve a cost-optimized end product [3]. At the 
system level, no detailed information is available about the size of 
the memories required for storing data in the alternative realizations 
of the application. To guide the designer and help in choosing the 
best solution, we therefore need estimation techniques for the 
storage requirements, very early in the system design trajectory. 
For our classes of data dominant applications the high level 
description is typically characterized by large multi-dimensional 
loop nests and arrays. A straightforward way of estimating the 
storage requirement is to find the size of each array by multiplying 
the size of each dimension, and then add together the different 
arrays. This will normally result in a huge overestimate however, 
since not all the arrays, and possibly not all parts of one array, are 
alive at the same time. In this context an array element is alive from 
the moment it is written, or produced, and until it is read for the last 
time. This last read is said to consume the element. To achieve a 
more accurate estimate, we have to take into account these non-
overlapping lifetimes and their resulting opportunity for mapping 
arrays and parts of arrays in the same place in memory, the so called 
in-place mapping problem. To what degree it is possible to perform 
in-place mapping depends heavily on the order in which the 
elements in the arrays are produced and consumed. This is mainly 
determined by the execution ordering of the loop nests surrounding 
the arrays.  

At the beginning of the design process, no information about the 
execution order is known, except what is given from the data 
dependencies between the instructions in the code. As the process 
progresses, the designer takes decisions which gradually fix the 
ordering, until the full execution ordering is known. To steer this 
process, estimates of the upper and lower bounds on the storage 
requirement are needed at each step, given the partially fixed 
execution ordering.  
In this paper we propose a new technique for estimating the storage 
requirements for data intensive applications with a partially fixed 
execution ordering. The methodology is partly based on previous 
work done by Florin Balasa et al. [1], and uses a polyhedral model 
of the arrays and the execution ordering. Several major extensions 
are proposed here to achieve our goals. The rest of this paper starts 
with a presentation of previous work on storage requirement 
estimation, including the contribution of Balasa et al. This is 
followed by the description of the new technique in section 3 and by 
experimental results on a representative application demonstrator in 
section 4. At the end we present our conclusions. 

2. PREVIOUS WORK 
By far the major part of all previous work on storage requirement 
has been scalar-based. The number of scalars, also called signals or 
variables, is then limited, and if arrays are treated, they are flattened 
and each array element is considered a separate scalar. Through the 
use of scheduling techniques like the left-edge algorithm the lifetime 
of each scalar is found so that scalars with non-overlapping lifetimes 
can be mapped to the same storage unit [6]. Techniques such as 
clique partitioning are also exploited to group variables that can be 
mapped together [7]. A good introduction to the scalar-based storage 
unit estimation can be found in [4]. Common to all of them is that 
they break down when used for large multi-dimensional arrays, due 
to the huge number of scalars present. 
To overcome this shortcoming, several research teams have tried to 
split the arrays into suitable units before or as a part of the 
estimation. Typically each instance of array element accesses in the 
code is treated separately. Due to the code's loop structure, large 
parts of an array can be produced or consumed by the same code 
instance. This reduces the number of elements the estimator must 
handle compared to the scalar approach. In [8] a production time 
axis is created for each array. This models the relative production 
and consumption time, or date, of the individual array accesses. The 
maximum difference between the production and consumption date 
found for any two depending instances, gives the storage 
requirement for this array. The total storage requirement is the sum 
of the requirements for each array. To generate the production time 
axis, the execution ordering has to be fully fixed. Also, since each 
array is treated separately, only in-place mapping internally to an 
array is considered, not the possibility of mapping arrays in-place of 
each other. Another approach is taken in [5]. The data-dependency 
relations between the array references in the code are used to find 
the number of array elements produced or consumed by each 
assignment. From this, a memory trace of upper and lower bounding 
rectangles as a function of time is found. The total storage 

 
 



requirement equals the peak bounding rectangle. If the difference 
between the upper and lower bounds for this critical rectangle is too 
large, the corresponding loop is split into two and the estimation is 
rerun. In the worst-case situation a full loop-unrolling is necessary to 
achieve a satisfactory estimate. [9] describes a methodology for so-
called exact memory size estimation for array computation. It is 
based on live variable analysis and integer point counting for 
intersection/union of mappings of parameterized polytopes. They 
show that it is only necessary to find the number of live variables for 
one instruction in each innermost loop nest to get the minimum 
memory size estimate. The live variable analysis is performed for 
each iteration of the loops however, which makes it computationally 
hard for large multi-dimensional loop nests. 
In contrast to the methods described in the previous paragraph, the 
storage requirement estimation technique presented by Balasa et al. 
in [1] does not require the execution ordering to be fixed. On the 
contrary, it does not take execution ordering into account at all. 
They start with an extended data-dependency analysis where not 
only dependencies between array accesses in the code are taken into 
account, but also which parts of an array produced by one 
instruction that are read by another (or possibly the same) 
instruction. For each instruction in the code, a definition domain is 
extracted, containing each array element produced by the 
instruction. Similarly, operand domains are extracted for the parts of 
arrays read by the instruction. Through an analytical partitioning of 
the arrays involving, among other steps, intersection of these 
domains, they end up with a number of non-overlapping basic sets 
and the dependencies between them. Array elements common to a 
given set of domains and only to them constitute a basic set. The 
domains and basic sets are described as polytopes, using linearly 
bounded lattices (LBLs) of the form 

{ x = T • i + u | A • i ≥ b } 
where x ∈ Zm is the coordinate vector of an m-dimensional array, 
and i ∈ Zn is the vector of loop iterators. The array index function is 
characterized by T ∈ Zm x n and u ∈ Zm, while the polytope defining 
the set of iterator vectors is characterized by A ∈ Z2n x  n and b ∈ Z2n. 
The basic set sizes, and the sizes of the dependencies, are found 
using an efficient lattice point counting technique. The dependency 
size is the number of elements from one basic set that is read while 
producing the depending basic set. This information is used to 
generate a data-flow graph where the basic sets are the nodes and the 
dependencies between them are the branches. The total storage 
requirement for the application is found through a traversal of this 
graph, where basic sets are selected for production by a greedy 
algorithm. A basic set is ready for production when all basic sets it 
depends on have been produced and is consumed when the last basic 
set depending on it has been produced. Further details of the 
traversal are outside the scope of this paper. The maximal combined 
size of simultaneously alive basic sets gives the storage requirement.  

L.1 (j: 0 .. 3):: 
   (k: 0 .. 2):: 
   begin 
I.1     B[0][j][k] = f( A[j][k] ); 
   end; 
 

L.2 (i: 1 .. 5):: 
   (j: 0 .. 3):: 
     (k: 0 .. 2):: 
     begin 
I.2       B[i][j][k] = g( B[i-1][j][k] ); 
I.3       C[i][j][k] = if (j >= 2) -> h( B[i][j-2][k] ) fi; 
I.4       D[j][k] = if (i >= 5) ->  l( B[5][j][k] ) fi; 
     end; 

Figure 1: Code example (Silage language) 
Since the rest of this paper in part is based on this work, we now 

present a simple illustrative example in the single-assignment 
language Silage. Note that very small loop bounds are used here to 
allow a graphical representation, but the mathematics used in the 
techniques and tools result in a complexity that is nearly 
independent of the actual loop bounds. Let us focus on the accesses 
to array B[u][v][w] in Figure 1. The array elements are produced by 
instructions I.1 and I.2, and read (and finally consumed) by 
instructions I.2, I.3, and I.4. Figure 2 gives examples of the LBL 
descriptions of the production and reading of array B[u][v][w] as 
found using the methodology from [1]. 
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 Instruction I.3:  
 Operand domain  
 (elements read) 
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Figure 2: LBL descriptions for definition and operand domains 
The part of array B[u][v][w] that is produced by instruction I.1 is 
read and only read, and thus also consumed, by instruction I.2. It 
therefore results in one basic set only, B(0). The part of array 
B[u][v][w] produced by instruction I.2, however, is read by 
instruction I.2, I.3, and/or I.4. Through intersection of the different 
definition and operand domains this part of array B[u][v][w] is split 
into several basic sets depending on how they interrelate with each 
other. Some of the elements are for instance read by I.2 and I.3 and 
not I.4, constituting basic set B(2). Figure 3 gives a graphical 
description of the basic sets for the B[u][v][w] and C[u][v][w] 
arrays. Figure 4 gives an example of the LBL description for one of 
the basic sets, B(2).  
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Figure 3: Iteration space for array B[u][v][w] and C[u][v][w] in the 

code example in Figure 1. Dependency shown for B[1][0][0]. 





















−

−

−
≥

































−

−

−
























=













2
0
1
0
4
1

100
100
010
010
001
001

100
010
001

:)2(
k
j
i

k
j
i

w
v
u

BB        

Figure 4: LBL description for basic set B(2) of array B[u][v][w] 
When the basic sets and the dependencies between them for all 
arrays in the code are found, the data-flow graph of Figure 5 is 
generated. The annotations to the nodes are the names and sizes of 
the corresponding basic sets, while the annotations to the branches 
are the dependency sizes. During the traversal of this graph, it is 
detected that the maximal combined size of simultaneously alive 
basic sets is reached when basic sets C(0), B(1) and B(3) are alive. 
Together they require 30+6+6=42 storage locations. Note that B(4) 
only requires 6 locations since it is mainly self-dependent. 
In summary, all of the previous work on storage requirement entails 



a fully fixed execution ordering to be determined prior to the 
estimation. The only exception is the last methodology, which 
allows any ordering not prohibited by data dependencies. None of 
the approaches described permit the designer to specify partial 
ordering constraints, which is really essential during the early 
exploration of the code transformations. 
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Figure 5: Data-flow graph for the code example in Figure 1. 

3. ESTIMATION WITH PARTIALLY 
     FIXED EXECUTION ORDERING 
Look at the basic sets B(2) and C(0) in Figure 5 and the dependency 
between them. The size of basic set B(2) is 24. This corresponds to 
its worst-case storage requirement needed if the whole of B(2) is 
produced before the first element of C(0). As can be seen from 
Figure 3, this will happen if for example k is the innermost loop, 
followed by i, and with j as the outermost loop. As Figure 3 also 
shows, the best-case storage requirement is 2, achieved if j and k are 
interchanged in the above ordering. Then only elements B[1][0][0] 
and B[1][1][0] are produced before element C[1][2][0], which can 
potentially be mapped in-place with B[1][0][0]. Assume now that 
early in the design trajectory, we want to explore the consequences 
of having k as the outermost loop. Through inspection of Figure 3 
we find that the dependency between B(2) and C(0) does not cross 
the k-dimension. Accordingly all elements produced for one value of 
k are also consumed for this value of k. Consequently the worst-case 
and best-case storage requirements are now 8 and 2 respectively, 
indicating that it is indeed advantageous to place k outermost. It may 
not be this simple however, since there can be conflicting 
dependencies in other parts of the code, giving rise to the need of an 
automated estimation tool to be able to take everything into account. 
This also rationalizes why we need to be able to do estimations on a 
partially fixed execution ordering. With estimation tools requiring 
the execution ordering to be fully specified, every alternative 
ordering with k as the outermost loop would have to be explored. It 
also shows the shortcomings of not considering the execution 
ordering at all, as in [1], since it results in a large overestimate. 
Our methodology is useful for a large class of applications. There 
are certain restrictions on the code that can be handled in the present 
version however, some of which will be alleviated through future 
work. The main requirements are that the code is single assignment 
and has affine array indexes (achievable by a good array data-flow 
analysis preprocessing). Also array elements in a basic set must be 
produced and read sequentially, implying that a vector between 
depending elements in two basic sets have the same direction and 
length for all depending elements in the basic sets. The last 
requirement entail that if array element B[1][2][0] depends on 
A[0][0][0], then B[1][3][0] must depend on A[0][1][0] if the A-
elements and B-elements belong to the same two basic sets. If this is 
not the case, the non-uniform basic sets can be split. 

3.1 Basic Set and Dependency Sizes 
The starting point for our estimation methodology is the basic set 
and dependency information as described in the last part of Section 
2. The main principles can be used on any polyhedral description of 
sets of signals and their dependencies though. To overcome the 
problem of overestimation found in [1], we exploit information 
about the partly fixed execution ordering. Upper and lower bounds 
on the number of simultaneously alive elements in the dependencies 
between basic sets are calculated. This corresponds to the number of 
elements produced in one basic set before the first of them 
(potentially) can be overwritten by an element produced in the 
depending basic set. The sizes of the dependencies are in turn used 
to calculate new basic set sizes. The algorithm for estimating the 
upper and lower bounds of the dependency sizes is given in Figure 
6. A branch in the data-flow graph contains information concerning 
what part of a basic-set the other basic set depends on, called the 
Dependency Part (DP). The first step in the algorithm is the 
orthogonalization of the DP. Each dimension is extended as needed 
until all dimensions are orthogonal with respect to each other, see 
Figure 7 for a two-dimensional example. The orthogonalization is 
necessary due to the possibly complex shapes of the DPs, which do 
not lend themselves easily to the type of calculations included in our 
estimation techniques. As can be seen it instigates a potential 
overestimate, but these acceptable errors are the price we have to 
pay for keeping the estimation complexity at a reasonable level. We 
are currently working on techniques to allow triangular forms in the 
DPs. When we in the sequel use the word lower bound, we mean the 
bound after this approximation.  

void EstimateDependencySizes( data-flow graph )  
for all basic sets B in data-flow graph { 
 for all dependencies to basic sets BD depending on B { 
  calculate the orthogonal DP, DV, and DVP of B with respect to BD 
  remove from the DP elements where for all SD the values are 

 larger than their SV 
  define set UnspecifiedSpanningDimensions (USD) = (all SD) 
  define set SpecifiedSpanningDimensions (SSD) = Ø 
  for each specified dimension di { 
   if specification starts from innermost dimension { 
    expand the dimension di of the DVP to the border of DP 
    if (di ∉ USD) 
     remove from DVP elements that may not be visited 
    else { 
     remove from DP elements that will not to be visited 
     USD = USD - di 
     SSD = SSD + di 
     if(USD = Ø) 
      DP = DVP 
   } } 
   else { 
    if (di ∉ USD)  
     if (SSD = Ø) 
      remove di from DP 
     else 
      remove from DP elements that will not to be visited 
    else { 
     remove from DP elements that will not to be visited  
     expand DVP with elements that will to be visited 
     USD = USD - di 
     SSD = SSD + di 
     if(USD = Ø) 
      DP = DVP 
  } } } 
  update data-flow graph(dependency upper bound = size(DP),  

dependency lower bound = size(DVP)) 
} }  
Figure 6: Pseudo-code for dependency size estimation algorithm 

The code requirement of sequential production and reading allows 
us to define one element in the DP as the "smallest" element that will 



always be produced first regardless of the chosen execution 
ordering. For basic set B(2) in Figure 3 this is element B[1][0][0]. 
The estimation algorithm generates a Dependency Vector (DV) from 
this smallest element of the DP to the depending element in the 
depending basic set. For the dependency between B(2) and C(0) in 
Figure 3, the DV will thus start at (i,j,k)-point (1,0,0) and end at 
(1,2,0). The DV cover all or (more typically) a subset of the 
dimensions in the iteration space, defined as Spanning Dimensions 
(SD). We also define the values of the end points of the DV as the 
Spanning Values (SV). Since the DV in our example only covers the 
j-dimension, we have only one SD and one SV, the j-dimension and 
2 respectively. The SD spans a polytope (partly) overlapping the DP. 
After intersection with the DP this polytope is denoted the 
Dependency Vector Polytope (DVP). Again referring to Figure 3, 
the DVP for the dependency between B(2) and C(0) consists of two 
elements, as shown in Figure 8. Note that for comparison with the 
graphical description a three-dimensional LBL is used, while the 
DVP really only has one dimension, the j-dimension. 
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Figure 7: Orthogonalization of Dependency Part 

We are now ready to start estimating the upper and lower bounds on 
the dependency sizes. If no execution order information is available, 
the lower bound can be found directly from the size of the DVP. No 
matter what execution order is chosen in the end, the elements of 
this polytope will always be produced before any elements of the 
depending basic set are produced. If there is no overlap between the 
depending basic set and the DP, also the upper bound can be found 
directly since it then equals the size of the DP. If overlap exists, we 
can first remove from the DP the elements that, for all SD, have 
larger values then the corresponding SV, since they can not possibly 
be produced before the first element in the depending basic set. 
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Figure 8: Dependency Vector Polytope 

As the execution order is gradually fixed, the size of the DVP will 
be extended, and/or the size of the DP will be reduced. In most cases 
they will coalesce when all the spanning dimensions are fixed. When 
this does not happen, it is caused by simplifications in the 
extension/removal of elements in the DP and DVP to lower the 
estimation complexity. Assume now that the k-dimension is 
specified as the innermost dimension. According to the algorithm in 
Figure 6 the DVP is extended to encompass the full length of the k-
dimension as shown in Figure 9. The DP and with it the upper 
bound on the dependency size, do not change. If now the j-
dimension is specified as the second innermost dimension, this 
dimension of the DVP is to be expanded till the border of the DP. 
For our example, this is already the case, so the DVP does not 
change. Since the j-dimension is the last spanning dimension, the 
DVP size is also the upper bound on the dependency size. 
The execution ordering may as well be specified starting with the 
outermost dimension. With i outermost, we can remove it from the 
DP since it is not a spanning dimension, and we get a new DP as 
shown in Figure 10. Knowing that i is non-spanning dimension also 
ascertain that the DVP does not change, so we get a reduced upper 
bound and an unchanged lower bound on the dependency size. With 
j as second outermost dimension we have to expand the remaining 

unspecified dimensions of the DVP till the DP border. For our 
example this only applies to the k-dimension, and we are back to the 
DVP and lower bound of Figure 9. Table 1 summarizes the 
estimation results for the different partly fixed execution orderings. 
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Figure 10: Dependency Part with i as outermost dimension 

Fixed Dimension(s) Upper bound Lower bound 
Outermost Innermost   

None 24 2 
k 24 6 

j,k 6 6 
i 6 2 
i,j 6 6 

Table 1: Dependency size estimat results 

4. ESTIMATION ON MPEG-4 MOTION 
ESTIMATION KERNEL 
MPEG-4 is a standard for the format of multi-media data-streams in 
which audio and video objects can be used and presented in a highly 
flexible manner. An important part of the coding of this data-stream 
is the motion estimation of moving objects. See [2] for a more 
detailed description of this part of the standard. We will now use this 
real life application to show how storage requirement estimation can 
be used during the design trajectory. A part of the code is given in 
Figure 11 with the corresponding data-flow graph in Figure 12. 
The loops in the upper nest of Figure 11 can be interchanged in 
4!=24 ways. Because of the symmetry in the loops only 6 of these 
alternatives have to be investigated, see Table 2; interchange 
between y_s & x_s OR y_p & x_p leads to the same data in-place 
mapping opportunity.  

(y_s  :  0  . .  31  ) : :     
 (x_s  :  0  . .  31  ) : :  
  (y_p  :  0  . .  15  ) : :   
   ( x_p  :  0  . .  15  ) : :  
   s ad [y_s ] [x_s ] [y_p ] [x_p ]  =  
S .1     i f  ( (x_p  ==  0 )&(y_p  ==  0 ) )  ->   

f ( cu r r [y_p] [x_p] ,  p rev [y_s+y_p] [x_s+x_p] )  
S .2    | |  ( (x_p  ==  0)&(y_p  !=  0 ) )  ->   

g ( sad [y_s ] [x_s ] [y_p-1 ] [15 ] ,  cu r r [y_p ] [x_p ] ,   
p r ev [y_s+y_p] [x_s+x_p] )  

S .3     | |  g ( sad [y_s ] [x_s ] [y_p] [x_p-1 ] ,  cu r r [y_p ] [x_p ] ,  
p rev [y_s+y_p] [x_s+x_p] )  

    f i ;  
 

(y_s  :  0  . .  31  ) : :  
  (x_s  :  0  . .  31  ) : :  
S .4    r e su l t [y_s ] [x_s ]  =  h ( sad [y_s ] [x_s ] [15 ] [15 ] ) ;  
Figure 11: MPEG-4 motion estimation kernel (Silage language) 

Assuming that the prev[][] array is already in memory from the 
previous calculation, we have to investigate how the execution 
ordering influences the size of the sad[][][][] and curr[][] arrays. 
Given an external restriction that the curr[y_p][x_p] pixels are 
presented sequentially and row first (curr[0][0], curr[0][1], ... 



curr[0][15], curr[1][0] ...) at the input, the required storage for the 
curr[][] array can be  made as small as possible if we use alternative 
2) from Table 2. Indeed, all calculations for each pixel can be 
completed before the next pixel arrives, and we need only one 
storage location for the curr[][] array. In any of the other methods, 
we have to buffer the curr[][] elements, since they are needed in 
bursts. This will require 16x16=256 storage locations. As a first 
design step it is therefore natural to investigate what the storage 
requirement for the sad[][][][] array is, if the execution order is 
optimized for the curr[][] array, beginning with the ordering of y_p 
as the outermost loop. The estimation results are listed in Table 3. 
The last row contains the number of simultaneously alive array 
elements found through the traversal of the data-flow graph. Because 
of the loop between sad(3), sad(4), and sad(5) in Figure 12, parts of 
these basic sets may in the worst case be alive simultaneously. Even 
in the best case, when this is not the situation, the increase in the 
lower bound on the storage requirement (1025-1 = 1024) exceeds 
the storage requirement for all of the curr[][] array (256). 
Consequently we can rule out any interchange alternative with y_p 
as the outermost loop. We are then left with interchange method 1), 
3), and 5), each with y_s as the outermost loop. 
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215040
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14336

sad(2)
1024
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2209
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sad()
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Figure 12: Data-flow graph for MPEG-4 motion estimation kernel 
 ↓ Outermost Innermost ↓  
1) y_s x_s y_p x_p ←original 
2) y_p x_p y_s x_s  
3) y_s y_p x_s x_p  
4) y_p y_s x_p x_s  
5) y_s y_p x_p x_s  
6) y_p y_s x_s x_p  

Table 2: Interchange alternatives 

y_s is not a spanning dimension in the DVP for any of the basic sets, 
so the lower bound storage requirements will stay the same as for the 
unordered situation. The upper bound requirements are reduced 
however, by a factor 32 everywhere (except for sad(6)) since y_s can 
be removed from every Dependency Part.  

 no ordering y_p outermost 
sad(0) 1/1024 1/1024 
sad(1) 1/1024 1/1024 
sad(2) 1/1024 1024/1024 
sad(3) 1/15360 1/1024 
sad(4) 1/15360 1/2048 
sad(5) 1/14336 1025/14336 
sad(6) 1/1 1/1 

Simultaneously alive 1/45056 1025/17408 
curr(0) 1/256 1/256 

Storage requirement 2/45312 1026/17664 

Table 3: Estimated lower/upper bounds for storage requirement 
of sad[][][][] and curr[][] arrays 

The designer can get good hints for the rest of the ordering through 
an inspection of the DVPs. Non-spanning dimensions reduce the 
upper bound without altering the lower bound if they are placed 
outermost, while spanning dimensions with similar reasoning should 
be placed innermost. In this case the DVPs show that the smallest 

dependencies can be achieved when y_p and x_p are ordered as the 
innermost loops, as in interchange alternative 1). Table 4 shows the 
change of estimated upper and lower bounds as the execution order 
is fixed. As the dimensions are specified, the upper and lower 
bounds for the DVPs gradually converge and finally come together 
when the ordering is fully specified. The difference between the 
upper and lower bounds for simultaneously alive basic sets  even 
when the ordering is fully fixed, is due to the loop structure of the 
data-flow graph. A closer inspection of the code reveals that the 
lower bound is indeed reachable. 

basic set a) b) c) d) 
sad(0) 1/32 1/1 1/1 1/1 
sad(1) 1/32 1/1 1/1 1/1 
sad(2) 1/32 1/1 1/1 1/1 
sad(3) 1/480 1/15 1/1 1/1 
sad(4) 1/480 1/15 1/2 1/2 
sad(5) 1/448 1/14 1/1 1/1 
sad(6) 1/1 1/1 1/1 1/1 
Simul. alive 1/1408 1/44 1/4 1/4 
curr(0) 256/256 256/256 256/256 256/256 
Storage req. 257/1664 257/300 257/260 257/260 

Table 4: Estimated lower/upper bounds for storage requirement 
of sad[][][][] array with stepwise fixation of execution ordering; 

a) y_s outermost, b) x_s 2nd outermost, c) y_p 3rd outermost,  
d) x_p 4th outermost 

5. CONCLUSIONS 
We have presented a novel technique for estimating storage 
requirements for algorithms with partly fixed execution ordering. 
The methodology can be used during the design trajectory for a large 
set of data dominated applications in many typical 
hardware/software codesign domains such as multi-media and 
telecom applications. Upper and lower bounds on the storage 
requirement are presented to the designer, who can then use them 
effectively in early system trade-offs. As more and more of the 
execution ordering is specified, our upper and lower bounds have 
the very desirable property that they converge. Using a real life 
MPEG-4 application, we have demonstrated how the methodology 
can be used during the early system design trajectory.  
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