
Candidate Subcircuits For Functional Module Identification In Logic Circuits

Jennifer L. White, Anthony S. Wojcik, Moon-Jung Chung∗

Department of Computer Science and Engineering

Michigan State University

Travis E. Doom†

Department of Computer Science and Engineering

Wright State University

ABSTRACT

Recovering functional information from existing hardware is
a difficult problem in design automation. However, it is an
important focus for designers attempting to redesign for expanded
functionality or superior performance. Often, the only reliable
information available about a piece of digital hardware is the
hardware itself. Documentation, even if it is available, may be
outdated or incorrect. Existing procedures are able to recover
the transistor-level netlist, or a gate-level netlist from an existing
implementation. The next step in this process is the gate-level
to module-level transformation, the focus of this paper. We have
designed a technique to enumerate all of the potential modules
within a gate-level netlist so that their functional equivalence to
known modules may be evaluated.

1 INTRODUCTION

Reverse engineering of digital systems is an increasingly impor-
tant area of study. The Air Force would like to recover the de-
signs of obsolete ICs to extend the useful lifetimes of airplanes and
weapon systems [13]. High-technology companies are attempting
to reverse engineer products both to prevent copyright infringement
and to maintain their competitive edge. Hardware designers are
recovering designs to facilitate their re-implementation in superior
technology. Government agencies world-wide are performing re-
verse engineering to keep apprised of the military capabilities of
rival countries.

Reverse engineering of digital system is a complex task, integrat-
ing tools from all areas of computer engineering to raise the level
of abstraction from a circuit implemented in transistors to a more
understandable module-level description. A transistor-level netlist
is comprehensible to only the most experienced designers, but a
module-level description, composed of functional modules such as
ALUs, adders, and multiplexors, can be more easily understood.

The transformation from the transistor-level to the gate-level has
been addressed [2,9], but the gate-level to module-level transforma-
tion is considered an open problem in computer engineering. The
goal of the work presented here is to develop techniques to solve
this problem.

The identification of modules in a netlist can be approached in
one of two ways: syntactically or semantically. Thesyntacticap-
proach searches through the netlist identifying all of the gate clus-

∗{white,wojcik,chung}@cse.msu.edu
†travis.doom@wright.edu

ters that are structurally identical to the known modules. Algo-
rithms have been designed to efficiently perform syntactic match-
ing in circuits [11] and the underlying problem of graph isomor-
phism has been investigated in depth within the graph theory com-
munity [8].

Unfortunately, not all functionally equivalent modules are struc-
turally equivalent. Even with extensive libraries, it is unlikely that
all structural representations of a functional module will be present.
A more robust matching technique issemanticmatching, which de-
fines equivalence of modules by their functionality rather than their
structure. This approach is a more powerful matching technique,
but it is also more computationally complex.

2 STATEMENT OF PROBLEM

The general problem is stated as follows:
Module Identification Problem [4, 5]. Given a gate-level logic

circuit description (netlist), efficiently identify all gate clusters
(subcircuits) that perform the function of a known standard library
module.

Our approach to the Module Identification Problem consists of
solving two subproblems:

• Candidate Subcircuit Enumeration Problem. Identifica-
tion of clusters of gates (candidate subcircuits) within the
netlist that may comprise a functional module.

• Subcircuit Identification Problem. Proving functional
equivalence between a candidate subcircuit and a known stan-
dard library module.

To effectively locate the modules within a circuit, we first enu-
merate thecandidate subcircuits. Candidate subcircuits are those
subgraphs that are likely to have functionality that corresponds to
a high-level module. Each of these subcircuits is passed to a se-
mantic equivalence checker, which then functionally compares the
subcircuit to any known modules that it may represent.

Two combinational circuits aresemantically equivalentif input
and output correspondences exist under which their functionality
is equivalent. It is possible to determine semantic equivalence be-
tween a subcircuit and a known module in a tractable number of
comparisons.

Fundamentally, semantic equivalence checking is the determina-
tion of equivalence between a pair of Boolean functions. This is a
complex problem for arbitrary functions because of the difficulty of
determining the input correspondence between the functions. Tra-
ditionally, this has involved testing each possible correspondence,
an operation of factorial complexity.

Doom, et al [4] present a technique that appliessignature func-
tionsto the functions of the subcircuits to determine theirsignature
class. A signature function takes a function as input and returns
a signature for that function. This signature is related only to the
function itself; changeable features, such as variable ordering and
labeling, do not affect the signature. All functions with a specific
signature are grouped into a signature class. Only subcircuits within
the same signature class can be equivalent, thus significantly reduc-
ing the number of comparisons necessary to determine equivalence.

This technique has proven to be a reasonable solution to the Sub-
circuit Identification Problem. The research reported here hopes to
provide a complete solution to the general problem by addressing
the remaining Subcircuit Enumeration Problem.

3 RELATED WORK

The syntactic matching technique has been extensively studied,
most prominently in the area of transistor-level to gate-level trans-
formation [2, 9]. This technique is particularly effective in that do-
main because the number of implementations for a gate, barring
intentional obfuscation, is relatively small. Therefore, it is conceiv-
able to have a library that contains all reasonable implementations
of, for example, an AND gate, allowing all AND gates in the netlist
to be located.

Syntactic matching has also proven to be a useful tool for locat-
ing modules in gate-level to module-level transformations, particu-
larly in netlists created by CAD tools, because they tend to use stock
implementations of modules which are “plugged in” to the design.
In addition, designers tend to use published or textbook designs for
their modules [7]. These modules, if an implementation library is
available or can be created, can be located by using subgraph iso-
morphism techniques [11] or pattern matching techniques [7,12].

The syntactic technique is very effective when details about the
implementation of the modules are available. Unfortunately, that
is seldom the case. To solve the more general problem of module
identification, semantic matching is required.

A similar semantic approach to the Module Identification Prob-
lem is being explored at Argonne National Laboratory. Chisholm,
et al [3] believe that more significant algorithmic improvement is
possible by improving the approach to Subcircuit Identification. We
feel that the performance enhancement gained by reducing the ap-
plications of Subcircuit Identification is equally significant.

4 CANDIDATE SUBCIRCUIT

ENUMERATION

It is necessary to consider all subgraphs for possible functional
equivalence to known modules to ensure thatall potential func-
tional modules are identified. The most important computation-
reducing trait of the subgraph enumerator is that it enumerates each
subgraph once and only once.

In this approach, circuits are represented by directed graphs in
which vertices represent gates and arcs represent interconnections.
The resulting graph is referred to as acircuit graph . Within a cir-
cuit graphG, the set of vertices withinG is denotedV (G) and the
set of edges withinG is denotedE(G).

The trivial solution to this problem may be subject to exponential
explosion, depending on the connectivity of the graph. However,

the complexity of the enumeration can be significantly reduced by
exploiting the fact that only some subgraphs are of interest in this
domain. Consider a subgraphH composed of a gate vertexv and
two vertices representing two of its three inputs (either gates or pri-
mary inputs). The vertexv does not represent a complete gate in
the context of the subgraphH, because it is missing an input. For
the purposes of module identification the process is greatly simpli-
fied by enumerating only those subgraphs that exclusively contain
vertices representing fully specified gates; these subgraphs are re-
ferred to as subcircuits. This definition has also been independently
developed and presented asfeasible subgraphs[6].

A fully specified vertexrepresents a gate that is joined within the
subgraph by eitherall of the vertices representing its inputs ornone
of those vertices.

Definition 4.1 In a subgraphH of a circuit graphG, a vertexv is
a fully specified vertex if (∀u | uv ∈ E(G)∧ u ∈ V (H))∨ (∀u |
uv ∈ E(G) ∧ u 6∈ V (H)).

Definition 4.2 A subgraphH of a circuit graphG is asubcircuit
of G if and only if it is connected and each vertex inH is fully
specified.

A further refinement of this process takes into consideration the
fact that most hardware is designed by using CAD synthesis tools
that utilize a library of ready-made modules. To reduce the design
and test effort, these modules are often simply connected together
to provide the desired functionality. In these cases, the gate clusters
representing these modules will be completely contained, with no
arcs leaving or entering the subgraph except for the primary inputs
and outputs to the module. The vertices in these subgraphs repre-
sent gates with fully-specified inputsandoutputs.

A contained vertexrepresents a gate that is fully-specified and
joined within the subgraph by eitherall of the vertices representing
its outputs ornoneof those vertices.

Definition 4.3 In a subgraphH of a circuit graphG, a vertexv is a
contained vertexif ((∀u | vu ∈ E(G)∧u ∈ V (H))∨(∀u | vu ∈
E(G) ∧ u 6∈ V (H)) ∧ (∀u | uv ∈ E(G) ∧ u ∈ V (H)) ∨ (∀u |
uv ∈ E(G) ∧ u 6∈ V (H))).

Definition 4.4 A subcircuitH of a circuit graphG is acontained
subcircuit of G if and only if each vertex inH is contained.

There are considerably fewer of these subcircuits. So, to improve
the module identification process, a preliminary search to locate
and match only those contained modules can provide considerable
reduction in complexity, because any vertices within found modules
would no longer be considered for inclusion in another module.

4.1 Duplicate Elimination
The trivial algorithm to enumerate all subgraphs of a graph would
start with a single vertex, then repeatedly add on neighboring ver-
tices until all vertices belong to the subgraph. This process would
be repeated for each vertex in the subgraph. Although conceptually
simple, this algorithm is computationally intractable because each
unique subgraph is potentially duplicated an exponential number of
times.

Our algorithm (Figure 4.1) enumerates each subgraph exactly
once [14]. We require that an index be assigned to each vertex

1. Assign unique integer indices to each vertex in circuit graphC.
2. foreachv ∈ V (C):

3. Create a subgraphH containingv.
4. DetermineF(H) andFR(H).
5. foreachvertexu ∈ FR(H):

6. Create a subgraphH ′ = H + u.
7. If H ′ is not a subcircuit, add necessary vertices if possible or discard.
8. If H ′ is not contained, add necessary vertices if possible or discard.
9. OutputH ′.
10. ReturnH ′ to Step 4.

11. Endforeach.
12. Endforeach.

Figure 4.1:Algorithm for subcircuit enumeration.

and subgraph. For a vertexv, v.index is an integer unique to that
vertex. For a subgraphH,H.index is equal to the highest index of
its constituent vertices. This index provides a method for creating
an ordering between any two vertices in relation to the subgraph
being created. This ordering results in exactly one path of vertex
addition to the creation of any subgraph.

The first step is to assign the indices to the vertices. The only
guidelines are: it must be an integer, it must be unique, and the
index of a vertex should be higher than those of the vertices that
feed into it. This can be done with anO(n) breadth-first traversal
of the circuit graph. Note that cycles within the graph do not cause
a complication because the last guideline above need not be satis-
fied. Only the first two guidelinesmustbe satisfied; the third simply
reduces the computational effort.

Next, a vertex may be arbitrarily chosen as the starting point of
the enumeration. Each vertex will serve as a starting point even-
tually. A subgraph,H, is created containing only that vertex. Of
the neighboring vertices,N(H), those that have an index that is
less than that ofH are considered to be within thefrontier of that
subgraph, denotedF(H).

Definition 4.5 The frontier F of a subgraphH is all v such that
v ∈ N(H) andv.index < H.index.

The reachable frontierof the subgraph,FR(H), contains all of
the vertices that may be added toH without creating a subgraph
that may be duplicated. When a vertexv is added to a subgraph
H, it invalidates other vertices inFR(H) for addition, specifically
those that have an index that is greater than that ofv.

Definition 4.6 Thereachable frontier of a subgraphH is denoted
by FR(H) and consists of all of the verticesv that may be added
toH. For a subgraphHi = Hi−1 + vi, FR(Hi) consists of allu
such that:u ∈ F(Hi) and either

1. u 6∈ F(Hi−1)

or

2. u ∈ F(Hi−1) andv ∈ FR(Hi−1) andu.index < vi.index.

Note that the only members ofF(Hi) that may be excluded from
FR(Hi) are those that were members of the reachable frontier of

Hi−1, the subgraph that becameHi by the addition of the vertex
vi. Any vertices that become reachable by the addition ofvi are
members ofFR(Hi), regardless of their indices. This ensures that
all neighboring vertices are considered for addition at least once.

By enforcing the rule that the only vertices that may be added to
a subgraphH are members ofFR(H), it is possible to enumerate
each subgraph once and only once [14].

4.2 Restrictive Enumeration

The number of subgraphs within a graph can cause their enumera-
tion to be computationally intractable for reasonably sized circuits.
However, it is not necessary to enumerateall subgraphs; only the
subcircuits(Definition 4.2) are of interest.

A trivial solution would enumerate all subgraphs, then discard
any that are not subcircuits. This does not provide the performance
we require. Instead, when our algorithm encounters a subgraph that
is not fully specified, it attempts, by adding necessary vertices, to
create a subcircuit from it. That process continues iteratively until
H is a subcircuit or until some vertex that must be added toH is not
a member ofFR(H). The subgraph is then discarded. Although
this process produces some overhead, the benefit of enumerating the
subcircuits alone far outweighs this cost. There are 98,922 unique
subgraphs in a 3-bit Adder, but only 522 subcircuits. Our ongoing
research considers improvements to this approach.

The enumeration of contained subcircuits proceeds in a similar
manner, though in addition to adding vertices to create a subcircuit,
it is also necessary to add vertices to create contained subcircuits.
The processing advantage to enumerating only this subset of the
subcircuits, contained subcircuits, is significant.

4.3 Heuristics

Although placing a limitation on the types of subgraphs that are
created is an improvement, the computation effort for large circuits
can be excessive. There are several techniques that can be applied
to reduce complexity without compromising its effectiveness.

Preliminary Partitioning. Standard algorithms to divide the cir-
cuit into partitions [1] can be applied. These algorithms are de-
signed to partition circuits to a specified partition size along logi-

Original Unique Candidate Contained
Circuit Gates Subgraphs Subcircuits Subcircuits

number time number time number time

1-bit Adder 8 114 0.01 18 <0.01 6 <0.01
2-bit Adder 15 3,408 0.14 114 <0.01 25 <0.01
3-bit Adder 22 98,922 4.79 522 <0.01 72 <0.01

C17 24 40,729 1.79 3,951 0.03 1,199 0.02
majority 24 147,366 7.41 12,171 0.27 1,317 0.02

b1 25 1,066,434 56.60 19,980 0.2 271 0.01
cm138a 33 N/A - 726,032 14.8 26,652 0.84
cm152a 35 N/A - 59,962 2.02 6,484 0.19
cmb* 86 N/A - 3,616,868 280.14 12,096 0.780

Table 4.1: Restrictive Enumeration: Reduction of subgraphs on which to perform Subcircuit Identification. Results
denoted N/A reflect prohibitive execution effort, emphasizing the applicability of our technique. Times are in CPU seconds. *
This circuit has an order limit of 20 gates imposed.

cal boundaries and attempt to avoid breaking functional modules.
Thus, the necessary computation time can be reduced.

Preliminary Syntactic Checking. It is possible that stock imple-
mentations of some basic modules exist within the circuit. First ap-
plying a syntactic method to recognize these modules will reduce
the complexity of the circuit and improve the performance of the
semantic module identification.

Subgraph Order Limiting. Basic functional modules are rarely
large. The largest modules are generally composed of smaller mod-
ules. It is reasonable to limit the size of enumerated subgraphs by
examining the size of the library modules and to set the subgraph
maximum order to a reasonable number, such as 10% greater than
the maximum library module size.

Module Replacement. When a functional module is located
within the circuit graph, it may be replaced with a single vertex
representing the functionality of that module. This reduces the or-
der of the circuit graph, and thus the overall computational effort.
Note that this technique may lead to a difficult covering problem.
Designer input alleviates this difficulty.

5 PRELIMINARY RESULTS

The restrictive subcircuit enumeration algorithm has been imple-
mented in parallel C using PVM 3. Experiments were run using
a Sun Sparc Ultra-2 server with 1024MB of memory as the server
and a collection of 38 Sun Sparc Ultra-5 workstations with 128MB
of memory. Results are shown in Table 4.1 for several small circuits
from the LogicSynth93 benchmark suite [10].

These results clearly illustrate the advantage of using our restric-
tive subcircuit enumerator. The effort spent on enumeration and the
number of subgraphs that must be tested for semantic equivalence
is greatly reduced, resulting in significant improvements to overall
execution time for solutions to the Module Identification Problem.

6 CONCLUSION

We have presented an approach which, in combination with Doom’s
technique for Subcircuit Identification [4], completes the solution

to the gate-level to module-level transformation within the domain
of reverse engineering of digital circuits. The combination of can-
didate subcircuit enumeration and module identification using se-
mantic matching provides a general method for extracting combi-
national modules from a gate-level netlist.

The research so far has focused on the underlying theory of can-
didate subcircuit enumeration. The resulting algorithm is embar-
rassingly parallel, because each subgraph may be expanded indi-
vidually without interacting with other subgraphs. Accordingly, the
algorithm has been implemented in parallel, and improvements and
enhancements are in progress. Testing of this technique has con-
centrated on devices of the types currently subject to reverse engi-
neering (LSI circuits). Future efforts will consider implementation
improvements and application of the heuristics described in Section
4.3 to extend the domain to include more contemporary (VLSI) de-
signs.

Another imminent research focus is in the area of subcircuit iso-
morphism. Only one instance of any given subgraph structure needs
to be tested for semantic equivalence, because syntactically equiv-
alent subgraphs are necessarily semantically equivalent. By imple-
menting a run-time structural classifier, we can further reduce the
execution time necessary to solve the general Module Identification
Problem.

REFERENCES

[1] C. J. Alpert and A.B. Kahng. Recent directions in netlist par-
titioning: A survey.Integration: The VLSI Journal 19 (1995),
pages 1–81, 1995.

[2] Michael Boehner. LOGEX- an automatic logic extractor from
transistor to gate level for cmos technology. InProceedings
of the 30th ACM/IEEE Design Automation Conference, pages
517 – 522, June 1988.

[3] Gregory H. Chisholm, Steven T. Eckmann, Christopher M.
Lain, and Robert L. Veroff. Understanding integrated circuits.
IEEE Design & Test of Computers, 16(2):26 – 37, April -
June 1999.

[4] T. Doom, J. White, A. Wojcik, and G. Chisholm. Identify-
ing high-level components in combinational circuits. InPro-
ceedings of the 1998 Great Lakes Symposium on VLSI, pages
313–318, February 1998.

[5] Travis E. Doom, Jennifer L. White, Gregory Chisholm, and
Anthony S. Wojcik. Identification of functional components
in combinational circuits. Technical Report ANL/DIS/TM-
47, Argonne National Laboratory, January 1998.

[6] Amit Chowdhary et al. A general approach for regularity ex-
traction in datapath circuits. InProceedings of the 1998 Inter-
national Conference on Computer Aided Design, pages 332 –
340, November 1998.

[7] Mark C. Hansen, Hakan Yalcin, and John P. Hayes. Unveiling
the ISCAS-85 benchmarks: A case study in reverse engineer-
ing. IEEE Design & Test of Computers, 16(3):72–80, July -
September 1999.

[8] Christoph M. Hoffman. Group Theoretic Algorithms and
Graph Isomorphism. Springer-Verlag, 1982.

[9] S. Kundu. GateMaker: A transistor to gate level model ex-
tractor for simulation, automatic test pattern generation and
verification. InProceedings of the IEEE International Test
Conference, pages 372–381, 1998.

[10] Ken McElvain. Lgsynth93 benchmark set: Ver-
sion 4.0. Available on the World Wide Web at
http://www.cbl.ncsu.edu/CBLDocs/lgs93.html, May 1993.

[11] Miles Ohlrich, Carl Ebeling, Eka Ginting, and Lisa Sather.
SubGemini: Identifying subcircuits using a fast subgraph iso-
morphism algorithm”. InProceedings of the 30th ACM/IEEE
Design Automation Conference, pages 30–37, 1993.

[12] George Pelz and Uli Roettcher. Circuit comparison by hi-
erarchical pattern matching. InProceedings of the Interna-
tional Conference on Computer Aided Design, pages 290 –
293, 1991.

[13] Ronald C. Stogdill. Dealing with obsolete parts.IEEE Design
& Test of Computers, 16(2):17 – 25, April - June 1999.

[14] Jennifer L. White and Anthony S. Wojcik. A technique for
unique subgraph enumeration. Technical Report MSU-CSE-
99-35, Computer Science and Engineering, Michigan State
University, East Lansing, Michigan, October 99.

	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

