
Storage Requirement Estimation for Data Intensive Applications
with Partially Fixed Execution Ordering

Per Gunnar Kjeldsberg
Norwegian University of Science and

Technology
Trondheim, Norway

pgk@fysel.ntnu.no

Francky Catthoor
IMEC, Leuven, Belgium

Also at EE.Dept. of Kath. Univ. Leuven

catthoor@imec.be

Einar J. Aas
Norwegian University of Science and

Technology
Trondheim, Norway

einar.aas@fysel.ntnu.no

ABSTRACT
In this paper, we propose a novel storage requirement estimation
methodology for use in the early system design phases when the data
transfer ordering is only partly fixed. At that stage, none of the
existing estimation tools are adequate, as they either assume a fully
specified execution order or ignore it completely. Using a
representative application demonstrator, we show how our technique
can effectively guide the designer to achieve a transformed
specification with low storage requirement.

1. INTRODUCTION
Many embedded HW/SW systems, especially in the multi-media and
telecom domains, are inherently data dominant. For this class of
applications, data transfer and storage largely determine cost and
performance parameters. This is the case for chip size, since large
memories are usually needed, performance, since accessing the
memories may very well be the main bottleneck, and power
consumption, since the memories and buses consume large
quantities of energy. During the system development process, the
designer must hence concentrate first on exploring the data transfer
and storage to achieve a cost-optimized end product [3]. At the
system level, no detailed information is available about the size of
the memories required for storing data in the alternative realizations
of the application. To guide the designer and help in choosing the
best solution, we therefore need estimation techniques for the
storage requirements, very early in the system design trajectory.
For our classes of data dominant applications the high level
description is typically characterized by large multi-dimensional
loop nests and arrays. A straightforward way of estimating the
storage requirement is to find the size of each array by multiplying
the size of each dimension, and then add together the different
arrays. This will normally result in a huge overestimate however,
since not all the arrays, and possibly not all parts of one array, are
alive at the same time. In this context an array element is alive from
the moment it is written, or produced, and until it is read for the last
time. This last read is said to consume the element. To achieve a
more accurate estimate, we have to take into account these non-
overlapping lifetimes and their resulting opportunity for mapping
arrays and parts of arrays in the same place in memory, the so called
in-place mapping problem. To what degree it is possible to perform
in-place mapping depends heavily on the order in which the
elements in the arrays are produced and consumed. This is mainly
determined by the execution ordering of the loop nests surrounding
the arrays.

At the beginning of the design process, no information about the
execution order is known, except what is given from the data
dependencies between the instructions in the code. As the process
progresses, the designer takes decisions which gradually fix the
ordering, until the full execution ordering is known. To steer this
process, estimates of the upper and lower bounds on the storage
requirement are needed at each step, given the partially fixed
execution ordering.
In this paper we propose a new technique for estimating the storage
requirements for data intensive applications with a partially fixed
execution ordering. The methodology is partly based on previous
work done by Florin Balasa et al. [1], and uses a polyhedral model
of the arrays and the execution ordering. Several major extensions
are proposed here to achieve our goals. The rest of this paper starts
with a presentation of previous work on storage requirement
estimation, including the contribution of Balasa et al. This is
followed by the description of the new technique in section 3 and by
experimental results on a representative application demonstrator in
section 4. At the end we present our conclusions.

2. PREVIOUS WORK
By far the major part of all previous work on storage requirement
has been scalar-based. The number of scalars, also called signals or
variables, is then limited, and if arrays are treated, they are flattened
and each array element is considered a separate scalar. Through the
use of scheduling techniques like the left-edge algorithm the lifetime
of each scalar is found so that scalars with non-overlapping lifetimes
can be mapped to the same storage unit [6]. Techniques such as
clique partitioning are also exploited to group variables that can be
mapped together [7]. A good introduction to the scalar-based storage
unit estimation can be found in [4]. Common to all of them is that
they break down when used for large multi-dimensional arrays, due
to the huge number of scalars present.
To overcome this shortcoming, several research teams have tried to
split the arrays into suitable units before or as a part of the
estimation. Typically each instance of array element accesses in the
code is treated separately. Due to the code's loop structure, large
parts of an array can be produced or consumed by the same code
instance. This reduces the number of elements the estimator must
handle compared to the scalar approach. In [8] a production time
axis is created for each array. This models the relative production
and consumption time, or date, of the individual array accesses. The
maximum difference between the production and consumption date
found for any two depending instances, gives the storage
requirement for this array. The total storage requirement is the sum
of the requirements for each array. To generate the production time
axis, the execution ordering has to be fully fixed. Also, since each
array is treated separately, only in-place mapping internally to an
array is considered, not the possibility of mapping arrays in-place of
each other. Another approach is taken in [5]. The data-dependency
relations between the array references in the code are used to find
the number of array elements produced or consumed by each
assignment. From this, a memory trace of upper and lower bounding
rectangles as a function of time is found. The total storage

requirement equals the peak bounding rectangle. If the difference
between the upper and lower bounds for this critical rectangle is too
large, the corresponding loop is split into two and the estimation is
rerun. In the worst-case situation a full loop-unrolling is necessary to
achieve a satisfactory estimate. [9] describes a methodology for so-
called exact memory size estimation for array computation. It is
based on live variable analysis and integer point counting for
intersection/union of mappings of parameterized polytopes. They
show that it is only necessary to find the number of live variables for
one instruction in each innermost loop nest to get the minimum
memory size estimate. The live variable analysis is performed for
each iteration of the loops however, which makes it computationally
hard for large multi-dimensional loop nests.
In contrast to the methods described in the previous paragraph, the
storage requirement estimation technique presented by Balasa et al.
in [1] does not require the execution ordering to be fixed. On the
contrary, it does not take execution ordering into account at all.
They start with an extended data-dependency analysis where not
only dependencies between array accesses in the code are taken into
account, but also which parts of an array produced by one
instruction that are read by another (or possibly the same)
instruction. For each instruction in the code, a definition domain is
extracted, containing each array element produced by the
instruction. Similarly, operand domains are extracted for the parts of
arrays read by the instruction. Through an analytical partitioning of
the arrays involving, among other steps, intersection of these
domains, they end up with a number of non-overlapping basic sets
and the dependencies between them. Array elements common to a
given set of domains and only to them constitute a basic set. The
domains and basic sets are described as polytopes, using linearly
bounded lattices (LBLs) of the form

{ x = T • i + u | A • i ≥ b }
where x ∈ Zm is the coordinate vector of an m-dimensional array,
and i ∈ Zn is the vector of loop iterators. The array index function is
characterized by T ∈ Zm x n and u ∈ Zm, while the polytope defining
the set of iterator vectors is characterized by A ∈ Z2n x n and b ∈ Z2n.
The basic set sizes, and the sizes of the dependencies, are found
using an efficient lattice point counting technique. The dependency
size is the number of elements from one basic set that is read while
producing the depending basic set. This information is used to
generate a data-flow graph where the basic sets are the nodes and the
dependencies between them are the branches. The total storage
requirement for the application is found through a traversal of this
graph, where basic sets are selected for production by a greedy
algorithm. A basic set is ready for production when all basic sets it
depends on have been produced and is consumed when the last basic
set depending on it has been produced. Further details of the
traversal are outside the scope of this paper. The maximal combined
size of simultaneously alive basic sets gives the storage requirement.

L.1 (j: 0 .. 3)::
 (k: 0 .. 2)::
 begin
I.1 B[0][j][k] = f(A[j][k]);
 end;

L.2 (i: 1 .. 5)::
 (j: 0 .. 3)::
 (k: 0 .. 2)::
 begin
I.2 B[i][j][k] = g(B[i-1][j][k]);
I.3 C[i][j][k] = if (j >= 2) -> h(B[i][j-2][k]) fi;
I.4 D[j][k] = if (i >= 5) -> l(B[5][j][k]) fi;
 end;

Figure 1: Code example (Silage language)
Since the rest of this paper in part is based on this work, we now

present a simple illustrative example in the single-assignment
language Silage. Note that very small loop bounds are used here to
allow a graphical representation, but the mathematics used in the
techniques and tools result in a complexity that is nearly
independent of the actual loop bounds. Let us focus on the accesses
to array B[u][v][w] in Figure 1. The array elements are produced by
instructions I.1 and I.2, and read (and finally consumed) by
instructions I.2, I.3, and I.4. Figure 2 gives examples of the LBL
descriptions of the production and reading of array B[u][v][w] as
found using the methodology from [1].

 Instruction I.2:
 Definition domain
 (elements produced)

−

−

−
≥

−

−

−

=

2
0
3
0
5
1

100
100
010
010
001
001

100
010
001

k
j
i

k
j
i

w
v
u

B

 Instruction I.3:
 Operand domain
 (elements read)

−

−

−
≥

−

−

−

−+

=

2
0
3
2
5
1

100
100
010
010
001
001

0
2
0

100
010
001

k
j
i

k
j
i

w
v
u

B

Figure 2: LBL descriptions for definition and operand domains
The part of array B[u][v][w] that is produced by instruction I.1 is
read and only read, and thus also consumed, by instruction I.2. It
therefore results in one basic set only, B(0). The part of array
B[u][v][w] produced by instruction I.2, however, is read by
instruction I.2, I.3, and/or I.4. Through intersection of the different
definition and operand domains this part of array B[u][v][w] is split
into several basic sets depending on how they interrelate with each
other. Some of the elements are for instance read by I.2 and I.3 and
not I.4, constituting basic set B(2). Figure 3 gives a graphical
description of the basic sets for the B[u][v][w] and C[u][v][w]
arrays. Figure 4 gives an example of the LBL description for one of
the basic sets, B(2).

k 0 1 2 3
0

1

2

3

j

i

4

5B(1)

B(2)

B(0)

B(4)

B(3)

C(0)

Figure 3: Iteration space for array B[u][v][w] and C[u][v][w] in the

code example in Figure 1. Dependency shown for B[1][0][0].

−

−

−
≥

−

−

−

=

2
0
1
0
4
1

100
100
010
010
001
001

100
010
001

:)2(
k
j
i

k
j
i

w
v
u

BB

Figure 4: LBL description for basic set B(2) of array B[u][v][w]
When the basic sets and the dependencies between them for all
arrays in the code are found, the data-flow graph of Figure 5 is
generated. The annotations to the nodes are the names and sizes of
the corresponding basic sets, while the annotations to the branches
are the dependency sizes. During the traversal of this graph, it is
detected that the maximal combined size of simultaneously alive
basic sets is reached when basic sets C(0), B(1) and B(3) are alive.
Together they require 30+6+6=42 storage locations. Note that B(4)
only requires 6 locations since it is mainly self-dependent.
In summary, all of the previous work on storage requirement entails

a fully fixed execution ordering to be determined prior to the
estimation. The only exception is the last methodology, which
allows any ordering not prohibited by data dependencies. None of
the approaches described permit the designer to specify partial
ordering constraints, which is really essential during the early
exploration of the code transformations.

A(0)
12

B(0)
12

B(2)
24

B(4)
24

B(3)
6

B(1)
6

D(0)
12

C(0)
30

OUT

18 18

6

24

6 6 6

6

6 6

12

Figure 5: Data-flow graph for the code example in Figure 1.

3. ESTIMATION WITH PARTIALLY
 FIXED EXECUTION ORDERING
Look at the basic sets B(2) and C(0) in Figure 5 and the dependency
between them. The size of basic set B(2) is 24. This corresponds to
its worst-case storage requirement needed if the whole of B(2) is
produced before the first element of C(0). As can be seen from
Figure 3, this will happen if for example k is the innermost loop,
followed by i, and with j as the outermost loop. As Figure 3 also
shows, the best-case storage requirement is 2, achieved if j and k are
interchanged in the above ordering. Then only elements B[1][0][0]
and B[1][1][0] are produced before element C[1][2][0], which can
potentially be mapped in-place with B[1][0][0]. Assume now that
early in the design trajectory, we want to explore the consequences
of having k as the outermost loop. Through inspection of Figure 3
we find that the dependency between B(2) and C(0) does not cross
the k-dimension. Accordingly all elements produced for one value of
k are also consumed for this value of k. Consequently the worst-case
and best-case storage requirements are now 8 and 2 respectively,
indicating that it is indeed advantageous to place k outermost. It may
not be this simple however, since there can be conflicting
dependencies in other parts of the code, giving rise to the need of an
automated estimation tool to be able to take everything into account.
This also rationalizes why we need to be able to do estimations on a
partially fixed execution ordering. With estimation tools requiring
the execution ordering to be fully specified, every alternative
ordering with k as the outermost loop would have to be explored. It
also shows the shortcomings of not considering the execution
ordering at all, as in [1], since it results in a large overestimate.
Our methodology is useful for a large class of applications. There
are certain restrictions on the code that can be handled in the present
version however, some of which will be alleviated through future
work. The main requirements are that the code is single assignment
and has affine array indexes (achievable by a good array data-flow
analysis preprocessing). Also array elements in a basic set must be
produced and read sequentially, implying that a vector between
depending elements in two basic sets have the same direction and
length for all depending elements in the basic sets. The last
requirement entail that if array element B[1][2][0] depends on
A[0][0][0], then B[1][3][0] must depend on A[0][1][0] if the A-
elements and B-elements belong to the same two basic sets. If this is
not the case, the non-uniform basic sets can be split.

3.1 Basic Set and Dependency Sizes
The starting point for our estimation methodology is the basic set
and dependency information as described in the last part of Section
2. The main principles can be used on any polyhedral description of
sets of signals and their dependencies though. To overcome the
problem of overestimation found in [1], we exploit information
about the partly fixed execution ordering. Upper and lower bounds
on the number of simultaneously alive elements in the dependencies
between basic sets are calculated. This corresponds to the number of
elements produced in one basic set before the first of them
(potentially) can be overwritten by an element produced in the
depending basic set. The sizes of the dependencies are in turn used
to calculate new basic set sizes. The algorithm for estimating the
upper and lower bounds of the dependency sizes is given in Figure
6. A branch in the data-flow graph contains information concerning
what part of a basic-set the other basic set depends on, called the
Dependency Part (DP). The first step in the algorithm is the
orthogonalization of the DP. Each dimension is extended as needed
until all dimensions are orthogonal with respect to each other, see
Figure 7 for a two-dimensional example. The orthogonalization is
necessary due to the possibly complex shapes of the DPs, which do
not lend themselves easily to the type of calculations included in our
estimation techniques. As can be seen it instigates a potential
overestimate, but these acceptable errors are the price we have to
pay for keeping the estimation complexity at a reasonable level. We
are currently working on techniques to allow triangular forms in the
DPs. When we in the sequel use the word lower bound, we mean the
bound after this approximation.

void EstimateDependencySizes(data-flow graph)
for all basic sets B in data-flow graph {
 for all dependencies to basic sets BD depending on B {
 calculate the orthogonal DP, DV, and DVP of B with respect to BD
 remove from the DP elements where for all SD the values are

 larger than their SV
 define set UnspecifiedSpanningDimensions (USD) = (all SD)
 define set SpecifiedSpanningDimensions (SSD) = Ø
 for each specified dimension di {
 if specification starts from innermost dimension {
 expand the dimension di of the DVP to the border of DP
 if (di ∉ USD)
 remove from DVP elements that may not be visited
 else {
 remove from DP elements that will not to be visited
 USD = USD - di
 SSD = SSD + di
 if(USD = Ø)
 DP = DVP
 } }
 else {
 if (di ∉ USD)
 if (SSD = Ø)
 remove di from DP
 else
 remove from DP elements that will not to be visited
 else {
 remove from DP elements that will not to be visited
 expand DVP with elements that will to be visited
 USD = USD - di
 SSD = SSD + di
 if(USD = Ø)
 DP = DVP
 } } }
 update data-flow graph(dependency upper bound = size(DP),

dependency lower bound = size(DVP))
} }
Figure 6: Pseudo-code for dependency size estimation algorithm

The code requirement of sequential production and reading allows
us to define one element in the DP as the "smallest" element that will

always be produced first regardless of the chosen execution
ordering. For basic set B(2) in Figure 3 this is element B[1][0][0].
The estimation algorithm generates a Dependency Vector (DV) from
this smallest element of the DP to the depending element in the
depending basic set. For the dependency between B(2) and C(0) in
Figure 3, the DV will thus start at (i,j,k)-point (1,0,0) and end at
(1,2,0). The DV cover all or (more typically) a subset of the
dimensions in the iteration space, defined as Spanning Dimensions
(SD). We also define the values of the end points of the DV as the
Spanning Values (SV). Since the DV in our example only covers the
j-dimension, we have only one SD and one SV, the j-dimension and
2 respectively. The SD spans a polytope (partly) overlapping the DP.
After intersection with the DP this polytope is denoted the
Dependency Vector Polytope (DVP). Again referring to Figure 3,
the DVP for the dependency between B(2) and C(0) consists of two
elements, as shown in Figure 8. Note that for comparison with the
graphical description a three-dimensional LBL is used, while the
DVP really only has one dimension, the j-dimension.

0 1
0 j

i

2 3

1
2
3

0 1 2 3
0 j

i

1
2
3

Figure 7: Orthogonalization of Dependency Part

We are now ready to start estimating the upper and lower bounds on
the dependency sizes. If no execution order information is available,
the lower bound can be found directly from the size of the DVP. No
matter what execution order is chosen in the end, the elements of
this polytope will always be produced before any elements of the
depending basic set are produced. If there is no overlap between the
depending basic set and the DP, also the upper bound can be found
directly since it then equals the size of the DP. If overlap exists, we
can first remove from the DP the elements that, for all SD, have
larger values then the corresponding SV, since they can not possibly
be produced before the first element in the depending basic set.

−≥

−

=

0
0
1
0
0
0

000
000
010
010
000
000

000
010
000

k
j
i

k
j
i

w
v
u

DVP

k 0 1 2 3
0

1

2

j

i B(2) C(0)

DVP:
Figure 8: Dependency Vector Polytope

As the execution order is gradually fixed, the size of the DVP will
be extended, and/or the size of the DP will be reduced. In most cases
they will coalesce when all the spanning dimensions are fixed. When
this does not happen, it is caused by simplifications in the
extension/removal of elements in the DP and DVP to lower the
estimation complexity. Assume now that the k-dimension is
specified as the innermost dimension. According to the algorithm in
Figure 6 the DVP is extended to encompass the full length of the k-
dimension as shown in Figure 9. The DP and with it the upper
bound on the dependency size, do not change. If now the j-
dimension is specified as the second innermost dimension, this
dimension of the DVP is to be expanded till the border of the DP.
For our example, this is already the case, so the DVP does not
change. Since the j-dimension is the last spanning dimension, the
DVP size is also the upper bound on the dependency size.
The execution ordering may as well be specified starting with the
outermost dimension. With i outermost, we can remove it from the
DP since it is not a spanning dimension, and we get a new DP as
shown in Figure 10. Knowing that i is non-spanning dimension also
ascertain that the DVP does not change, so we get a reduced upper
bound and an unchanged lower bound on the dependency size. With
j as second outermost dimension we have to expand the remaining

unspecified dimensions of the DVP till the DP border. For our
example this only applies to the k-dimension, and we are back to the
DVP and lower bound of Figure 9. Table 1 summarizes the
estimation results for the different partly fixed execution orderings.

−

−≥

−

−

=

2
0
1
0
0
0

100
100
010
010
000
000

100
010
000

k
j
i

k
j
i

w
v
u

DVP

k 0 1 2 3
0

1

2

j

i B(2) C(0)

DVP:
Figure 9: Dependency Vector Polytope with k innermost

−

−≥

−

−

=

2
0
1
0
0
0

100
100
010
010
000
000

100
010
000

k
j
i

k
j
i

w
v
u

DP

k 0 1 2 3
0

1

2

j

i B(2) C(0)

DP:
Figure 10: Dependency Part with i as outermost dimension

Fixed Dimension(s) Upper bound Lower bound
Outermost Innermost

None 24 2
k 24 6

j,k 6 6
i 6 2
i,j 6 6

Table 1: Dependency size estimat results

4. ESTIMATION ON MPEG-4 MOTION
ESTIMATION KERNEL
MPEG-4 is a standard for the format of multi-media data-streams in
which audio and video objects can be used and presented in a highly
flexible manner. An important part of the coding of this data-stream
is the motion estimation of moving objects. See [2] for a more
detailed description of this part of the standard. We will now use this
real life application to show how storage requirement estimation can
be used during the design trajectory. A part of the code is given in
Figure 11 with the corresponding data-flow graph in Figure 12.
The loops in the upper nest of Figure 11 can be interchanged in
4!=24 ways. Because of the symmetry in the loops only 6 of these
alternatives have to be investigated, see Table 2; interchange
between y_s & x_s OR y_p & x_p leads to the same data in-place
mapping opportunity.

(y_s : 0 . . 31) : :
 (x_s : 0 . . 31) : :
 (y_p : 0 . . 15) : :
 (x_p : 0 . . 15) : :
 s ad [y_s] [x_s] [y_p] [x_p] =
S .1 i f ((x_p == 0)&(y_p == 0)) ->

f (cu r r [y_p] [x_p] , p rev [y_s+y_p] [x_s+x_p])
S .2 | | ((x_p == 0)&(y_p != 0)) ->

g (sad [y_s] [x_s] [y_p-1] [15] , cu r r [y_p] [x_p] ,
p r ev [y_s+y_p] [x_s+x_p])

S .3 | | g (sad [y_s] [x_s] [y_p] [x_p-1] , cu r r [y_p] [x_p] ,
p rev [y_s+y_p] [x_s+x_p])

 f i ;

(y_s : 0 . . 31) : :
 (x_s : 0 . . 31) : :
S .4 r e su l t [y_s] [x_s] = h (sad [y_s] [x_s] [15] [15]) ;
Figure 11: MPEG-4 motion estimation kernel (Silage language)

Assuming that the prev[][] array is already in memory from the
previous calculation, we have to investigate how the execution
ordering influences the size of the sad[][][][] and curr[][] arrays.
Given an external restriction that the curr[y_p][x_p] pixels are
presented sequentially and row first (curr[0][0], curr[0][1], ...

curr[0][15], curr[1][0] ...) at the input, the required storage for the
curr[][] array can be made as small as possible if we use alternative
2) from Table 2. Indeed, all calculations for each pixel can be
completed before the next pixel arrives, and we need only one
storage location for the curr[][] array. In any of the other methods,
we have to buffer the curr[][] elements, since they are needed in
bursts. This will require 16x16=256 storage locations. As a first
design step it is therefore natural to investigate what the storage
requirement for the sad[][][][] array is, if the execution order is
optimized for the curr[][] array, beginning with the ordering of y_p
as the outermost loop. The estimation results are listed in Table 3.
The last row contains the number of simultaneously alive array
elements found through the traversal of the data-flow graph. Because
of the loop between sad(3), sad(4), and sad(5) in Figure 12, parts of
these basic sets may in the worst case be alive simultaneously. Even
in the best case, when this is not the situation, the increase in the
lower bound on the storage requirement (1025-1 = 1024) exceeds
the storage requirement for all of the curr[][] array (256).
Consequently we can rule out any interchange alternative with y_p
as the outermost loop. We are then left with interchange method 1),
3), and 5), each with y_s as the outermost loop.

result(0)
1024

sad(0)
1024

sad(4)
215040

sad(1)
14336

sad(2)
1024

sad(3)
15360

sad(6)
1024

sad(5)
14336

curr(0)
256

prev(0)
2209

To all
sad()

To all
sad()

1024

1024

1024

14336

15360

14336

1024

1024

13312
199680

Figure 12: Data-flow graph for MPEG-4 motion estimation kernel
 ↓ Outermost Innermost ↓
1) y_s x_s y_p x_p ←original
2) y_p x_p y_s x_s
3) y_s y_p x_s x_p
4) y_p y_s x_p x_s
5) y_s y_p x_p x_s
6) y_p y_s x_s x_p

Table 2: Interchange alternatives

y_s is not a spanning dimension in the DVP for any of the basic sets,
so the lower bound storage requirements will stay the same as for the
unordered situation. The upper bound requirements are reduced
however, by a factor 32 everywhere (except for sad(6)) since y_s can
be removed from every Dependency Part.

 no ordering y_p outermost
sad(0) 1/1024 1/1024
sad(1) 1/1024 1/1024
sad(2) 1/1024 1024/1024
sad(3) 1/15360 1/1024
sad(4) 1/15360 1/2048
sad(5) 1/14336 1025/14336
sad(6) 1/1 1/1

Simultaneously alive 1/45056 1025/17408
curr(0) 1/256 1/256

Storage requirement 2/45312 1026/17664

Table 3: Estimated lower/upper bounds for storage requirement
of sad[][][][] and curr[][] arrays

The designer can get good hints for the rest of the ordering through
an inspection of the DVPs. Non-spanning dimensions reduce the
upper bound without altering the lower bound if they are placed
outermost, while spanning dimensions with similar reasoning should
be placed innermost. In this case the DVPs show that the smallest

dependencies can be achieved when y_p and x_p are ordered as the
innermost loops, as in interchange alternative 1). Table 4 shows the
change of estimated upper and lower bounds as the execution order
is fixed. As the dimensions are specified, the upper and lower
bounds for the DVPs gradually converge and finally come together
when the ordering is fully specified. The difference between the
upper and lower bounds for simultaneously alive basic sets even
when the ordering is fully fixed, is due to the loop structure of the
data-flow graph. A closer inspection of the code reveals that the
lower bound is indeed reachable.

basic set a) b) c) d)
sad(0) 1/32 1/1 1/1 1/1
sad(1) 1/32 1/1 1/1 1/1
sad(2) 1/32 1/1 1/1 1/1
sad(3) 1/480 1/15 1/1 1/1
sad(4) 1/480 1/15 1/2 1/2
sad(5) 1/448 1/14 1/1 1/1
sad(6) 1/1 1/1 1/1 1/1
Simul. alive 1/1408 1/44 1/4 1/4
curr(0) 256/256 256/256 256/256 256/256
Storage req. 257/1664 257/300 257/260 257/260

Table 4: Estimated lower/upper bounds for storage requirement
of sad[][][][] array with stepwise fixation of execution ordering;

a) y_s outermost, b) x_s 2nd outermost, c) y_p 3rd outermost,
d) x_p 4th outermost

5. CONCLUSIONS
We have presented a novel technique for estimating storage
requirements for algorithms with partly fixed execution ordering.
The methodology can be used during the design trajectory for a large
set of data dominated applications in many typical
hardware/software codesign domains such as multi-media and
telecom applications. Upper and lower bounds on the storage
requirement are presented to the designer, who can then use them
effectively in early system trade-offs. As more and more of the
execution ordering is specified, our upper and lower bounds have
the very desirable property that they converge. Using a real life
MPEG-4 application, we have demonstrated how the methodology
can be used during the early system design trajectory.

6. REFERENCES
[1] Balasa, F., Catthoor F., and De Man, H., "Background memory area

estimation for multidimensional signal processing systems", IEEE
Trans. on VLSI Systems, Vol. 3, No. 2, June 1995, pp. 157-72

[2] Brockmeyer, E., Nachtergaele, L., Catthoor F., Bormans, J., and De
Man, H., "Low Power Memory Storage and Transfer Organization for
the MPEG-4 Full Pel Motion Estimation on a Multimedia Processor",
IEEE Trans. on Multimedia, Vol. 1, No. 2, June 1999, pp. 202-16

[3] Catthoor, F., Wuytack, S., De Greef, E., Balasa, F., Nachtergaele, L.,
and Vandecappelle A., "Custom Memory Management Methodology
Exploration of Memory Organization for Embedded Multimedia
Systems Design", Kluwer Academic Publishers, 1998

[4] Gajski, D. D., Vahid, F., Narayan, S., and Gong, J., "Specification and
Design of Embedded Systems", Prentice Hall, 1994

[5] Grun, P., Balasa, F., and Dutt, N., "Memory Size Estimation for
Multimedia Applications", Proc. Sixth Int. Workshop on Hardware/
Software Codesign (CODES/CACHE), March 1998, pp. 145-9

[6] Kurdahi F. J., and Parker, A. C., "REAL: A Program for REgister
ALlocation", Proc. 24th DAC, 1987, pp. 210-5

[7] Tseng, C-J., and Siewiorek, D.P. "Automated Synthesis of Data Paths
in Digital Systems", IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems, Vol. 5, No. 3, July 86, pp. 379-95

[8] Verbauwhede, I. M., Scheers, C. J., Rabaey, J. M., "Memory
Estimation for High Level Synthesis", Proc. 31st DAC, 1994, pp. 143-8

[9] Zhao, Y., and Malik, S., "Exact Memory Size Estimation for Array
Computation without Loop Unrolling", Proc 36th DAC, 1999, pp.811-6

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

