
Supporting System-Level Power Exploration for DSP Applications

Luca Benini # Marco Ferrero z Alberto Maciiz Enrico Macii z Massimo Poncino z

Universit�a di Bologna
Bologna, ITALY 40136

z Politecnico di Torino
Torino, ITALY 10129

Abstract

System-level power exploration requires tools for estimation of

the overall power consumed by a system, as well as a detailed
breakdown of the consumption of its main functional blocks. We

focus on power estimation for data-dominated systems speci-
�ed as synchronous data-
ows and implemented on a single-

processor architecture. Our estimator is integrated within the

Ptolemy design environment, and provides information to sys-
tem designers on the power dissipated by every task in a given

speci�cation. Power estimation is based on instruction-level
power models. We demonstrate the applicability of our tool on

a few design examples and target architectures.

1 Introduction
The increased productivity required for designing systems-on-
chip mandates the availability of tools that can directly analyze,
optimize, and synthesize system-level descriptions. This require-
ment represents a signi�cant challenge, especially in the case of
power-constrained designs like battery-operated systems, where
the dynamic, workload-dependent nature of power dissipation
further complicates the picture.
In the last few years, several works on high-level power estima-
tion have appeared in the literature (see [1] for a survey). Most
of these techniques addressed the register-transfer (RT) level
and the behavioral level. System-on-chip and embedded system
designers, however, need estimation tools to analyze complexde-
scriptions with interacting software and hardware components.
A major challenge in developing system-level estimation tools is
the uncertainty in the de�nition of system-level descriptions.
A �rst class of approaches [2, 3] models the system as a set of
tasks to be executed on a target processor. Interaction among
tasks is described by a task graph, where nodes represent tasks,
and edges represent dependencies. Periodic execution of the
graph is assumed. The strength of these techniques is that they
do not assume any speci�c hardware implementation, thus, they
can be used to explore a wide design space. Two are the main
disadvantages of this model. First, it is too abstract, because
the task graph does not fully represent functional information
about the tasks. Second, it emphasizes explicit intra-task com-
munication and concurrency, leaving little room for algorithmic
optimization and analysis.
A second class of approaches [4, 5, 6] relies on a structural de-
scription of the system, that is viewed as the interconnection
of components (e.g., processor, memory, interconnect). System
functionality is provided in algorithmic form (typically, an ex-
ecutable speci�cation in an imperative language), and system
design consists of optimally mapping functionality onto the ar-
chitectural template. The accuracy of power estimation for such
models may be comparable to that of RTL methods, since indi-
vidual system-level components can be pre-characterized. The

main limitation of these approaches is that they operate at a rel-
atively low level of abstraction, where the degrees of freedom on
hardware implementation are reduced. Furthermore, it may be
hard to extract concurrency and perform high-level hardware-
software partitioning starting from an algorithmic speci�cation.
Some system-level design environments assume a speci�cation
style that lies somehow in between the previous two [7]. A sys-
tem is still represented at an abstract level as a set of interacting
tasks, yet the functional information is exposed and speci�ed for
each task. This speci�cation style overcomes the limitations of
traditional programming languages (such as C), which may be
suited for general-purpose computational systems, but cannot
easily handle the real-time, concurrent nature of embedded sys-
tems. To provide evenmore speci�cation
exibility, the Ptolemy

design environment [7] supports variousmodels of computation,
ranging from di�erential equations to discrete-event models, de-
pending on the semantics of the domain being modeled. The
main purpose of our work is to provide a power estimation back-
plane for this system-level speci�cation style.
We focus on Ptolemy's data-
ow computational model, that
is particularly suited for describing signal processing systems.
Data-
ow semantics allows static scheduling of a description.
In other words, a typical non-terminating signal processing task
can be mapped onto a �nite schedule that can be repeated in-
de�nitely for in�nite execution with boundedmemory. Ptolemy
provides algorithms for mapping an abstract data-
ow speci�-
cation onto a set of procedures which are executed on a target
signal processor or C code is automatically generated, not only
for the tasks, but also for the scheduler. The C code can then
be compiled and executed on a target signal processor, or a
general-purpose microprocessor.
Our tool is capable of estimating the energy and the time spent
for the execution of each task and of the static scheduler. This
information is automatically back-annotated into the system-
level speci�cation, and can be exploited by the designer to iden-
tify the tasks whose execution require most energy (or time), as
well as the overhead due to the coordination of their execution.
Our estimation engine closes the design exploration loop, which
is left open in Ptolemy. In fact, it is now possible to explore al-
ternative, functionally correct architectures, and choose the best
one in terms of energy or execution time. Additionally, a de-
signer can exploit detailed power and performance information
to focus his/her e�ort on the most critical tasks.
An approach somehow close to ours has been proposed in [8].
Here, the focus is on Ptolemy's discrete event model of compu-
tation, which is well-suited for describing control-dominated re-
active systems. The Ptolemy simulation environment is tightly
coupled to a HW/SW partitioning tool to achieve concurrent
power estimation of software and hardware components. This
approach keeps the distinction between HW and SW models,
and exploits the concurrent simulation capabilities of Ptolemy.

2 Ptolemy and Data-Flow Models
In Ptolemy, systems are modeled by sets of components con-
nected through oriented arcs. Each component is a functional
block which realizes a speci�c operation, at di�erent abstrac-
tion levels: A block can implement a simple addition (atomic
operation) as well as a complex FFT transform (non-atomic op-
eration).
Blocks are named stars in Ptolemy. They can be hierarchically
grouped because Ptolemy supports objects called galaxies which
enclose sets of interconnected stars.
When Ptolemy is used to synthesize a source code description
from a high-level speci�cation, this block diagram is also named
program graph because it is a visual description of that source
code.
In general, a computationalmodel speci�es a set of rules (seman-
tics) that govern the interaction of components. The data-
ow
is one of the supported computational models.
In a data-
owmodel, a program is divided into blocks which can
execute (�re) whenever input data are available. These blocks
communicate by sending messages through bu�eredFIFO chan-
nels in an asynchronous way. The evolution of the system con-
sists thus of a proper sequence of �rings that is called schedule.
Depending on the constraints of the model, the schedule may
be obtained statically, that is, by inspection of the data-
ow
network, or dynamically, that is, using run-time information.
In Ptolemy there are three types of data-
ow models [9]:

� DDF (Dynamic Data-Flow): Firing sequences are gener-
ated at run-time because the number of samples read or
written are data-dependent. Each block must specify the
number of samples required at its inputs to activate the
block next time. Due to its generality, this model slows
simulation down signi�cantly.

� BDF (Boolean-controlled Data-Flow): The number of
samples that a process can read/write may be either a
constant or a (Boolean) function of a control-sample read
from a particular control-input. Static scheduling is not
guaranteed; in that case, BDF models becomeDDF mod-
els.

� SDF (Synchronous Data-Flow): Firing sequences are de-
termined once, during the start-up phase. The constraint
is that a process can only read/write a constant number
of samples. For this reason the �ring order is periodic,
making this model suitable for synchronous signal pro-
cessing systems.

The three models of computation described above represent dif-
ferent tradeo�s between expressiveness and simplicity. DDF is
the most expressive model (in fact, it is Touring-equivalent),
but it is very hard to analyze and to prove properties on its ex-
ecution (even testing for termination is undecidable in general
DDFs). On the other hand, SDF cannot fully express control-
dominated behavior (e.g., conditional execution), but it can be
analyzed very e�ciently. Not only termination can be tested ef-
�ciently, but it is possible to constructivelybuild a schedule (i.e.,
an order of task execution) that requires only bounded channel
bu�ers. BDF is between SDF an DDF for both generality and
complexity.
In Ptolemy a domain de�nes a computational model. A do-
main must contain a speci�c object (target) that handles the
execution inside the domain. This object, by means of a sched-
uler, de�nes a computational model and veri�es the execution
order of the functional blocks. Ptolemy provides two kinds of
domains: The simulation domain and the code generation (CG)
domain.

The code generation domain is used to synthesize code from a
data-
ow description. The CG domain uses either the BDF or
the SDF computationalmodel. All the code generation domains
that are derived from the CG domain obey SDF semantics and
can thus be scheduled at compile time.
A key feature of code generation domains is the notion of a tar-
get architecture. Every application must have a user-speci�ed
target architecture, selected from a set of targets supported by
the user-selected domain. A CG domain supports either single-
processor or multi-processor architecture. In this work we con-
sider only the �rst one, and we focus on a speci�c target archi-
tecture, namely, the ARM processor.
The code fragments generated for each block are connectedwith
the others through the code generated by the target. After the
code is generated, the target calls the compiler and executes the
code. This generation procedure is independent of the type of
code generated.
The CG domain also �xes the target language. We focus on the
domain that generates C code (CGC domain).

3 Power Exploration Support
The main steps required for power exploration support can be
summarized as follows. From the C code generated by th CGC
domain, we �rst generate executable code for the ARM proces-
sor using the standard ARM compiler. Then, we run the code
on a modi�ed instruction-level ARM simulator that estimates
the power for the execution of each instruction on a cycle-by-
cycle basis. Instruction-level power estimates are analyzed, and
the total power spent in the execution of each task (and in the
execution of the code required to support static scheduling) is
obtained. Performance, expressed in terms of processor execu-
tion cycles, is monitored as well. This information is then back-
annotated into the original speci�cation. The user can then
analyze and modify the speci�cation to optimize power and/or
performance.

3.1 Instruction-Level Power Analysis
We have extended the software emulator for the ARM processor
(ARMulator) by implementing the instruction level power model
described in [10]. ARMulator is an instruction level emulator
that computes the number cycles needed by every instruction,
without modeling the precise timing characteristics of the pro-
cessor. ARMulator also supports a full ANSI C library to allow
complete C programs, like those generated by Ptolemy, to run
on the emulated systems.
We used the ARMulator available in the ARM Software Develop-
ment Toolkit version 2.50. This emulator has a modular struc-
ture where various models can be connected to the core model,
which emulates the behavior of the core of the ARM processors.
Memory models, for example, are used to emulate the main
memory system in an ARM-based con�guration. In particular,
they allow the speci�cationof various access times for memories.
Another model is the Tracer model, that can trace instruction
execution and memory accesses of a program. We implemented
our extensions to ARMulator inside the Tracermodel.
The power costs of the instructions are read from a �le during
the initialization phase of the Tracer model. In this way, since
ARMulator can emulate various processors, correct costs for the
processor being emulated can be supplied to it. According to
the terminology of [10], the only inter-instruction e�ects that we
model are the pipeline stalls. They can be caused, for example,
by a dependency between instructions in the pipeline, or by a
reading or a writing with wait-states in the main memory. The
pipeline is considered to be stalled only during a wait-state.

In this way, also cache-misses are considered because, in most
cases, main memory access time is longer than processor cycle
time, so during a cache-miss and subsequent line-�ll, there are
some wait-states. On the other hand, pipeline stalls caused
by data-dependencies are not considered in this work because,
usually, C compilers generate code already optimized in order
to reduce the number of data-dependencies.
The various costs are read from the �le and placed in memory
as follows:

� The base costs are stored in a hash table. This table
has an item for every instruction read from the �le. The
key is the mnemonic code of the instruction. The datum
contains the base cost of the instruction and a numeric
code, needed to identify the instruction when the over-

head costs for that instruction are computed.

� The overhead costs are stored in a matrix; element (x; y)
contains the overhead cost corresponding to a transition
from instruction with numeric code x to instruction with
numeric code y. If the overhead cost for a generic pair
of instructions is not speci�ed in the �le, it is considered
null.

� The average pipeline stall cost is stored in a scalar vari-
able.

If the base cost of an instruction is not speci�ed in the �le, a
default base cost is associated to that instruction. The default
base cost is also speci�ed in the power cost �le. If one or both
instructions for which the overhead cost is computed do not
appear in the power cost �le, this overhead cost is considered
null.
It is important to emphasize that base costs also depend on the
addressing mode of the instruction (e.g., register vs. immedi-
ate), and whether or not that instruction uses special hardware
features of the ARM (e.g., the barrel shifter). However, in or-
der to limit the slow-down of the emulator during the execution
of a program, these second-order re�nements are not accounted
in the power cost we used, that considers a single average base

cost.
Instruction costs are speci�ed in terms of the supply current of
the processor, therefore they are power quantities. To get the
energy cost of an instruction, its power cost must be multiplied
by the number of processor cycles required for its execution.
Cycle count for an instruction is computed by counting the
elapsed time (available through an internal function provided
by ARMulator) from the beginning of the instruction execution.
In formula, the energy cost for an instruction I (CI) is computed
as follows:

CI =

�
CB � (#cycles� #ws) + CSt �#ws if #ws > 0
CB �#cycles + CO if #ws = 0

where CB is the power base cost; CSt is the average power
pipeline stall cost; CO is the energy overhead cost between in-
struction I and the previous instruction; #cycles is the number
of cycles needed for the execution of instruction I and#ws is the
number of wait-states occurred during the execution of instruc-
tion I . If power costs are measured in mA, then energy costs
must be measured in mA�#cycles. Notice that if a pipeline
stall occurs, the overhead cost is not added to the instruction
energy cost.
The sum of instruction energy costs for all instructions executed
within a block of code gives the energy cost for that block. We
can obtain the average power dissipated during execution of the
block by dividing the energy cost by the number of cycles.

3.2 Interaction with Ptolemy
We are interested in estimating the energy required to execute
each instance of code associated to one block (star). The energy
required to execute the code of a star is obtained by adding the
energies needed to execute all the instances of the code for that
star in the program synthesized by Ptolemy.
The C program generated by Ptolemy is compiled to generate
an executable image and a listing �le where, for each C code
line, the corresponding assembly codes are shown. Each C code
line is copied with relative comments in the listing �le, so we
use this feature to detect the beginning of an instance of star
code. The analysis of the listing �le is carried out during the
initialization phase of ARMulator. This analysis produces two
tables:

� Table x has an item for each instance of the code of the
star included in the generated program. The �elds of
this item are the name of the star , the line numbers at
which each instance begins and ends in the C code, the
address of the �rst instruction of the block, a Boolean
variable which speci�es whether or not that star has code
associated with it, the cycle count and the energy count.

Two instances of code for the same star have the same
value in the star name �eld but typically di�erent values
in other �elds. Star instances are identi�ed by their po-
sition in this table. Numbering of instances in the table
starts from one because code not associatedwith any star
is identi�ed with zero.

� Table y has an item for every address in the program
corresponding to a boundary between two star code in-
stances or between a star code instance and code which
does not correspond to any star. Since the blocks that
constitute a program are contiguous, the boundary ad-
dress is the address of the �rst instruction in the next
block. Each item of this table contains: The boundary
address and a number to identify the star correspond-
ing to the adjacent block. If the next block does not
correspond to any star, it is labeled with zero. The var-
ious items are ordered in increasing order of boundary
addresses.

Figure 1 shows the way a fragment of a program is mapped onto
tables x and y. Numbers shown in square brackets in the code
fragment specify the position of the item associated to the corre-
sponding instance of star code in table x. The two code blocks
which realize the loop are not associated to any star because
they are introduced by the target, in order to realize a proper
schedule of the stars. For this reason, elements associated to
them in table y contain zero as identi�cation code.

Star Mpy code

wwww:

xxxx:

yyyy:

zzzz:

0

4

5

6

aaaa: 0

xxxx:

yyyy:

zzzz:

wwww:

jnz xxxx:

[4]

[5]

[6]

aaaa:

Cos

Exp

Mpy

Table x Table y Code fragment

Loop code

Initialization loop

Star Cos code

Star Exp code

Figure 1: Code Fragment and Corresponding Tables.

The ARM C compiler normally produces code with the maxi-
mum optimization level. In this case, an instance of code associ-
ated to a star can be split into various code blocks. In this case
table y would contain more items with the same identi�cation
code, as shown in Figure 2. In this way, table y has an item for
every block in which a star code instance can be split, so various
items in table y can refer to the same item in table x.

Star Fir code

xxxx:

yyyy:

zzzz:

4

5

4
Exp

Fir

[4]

[5]

[4]

yyyy:

zzzz:

xxxx:

Table x Table y Code fragment

Star Fir code

Star Exp code

Figure 2: Star Code Instance Split in Two Blocks.

Addresses used in table y are the real addresses of instructions
during program execution. They are computed by summing a
�xed o�set to the virtual addresses used in the listing �le. These
addresses, in fact, start from 0. The �xed o�set is the result of
the subtraction between the address of the �rst instruction in
the main program of the executable and the address of this
instruction in the listing �le.
Once the instruction energy is computed with the method de-
scribed in the previous subsection, it is summed to the corre-
sponding variable containing the energy cost of the portion of
program currently executed. A program generated by Ptolemy
consists of the following parts:

� Initialization code. This code performs the various ini-
tializations and opens the �les needed in the program.
This code includes instructions introduced in transpar-
ent way by the linker and executed before the call to the
main procedure.

� Instances of code associated to the various stars.

� Scheduling code. This code encapsulates the instances
of star code and it performs the schedule of the stars.
Schedule, in fact, is generated by Ptolemy before the real
code generation phase.

� Termination code. This code performs �nal operations
in the program and closes the �les used by the program.

The various instances of star code are placed in main , so all ad-
dresses contained in table y refer to addresses in main. Energy
costs due to execution of a function called in main are charged
to the costs of the program sections (e.g., an instance of a star

code) in which the function call occurs.
During the execution phase, if a code block corresponding to
a star is executed, addresses of various executed instructions
are compared to the address in the item that follows the item
corresponding to the current code block in table y, in order to
detect the starting point of the next contiguous code block. If
the code executed does not belong to any star, the address of
each executed instruction must be compared with all the ad-
dresses stored in table y because loops (for cycles) or other
control structures (if-then or do-while) can introduce jumps
to non-contiguous code blocks.

At the end of program execution, table x contains, for every
instance of star code, the total number of cycles required to
execute it, and the energy dissipated by the ARM during its
execution. Dividing the energy consumed by the total number
of cycles taken gives a measure of the average power dissipated
by the ARM processor during the execution of that instance of
the code. Initialization code, termination code, and scheduling
code also have individual variables used to store time costs (in
terms of number of cycles needed), and the energy cost. All
this information is back-annotated into the program graph that
is used as input by Ptolemy. This process of back-annotation
is made during the execution of the program by the modi�ed
version of ARMulator described here.
Figure 3 shows the interface between Ptolemy and ARMulator,
with the corresponding data and exchange formats. Ptolemy,
besides using the ARM C compiler (i.e., armcc) to compile the
C code and to generate the listing �le, also calls an executable
image analyzer, decaxf, and �nally uses the modi�ed version of
ARMulator to get the back-annotation of the program graph.

Starting address
of main (backannotation)

decaxf -s

ARMulator

armcc armcc -S -fs

C libraries
for ARM

Executable
image

C program from
PTOLEMY

Listing file Costs for ARM
instructions

Results

Figure 3: Interface between Ptolemy and ARMulator.

This process is done when Ptolemy recalls compilation of gen-
erated code. The single �le generated by Ptolemy is shown at
the top of the diagram.
ARMulator also provides a way of specifying the clock speed of
the processor. This number is used to compute the number
of wait-states that occur in a memory access. This allows to
simulate programswith various main memory systems, each one
with a di�erent access time.
During execution, ARMulator does not perform I/O operations,
in order to limit the overhead introduced by power characteri-
zation. Only at the end of this phase, results are written in a
�le for back-annotation purposes. In this way emulation speed
of 112,000 ARM instructions per second have been obtained on
a Sun ULTRA10 workstation with 128 MB of RAM and processor
working at 300 MHz.

4 System-Level Power Estimation Results
In this section we report a few examples on how our tool can
be used to support design space exploration at the system level.
The instruction-level power model described in Section 3.1 has
been back-annotatedwith cost-values obtained for the ARM810
processor. These costs are obtained from [11] with supply volt-
age of 3.3 V and cycle time of 10 ns. The number of cycles
required to execute a program is evaluated by computing the
number of memory bus cycles; for this reason, the core must
operate at the same frequency as the memory bus.

As a case study, we have compared two di�erent implementa-
tions of a IIR (In�nite Impulse Response) �lter. Such a �lter
can be described, in Ptolemy, using stars that belong to the
CGC domain in two ways:

a) With a block that directly realizes the IIR function (see
Figure 4 (a)); parameters of the block are the coe�cients
of the transfer-function and the gain of the �lter. When
activated, this block generates an output sample and con-
sumes an input sample.

b) By connecting in a ring topology two blocks, which re-
alize two FIR �lters, with a unit delay on the feedback
edge of the ring (see Figure 4 (b)). The ring is closed with
a block that subtracts the delayed sample which comes
from the feedback edge from the input sample. A block
that multiplies the input samples by a value gain is con-
nected to the ring's output. This block allows the tuning
of the IIR �lter gain.

Gain1

+-
-

+

1DIIR1

(a) (b)

FIR1

FIR2

Sub1

Figure 4: Two Realizations of an IIR Filter in Ptolemy.

Both implementations are fed by a stream which models a sam-
pled sinusoidal waveform. The program graph describing the
complete system obeys to the SDF semantics and its execution is
managed by default-CGC target. This program graph is a DSP
demo for the CGC domain included in Ptolemy. The program is
synthesized and then executed by ARMulator assuming that the
processor is an ARM810 and that there are no wait-states dur-
ing the accesses to the main memory. Periodic schedule of stars
is repeated 30 times; the C code implementing the operations
of the star is then included in a for loop of 30 iterations.
Table 1 collects the results provided by ARMulator for the blocks
of implementation (b) of the �lter. Column Time gives the num-
ber of cycles taken by each block to �nish the execution, while
column Energy gives the energy (in mA�#cycles) dissipated by
each block. Finally, column Avg. Curr. shows the average sup-
ply current for each block (in mA). This current is obtained by
dividing the energy value by the number of cycles.

Star Time Energy Avg. Curr.

[#cycles] [mA�#cycles] [mA]

Sub1 8427 469205.5 55.68
FIR1 127135 7154634.5 56.28
FIR2 65189 3672611.8 56.34
Gain1 9561 544334.0 56.93

Total 210312 11840785.8 56.30

Table 1: Results for Solution (b), ARM810.

Table 2 compares the results for solution (a) to the ones for
solution (b). In terms of energy dissipation, solution (b) is bet-
ter. However, since solution (b) executes the same number of
operations in a shorter time, the switching activity inside the
processor is greater. For this reason, the average current value,
drawn by the processor in solution (b), is higher than the current
drawn in solution (a).

Solution Time Energy Avg. Curr.

[#cycles] [mA�#cycles] [mA]

(a) 222074 12439355.0 56.01
(b) 210312 11840785.8 56.30

Table 2: Results for 30 Iterations, ARM810.

If the activation frequency is the same for all the stars, the code
of the schedule is realized by a simple for loop. This is the
case of this example. Its execution requires only 565 cycles and
its energy cost is 31131.5 mA�#cycles. As the complete exe-
cution of the program requires 2031944 cycles and 112985336.0
mA�#cycles, the overhead due to the schedule code is limited.
To con�rm the results we have obtained, we have performed the
following experiment. Instead of considering the ARM810 as
target processor, we adopted the ARM7TDMI processor (which
has no cache) and the ARM920T processor (which has a dis-
joint cache for data and instructions). In both cases, we have
made the assumption that accesses to the main memory happen
without wait-states.
Tables 3 and 4 show the results regarding the ARM7TDMI pro-
cessor, while Tables 5 and 6 refer to the case of the ARM920T
processor. As for the ARM810 architecture, solution (b) per-
forms better than (a), in terms of energy consumption, for both
the ARM7TDMI and the ARM920T.

Star Time Energy Avg. Curr.

[#cycles] [mA�#cycles] [mA]

Sub1 5354 302243.2 56.45
FIR1 79838 4653948.5 58.29
FIR2 41076 2397717.8 58.37
Gain1 5959 355324.2 59.63

Total 132227 7709233.7 58.30

Table 3: Results for Solution (b), ARM7TDMI.

Solution Time Energy Avg. Curr.

[#cycles] [mA�#cycles] [mA]

(a) 140244 8112749.0 57.85
(b) 132227 7709233.7 58.30

Table 4: Results for 30 Iterations, ARM7TDMI.

Star Time Energy Avg. Curr.

[#cycles] [mA�#cycles] [mA]

Sub1 4873 271930.3 55.80
FIR1 80715 4563778.0 56.54
FIR2 41536 2351503.8 56.61
Gain1 6119 350605.2 57.30

Total 133243 7537817.3 56.60

Table 5: Results for Solution (b), ARM920T.

Solution Time Energy Avg. Curr.

[#cycles] [mA�#cycles] [mA]

(a) 140496 7899399.0 56.23
(b) 133243 7537817.3 56.60

Table 6: Results for 30 Iterations, ARM920T.

In the next experiment, the ARM810 processor accesses the
main memory with 1 wait-state for sequential addresses and 2
wait-states for non-contiguous addresses. Tables 7 and 8 report
the results for this case. With respect to the previous tables,
a further column is added (�E): It contains the increase, in
percentage, of the energy dissipation due to the introduction of
wait-states. The increase of energy dissipation is high and it is
due to the growth of the number of cycles required by the pro-
gram to execute. Each time a wait-state occurs, the pipeline is
supposed to stall. Supply current drawn by the processor dur-
ing pipeline stall is similar to the current drawn during normal
instruction execution. All these facts con�rm the increase of the
dissipated energy during execution of the program.

Star Time Energy Avg. Curr. �E
[#cycles] [mA�#cycles] [mA] [%]

Sub1 10876 595928.7 54.79 27.0
FIR1 168698 9381105.0 55.61 31.1
FIR2 86465 4815840.5 55.70 31.1
Gain1 12686 714426.9 56.32 31.2

Total 278725 15507301.1 55.64 31.0

Table 7: Results for Solution (b), ARM810 with W-S.

Solution Time Energy Avg. Curr. �E
[#cycles] [mA�#cycles] [mA] [%]

(a) 294464 16319737.0 55.42 31.2
(b) 278725 15507301.1 55.64 31.0

Table 8: Results for 30 Iterations, ARM810 with W-S.

Also in this case, solution (b) is preferable. If the processor
was not cached, the number of cycles required to execute each
star code and, as a consequence, the corresponding energy cost
would be even larger.
Notice that the di�erence, in percentage, between the energy
dissipated by solution (a) and the one dissipated by solution (b)
(around 5%) preserves almost the same value despite changing
the emulated processor. This con�rms that this kind of estima-
tion is suitable to high level descriptions because it is not in
u-
enced by variations in the duration of the instructions. This is
a relative estimation with the objective of driving the choice be-
tween various Ptolemy program graph solutions, corresponding
to software design solutions.

5 Conclusions and Future Work
In order to help designers in building low-power systems, we
need to provide detailed feedback on where and how power is
dissipated. In this paper we focused our attention to the devel-
opment of a
exible framework for system-level power estima-
tion of signal-processing applications.
We integrated power estimation capabilities within the syn-
chronous data-
ow domain of the Ptolemy system-level design
environment. Our estimators can provide feedback on the power
consumed in performing the computation of each atomic block
of a given SDF graph, when the target hardware architecture is
a processor core. Power estimation is based on instruction-level
simulation and power modeling.
We applied our estimation tool to a few system-level speci�-
cations; its
exibility was demonstrated by providing detailed
task-by-task power estimates for functionally equivalent speci�-
cations mapped onto several di�erent target cores.

Future work will focus on integrating memory and I/O power
models within the instruction-level simulation backplane, in or-
der to provide detailed power estimation not only on the power
consumed by the processor, but also on the consumption of all
its ancillary components.

References

[1] E. Macii, M. Pedram, F. Somenzi, \High-Level PowerMod-
eling, Estimation and Optimization," IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-

tems, Vol. 17, No. 11, pp. 1061-1079, November 1998.

[2] L. Benini, R. Hodgson, P. Siegel, \System-Level Power Es-
timation and Optimization," ISLPED-98: ACM/IEEE In-

ternational Symposium on Low Power Electronics and De-
sign, pp. 173-178, Monterey, CA, August 1998.

[3] D. Kirovski, C. Lee, M. Potkonjak, W. Mangione-Smith,
\Synthesis of Power E�cient Systems-on-Silicon," Asian
and South Paci�c Design Automation Conference, pp. 557-
562, February 1998.

[4] D. Lidsky, J. Rabaey, \Early Power Exploration: A World
Wide Web Approach," DAC-33: ACM/IEEE Design Au-
tomation Conference, pp. 27-32, Las Vegas, NV, June 1996.

[5] T. Simunic, L. Benini, G. De Micheli, \Cycle-Accurate
Simulation of Energy Consumption in Embedded Sys-
tems," DAC-36: ACM/IEEE Design Automation Confer-

ence, pp. 867-872, New Orleans, LA, June 1999.

[6] J. Henkel, \A Framework for Estimating and Minimiz-
ing Energy Dissipation of Embedded HW/SW Systems,"
DAC-35: ACM/IEEE Design Automation Conference,
pp. 188-193, San Francisco, CA, June 1998.

[7] B. Lee, T.M. Parks , \Data
ow Process Networks," Pro-
ceedings of the IEEE, pp. 773-799, May 1995.

[8] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A.
Sangiovanni-Vincentelli, \E�cient Power EstimationTech-
niques for HW/SW Systems", IEEE Alessandro Volta

Memorial Workshop on Low-Power Design, pp. 191-199,
Como, Italy, March 1999.

[9] B. Lee, D. G. Messerschmitt, \Synchronous Data Flow,"
Proceedings of the IEEE, September 1987.

[10] V. Tiwari, S. Malik, A. Wolfe, M. Lee, \Instruction Level
Power Analysis and Optimization of Software," Journal of
VLSI Signal Processing, Vol. 13, No. 1-2, pp.223-233, 1996.

[11] P. Laramie, \Instruction Level Power Analysis and Low
Power Design Methodology of a Microprocessor,"CS Mas-
ter Thesis, University of California, Berkeley.

	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

