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Abstract–An FPGA switch box is said to be hyper-universal if
it is routable for all possible surrounding multi-pin net topolo-
gies satisfying the routing resource constraints. It is desirable to
design hyper-universal switch boxes with the minimum number
of switches. A previous work, Universal Switch Module, consid-
ered such a design problem concerning -pin net routings around
a single FPGA switch box. However, as most nets are multi-pin
nets in practice, it is imperative to study the problem that involves
multi-pin nets. In this paper, we provide a new view of global
routings and formulate the most general -sided switch box de-
sign problem into an optimum -partite graph design problem.
Applying a powerful decomposition theorem of global routings,
we prove that, for a fixed , the number of switches in an opti-
mum -sided switch box with terminals on each side is ,
by constructing some hyper-universal switch boxes with
switches. Furthermore, we obtain optimum, hyper-universal -
sided and -sided switch boxes, and propose hyper-universal -
sided switch boxes with less than switches, which is very
close to the lower bound obtained for pure 2-pin net models
in [5].

1 Introduction

The well-known SRAM-based FPGA architecture [3, 5, 6]
consists of an array of 2-D Logical Blocks (L-cells) separated
by vertical and horizontal channels, each with (called chan-
nel density) prefabricated wire segments (tracks) for routing, see
Figure 1. Each track within a channel is assigned an integer in

as its track ID. There is a connection box (C-box)
in the channel area between each pair of adjacent L-cells, and a
switch box (S-box) at each intersection of a vertical and horizon-
tal channels. Both C-boxes and S-boxes contain programmable
switches.

When an FPGA is used to realize a specified Boolean function,
the pins used to realize the Boolean function are partitioned into
groups (called nets). Then the pins in each group (net) are con-
nected together by using available wire segments and switches in
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Figure 1. The architecture of a 2D-FPGA.

both C-boxes and S-boxes. This process is referred to as a rout-
ing. Conventionally, the routing process is divided into two sub-
sequent steps, global router and detailed router, although there
is no absolute need for doing routing in these two phases. The
global router specifies various connection topologies for all nets,
while the detailed router decides assignments of wire segments
and switches used to materialize the complete routing. As the
connectivity within a C-box is complete, the routability of the en-
tire chip only depends on the structure and connectivity of the
S-boxes [1, 3, 4, 5, 8, 9, 11, 12, 13, 14]. It is clearly desirable
to design switch boxes with maximized routability and the mini-
mum number of switches.

The Universal Switch Module proposed in [5] is routable for
all possible global routings surrounding an S-box. However, there
is a restriction that this model assumes the case of 2-pin nets only.
In this paper, we propose a new view of global routings, and a
powerful graph model for the most general FPGA routing prob-
lems covering multi-pin nets (including nets with pins) and
being adaptable to the optimum routing problems covering the
entire chip.

In order to complete a detailed routing for an entire chip, a
greedy routing architecture has been proposed in [11, 14]. The
approach starts the detailed routing from a pre-specified S-box.
Then routings of adjacent C-boxes are determined and serves as
the predetermined side(s) of other neighboring (and unmapped)
S-boxes. This process is repeated (propagated) until the entire
chip routing is done. Depending on the propagation order (e.g.,
either spiral or snake-like [11, 14]), the process can be decom-
posed into a sequence of -side-predetermined, -sided S-box



design problems for and . With this de-
sign scheme, we need to design an -side-predetermined, -sided
S-box, where and , that can accommo-
date any global routing (called being hyper-universal) with the
minimum number of switches. For simplicity, we call a -side-
predetermined -sided S-box a -sided S-box. In this regard, the
well-studied Xilinx-based S-box shown in [10] and the Universal
Switch Box [5] belong to the -sided routing models.

In our formulated graph model for a -sided S-box, the
track with ID on the -th side is denoted by a vertex and
each switch in the S-box is represented by an edge. The global
routing specified for an S-box is represented by a collection of
subsets (nets) of . A detailed routing of a net is
represented by a subtree of graph with vertices representing
the pins on different sides. For example, a net of a global rout-
ing is represented by the set , if it connects three wire
segments located on sides , and , respectively. A detailed
routing of this net will be represented by a tree of three vertices
with its ends in , and

, respectively. Therefore, the switch box de-
sign problem becomes a -partite graph design problem, that is,
to design a -partite graph with the minimum number of edges
which can realize any global routings. This flexible mathematical
model can also be generalized to -side-predetermined, -sided
S-box design problems with , and , which is
useful for potential routing problems involving multiple routing
dimensions.

2 Definitions and Problems

The terminology and symbols of graphs are referred to [2]. Let
be a simple graph with vertex set and

edge set . We denote by and the number
of vertices and edges in , respectively. Let .
denotes the induced subgraph of by . We use to
denote the path with consecutive vertices .

Let be an integer. A localized -way global routing
is a collection of subsets of .

For each integer with , let be the number of occur-
rences that appears in . is called
the density of the localized global routing , and is called
a localized -global-routing ( -GR). Each in is
referred to as a net of the localized global routing. We note that
a localized global routing is a multiple set; two equal sets in

represent two different nets in the routing. Note also that a
net of cardinality corresponds to an -pin net.

A localized -GR is called primitive ( -PGR) if it
does not contain two unequal nets of size ; a localized -GR
is called a balanced -global routing ( -BGR) if each el-
ement of appears times. A localized global routing
in practice may not be balanced but we can always make it bal-
anced by including some singletons ( -pin nets). An -bounded
global routing is a global routing in which the size of each net is
at most . The case when has been used as the target model
in the design of universal switch modules [5].

There are two major advantages of representing -way global
routings as a collection of subsets of . One is that we

can make use of the theory and methods in combinatorics, the
other is that such a representation actually is a hypergraph and
a BGR is a regular hypergraph. This hypergraph representation
will help us gain valuable ideas and simplify our presentation.

Let be integers and
for . A -partite graph on is a graph
with vertex set and each is an independent set for

. We denote a k-partite graph on with edge
set by .

Let be a -partite graph on . A detailed rout-
ing of a localized -GR in is a set of
mutually vertex disjoint subgraphs of
satisfying:

(1) is a tree of vertices, and
(2) if , for .

is called a detailed routing of . Note that .
A hyper-universal switch box ( -HUSB) is a -

partite graph on with vertices in each part such
that it contains a detailed routing for each localized -GR
with . As a trivial example, the complete -partite graph
on (in which, there is an edge joining each pair of
vertices and with ) is a -HUSB.

An optimum -HUSB is a -HUSB with the mini-
mum number of edges. Clearly, the number of edges in an opti-
mum -HUSB is uniquely determined by and , which
is denoted by . Therefore, our main graph design prob-
lems related to the switch box design problem are as follows.

Problem 1 For a fixed , determine and find an opti-
mum -HUSB for any positive integer .

Problem 2 For a given -HUSB, find an efficient detailed
routing algorithm.

We note that a -partite graph with vertices in each part is
hyper-universal if it contains a detailed routing for any primitive
and balanced localized -GR ( -PBGR). To see this,
let be a -GR with . We first add some singletons to

to make a -BGR, then by combining some singletons,
we obtain a -PBGR, say . Find a detailed routing of

in . A detailed routing of can be derived from the detailed
routing of by simply deleting the edges of those one-edge trees
representing the nets of size two in which are obtained by
combining the unequal nets of size . Therefore, to verify that a

S-box is hyper-universal, we only need to show that each
-PBGR is routable in the S-box.

Our approach to the S-box design problem depends on a pow-
erful decomposition property of localized global routings.

Let be a -BGR and be a sub-collection of .
If is a -BGR with , is called a subglobal
routing of . is said to be minimal if it does not contain
subglobal routings. The following decomposition property was
proved in [7].

Lemma 1 For any integer , there exists an integer
such that any localized -BGR can be decomposed into
minimal, balanced, localized -way subglobal routings with den-
sities no more than . Moreover, for .
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Figure 3. (a) A S-box, (b) a detailed routing.

Note that is uniquely determined by by Lemma 1, and
it is equal to the maximum density of all minimal -way BGRs.

Let and be two localized -way global routings and
a positive integer. We denote the disjoint union (as a multiple

set) of and by , and the union of copies
of by .

Example: Let , , , , ,
which represents the localized global routing in Fig-

ure 2-(a). is a localized -GR which is not balanced.
, , , is a -BGR. can be

transformed into a PBGR (not unique) , ,
, , , , , , . This PBGR can

be decomposed into the union of three minimal, localized PBGRs
, + , + , ,

, , . Figure 2 shows the transformation in hyper-
graph notation, where the dashed link represents the -pin net
obtained by combining two singletons, while Figure 3 shows a

S-box and a detailed routing of in the box.
In the rest of the paper, a global routing refers to a localized

global routing for simplicity.

3

For any integer , let be the set consisting of
all densities of minimal -way global routings. Then ,
and depends only on , where is determined by Lemma 1.
Let be the least common multiple of .

Our goal is to design all -sided HUSBs for any fixed with
minimized number of switches. The idea is to design a few -
sided HUSBs and combine these S-boxes to obtain a -
HUSB for any . There are many ways to do this depending

on how to group the minimal balanced global routings in the de-
composition given by Lemma 1. The following lemma provides
one approach.

Lemma 2 If

where are nonnegative integers, then there are integers
such that

Proof. By the generalized pigeon-hole principle, there is an
so that . Therefore, there is an integer

such that . For any , let . Then is an
integer with for and

This completes the proof of the lemma.
By Lemma 2, we can always decompose a -BGR into

disjoint union of some -BGRs together with at most one
-BGR, where is determined by and . Accordingly,

our S-box consists of disjoint union of some S-
boxes and one S-box. When is fixed, each corresponds
to an . But when changes, the number of different ’s corre-
sponding to various ’s is finite, since this number is less than

by Lemma 2.

Theorem 1 For any fixed positive integer ,

Proof. Let . For any positive integer , we
can write where . Consider the -partite
graph consisting of vertex disjoint copies of complete

-partite graph with vertices in each part, and a
vertex disjoint complete -partite graph with vertices in
each part, if . We show that is a -HUSB.

For any -BGR , by Lemma 1, can be decom-
posed into a union of minimal -BGR, where ’s are defined
as the above. By recursively applying Lemma 2, these minimal -
BGRs can be grouped into -GRs and one -BGR
if . Obviously, each -BGR has a detailed routing
in , and if , the -BGR has a detailed routing
in . This shows that is a -HUSB.

It follows that for a fixed .

4 Optimum -HUSBs for

Our basic method for solving the optimum -HUSB de-
sign problem is first to give a lower bound of , then to
find a -partite graph with the number of edges equal to the lower
bound and to prove that it is hyper-universal. The following the-
orem is obvious.
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Theorem 2 The graph with vertex set
and edge set

is an optimum -HUSB, and .

Figure 4-(a) shows an optimum -HUSB.
Next we investigate the optimum -HUSB design prob-

lem. Let denote the 3-partite graph on with
edge set
where the second index is taken modulo . Since
(mod W) when ,

is a Hamil-
tonian cycle of .

Theorem 3 The graph is an optimum -HUSB,
and .

Proof. Let be an optimum -HSUB.
Since there are at least edges between any two sides by The-
orem 2, . Note that

, thus, we only need to show that is a -HUSB.
Let be any -PBGR. Then it

can be shown, by Lemma 1 and induction on , that the nets in
can be ordered and the elements in each can be ordered

so that appear successively in a cyclic order. For exam-
ple, if , then can be ordered
as , (or ) to satisfy the
required order property.

Without loss of generality we assume that the ordered se-
quence of ’s is and is the first element
in the ordering. Start from along the Hamiltonian cycle

we successively cut a section with vertices as . Then
is a -global routing of

in , and therefore, is a -HUSB
and .

Remarks: 1. There are more than one optimum -HUSBs
for some . For example, the disjoint union of a -cycle and
a -cycle is also an optimum -HUSB. But a -cycle is
always an optimum -HUSB by Theorem 3. An optimum

-design is shown in Figure 4-(b).
2. The proof of Theorem 3 also gives an efficient algorithm to

find a detailed routing of a -GR in .

H(4, 3)H(4,  2)

v 3, 2

v 4, 2

v 4,1

v 1,1 v 1, 2

v 2, 2

v 3,1

v 2,1

v 2, 3

v 2, 2

v 2,1

v 4, 2

v 4,1

v 1,1 v 1, 3

v 3, 3v 3,1

v 1, 2

v 4, 3

v 3, 2

Figure 5. and .

5 -HUSBs

In this section, we first give a lower bound estimation of
. Then we construct three -HUSBs. The first two

are connected with one being -regular. The third design is not
connected but contains less number of edges, which provides an
upper bound for .

Theorem 4

Proof. For each pair with , let
be a -GR with ’s and ’s for each

. A detailed routing of must con-
tain at least edges between and . Therefore a -
HUSB contains at least edges. It follows that

.
Next we focus on designing -HUSBs. It is easy to see

that a -HUSB on satisfies that any two parts
induces a -HUSB and any three parts

induces a -HUSB. Therefore, it is desirable to design a
-partite graph on such that any two parts

induces a graph which is a perfect matching (by Theorems 2), and
any three parts induces a graph which is a cycle (by
Theorems 3). We refer to such a graph as an -graph.

Define where
and

, in which the first index takes modulo and the sec-
ond index takes modulo . See Figure 5 for . Then

is an -graph.
We note that , which is the lower bound

given by Theorem 4. It is easy to verify that is a -
HUSB, and therefore it is optimum. But is not a -
HUSB as it does not contain a detailed routing of the global rout-
ing . We can also
verify that the optimum Universal Switch Modules given in [5]
are not -HUSBs.

However, we can obtain -HUSBs by adding some edges
to . Let be the graph obtained from
by adding edges . We further
define the graph to be the graph obtained from
by removing the edges and . Figure 6 shows
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Figure 6. Two types of -HUSBs.

a and a in two different drawings. The hyper-
universal property of the two designs is implied from the follow-
ing Theorem 5.

To design and verify a -HUSB, we need to find all min-
imal -way PBGRs. By Lemma 1, we can find all the different
minimal PBGRs, which are classified into eight equivalent classes
by the permutation group . In the following we list only one
representative from each equivalent class. We use to denote
the class of minimal -PBGRs of type . The number of ele-
ments in a class is represented by a superscript.
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,
,

,
,

,
,

.

Let , , , , and be
as in Figure 7. Then we have , ,

, , ,
and . We note that contains vertex disjoint
and ; contains two vertex disjoint ’s; contains vertex
disjoint and ; contains three vertex disjoint ’s; and

contains vertex disjoint and .

Lemma 3 is a -HUSB for .

Proof. It is obvious that is hyper-universal. Let be a
-PBGR. We need to show that is routable in for
.
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Figure 7. The elementary -HUSBs.

For , is either a member in or a
union of two members in . It is easy to verify
that is a -HUSB.

Let . If is a member of , we can verify
that contains a detailed routing of . If is a union of
a -PBGR and a -PBGR, then contains a detailed
routing of since contains vertex disjoint subgraphs
and .

For , if is a union of a -PBGR and a minimal
-PBGR, then we can verify that contains a detailed rout-

ing of . Suppose is a union of two -PBGRs. In this
case, contains a detailed routing of as contains two
vertex disjoint ’s.

For , can always be decomposed into a union of a
-PBGR and a -PBGR. It is easy to see that contains

a detailed routing for since contains vertex disjoint
and .

Let . If is a union of three -PBGRs, then
contains a detailed routing of as contains three vertex
disjoint ’s. If is a union of two -PBGRs, then we can
verify that contains a detailed routing of .

Finally, let . Then can always be decomposed into a
-PBGR and a -PBGR. contains a detailed routing

of since contains vertex disjoint subgraphs and .
This completes the proof of the lemma.
Now we can construct a family of -HUSBs according

to different values of and the elementary -HUSB for
. Define as the disjoint union of graphs as

follows.

’s if ,
’s and a if ,

’s and a if ,
’s and a if ,
’s and a if ,
’s and a if .



By the definition of , we have that the number of
edges of for is given by the following.

if ,
if mod ,
if mod ,
if mod ,
if mod ,
if mod .

Theorem 5 For , is a -HUSB.

Proof. If , then and any -PBGR
can be decomposed into a union of -PBGRs and a

-PBGR (sometimes, can be decomposed into -
PBGRs and a -PBGR. But this is not guaranteed). Since

is a disjoint union of -HUSBs and a -
HUSB, then is routable in .

Let with . Any -PBGR can
be decomposed into -PBGRs and a -PBGR. Since

is a disjoint union of ’s and a if , and
and are -HUSB and -HUSB, respectively, by

Lemma 3, contains a detailed routing of .

Remarks: 1. From the results of Theorems 4 and 5, we have
, which is very close to the lower bound

of for the pure 2-pin net routings.
2. To obtain a detailed routing of a given -GR,

we first make it balanced and primitive, then decompose it into
a disjoint union of minimal -way PBGRs, and then group them
into some -PBGRs and a -PBGR according to the con-
struction of in Theorem 5, and finally find the detailed
routing for each of the subglobal routings. This process can be
completed in polynomial time and therefore there is an efficient
algorithm for a detailed routing in .

3. If we consider only 2-pin nets, then it can be easily shown
that each 2-restricted -way BGR of density (or ) can be
decomposed into the union of -way BGRs of density 2 (or plus
one -way BGR of density 1). Using this fact, we can similarly
construct an optimum Universal Switch Box with switches
that was proposed in [5].

6 Conclusion

We have developed the first general mathematical model that
covers the multi-pin net perfect routing and design problems for
arbitrary-dimension FPGA switch boxes. Under the new models,
the switch box design problem is formulated as an optimum -
partite graph design problem. The new models have many advan-
tages. Firstly, it simplifies the representations of the global and
detailed routings and makes it possible to use techniques in graph
theory and combinatorics to attack the problem. As a result, op-
timum -way and -way S-boxes have been obtained. Secondly,
the new model of the global routing has a powerful decomposi-
tion property which enables us to construct large -HUSBs
by combining a few number of smaller -sided HUSBs. This con-
struction has led to a very low cost -HUSB. The decompo-
sition property also guarantees the existence of polynomial time

algorithm for detailed routing in the universal S-boxes we have
designed. Thirdly, the new models enable us to generalize the

-way S-box design for and in 2D-FPGA to general
-design problem with , which can be directly ap-

plied for the higher dimension ( ) switch box designs. The
theory developed here can also be used to solve various switch
box design problems, like -side-predetermined, -sided switch
boxes and switch boxes for -restricted global routings that can be
applied for designing the non-homogenious greedy routing struc-
tures aiming for optimum routings covering the whole chip.
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