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ABSTRACT—
Typically, placement algorithms attempt to minimize the total net

length of a printed circuit board (PCB). However, an MCM’s increased
throughput and dense circuitry can easily result in failure if the board
contains “hot spots”. Therefore, an accurate thermal model of an M-
CM was needed in the development of a new placement algorithm de-
signed to consider both total net length and thermal constraints. This
algorithm uses a combination of simulated evolution and simulated an-
nealing in an iterative approach. Each chip has a maximum thermal
tolerance that it can withstand before it is known to fail. The fitness
method evaluates the maximum temperature for each chip, consider-
ing every chip’s thermal dissipation at the chip’s hottest point. Results
are presented that compare the effects of various parameters.

I. INTRODUCTION
An overwhelming majority of existing placement algo-

rithms only attempt to optimize for the routability of a cir-
cuit. Sherwani [12] provides a summary of the classic tech-
niques. These algorithms typically concentrate on minimiz-
ing total net length, while others focus on minimizing wire
crossovers and vias [14]. These techniques are reasonable
for most printed circuit boards (PCB); however, the recent
popularity of multichip modules (MCM) has uncovered the
fact that MCMs require a placement algorithm that seeks to
optimize more than the aforementioned criteria [12].

The chips within an MCM are not individually packaged
and therefore may dissipate significantly more heat than
their packaged counterparts for a given temperature rise. In
addition, MCM chips are placed much closer together, re-
sulting in an overall temperature gain that is not usually seen
on PCBs. It is conceivable that a placement tool that does
not consider the chips’ thermal properties would choose to
place two or more chips close enough together to create a
“hot spot”. This would significantly reduce the life of the
board or MCM.

While other thermal dissipation methods have been used,
such as adding heat sinks or thermal vias, it is not always fea-
sible to use these techniques to sufficiently cool the MCM.
Many times heat sinks are not an option because of space
limitations. Thermal vias are problematic to routing heuris-
tics because they represent additional obstacles. The more
obstacles a router has to avoid, the larger the total net length
will be. In fact, too many obstacles can cause the layout to
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be unroutable.
Previous authors have attempted to provide a balance of

temperature over the area of the substrate while reducing the
total net length [2, 4, 11, 13]. Chao [2] and Osterman [11]
present realistic thermal models, but the heuristics used are
known to be fast rather than optimal: Chao uses the min-cut
and simulated annealing algorithms, while Osterman uses
the force-directed placement technique. Chu [4] presents a
matrix approach for FPGA placement, but the technique can-
not be applied to MCMs because the thermal model merely
consists of a single value for each gate. Tang [13] uses this
thermal model in an MCM placement tool. The genetic algo-
rithm in series with a simulated annealing heuristic are com-
bined to achieve good placements; however, the limitation
of the thermal model prevents it from finding fully reliable
solutions.

The motivation behind this work is to interface a realistic
model of an MCM, its components, and their thermal proper-
ties with a dynamic set of optimization algorithms. The two
objectives and constraints of the placement tool discussed
are the total net length and the thermal dissipation of the
chips.

II. PLACEMENT ALGORITHMS
The interpretation of the simulated evolution algorithm

[5, 7] used here is explained in [1]. Each chromosome in
the population is an MCM with an initial placement scheme,
and each gene is a chip within the MCM. The strength of a
chromosome is determined first by whether the thermal con-
straint has been violated. If so, the chromosome is given an
extremely weak value for its fitness; otherwise, the total net
length inversely determines a chromosome’s strength.

The usage of simulated annealing [3, 6, 10] is further ex-
plained in [1]. The heuristic first initializes the fitness value
for the material in question. Then, as the temperature drops,
it repeatedly calls the perturb() operator and compares the
new fitness with the old. If the new fitness is better, it keeps
it. If not, it determines whether it wants to keep it by finding
a random number between[0:0; 1:0) and comparing that to

e
oldfitness�newfitness

currenttemperature .
One drawback to many optimization heuristics is that they

can fall into a local minimum and are unable to escape it. A
solution to this problem is to execute more than one algo-
rithm in series. In [13], Tang executes the evolution heuris-
tic, followed by the annealing heuristic with a short cooling
schedule. This resulted in better solutions when compared to



Create and initially place chromosomes
For i = 1 to number of iterations

Execute genetic heuristic until all chromosomes
have equal fitness

For j = 1 to number of chromosomes
Execute annealing heuristic on

chromosome(j)
Next j
Execute genetic hueristic on resulting

chromosomesnumGens=i times
Next i

Fig. 1. Pseudocode for the Hybrid Evolution and Annealing Algorithm

the simulated evolution running alone. The annealing pro-
cess often assisted the candidate out of the local minimum
upon which the evolution heuristic converged.

In this research, a variation on Tang’s hybrid approach
that reaches good results alternates between simulated evo-
lution and simulated annealing. It enters a loop whereby the
evolution heuristic executes until every chromosome has the
same fitness value. Assuming that at this point the evolu-
tion heuristic has reached a local minimum, the code applies
the annealing heuristic, not just to the best resulting chromo-
some, but to every chromosome in the chromosome list. This
randomizes the chromosomes somewhat, improving some
of their placements while leaving others with worse place-
ments. The evolution heuristic is executed again with the
modified chromosomes, then loops back. It performs this a
predetermined number of times, although it was found that
MCMs with many chips require more iterations. The pseu-
docode of this overall algorithm is shown in Fig. 1.

III. THERMAL MODEL
The heat dissipated from a chip on a substrate is partly

convected away from the surface of the chip and the remain-
der is conducted into the substrate. The heat conducted into
the substrate spreads radially due to heat conduction.

The center of the chip is the hottest point. As the radius
from the center increases, the temperature decreases mono-
tonically in a Gaussian-like curve. If the chip is approximat-
ed as a circular source of heat of zero thickness on a substrate
of thicknesst, and if the upper surface cooling rate is given
by a convective cooling law, the temperature is given by a
one-dimensional ordinary differential equation in the radial
dimension [8].

The solution to the equation gives the temperature of any
given point on the substrate due to one chip. Because the
governing equations and boundary conditions are linear with
respect to temperature, superposition can be used to add the
thermal effects of each chip on a substrate. Thus, to find the
temperature gain for a given point, the thermal effect of each
chip at that point can simply be superposed.

Only the hottest spots on the board are of any interest to

the optimization algorithms. If one of these spots is too hot,
all other thermal calculations are superfluous. Moreover, if
all of the hottest spots are within a certain tolerance, no oth-
er calculations are necessary. The center of the chip under
consideration is the point at which every other chip’s ther-
mal influence is evaluated. These values are summed, then
added to the local maximum temperature rise for the chip
being evaluated. This provides the overall thermal gain at
the hottest spot for each chip. If this value exceeds a user-
defined threshold, called the maximum chip to ambient ther-
mal resistance (which can be different for each type of chip),
the placement is discarded. Every chip’s hot spot is similarly
examined; if each are within their threshold, it is deemed a
reasonable placement.

A distinct advantage that this model has over Tang’s [13]
is that, if two “hot” chips share several nets, it will attempt to
place them as close to each other as possible, given the afore-
mentioned constraint. Using a thermal model that attempts
to balance the temperature across the board will force the
algorithm to find a compromise between the thermal con-
straints and net length objective. Because these are conflict-
ing factors, the compromise will not be optimal for either
objective.

IV. RESULTS
Each chip’s thermal model accepted two parameters as in-

put: the maximum chip to ambient thermal resistance ratio
(MCATR) andh, the heat transfer coefficient. Due to the
lack of thermal data in standard benchmarks, these parame-
ters, along with the substrate’s thickness, were given reason-
able yet somewhat random values.

Two MCMs tested were taken from the examples used
to explain the EDIF format. The first of these two MCM-
s, named AMI33, contains 33 chips, each one different with
significantly different sizes. It has 117 nets, some of which
are multi-terminal. AMI49 contains 49 chips, all different,
with a wider range of sizes than AMI33, as well as 407 nets.

Two other MCMs tested are the standard MCC1 and MC-
C2 benchmarks. They are commonly used to compare both
placement and routing algorithms. MCC1 consists of 6 chip-
s, 765 I/O pins, and contains 799 signal nets. There are two
types of chips: C448, with a geometry of 550 x 550 mils and
448 pins; and C272, with a geometry of 330 x 330 mils and
272 pins. The MCM consists of four C448s and two C272s.

MCC2’s substrate is 6 x 6 inches with 37 Honeywell VH-
SIC gate arrays and 18 high density connectors. The chips
are all of the same type and have a geometry of 1.5 x 1.5 cm
with 548 pins. The connectors are placed around the perime-
ter of the substrate. The net list contains 7118 signal nets and
a total of 14659 pins.

The tests were performed on a Sun Ultra 1 running Solaris
2.5. The code was compiled using g++ version 2.7.2. Com-
parisons of net length and execution time to other thermal
placement algorithms can be found in [1].

Five placements of MCC1 were found to illustrate how d-



TABLE I
HEAT TRANSFERCOEFFICIENT(h) AND MCATR (M ) VALUES FOR

MCC1
Chip h1 h2 h3 h4 h5

M1 M2 M3 M4 M5

C448 10 7 10 10 10
1.3 1.3 1.29 1.28 1.27

C227 12.5 8.5 12.5 12.5 12.5
1.4 1.4 1.39 1.38 1.37

TABLE II
NET LENGTHS FORMCC1 (mm)

MCC11 MCC12 MCC13 MCC14 MCC15
22,700 22,800 23,600 24,700 24,900

ifferent values for the chips’ heat transfer coefficienth and
theMCATR ratio affects both the resulting layout and the
total net length. See Table I for specific values. The other
parameters were kept constant between the five placements:
number of simulated evolution generations = 100, number
of chromosomes = 40, random number seed = 782271, ini-
tial placement spacing = 11%, and number of iterations = 8.
Table II compares the approximated net lengths of the five
placements. Each run took 14 minutes to complete.

MCC2 is more complex because of the number of nets in-
volved. MCC1 used 40 chromosomes, and could have used
more if it had needed them. In fact, 100 chromosomes were
used initially, but the execution time was too slow to justi-
fy the small improvement in net length. Table III compares
the number of chromosomes used for MCC2 to the resulting
net lengths and execution times. As with MCC1, the other
parameters were left constant.

The variation in results due to the number of chromo-
somes used in MCC2 led to another series of tests on the
other benchmarks to determine if there exists a correlation
between the number of chromosomes used and the result-
ing net length. The results are shown in Tables IV, V, and
VI. Net Length 1 began with an initial spacing of 5%, Net
Length 2 began with 8%, and Net Length 3 began with 11%.
Some of the best results for a given circuit and spacing are
underlined. Note that these results are not always produced
with the largest number of chromosomes. Generally speak-
ing, there is a local minimum in the range of 35 - 40 chro-

TABLE III
NUMBER OF CHROMOSOMES FORMCC2 VS. NET LENGTH, PERCENT

IMPROVEMENT, AND EXECUTION TIME

Num Len (mm) Improvement Time (min)
10 330,635 42% 38
15 317,625 34% 60
20 319,932 34% 76
25 330,176 32% 100

TABLE IV
AMI33 WITH INCREASINGCHROMOSOMECOUNT

Num Len1(mm) Len2(mm) Len3(mm)
10 163.7 164.5 158.9
15 163.7 139.7 143.5
20 164.0 144.4 142.0
25 163.2 134.6 138.1
30 160.9 141.6 136.4
35 161.2 137.6 133.7
40 152.7 134.2 135.0
45 154.6 134.3 132.4
50 165.1 137.5 137.6
55 153.7 135.2 139.1
60 148.7 137.0 135.3

TABLE V
AMI49 WITH INCREASINGCHROMOSOMECOUNT

Num Len1(mm) Len2(mm) Len3(mm)
10 1,730 1,788 1,859
15 1,788 1,798 1,880
20 1,702 1,786 1,814
25 1,681 1,703 1,761
30 1,759 1,779 1,776
35 1,659 1,688 1,797
40 1,687 1,747 1,679
45 1,693 1,700 1,717
50 1,666 1,678 1,777
55 1,672 1,757 1,755
60 1,653 1,646 1,673

TABLE VI
MCC1 WITH INCREASINGCHROMOSOMECOUNT

Num Len1(mm) Len2(mm) Len3(mm)
10 n/a 24,990 25,360
15 23,322 23,017 24,910
20 24,413 23,711 29,108
25 23,579 23,596 23,539
30 23,524 23,476 23,377
35 23,629 23,307 22,609
40 23,507 23,302 21,552
45 22,748 23,556 22,123
50 23,073 23,249 21,327
55 23,077 23,150 21,482
60 23,500 23,183 21,585



TABLE VII
MCC NET LENGTH IMPROVEMENT

Circuit MTP Improvement MPH Improvement
MCC1 10% 11%
MCC2 11% 11%

mosomes for MCMs with a small number of nets (AMI33
and AMI49), while MCC1 results in a local minimum of 45
- 55 chromosomes.

The MCC benchmarks define their own placement so
routing algorithms can compare their results with other
routers. This is also helpful to compare placement algo-
rithms. For example, Tang used the MCG router [9] to com-
pare his placement of the MCC benchmarks with their o-
riginal placements. A similar approach was taken with this
work: the MCG router was also applied to both the orig-
inal placements and the best placement found above. The
resulting net lengths are compared to their respective origi-
nal placements. Table VII shows the percent improvement
in net length for both benchmarks and for both placements
algorithms. This illustrates that the improved thermal model
did not adversely affect the routability.

V. CONCLUSIONS
The algorithms and heuristics used in this work yielded

excellent results, especially when fused into the hybrid ap-
proach. The results were comparable to those of other place-
ment algorithms, so the thermal constraint has been shown
to be a reasonable consideration. It was shown that the t-
wo thermal parameters,h andMCATR, affected the place-
ment algorithms’ decisions and therefore the resulting place-
ments.

The implementation of the thermal model was crucial
to the resulting execution time. The assumption that the
hot spot of each chip will be at its center allowed for a
tremendous speedup in the thermal calculations. Since on-
ly C(C � 1) calculations of the temperature gradient per
placement were required, whereC is the number of chip-
s, the overall thermal dissipation could be evaluated quickly
enough to be useful to a placement algorithm.

References
[1] C. Beebe, J. D. Carothers, A. Ortega, “Object-Oriented

Thermal Placement Using an Accurate Heat Model,”
Hawaii International Conference on Systems Sciences,
Wailea, Hawaii, 1998.

[2] K. Chao, D. Wong, “Thermal Placement for High-
Performance Multichip Modules,”International Con-
ference on Computer Design, Austin, Texas, pp 218 -
223, 1995.

[3] A. Chatterjee, R. Hartley, “A New Simultaneous Cir-
cuit Partitioning and Chip Placement Approach Based

on Simulated Annealing,”Proceedings of Design Au-
tomation Conference, pp 36 - 39, 1990.

[4] C. Chu, D. Wong, “A Matrix Synthesis Approach
to Thermal Placement,”International Symposium on
Physical Design, Napa Valley, California, pp 163 - 168,
1997.

[5] J. P. Cohoon, W. Paris, “Genetic Placement,”Pro-
ceedings IEEE International Conference on Computer-
Aided Design, pp 422 - 425, 1986.

[6] S. Kirkpatrick, C. D. Gellat, M. P. Vecchi, “Opti-
mization by Simulated Annealing,”Science, Vol. 220
(4598), pp 671 - 680, 13 May 1983.

[7] R. M. Kling, “Placement by Simulated Evolution,”
Master’s Thesis, Coordinated Science Laboratory, Col-
lege of Engineering, University of Illinois at Urbana-
Champaign, 1987.

[8] B. Lall, A. Ortega, H. Kabir, “Thermal Design Rules
for Electronic Components on Conducting Boards in
Passively Cooled Enclosures,”InterSociety Conference
on Thermal Phenomena, Washington DC, pp 50 - 61,
1994.

[9] D. Li, J. D. Carothers, “MCM Routing Algorithm
Based on a Compatibility Graph Approach”,Electron-
ics Letters, Vol. 32 (1), 1996, pp 5 - 6.Ph.D. Disser-
tation, Computer Systems Design Laboratory, Depart-
ment of Electrical and Computer Engineering, Univer-
sity of Arizona, 1995.

[10] N. Metropolis, A. Rosenbluth, M. Rosenbluth, “E-
quation of State Calculations by Fast Computing Ma-
chines,”Journal of Chemistry and Physics, pp 1087 -
1092, 1953.

[11] M. Osterman, M. Pecht, “Placement for Reliability
and Routability of Convectively Cooled PWBs,”IEEE
Transactions on CAD, Vol. 9 (7), pp 734 - 744, July
1990.

[12] N. Sherwani, Algorithms for VLSI Physical De-
sign Automation, Kluwer Academic Publishing, Mas-
sachusetts, 1995.

[13] M. C. Tang, J. D. Carothers, “Consideration of Ther-
mal Constraints During Multichip Module Placemen-
t,” Electronic Letters, Vol. 33, no. 12, pp 1043 - 1045,
1997.

[14] G. Wippler, M. Wiesal, D. Mlynski, “A Combined
Force and Cut Algorithm for Computer Logic Graph-
s,” Proceedings 19th Automation Conference, pp 671 -
677, 1982.

VI. ACKNOWLEDGMENTS
The authors would like to thank Prof. Jerzy Rozenblit and

Mr. Kusnadi for their contributions.


	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index


