
Memory System Energy: Influence of Hardware-Software
Optimizations�

G. Esakkimuthu, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin
Department of Computer Science and Engineering

Pennsylvania State University
University Park, PA 16802

ABSTRACT
Memory system usually consumes a signi�cant amount of
energy in many battery-operated devices. In this paper, we
provide a quantitative comparison and evaluation of the in-
teraction of two hardware cache optimization mechanisms
(block bu�ering and sub-banking) and three widely used
compiler optimization techniques (linear loop transforma-
tion, loop tiling, and loop unrolling). Our results show that
the pure hardware optimizations (eight block bu�ers and
four sub-banks in a 4K, 2-way cache) provided up to 4% en-
ergy saving, with an average saving of 2% across all bench-
marks. In contrast, the pure software optimization approach
that uses all three compiler optimizations, provided at least
23% energy saving, with an average of 62%. However, a
closer observation reveals that hardware optimization be-
comes more critical for on-chip cache energy reduction when
executing optimized codes.

1. INTRODUCTION
Hardware and software techniques to reduce energy con-
sumption have become an essential part of current system
designs. Such techniques have particularly targeted the mem-
ory system due to the prevalent use of data-dominated signal
and video applications in mobile devices. Various low power
circuit techniques, energy e�cient memory and cache archi-
tectures [2, 6] and power-aware compilation techniques [1]
have been proposed. However, there is still much work to
be done in understanding the interaction of hardware and
performance based software optimizations and in evaluating
their relative energy gains. This paper explores the inter-
action of hardware and software optimizations by consider-
ing the energy savings obtained when using energy-e�cient
cache architectures and compiler optimization techniques.

The rest of this paper is organized as follows. The hardware

�This work was supported in part by grants from NSF, PDG
and Sun Microsystems

and software optimizations employed in this work are dis-
cussed in Section 2. Our experimental strategy and results
are given in Section 3. Finally, Section 4 provides concluding
remarks.

2. OPTIMIZATIONS
A variety of hardware optimizations have been proposed to
reduce energy consumption. In this paper, we focus on two
cache optimizations, namely, block bu�ering [6, 2] and cache
sub-banking [6, 2], as the cache is one of the major energy
consuming components in current processors. We choose
these cache optimizations since the e�ectiveness of block
bu�ering is inuenced by software optimizations while that
of sub-banking is not.

In the block bu�ering scheme, the previously accessed cache
line (block) is bu�ered for subsequent accesses. If the data
within the same cache line is accessed on the next data re-
quest, only the bu�er needs to be accessed. This avoids
the unnecessary and more energy consuming access to the
entire cache data array. Thus, increasing temporal local-
ity of the cache line through software techniques can save
more energy. In the cache sub-banking optimization, the
data array of the cache is divided into several sub-banks
and only the sub-bank where the desired data is located is
accessed. This optimization reduces the per access energy
consumption and is not inuenced by locality optimization
techniques. We also evaluate cache con�gurations that com-
bine both these optimizations. In such a con�guration with
block bu�ering and sub-banking, each sub-bank has an in-
dividual bu�er. Here, the scope for exploiting locality is
limited as compared to applying only block bu�ering as the
number of words stored in a bu�er reduces. However, it pro-
vides the additional bene�ts of sub-banking for each cache
access.

The compiler optimizations evaluated (i.e., linear loop trans-
formations, tiling,and unrolling) are known to improve the
performance characteristics of programs enormously [9], but
their impact on energy consumption needs further evalua-
tion. Among the various high-level compiler transforma-
tions, we choose to target loop optimizations for two rea-
sons. First, the multimedia and signal processing appli-
cations operate on multi-dimensional array structures that
bene�t from such optimizations. Second, these optimiza-
tions are widely used by commercial and academic optimiz-
ing compilers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED '00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007…$5.00.
ISLPED '00,

244

Linear Loop Transformations: The linear loop transfor-
mations attempt to improve cache performance, instruc-
tion scheduling, and iteration-level parallelism by modifying
the traversal order of the iteration space of the loop nest.
The simplest form of loop transformation, called loop inter-
change [9], can improve data locality (cache utilization) by
changing the order of the loops. We therefore expect this
optimization to particularly bene�t the block bu�ering op-
timization discussed earlier.
Loop Tiling: Another important technique used to im-
prove cache performance is blocking, or tiling [9]. When it
is used for cache locality, arrays that are too big to �t in
the cache are broken up into smaller pieces (to �t in the
cache). Here again we expect a decrease in power consumed
in memory, due to better data reuse after applying tiling.
This optimization exploits temporal locality across multiple
loops.
Loop Unrolling: In this technique outer loops are un-
rolled a certain number of times. The advantage of doing so
is that it reduces the number of memory accesses. From the
energy perspective, fewer accesses to the memory means less
energy consumption. It should be mentioned that these op-
timizations are generally applied in conjunction with scalar
replacement, which increases the number of data accesses.
However, loop unrolling compensates this e�ect by minimiz-
ing the number of load/store operations in the inner loop
positions. Although not addressed in this paper, it should
be noted that these optimizations typically result in more
complex array subscript functions and loop bounds which
in turn can increase the overall energy consumption in the
data path and instruction caches [7].

3. INFLUENCE OF OPTIMIZATIONS
In order to evaluate the e�ectiveness and interaction of the
hardware and software optimizations, the C versions of bench-
marks shown in Table 1 were used. All these codes are repre-
sentative of the multi-dimensional array domain, the domain
that many signal and video processing applications belong
to. In this study, we zoom in on the mxm benchmark results
when varying the di�erent parameters and �nally summarize
the behavior across all benchmarks in the end. To determine
the energy consumed by these codes, we obtained memory
reference traces while executing the benchmarks using the
SimplePower cycle-accurate simulator [7]. These traces were
then analyzed using a con�gurable memory system simula-
tor that was built in-house. The memory system simulator
allows the con�guration of cache sizes, block sizes, associa-
tivities, write and replacement policies, the number of cache
sub-banks and cache block bu�ers used. Also incorporated
in our memory system simulator is the on-chip cache energy
model proposed in [3] using 0.8� technology parameters [8],
the o�-chip main memory energy per access cost of the Cy-
press CY7C1326-133 chip and the I/O pad energy costs [5].
To evaluate the impact of compiler optimizations on the
overall energy consumption, we used an extended version of
a high-level compilation framework [4] based on loop (iter-
ation space) and data (array layout) transformations.

3.1 Hardware Optimizations
The energy consumed by the mxm benchmark in the data
cache with di�erent con�gurations of block bu�ers and sub-
banks (The number of block bu�ers being either 2, 4 or 8
and the number of sub-banks varying from 1 to 4) was stud-

Benchmark Source Number Input Instr.
Name of Arrays Size (KB) Count

tomcatv Specfp95 9 119 4,868,048

nasa7/btrix Specfp92 29 4,312 44,430,039

nasa7/mxm Specfp92 3 120 47,168,707

nasa7/vpenta Specfp92 9 114 2,274,945

adi Livermore 6 241 6,062,860

dtdtz (aps) Perfect Club 17 1,605 42,119,337

bmcm (wss) Perfect Club 11 126 89,539,244

psmoo (tfs) Perfect Club 1 204 16,955,980

eflux (tfs) Perfect Club 5 297 12,856,306

Table 1: Programs used in the experiments.

ied for a 4K cache with various associativities. This result
showed that increasing the number of sub-banks from one to
two provides an energy saving of 45% for the data cache ac-
cesses. An additional 22% saving is obtained by increasing
the number of sub-banks to 4. It must be observed that the
savings are not linear as one may expect. This is because the
energy cost of the tag arrays remains constant, while there
being a small increase in energy due to additional sub-bank
decoding. We found that for block bu�ering adding a single
block bu�er reduced the energy by up to 50%. This re-
duction is achieved by capturing the locality of the bu�ered
cache line, thereby avoiding accesses to the entire data ar-
ray. However, access patterns in many applications can be
regular and repeating across a varied number of di�erent
cache blocks. In order to capture this e�ect, we varied the
number of block bu�ers to two, four, and eight as well. We
observed that, for the mxm benchmark, an additional 17% (as
compared to a single bu�er) energy saving can be achieved
using four bu�ers.

We also found that using a combination of eight block bu�ers
and four sub-banks, the energy consumed in 4K (16K) data
cache could be reduced on an average by 88% (89%). Thus,
such hardware techniques can reduce the energy consumed
by processors with on-chip caches. However, if we consider
the entire memory system including the o�-chip memory en-
ergy consumption, the energy savings from these techniques
amount to only 4% (15%) when using a 4K (16K) data cache.
Thus, it may be necessary to investigate optimizations at the
software level to supplement these optimizations.

3.2 Software Optimizations
We also studied the total energy consumption of the entir e

memory system after applying the compiler optimizations
on a 4K data cache with no block bu�ering or sub-banking.
(In this paper, t , l , u , and tlu denote pure tiling, pure loop
transformations, pure unrolling, and the concurrent applica-
tion of all these three optimizations, respectively.) We �nd
that the maximum energy gains of these optimizations are
observed when using data caches with lower associativities
(1-way and 2-way) and the entire memory energy reductions
using a 4K (16K) direct mapped data cache range from 58-
75% (63-79%) for the di�erent optimizations. As the cache
associativities increase, the inuence of conict misses re-
duces signi�cantly, thereby, downplaying the importance of
these locality optimizations. In fact, the energy could in-
crease in such cases as a result of applying the tiling and
loop transformation when they are accompanied by scalar
replacement (i.e., due to increased number of memory ref-
erences). Further, we �nd that the combination of all the

245

three optimizations when applied together achieves a maxi-
mum savings of 75% energy saving for the 4K cache con�g-
urations investigated.

The energy consumed in data caches alone after applying
the compiler optimizations with no block bu�ering or sub-
banking was also studied.We �nd that the tiling and loop
transformations, generally, increase the cache energy con-
sumption due to the additional memory references intro-
duced by scalar replacement. This e�ect is pretty dominant
in the tiling optimization that results in a 186% increase
in energy for 4K data caches on an average. However, this
e�ect is overshadowed by the drastic reduction in the num-
ber of more energy consuming o�-chip accesses to the main
memory. We also observe that the unrolling optimization is
suitable for reducing both the cache energy and the overall
energy in the mxm code.

3.3 Combined Optimizations
It was found that when a combination of di�erent software
and hardware optimizations is applied, tiling performs the
best among the three individual compiler optimizations ap-
plied in terms of memory system energy across di�erent 4K
cache con�gurations Since, we mentioned earlier that tiling
increases the cache energy consumption. sub-banking and
block bu�ering are of particular importance here. For the
tiled code, moving from a base data cache con�guration to
one with eight block bu�ers and four sub-banks reduces the
overall memory system energy by around 10%. Thus, it is

imp ortant to use a c ombination of har dwar e and softwar e

optimizations in designing an ener gy-e�cient system.

Further, we observed that the linear loop transformed codes
exploited the block bu�ers better than the original code and
other optimizations. For example, when using two (eight)
block bu�ers in a 4K 2-way cache, the block bu�er hit rate
was 69% (82%) as compared to the 55% (72%) for the un-
optimized mxm code. Thus, it is also important to choose the
software optimizations such that they provide the maximum
bene�ts from the available hardware optimizations.

So far, we have presented the results only for the mxm code
to discuss the inuence and interaction of the software and
hardware energy optimization techniques. Figure 1 captures
this inuence for all the studied benchmarks. These results
show that there is a signi�cant potential for reducing en-
ergy through a proper combination of hardware and soft-
ware optimization techniques. The pure hardware optimiza-
tions (eight block bu�ers and four sub-banks) provided up
to 4% energy savings, with an average saving of 2% across
all benchmarks. In contrast, the pure software optimization
approach (tlu), provided at least a 23% energy saving, with
an average of 62%. Further, a combination of hardware and
software optimizations provides an average of 64% energy
saving. It is thus observed that the compiler optimizations
provide most of the savings in the memory system energy
consumption, while hardware optimization can be critical if
one focuses on on-chip cache energy consumption.

4. CONCLUSION
The goal of this study is to investigate the interaction and in-
uence of hardware and software optimizations on the mem-
ory system energy. To achieve this goal, we selected two ef-

Figure 1: Energy consumed when using a 4K, 2 way

data cache with a combination of hardware and soft-

ware optimizations. None refers to the base hardware

and original code; Software refers to base hardware and

optimized code generated when all optimizations are en-

abled; Hardware refers to data cache with eight block

bu�ers and four sub-banks, and original code; Hard-

ware/Software refers to data cache with eight block

bu�ers and four sub-banks and optimized code gener-

ated when all optimizations are enabled.

fective cache optimizations and three widely used compiler
optimizations and experimented with nine multi-dimensional
array codes. Our results show that even performance based
compiler optimizations provide a signi�cantly higher energy
savings as opposed to those gained using the pure hardware
optimizations considered. However, a closer observation re-
veals that hardware optimization become more critical for
on-chip cache energy reduction when executing optimized
codes.

5. REFERENCES
[1] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L.

Nachtergaele, and A. Vandecappelle. Custom memory
management methodology { exploration of memory
organization for embedded multimedia system design.
Kluwer A c ademic Publishers, June, 1998.

[2] M. Kamble and K. Ghose. Reducing power in
super-scalar processor caches using sub-banking,
multiple line bu�ers and bit-line segmentation. In
Pr o c. ISLPED , pages 70{75, 1999.

[3] M. Kamble and K. Ghose Analytical energy
dissipation models for low power caches. In Pr o c.

ISLPED , pages 143{148, 1997.
[4] M. Kandemir, A. Choudhary, J. Ramanujam, and P.

Banerjee. Improving locality using loop and data
transformations in an integrated framework. In Pr o c.

MICR O-31, Dallas, TX, December, 1998.
[5] W.-T. Shiue and C. Chakrabarti. Memory exploration

for low power, embedded systems. Center for Low
Power Electronics, Arizona State University, T e chnic al

R ep ort , September 1999.
[6] C. Su and A. M. Despain. Su and Despain, Cache

design trade-o�s for power and performance
optimization: A case study. In Pr o c. ISLPED , pages
63{68, 1995.

[7] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S.
Kim, and W. Ye. Energy-driven integrated
hardware-software optimizations using SimplePower.
In Pr o c. ISCA-2000, Vancouver, British Columbia,
Canada, June, 2000.

[8] Wilton, S.E, and Jouppi, N., An enhanced access and
cycle time model for on-chip caches, DEC WRL

R ese ar ch R ep ort 93/5, July 1994.
[9] M. Wolfe. High Performanc e Compilers for Par al lel

Computing . Addison-Wesley Publishing Company,
1996.

246

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

