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Abstract

We study the problem of performing bu�er insertion in the
con text of a giv en la yout.In a practical situation, there are
restrictions on where bu�ers may be inserted while routing
over such regions may be possible (e.g., due to the pres-
ence of macro cells). As a result, it is desirable to perform
route planning andbu�er insertion sim ultaneously. Fur-
ther it is necessary that such an algorithm be aware of the
tradeo� betw een cost (e.g. total capacitance) and delay.
In this context w epropose the Delay Reduction to Cost
Ratio (DRCR) problemand presen t a fast algorithm for
the same. Solutions identi�ed b y the algorithm are char-
acterized with respect to the overall cost vs. performance
tradeo� curve. Computational experiments demonstrate
the viability of the approach.

1 Introduction

In the Deep Submicron era, dela y optimization for high
performance interconnects has become of fundamental in-
terest. In this context, bu�er insertion has been proven to
be a pow erful tec hnique.Much of the past work (e.g.,[2]),
on bu�er insertion, while of fundamental in terest, has fo-
cused on idealized situations, where bu�ers can be inserted
at arbitrary positions on the routing area. Ho wever, as
pointed out in the recent work of Zhou and Wong [1], in
practice suc h optimizations must occur in the context of,
for example, a oorplan where there may be pre-placed
macro cells which can be routed over, but which preclude
the insertion of bu�ers in that region.

This is illustrated in Figure 1. The point illustrated in
the �gure is that it now seems critical to consider both the
global route of a signal and the bu�er insertion problem
sim ultaneously since we may, for instance, have to detour
not merely around congested routing regions, but also to
\pic k up" a bu�er if necessary.

This kind of context-aw are bu�er insertion problem was
studied by Zhou and Wong in [1] in the context of the t wo-
pin problem. Their main result was a labeling algorithm
whic h�nds the minimum dela y bu�ered source to sink
path. They also discussed several natural and more gen-
eral formulations whic hcapture a cost vs. performance
tradeo� (e.g. minimizing congestion subject to a delay
constrain t).Such formulations were sho wn to be NP-hard
and could in fact be view edas instances of the classical
shortest weigh t-constrained path problem [3]. A pseudo-
polynomial algorithm for such formulations was also pre-
sented, which �nds the set of all source-to-sink paths that
lie on the cost vs. dela y tradeo� curve (a similar algorithm
appears in [4]).

�This w ork w as supported b y the Design Automation Conference
Scholarship Program.
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Figure 1: An illustration of bu�er insertion taking pre-
placed macro cells into consideration; the black boxes rep-
resen t portions of the routing area where neither bu�ering
nor wiring is possible; the grey boxes represen t areas where
wires can be routed, but bu�ers cannot be inserted.

This paper also focuses on the tw o-pinproblem with
an emphasis on the tradeo�s betw een cost (e.g., total ca-
pacitance) and delay. The ability to capture such tradeo�s
is crucial in practice since the cost overhead of min-delay
solution tends to be excessive.

T ow ard this end we propose and characterize a new for-
m ulation, called theDelay Reduction to Cost Ratio Max-
imization (DRCR) problem. Given a set of candidate
bu�er insertion locations and their candidate connections
modeled as a directed graph, and a reference delay value

Dref , w e wish to maximize the ratio
Dref�d(p)

g(p)
over all

source-to-sink paths p, where g(p) and d(p) are the path
cost and delay respectively { i.e., we maximize the ratio of
the reduction in delay to the corresponding cost.

A nice property of this formulation is that it is com-
pletely independent of the cost and delay models used to
estimate the cost and delay associated with the candidate
edges in terconnecting the bu�ers.For example, we are not
restricted to using the total capacitance as the cost and
Elmore delay model [6] for the interconnect delay (though
for simplicity in our experiments we have used Elmore).
By the same token, the cost associated with a particular
candidate connection and bu�er is also exible; while to-
tal estimated capacitance is a natural measure, heuristic
measures relating to congestion and bu�er availabilit y are
also plausible.

It is suggested that the DRCR is a natural composite
objective function capturing the tradeo� between cost and
delay. Our main contribution is a fast polynomial time al-
gorithm for this problem. It is then natural to consider the
relation bet w een solutions of the DRCR problem and other
formulations (in particular cost minimization subject to a
delay constraint). T ow ardthis end the problem is char-
acterized with respect to all source-to-sink paths that lie
on the cost vs. delay tradeo� curve (i.e., non-dominated
paths). A subset of these paths forms the Lower Con-
vex Hull (LCH); the LCH is essentially the points on the
low er-left of the tradeo� curv e. It is shown that a vari-
ant of the algorithm can e�ciently iden tify any point on
the LCH. Thus we have a tradeo�: the expense of using
the fast algorithm presented is that we are no longer able
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to identify paths which lie o� the LCH while a compara-
tively slow pseudo-polynomial algorithm is able to identify
such points. We argue that in practice this is not a major
sacri�ce since paths o� the LCH tend to make less sound
engineering choices. Computational experiments show the
algorithms to be extremely e�cient. Thus we believe the
proposed algorithm will become a valuable tool in the early
stages of design where bu�ers must be allocated and topo-
logical bu�er-to-bu�er routes determined.

2 Preliminaries

2.1 Delay Models

Though the graph model we utilize allows any desired tech-
nique to estimate the delay from the input of a bu�er to
the input of the next, we review some of the basic RC delay
models for the purpose of discussion.

Let r0 and c0 represent the unit length resistance and
capacitance respectively of a wire. Then for a wire e of
length le, the resistance re and the capacitance ce are given
by

re = r0 � le and ce = c0 � le

r

2 2
ec ec

e

Figure 2: RC delay modeling for a wire.

Figure 2 shows the common RC model of a wire. In the
Elmore delay model [6], the delay De of a wire e driving a
load C is given by

De = re �

�
ce

2
+ C

�

Similarly, if b is a bu�er with intrinsic delay db, output
resistance rb and a loading capacitance C, then the delay
of the bu�er Db is given by

Db = db + rb � C

2.2 Dominance Property

Since paths are characterized by two parameters g and
d, they may be compared with a partial order. A path
p : s ; t is said to be non-dominated, if all other paths
p0 : s ; t, have g0 � g or d0 � d. { i.e., the set of non-
dominated paths are those on the cost vs. delay tradeo�
curve intrinsic in the problem.

3 Bu�er Graph

We model the context-aware bu�er insertion problem by a
directed graph in which nodes represent bu�ers and edges
represent the candidate connections between bu�ers. A
path in such a graph represents a sequence of bu�ers in-
serted by virtue of the nodes on the path. To avoid con-
fusion, we emphasize that the bu�er selection is implicit
in the node { there is no need to explicitly determine the
type of bu�er inserted at a node; this is determined by the
graph itself (see below).

Each edge e is annotated with two labels: ge is the
cost associated with taking the edge (perhaps including
the routing cost and the cost of the destination bu�er)
and de is the delay from the input of the source bu�er to
the input of the destination. Figure 3 shows two bu�ers

a and b and their candidate interconnection modeled as
a graph, where the cost and the delay of the edges are
computed under the Elmore delay model. Recall that the
cost and delay of the edge are computed from the input of
bu�er a to the input of bu�er b.
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Figure 3: Illustration of the transformation of a wire con-
necting two bu�ers into its corresponding graph model un-
der the Elmore delay model.

(a)

(b)

Figure 4: Illustration of cascading bu�ers within a bu�er
station; solid lines represent connections within the bu�er
station and broken lines represent edges to and from out-
side the bu�er station. (a) A bu�er station with bu�ers
of di�erent sizes and (b) the corresponding graph model.
Note that the edges in the graph are directed from smaller
bu�ers to larger ones.

It is often the case that each bu�er station has a set of
bu�ers of di�erent sizes to facilitate cascading of bu�ers
within the bu�er station for improved performance. An il-
lustration of a bu�er station with multiple bu�er sizes and
its corresponding graph model is shown in Figure 4. Note
that bu�ers within a bu�er station are cascaded only in in-
creasing order of their size { i.e., edges go only from smaller
bu�ers to larger ones within the same bu�er station. Thus
the graph model naturally captures this situation.

Such an abstract graph model has several bene�ts. Of
foremost importance is that it is completely independent
of the models used to estimate the delay and cost of any
edge in the graph { i.e., any desired means can be used
to estimate the input-to-input delay and alternative cost
measures can be applied depending on the situation.

For instance, more sophisticated interconnect and gate
delay models can be used to model the delay associated
with every edge. We are not limited for example to using
Elmore delay or considering only the total capacitance as
our cost measure.1 Moreover, this graph model points out
the intimate relationship between the context-aware bu�er
insertion problem and the shortest weight constrained prob-
lem in [3].

As stated earlier, a path in such a graph represents not
only the wiring route to be taken, but by virtue of the
vertices on the path, the bu�ers to be inserted. Figure 5
presents a complete example of a set of bu�er stations, the
corresponding graph model, and two s ; t paths in the
graph.

1As presented, we do require that the delay be independent of the
previous stage; however, if this is a serious issue, it can be modeled
via a further transformation of the graph (at the expense of a large
graph).
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Figure 5: Illustration of a set of bu�er stations modeled
as a graph ; all lines represent edges while the solid lines
represent source-to-sink paths. (a) instance of a set of
bu�er stations with �nite bu�ering resources (b) a sim-
ple s ; t path passing though various bu�er stations (c)
another s ; t path in which bu�ers are cascaded at the
intermediate bu�er station A.

A naive graph construction method results in a com-
plete graph { i.e., there is one vertex for each size of bu�er
inside every bu�er station and an edge connecting every
pair of vertices. However, in practice there is a threshold
on the interconnect length beyond which a bu�er must be
inserted and thus it is su�cient if a bu�er is connected to
only its neighbors which lie within a speci�c technology
dependent distance. By taking this factor into account
during the construction process, the graph size can be re-
duced considerably.

4 Problem Formulations

Given such a graph theoretic interpretation of the problem,
the traditional constrained optimization problem can be
stated as follows (recall this problem is NP-hard).

Formulation 1 Given: A directed graph G = (V;E),
where V represents the set of candidate bu�er insertion
locations, a bu�er library B, each e 2 E is annotated with
a cost ge and delay de, a source terminal s with a driving
resistance Rs, a sink terminal t and a delay bound dspec.
Objective: Find a path connecting s and t such that the
total cost of the path is minimized subject to the delay not
exceeding dspec.

The Delay Reduction to Cost Ratio Maximization(DRCR)
problem is stated as follows.

Formulation 2 (DRCR) Given: A directed graph G =
(V;E), where V represent bu�ers, each e 2 E is annotated
with a cost ge and delay de, a source terminal s with driv-
ing resistance Rs, a sink terminal t and a reference delay
Dref .
Objective: Find a bu�ered path p : s; t in G such that

the ratio
Dref�

P
e2p

deP
e2p

ge

is maximized.

Note that the selection of the reference delayDref value
will inuence the optimal path; this issue is addressed in
section 6.

The following subsection outlines a pseudo-polynomial
labeling algorithm for solving the constrained optimization
problem as in Formulation 1.

Labeling Algorithm

Since the labeling algorithm for Formulation 1 is not the
focus of this work, we will not present the entire algorithm.
We point the reader to [4] and [1]. We note however that
the main idea is based on maintaining for each vertex u
in the graph sets of non-dominated paths P (u). A path is
characterized by its cost and delay (g; d) and (g; d) 2 P (u)
indicates that there exists a path from node u to the sink t
(in a bottom-up approach) with cost g and delay d which
is not dominated by any other u to t path. These sets are
updated in what can be viewed as an extension of Dijk-
stra's algorithm by examining the solutions at neighboring
vertices. At termination, the set P (s) encodes all of the
non-dominated paths from s to t. The algorithm is pseudo-
polynomial because the the sets P (u) are not bounded in
size by a polynomial function of the graph size; rather their
size depends on the values of the problem instance (delays
and costs).

5 Delay Reduction to Cost Ratio Maximization

TheDRCR problem is the focus of this work. Fortunately,
the DRCR problem appears to be computationally easier
than Formulation 1 while still capturing key cost vs. de-
lay characteristics. We now present a strongly polynomial
time algorithm solving DRCR.

The algorithm employs binary search on the optimal
ratio and is similar in spirit to algorithms for the minimum
time-to-pro�t cycle problem (see, e.g. [5]).

Recall that for a given value of the reference delayDref ,
our objective is to �nd a bu�ered path p : s; t in G, such

that the ratio
Dref�

P
e2p

deP
e2p

ge

is maximized.

Let Rmax represent this maximum ratio. Then

Rmax =
Dref �

P
e2p

deP
e2p

ge
(1)

for some path p : s; t in G. We can rearrange the above
equation as

Rmax

X
e2p

ge +
X
e2p

de = Dref (2)

The left hand side of (2) can be interpreted as the total
length of the path p : s; t in G, where all the edges e 2 G
are relabeled as we = Rmax ge + de. The idea behind our
algorithm is to start with a conjecture I for the value of
Rmax, and iteratively correct the value of I until we �nd
the actual value of Rmax which satis�es (2) corresponding
to the given Dref , and also the associated path p,which
has this maximum ratio.

Starting with the initial conjecture I, for each edge
e 2 G, we assign edge weights we = I ge+de, where ge and
de are the original cost and delay values associated with
edge e. With this relabeled graph, we �nd the shortest
path p from s to t. Clearly, the length of the path p is
given by

P
we = I

P
ge +

P
de, where e 2 p.,i.e., the

sum of the cost and delay values associated with all the
edges in the path. One of the following three situations is
possible.

� If the length of the path p is equal to Dref , then (2)
is satis�ed and we have the current I = Rmax and
also the corresponding path p, and we are done.



� If the length of the path is less than Dref , then we
increase the value of I, relabel the graph with the
new I value and repeat the algorithm until we reach
a value of I for which equation (2) is satis�ed.

� If the length of the path is greater than Dref , then
we decrease the value of I, relabel the graph with the
new I value and repeat the algorithm until we reach
a value of I for which equation (2) is satis�ed.

We use a binary search technique to probe the values
of I. The idea is to �nd two values of I, namely Ilow and
Ihigh such that

Ilow
X

e2plow

ge +
X

e2plow

de � Dref and (3)

Ihigh
X

e2phigh

ge +
X

e2phigh

de � Dref (4)

where plow and phigh are the shortest s to t paths in the
graphs relabeled with Ilow and Ihigh respectively.

Identifying Ilow and Ihigh can be done as follows. For
the initial value of the conjecture I, if the length of the
shortest path in the relabeled graph is less than Dref , then
we repeatedly keep doubling I, till we �nd the two succes-
sive values Ilow and Ihigh such that equations (3) and (4)
are satis�ed. On the other hand, if starting from the initial
I, the length of the shortest path is greater than Dref , we
keep halving I until we �nd Ilow and Ihigh.

Once we �nd Ilow and Ihigh, we can do a binary search
in the range [Ilow::Ihigh] to identify the �nal value of I
which maximizes the delay reduction to cost ratio. The
DRCR algorithm which is based on such a binary search
technique is shown in Figure 6.

Algorithm DRCR
Subroutine AssignWeights (G; I)

For each e 2 G,
we = I ge + de

Main Routine
1 Find Ilow and Ihigh
2 I  (Ilow + Ihigh)=2
3 AssignWeights(G; I)
4 P  shortest s; t path in G.
5 while (Dref 6= length(P ))
6 if (length(P ) > Dref )
7 Ihigh  I
8 else
9 Ilow  I
10 endif
11 I  (Ilow + Ihigh)=2
12 AssignWeights(G; I)
13 P  shortest s; t path in G.
14 endwhile
15 return P

Figure 6: DRCR algorithm to solve the ratio maximization
problem.

The correctness of the algorithm follows from this dis-
cussion as stated in the following lemma (a formal proof
appears in [7]).

Lemma 1 Given Dref , the iterative search technique �nds
the path for which

I =
Dref � d

g

is a maximum, where g is the cost and d is the delay of
the path.

Complexity

Observe that if D is the delay of the path with minimum
cost, then the number of invocations of Dijkstra's algo-
rithm is bounded by O(logD).

The running time of the DRCR algorithm is given by
(number of invocations of the shortest path algorithm) �
(time to �nd the shortest path) i.e. O(logD �E log jV j).

6 Properties

In this section, we explain some interesting properties of
the solutions generated by the DRCR algorithm.

Lemma 2 For any value of Dref , the optimal ratio solu-
tion is not dominated by any other solution.

Proof: Let (g; d) be the path found by the DRCR algo-
rithm. Suppose there exists a path (g0; d0) which dominates
(g; d) { i.e., g0 < g and d0 < d. Since (g; d) is found by the
DRCR algorithm and has the maximum delay reduction
to cost ratio,

Dref � d

g
>

Dref � d0

g0
:

Therefore,
Dref

g
�
d

g
>

Dref

g0
�
d0

g0

g0

g
(Dref � d) > Dref � d

0

Since we assumed that d0 < d,

Dref � d
0

> Dref � d

Hence,
g0

g
(Dref � d) > Dref � d

This is a contradiction as g
0

g
< 1 since g0 < g 2:

The following lemma can be shown by algebraic ma-
nipulation (see [7]).

Lemma 3 As the value of Dref decreases, the cost of the
corresponding maximum ratio path increases.

By Lemma 2, we know that the solutions generated by
the DRCR algorithm are non-dominated and hence lie on
a cost vs. delay tradeo� curve. Consequent to Lemma 3,
we see that decreasing Dref moves us right on the cost vs.
delay curve; increasing Dref moves us left.

Thus, a natural goal is to characterize the solutions to
the DRCR problem and the set of all non-dominated paths
(i.e., those generated by the labeling algorithm). This re-
lationship is studied in the next subsection.

Lower Convex Hull

De�nition : Let S = f(g0; d0); (g1; d1); :::; (gk; dk)g be
the set of non-dominated s to t paths. We de�ne the lower
convex hull (LCH) of S as follows.

� The minimum delay solution is on the LCH.

� The minimum cost solution is on the LCH.

� Any point (gi; di) is on the LCH i� 8 (gl; dl) 2 S such
that gl < gi and 8 (gh; dh) 2 S such that gi < gh,
(gi; di) lie below the line segment joining (gl; dl) and
(gh; dh).
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Figure 7: Illustration of the Lower Convex Hull property.
All circles represent the set of all non-dominated paths;
the shaded circles represent points on the LCH.

An example of a set of non-dominated points appears in
Figure 7.

Since Formulation 1 is NP-hard, it is clear that our
polynomial time algorithmmust sacri�ce something. What
we sacri�ce is summarized in the following theorem.

Theorem 1 There exists a Dref for which a (g; d) path is
optimal i� (g,d) lies on the lower convex hull of the trade-
o� curve.

Proof : (i) 9Dref ) (g; d) is on LCH.
Let D be a value of Dref for which this is true and let
(g; d) be the corresponding path. This yields

D � d

g
>

D � d0

g0
(5)

for all other non-dominated paths (g0; d0). If (g; d) is the
min-cost or the min-delay solution, then the proof is trivial
(these paths are always on the lower convex hull).
Hence we only need to prove that for any pair of solutions
(g1; d1) and (g2; d2) such that g1 < g < g2 (as in Figure
8),

d� d1

g � g1
<

d2 � d1

g2 � g1
(6)

i.e., the slope of the line joining (g; d) and (g1; d1) should be
less that the slope of the line joining (g1; d1) and (g2; d2).
Rearranging inequality (6),

d < d1 + (g � g1)
d2 � d1

g2 � g1
and hence (7)

d <
g2d1 + gd2 � gd1 � g1d2

g2 � g1
(8)

Hence our goal is to prove inequality (8) holds.
Since D is the value of Dref for which the path (g; d) has
a maximum ratio,

D � d

g
>

D � d1

g1
and (9)

D � d

g
>

D � d2

g2
: (10)

Rearranging inequality (9), we have

d < D �
g

g1
D +

g

g1
d1: (11)

Multiplying (11) by g1,

g1d� gd1 < D(g1 � g):

Since the term (g1 � g) is negative, we have

g1d� gd1

g1 � g
> D: (12)

Rearranging inequality (10) and multiplying g2 yields

g2d� gd2

g2 � g
< D: (13)

Combining (12) and (13) , we have

g1d� gd1

g1 � g
>

g2d� gd2

g2 � g
:

Multiplying both sides by (g1�g)(g2�g), which is negative,

(g2 � g)(g1d� gd1) < (g1 � g)(g2d� gd2):

By algebraic manipulation, we see that this reduces to

(g2 � g1)d < g2d1 + gd2 � gd1 � g1d2

which is the same as inequality (8).

( g1 )1d,

(g2
,d2

(g,d) (g’,d)

)

(g’’,d’’)
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Figure 8: Figure illustrating the existence of a Dref for
every (g; d) on the LCH.

(ii) To prove the other way {i:e:, (g; d) is on the LCH )
9Dref which has the maximum ratio at (g; d), set

Dref =
g2d1 � g1d2

g2 � g1

which makes the ratio

r =
Dref � d1

g1
=

Dref � d2

g2
:

As in Figure 8, for any point (g00; d00) on the line joining
(g1; d1) and (g2; d2),

Dref � d00

g00
= r:

Consider any point (g0; d) which is on the line and has the
same d value with (g; d). This yields

Dref � d

g0
= r and thus

Dref � d

g
> r since g < g0

which completes the proof. 2:

This theorem can be seen as a generalization of Lemma
2. We argue that sacri�cing the solutions not on the LCH



is typically not a serious drawback in practice since the so-
lutions which make the most cost-e�ective use of the avail-
able resources are precisely those which lie on the LCH.2

Further, in practice optimization problems such as bu�er
insertion tend to have largely convex tradeo�s, so the al-
gorithm �ts such applications nicely.

Finally, we note that a variant of the algorithm allows
us to explicitly explore the LCH via a similar binary search
scheme. The main idea is to note that Dref is really ar-
ti�cial and that for any I, the resulting shortest path is
optimal for some Dref . In this way we can explore the
tradeo� curve by modifying I (increasing it to move left,
decreasing to move right) as inferred from Lemma 3. This
eliminates the need for another level of binary search and
the algorithm retains the same complexity.

7 Experiments

We implemented the pseudo-polynomial algorithm and our
DRCR algorithm in C and tested on di�erent test cases on
a 200MHz Sun Ultra-Sparc 1. The main objective of our
experiments was to evaluate the computational feasibility
of the DRCR algorithm and compare it with the pseudo-
polynomial algorithm.

Test graphs were generated by randomly placing some
macro blocks inside a rectangular routing region. Candi-
date bu�er locations are then chosen randomly from the
area that is not covered by the blocks and two bu�ers are
considered as candidate neighbors (i.e., there is an edge
between the corresponding nodes) only if they lie within
a threshold distance (e.g., 2000�m). The routing regions
vary from 1cm � 1cm to 2cm � 2cm. We use the follow-
ing values for the technology parameters : unit length ca-
pacitance c0 = 0.15fF=�m; unit length resistance r0 =
0.12
=�m; driver resistance Rs = 270
 ; loading capaci-
tance Ct = 50fF . We use a single bu�er with the following
parameters and build the bu�er library by scaling these pa-
rameters: rb = 814
; cb = 28fF ; db = 125ps. We use the
Elmore [6] model to compute the delay of the interconnect
in our test cases.
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Figure 9: The �gure shows the lower convex hull of the
cost vs. delay trade o� curve for two di�erent graphs G1

and G2.

Figure 9 shows the plot of the solutions which can be
found the DRCR algorithm for two di�erent test cases.
The graph shows the minimum delay solution, the delay
of the minimum cost solution, and the solutions that lie on
the LCH of the tradeo� curve. G1 has 600 candidate bu�er
locations and G2 has 2100 candidate bu�er positions. The
algorithm takes 0.73s for G1 and 1.69s for G2 respectively

2As an aside, it can be shown that the path which minimizes the
gd product lies on the LCH.

to identify a solution on the LCH. For reference, the la-
beling algorithm which uncovers all non-dominated paths
took 9:02s and 49:6s on G1 and G2 respectively (naturally,
this gap will become even more dramatic as more bu�er
sizing options are added, etc.)

The fast path algorithm in [1] identi�es only the mini-
mum delay path while the labeling algorithm generates all
non-dominated solutions. The fast path algorithm �nds
the minimum delay solution quickly, but this may not be
the best solution in practice due to excessive cost. On the
other hand, the labeling algorithm uncovers the whole cost
vs. delay tradeo� curve, but is computationally expensive.
We suggest that our approach gives a better practical solu-
tion in terms of running time and the feasibility of solutions
generated.

8 Conclusion

The paper studies the problem of bu�er insertion in the
context of a given oorplan. The DRCR problem in
the context of bu�er insertion was introduced and a fast
polynomial algorithm was proposed to solve the problem.
Some interesting properties of the formulation were dis-
cussed and it was argued that the solutions that lie on the
LCH of the tradeo� curve are the best solutions in prac-
tice. Thus we believe the proposed algorithm will become
a valuable tool in the early stages of design where bu�ers
must be allocated and topological bu�er-to-bu�er routes
determined.
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