
Source Code Optimization and Profiling
of Energy Consumption in Embedded Systems �

Tajana Šimunić, Luca Benini�, Giovanni De Micheli and Mat Hansy

Computer Systems Lab, Stanford University
�DEIS University of Bologna, Italy

yHP Labs, Palo Alto
tajana@polaris.stanford.edu

Abstract

This paper presents a source code optimization methodology
and a profiling tool that have been developed to help designers
in optimizing software performance and energy in embedded sys-
tems. Code optimizations are applied at three levels of abstrac-
tion: algorithmic, data and instruction-level. The profiler ex-
ploits a cycle-accurate energy consumption simulator [3] to relate
the embedded system energy consumption and performance to the
source code. Thus, it can be used for analysis (i.e., to find energy-
critical sections of the code), and for validation (i.e., to assess the
impact of each code optimization).

Code optimizations and profiling tool are used to optimize and
tune the implementation of an MPEG Layer III (MP3) audio de-
coder for the SmartBadge [2] portable embedded system. We show
that using our methodology and tool we can quickly and easily re-
design the MP3 audio decoder software to run in real time with
low energy consumption. Performance increase of 92% and en-
ergy consumption decrease of 77% (over the original executable
specification) has been achieved for MP3 audio decoding on the
SmartBadge.

1 Introduction

Low cost with fast time to market is the top requirement in
system-level design of embedded portable appliances. As a result,
typical portable appliances are built of commodity components
with a microprocessor-based architecture. The design process for
such portable embedded systems starts with the selection of the
commodity components that could meet the performance and the
energy consumption criteria, based on the analysis of data sheets.
Typically only a few processor families can be evaluated due to
resource and time limitations. Whole system evaluation is often
done on prototype boards resulting in long design times. FPGA
hardware emulators are sometimes used for functional debugging

�This work was supported by the Hewlett-Packard Laboratory and NSF
grant CCR-9901190. The authors would like to thank John Dias and Mark
Smith for their help

but cannot give accurate estimates of energy consumption or per-
formance. Performance can be evaluated using instruction-set sim-
ulators (e.g. [1]), but there is limited or no support for energy con-
sumption evaluation. Commercial tools target mainly functional
verification and performance estimation [5, 6, 7, 8], but provide
no support for energy-related cost metrics.

A few research prototype tools [10, 11] have been proposed
that separately estimate energy consumption of processor core,
caches and main memory in SOC design. The final system energy
is obtained by summing over the contribution of each component.
The main limitation of these approaches is that the effect of the
interaction between memory system (or I/O peripherals) and pro-
cessor is not modeled. Processor energy consumption is generally
estimated by instruction-level power analysis, first proposed by
Tiwari et al. [12, 13]. This technique estimates the energy con-
sumed by a program by summing the energy consumed by the
execution of each instruction. Instruction-by-instruction energy
costs are pre-characterized once for all for each target processors.
The instruction-level power model can be augmented by consid-
ering the effect of first-level caches and inter-instruction effects.
The shortcomings of previous approaches are addressed in [3, 4],
where memory models and processor instruction-level simulator
are tightly integrated into a cycle-accurate simulation engine. Es-
timation results were shown to be within 5% of measured energy
consumption in hardware.

In an industrial environment, the degrees of freedom in hard-
ware design for embedded portable appliances are often very lim-
ited but for software a lot more freedom is available. As a result,
a primary requirement for system-level design methodology is to
effectively support code energy consumption optimization. Sev-
eral techniques for code optimization have been presented in the
past. Tiwari et al. [12, 13] uses instruction-level energy models
to develop compiler-driven energy optimizations such as instruc-
tion reordering, reduction of memory operands, operand swap-
ping in the Booth multiplier, efficient usage of memory banks,
and series of processor specific optimizations. In addition, sev-
eral other optimizations have been suggested, such as energy effi-
cient register labeling during the compile phase [14], procedure
inlining and loop unrolling [10] as well as instruction schedul-
ing [15]. All of these techniques focus on automated instruction-
level optimizations driven by the compiler. Unfortunately, cur-

1

rently available commercial compilers have limited capabilities.
The improvements gained when using standard compiler optimiza-
tions are marginal compared to writing energy efficient source
code [4]. The largest energy savings were observed at the inter-
procedural level that compilers have not been able to exploit. To
address these issues, we present a code transformation method-
ology that has enabled energy (and performance) optimization of
embedded applications. The methodology consists of three cat-
egories of source code optimizations: algorithmic changes, data
representation changes and instruction-level optimizations.

Code optimization requires extensive program execution anal-
ysis to identify energy-critical bottlenecks and to provide feedback
on the impact of transformations. Profiling is typically used to re-
late performance to the source code for CPU and L1 cache [1].
Leveraging our estimation engine, we implemented a code pro-
filing tool that gives percentages of time and energy spent in
each procedure for every system component, not only CPU and
L1 cache. Thanks to energy profiling, the programmer can eas-
ily identify the most energy-critical procedures, apply transforma-
tions and estimate their impact not only on processor energy con-
sumption, but also on memory hierarchy and system busses.

The remainder of this paper is organized as follows. Our code
optimization methodology is described in Section 2, where code
transformations are discussed in detail. The design tool support we
have developed is presented in Section 3. A full software design
example of MP3 audio decoder for the SmartBadge, with extensive
experimental results, is given in Section 4.

2 Code Optimization

In our context, code optimization is the process of translating a
high-level specification in an imperative language into optimized
machine code for the target processor. Compilers are the tools of
choice for code optimization. Extensive research on optimizing
compilers has been carried out in last few years [28]). Prototype
research compilers have shown impressive results [26]. Most opti-
mizing compilers target high-performance and/or general-purpose
computers, and relatively little effort has been dedicated to create
powerful optimizing compilers for embedded processors. Even
though several researchers are studying automatic code optimiza-
tion techniques for embedded processors [29], currently, most em-
bedded processors (or DSPs) are programmed directly in assembly
by expert programmers and code optimization is mostly based on
human intuition and skill.

Given the limited compiler support available, our approach to
code optimization for embedded systems is still mostly based on
manual code re-writing and optimization. The main advantage of
our approach is that it enables designers to focus first on a very
abstract view of the problem, find a good solution, then move
down in abstraction, and perform optimizations that are narrower
in scope. The complex problem of optimizing an executable spec-
ification is partitioned, and its parts are more manageable than the
complete problem. In the next subsections, we will describe in de-
tail the three optimization layers defined in out methodology, mov-
ing from high to low abstraction. We will illustrate our methodol-
ogy on optimization of MP3 code [25] for the SmartBadge [2].

2.1 Algorithmic optimization

The top layer in the optimization hierarchy targets algorithms.
The original specification is first profiled to identify all compu-
tational kernels, i.e., the procedures where most time and power
are spent. Alternative algorithms for implementing the same func-
tionality are considered and compared with the original one using
high-level estimators of algorithmic efficiency (such as number of
basic operations). Most promising alternative algorithms are then
analyzed in more detail and finally coded. This step is mostly
based on human intuition and knowledge, and is unlikely to be
automated.

Algorithmic optimizations have high potential, but they also
have risks. First, developing and testing algorithms is a time-
consuming and error-prone task. Since human resources are al-
ways scarce, it is unwise to dedicate too much effort to an activ-
ity where success is often based on intuition. Second, asymptotic
analysis and operation counts are often misleading as estimators
of algorithmic efficiency, hence marginal improvements should be
regarded with suspicion when considering algorithmic changes.

For these reasons, our approach to algorithmic optimization in
MP3 decoding has been conservative. First, we focused on just
one computational kernel where a large fraction of run time and
energy was spent, namely the subband synthesis. Second, we did
not try to develop new original algorithms but we used previously
published algorithmic enhancements [19, 20] that are still fully
compliant to the MPEG standard. The new algorithm incorporates
an integer implementation of the scaled Chen discrete cosine trans-
form (DCT) instead of a generic DCT in the polyphase synthesis
filterbank. The use of a scaled DCT reduces the DCT multiply
count by 28%.

2.2 Data optimization

At a lower level of abstraction than the algorithmic level, we
can optimize code by changing the representation of the data
manipulated by the algorithms. The main objective is to match
the characteristics of the target architecture with the processed
data. Signal processing algorithms are often specified by assuming
double-precision floating point data to avoid overflows and keep
accuracy under control. Floating point computations are usually
more complex and power-hungry than their integer counterparts.
As no hardware floating point support is available in the ARM
SA-1100 and the MPEG decoder specification performed most
computations using doubles, we tried to emulated floating point
using ARM’s software library. The direct implementation of the
decoding algorithm, even after algorithmic optimization, was un-
acceptably slow and power-consuming.

To overcome this problem, we developed a fixed-precision li-
brary and we implemented all computational kernels of the algo-
rithm using fixed precision numbers. The number of decimal dig-
its can be set at compile time. The ARM architecture is designed
to support computation with 32-bits integers with maximum effi-
ciency. Little can be gained by reducing data size below 32 bits.
On the other hand, when multiplying two 32-bit numbers, the re-
sult is a 64-bit number and directly truncating the result of a mul-
tiplication to 32 digits frequently leads to incorrect results because
of overflow. To increase robustness, 64-bit numbers have been

used for fixed-point computation. This data type is supported by
the ARM compiler through the definition of a long long inte-
ger type. Computing with long long integers is less efficient
than using 32-bit integers, but results are accurate and the risk of
overflow is minimized.

Data optimization produced significant energy savings and
speedups for computational kernels of MP3 without any perceiv-
able degradation in quality. The fixed-point library developed for
this purpose contains macros for conversion from fixed-point to
floating point, accuracy adjustment and elementary function com-
putation. This optimization did not require extensive code rewrit-
ing, and it was implemented independently from algorithmic opti-
mization.

2.3 Instruction flow optimization

The third layer of optimizations targets low-level instruction
flow. After extensive profiling, the most critical loops are identi-
fied and carefully analyzed. Source code is then re-written to make
computation more efficient. Well-known techniques such as loop
merging, unrolling, software pipelining, loop invariant extraction,
etc. [28, 27] have been applied. In the innermost loops, code can
be written directly as inline assembly, to better exploit specialized
instructions.

Instruction flow optimizations have been extensively applied
in the MP3 decoder, obtaining significant speedup. We do not
describe these optimizations in detail because they are common
knowledge in the optimizing compilers literature [28, 27]. How-
ever, in our case most optimizations were performed manually due
to lack of support by the ARM compiler.

A simple example of this class of transformation is the use of
the multiply-accumulate instruction (MLAL) available in the ARM
SA-1100 core. The inner loops of subband synthesis and inverse
modified cosine transform (the two key computational kernels of
MP3 decoder), contain matrix multiplications which can be im-
plemented efficiently with multiply-accumulate. In this case, we
forced the ARM compiler to use the MLAL instruction by inlining
it in assembly.

Summarizing this section, we described three code optimiza-
tion layers that have been useful to optimize MP3 decoding. Dur-
ing code optimization, tool support was essential: code profiling
was by far the most useful source of information to direct opti-
mization, and assess its impact. In the next section we will de-
scribe the profiling tool that has been developed to support code
optimization.

3 Profiler for Energy and Performance

The class of embedded systems considered in this paper con-
sists of a microprocessor with two levels of cache, off-chip mem-
ory, DC-DC converter and battery. Previous work extended the
ARMulator, a proprietary instruction-level performance simulator
from ARM inc., with cycle-accurate energy models for all system
components in [3]. The cycle-accurate energy consumption simu-
lator can give cycle-by-cycle plots of energy consumption for each
system component, thus enabling very detailed hardware and soft-
ware architecture analysis. Simulation results with simulator were

shown to be within 5% of the hardware measurements for the same
frequency of operation when running the Dhrystone benchmark on
the SmartBadge [2].

The main limitation of cycle-accurate energy simulator is that
the impact of code optimizations is not easily evaluated. For exam-
ple, in order to evaluate energy efficiency of two different imple-
mentations of a particular portion of software, the designer would
need to obtain cycle-by-cycle plots and then manually relate cy-
cles to the software portion of interest. The profiling methodology
presented next addresses this limitation.

ARM Instruction-level Simulator

Processor & L1 Cache Energy Model

Interconnect Energy Model

L2 Cache Memory

L1 Cache

Energy Model Energy Model

Processor Core Model

DC-DC
Converter

Energy
Model Ba

tte
ry

AddressData

AddressData

AddressCycle Type

L2 Cache Current

Memory Current

Processor
Current

Battery
Current

Interconnect
Current

Cycle Type

Cycle Type

Data

Profiler

Source Code

for (i=0; i<30; i++)

{

x[i] = y[i] + 2 * x[i + 1];

z[i] -= x[i];

y[i] = x[i] + z[i];

}

LD R21, #30;
ADD R21, R23,R27;
...

Energy
Consumption

Software Profile

 fun energy

 getD 15%
 sort 10%
 init 2%
 ...

Figure 1. Profiler Architecture

The profiler is shown in Figure 1. Shaded portion represents
the extension we made to the cycle-accurate energy simulator ar-
chitecture to enable code profiling. Profiling for energy and perfor-
mance enables designers to identify those portions of their source
code that need to be further optimized in order to either decrease
energy consumption, increase performance or both. Our profiler
enables designers to explore multiple different hardware and soft-
ware architectures, as well as to do statistical analysis based on the
input samples. In this way the design can be optimized for both
energy consumption and performance based on the expected input
data set.

The profiler operates as follows. Source code is compiled us-
ing a compiler for a target processor. The output of the compiler
is the executable that the cycle-accurate simulator executes (repre-
sented in this figure as assembly code that is input into the simu-
lator) and a map of locations of each procedure in the executable
that a profiler uses to gather statistics (the map is correspondence
of assembly code blocks to procedures in ’C’ source code). In
order to increase the simulation speed, a user-defined profiling in-
terval is set, so that the profiler gathers statistics only at predeter-
mined time increments. Usually an interval of 1�s is sufficient.
Note that longer intervals will give slightly faster execution time,
with a loss of accuracy. Very short intervals (on the other of a
few cycles) have larger calculation overhead. For example, en-
ergy consumption calculation gives approximately 10% overhead
to standard cycle-accurate performance simulation. Profiling with
an interval of 1�s gives negligible overhead over energy simula-
tion (less then 1%), with still accurate results.

During each cycle of operation, the cycle-accurate energy con-

sumption simulator calculates the current total execution time
and energy consumption of all system components as shown in
Equation 1. The total energy consumed by the system per cy-
cle is the sum of energies consumed by the processor and L1
cache (ECPU), interconnect and pins (ELine), memory (EMem:),
L2 cache (EL2), the DC-DC converter (EDC) and the efficiency
losses in the battery (EBat:) [3, 4].

ECycle = ECPU +ELine+EMem:+EDC+EL2+EBat: (1)

The profiler works concurrently with the cycle-accurate simulator.
It periodically samples the simulation results (using sample inter-
val specified by the user) and maps the energy and performance
to the function executed using information gathered at the compile
time. Once the simulation is complete, the results of profiling can
be printed out by the total energy or time spent in each function.

Table 1. Sample Energy Profiling

Name Cumulative Self
(mWhr) (mWhr)

main 3.20E-01 2.52E-02
...
III hybrid 6.71E-02
SubBandSynthesis 3.72E-02
III stereo 2.75E-02
III reorder 2.02E-02
III antialias 1.45E-02
III dequantize sample 1.40E-02
III hufman decode 3.74E-03
III get scale factor 1.28E-04
decode info 3.20E-05
...

III hybrid 6.71E-02 6.36E-03
inv mdctL 6.07E-02

SubBandSynthesis 3.72E-02 1.95E-02
chendct32 scaled 1.77E-02

III stereo 2.75E-02 2.75E-02
III reorder 2.02E-02 2.02E-02
III antialias 1.45E-02 1.45E-02
S III dequantize sample 1.40E-02 1.40E-02
III hufman decode 3.74E-03 1.53E-03

huffman decoder 2.17E-03
initialize huffman 1.03E-05
hsstell 3.20E-05

The main advantage of the profiler is that it allows designers
to obtain energy consumption breakdown by procedures in their
source code after running only one simulation. This information
is of critical importance when designing an embedded system, as
it enables designers to quickly identify and address the areas in
the source code that will provide largest overall energy savings.
A good example of profiler usage is shown in Table 1. The ta-
ble shows a portion of energy profile for MP3 audio decode. The
first column gives the name of the top procedure, followed by its
children. The next column gives the total energy spent for that
procedure. For example, the total energy spent running the pro-
gram (main) is 0:32mWhr. The final column gives the amount
of energy spent only in that particular procedure. For example,
under main it is clear that III hybrid and its descendants

spend the most energy, 0:0671mWhr. Looking at the entry for
III hybrid, it is easy to see that the largest portion of energy is
consumed by its child, inv mdctL. Therefore, the procedures to
focus optimization on are inv mdctL and SubBandSynthe-
sis. Although in this example we showed source code profile
of total battery energy consumption, the profiler can report energy
consumption for any system component, such as SRAM or the in-
terconnect.

The profiler allows for fast and accurate evaluation of software
and hardware architectures. Most importantly, it gives good guid-
ance to the designer during the design process without requiring
manual intervention needed in the simulator without the profiler.
In addition, the profiler accounts for all embedded system com-
ponents, not just the processor and the L1 cache as most general-
purpose profilers do. In the next section we present a real design
example that uses the profiler to guide the implementation of the
source code optimizations described earlier for the MP3 audio de-
coder running on the SmartBadge.

4 Optimizing MP3 audio decoder

We optimized the implementation of the MP3 audio decoder
for the SmartBadge portable device [2]. The SmartBadge is an
embedded system consisting of the StrongARM-1100 processor,
FLASH, SRAM, sensors, and modem/audio analog front-end on a
PCB board powered by the batteries through a DC-DC converter.
The hardware prototype of the SmartBadge uses a standard PCB
with line delay of 71ps=cm and stripline and microstrip capaci-
tances of 1:6 and 1:1pF=cm respectively. The characteristics of
CPU and memory chips are given in Table 2.

Table 2. SmartBadge CPU and Memory

Component T Pactive Pidle Cpin L
Units (ns) (mW) (mW) (pF) (cm)

SA-1100 5-20 400 170 5 N/A
FLASH (1MB) 80 74 0.5 10 2
SRAM (1MB) 90 55 0.01 8 3

We obtained the original MP3 audio decoder software from
the International Organization for Standardization [18]. Our de-
sign goal was to obtain real-time performance with low energy
consumption while keeping in full compliance with the MPEG
standard. The block diagram of the MP3 decoding algorithm is
shown in Figure 2. It consists of three blocks: frame unpacking,
reconstruction, and inverse mapping. The first step in decoding
is synchronizing the incoming bitstream and the decoder. Huff-
man decoding of the subband coefficients is performed before re-
quantization. Stereo processing, if applicable, occurs before the
inverse mapping which consists an inverse modified cosine trans-
form (IMDCT) followed by a polyphase synthesis filterbank.

4.1 Experimental results of software optimization

We first profiled the original source code to highlight areas
where improvement is needed. Without the profiler, we could have

Encoded
Bitstream

PCM audio
samplesFrame

Unpacking
Reconstruction

Inverse
Mapping

Figure 2. MP3 Audio Decoder Architecture

obtained the total energy consumption for running whole code and
cycle-by-cycle plots. In order to find out where most energy con-
sumption occurs, we would have needed to run a series of cycle-
by-cycle plots, each time focusing on a different function. With
the profiler, we only need to run the simulation once to obtain the
breakdown of energy spent per each function. In addition, the pro-
filer enabled us to identify the key issues in code optimization and
allowed us to proceed with the optimizations in parallel.

Table 3. Profiling for MP3 Implementations

MP3 Rev. 1st 2nd 3rd

Orig. Floating Pt. SubBand III stereo
code 80.31% 10.31% 1.43%
Algo. Floating Pt. III stereo III reorder
Opts. 62.73% 6.12% 5.62%
Data & SubBand inv mdctL III stereo
Inst. 34.32% 18.22% 7.32%
Comb. inv mdctL III stereo main
Opts. 18.98% 8.61% 7.87%

Table 3 shows the top three functions in energy consumption
for each code revision we worked on. The original code has a very
large overhead due to floating point emulation - about 80% of en-
ergy consumption. The next largest issue is the redesign of Sub-
BandSynthesis function that implements the polyphase synthesis
filterbank. The details of each optimization type, namely algorith-
mic, data and instruction-level optimizations, have been presented
in Section 2.

We will use the SubBandSynthesis function redesign as a vehi-
cle to illustrate the use of our profiler. In the initial stage, we trans-
ferred all critical operations to fixed-point from floating point. The
transfer resolved the issue with floating-point operations, but at the
same time increased SubBandSynthesis fraction of total energy six
times. Next we introduced a series of instruction-level optimiza-
tions that resulted in 30% decrease of SubBandSynthesis fraction
of total energy, to 34.32% as shown in the Table 3. In parallel we
had decided to try the algorithmic changes on the current code.

Profiling results in Table 3 show that the algorithmic opti-
mizations considerably reduced the energy consumption of Sub-
BandSynthesis function - it does not appear in the top three func-
tions, and in fact it is only 3.2% of the total energy consump-
tion. The final step is to combine the algorithmic changes with the
data and instruction-level changes, resulting in decrease of Sub-
BandSynthesis fraction of energy consumption to 6% of total. cd
.

System and component energy consumptions are shown in Ta-
ble 4 for different revisions of source code optimization. Positive
percentage of energy decrease with respect to the original code
is shown as well. Table 5 shows the same results, but for per-

formance measurements. The positive percentages show perfor-
mance increase. Although the energy savings of algorithmic ver-
sus data and instruction-level optimizations as compared to orig-
inal code are comparable, the performance improvement of data
and instruction-level optimizations is significant. Note that the
increase in energy consumption and the decrease in performance
of Flash is due to the increase in code size with the algorithmic
change in SubBandSynthesis procedure. The total improvement
in system performance and energy consumption more than makes
up for the degradation of Flash performance and energy consump-
tion. Combined optimizations give real-time performance for MP3
audio decode which is a primary constraint for this project.

Table 5. MP3 implementations performance

MP3 Code System Flash RAM
Revision (s) (s) (s)

Original 68.490 0.396 6.309
code 0% 0% 0%

Algorithmic 34.562 0.746 2.776
Opts. 50% -88% 56%
Data & 9.185 0.381 4.186

Instruction 87% 4% 34%
Combined 5.193 0.718 2.093
Opts. 92% -81% 67%

The final MP3 audio decoder compliance to the MPEG stan-
dard has been tested as a function of precision for fixed-point com-
putation. We used the compliance test provided by the MPEG
standard [22, 24]. The range of RMS error between the samples
defines the compliance level. Clearly, a larger number of precision
bits results in better compliance (partial compliance was achieved
with 20 bits precision). In our final MP3 audio decoder we used
27 bits precision, which was sufficient to achieve full complance.

4.2 Profiling for hardware configurations

The design tools described in Section 3 can be used to evaluate
energy consumption and performance for the different hardware
configurations in addition to different source code revisions. Ta-
ble 6 shows comparison of energy consumption and performance
for each change in hardware with respect to the original Smart-
Badge configuration while keeping the source code the same. Pos-
itive percentage indicates an increase in energy or decrease in per-
formance. Change of CPU to ARM710a causes a large increase
in energy consumption and a decrease in performance. Burst
SDRAM increases performance by 26% at the expense in energy
consumption increase of 147%.

Table 6. Hardware Configurations

Hardware Energy Performance
Change (mWhr) (s)

Final 0.105 5.193
Config. 0% 0%

CPU 1.709 19.78
ARM710a 1534% 281%
SDRAM 0.258 3.850

15ns Burst 147% -26%

Table 4. Energy for MP3 Implementations

MP3 Revision Batt. CPU Flash RAM DC-DC Lines
(mWhr) (mWhr) (mWhr) (mWhr) (mWhr) (mWhr)

Original 0.446 0.089 0.005 0.178 0.045 0.129
code 0% 0% 0% 0% 0% 0%

Algorithmic 0.107 0.020 0.007 0.040 0.011 0.029
Opts. 76% 77% -44% 77% 76% 77%
Data & 0.130 0.025 0.004 0.051 0.013 0.037

Instruction 71% 71% 27% 71% 71% 71%
Combined 0.105 0.019 0.007 0.040 0.010 0.028
Opts. 77% 78% -41% 78% 77% 78%

5 Conclusions

We have presented in this paper a methodology for source code
optimizations and a tool for profiling energy consumption and per-
formance of software in embedded systems. Our profiler is based
on the cycle-accurate energy consumption simulator that has been
shown to give simulation results that are within 5% of hardware
measurements [3]. Three major categories of software optimiza-
tions have been presented: algorithmic, data and instruction-level.

We gave an example of application of our methodology and
the profiling tool to the optimization of MP3 audio decoding for
the SmartBadge [2] portable embedded system. Profiling results
enabled us to quickly and easily target the redesign the MP3 audio
decoder software. In addition, we showed the results of evaluating
different hardware configurations using our design tools.

References

[1] Advanced RISC Machines Ltd (ARM), ARM Software Development
Toolkit Version 2.11, 1996.

[2] G. Q. Maguire, M. Smith, H. W. Peter Beadle, “SmartBadges:
a wearable computer and communication system,” Invited talk:
www.it.kth.se/maguire/Talks/CODES-980313.pdf, CODES, 1998.

[3] T. Simunic, L. Benini, G. De Micheli, “Cycle-Accurate Simulation
of Energy Consumption in Embedded Systems,” DAC, 1999.

[4] T. Simunic, L. Benini, G. De Micheli, “Energy-Efficient Design of
Battery-Powered Embedded Systems,” ISLPED, 1999.

[5] CoWare, CoWareN2c url:www.coware.com/n2c.html .

[6] Mentor Graphics, www.mentor.com/codesign.

[7] Synopsys, www.synopsys.com/products/hwsw.

[8] Cadence, www.cadence.com/alta/products.

[9] P. Landman, J. Rabaey, “Activity-Sensitive Architectural Power
Analysis,” IEEE Transactions on CAD, pp.571–587, June 1996.

[10] Y. Li and J. Henkel, “A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems,” DAC, 1998.

[11] B. Kapoor, “Low Power Memory Architecutres for Video Applica-
tions,” GLS-VLSI, 1998.

[12] V. Tiwari, S. Malik, A. Wolfe, M. Lee, “Instruction Level Power
Analysis,” Journal of VLSI Signal Processing Systems, no.1,
pp.223–2383, 1996.

[13] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded Soft-
ware: A First Step Towards Software Power Minimization,” IEEE
Transactions on VLSI Systems, vol. 2, no.4, pp.437–445, December
1994.

[14] H. Mehta, R.M. Owens, M.J. Irvin, R. Chen, D. Ghosh, “Techniques
for Low Energy Software,” ISLPED, 1997.

[15] H. Tomyiama, H., T. Ishihara, A. Inoue, H. Yasuura, “Instruction
scheduling for power reduction in processor-based system design,”
DATE, 1998.

[16] M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey, “An Energy Con-
scious Methodology for Early Design Exploration of Heterogeneous
DSPs,” CICC, 1998.

[17] “Fixed Point Arithmetic on the ARM,” Application Note 33, ARM
Inc., September 1996.

[18] “Coded representation of audio, picture, multimedia and hyperme-
dia information,” ISO/IEC JTC/SC 29/WG 11, Part 3., May 1993.

[19] M. Hans and V. Bhaskaran, “A Compliant MPEG-1 Layer II Audio
Decoder with 16-bit Arithmetic Operations,” IEEE Signal Process-
ing Letters, vol. 4, no. 5, May 1997.

[20] M. Hans, “An MPEG Audio Decoder Based on 16-bit Integer Arith-
metic and SIMD Usage,” Workshop on Multimedia Signal Process-
ing, 1997.

[21] ISO/IEC JTC 1/SC 29/WG 11 11172-3, “Information Technol-
ogy — Coding of moving pictures and associated audio for digital
storage media up to 1.5 Mbit/s — Part 3: Audio,” International Or-
ganization for Standardization, May 1993.

[22] ISO/IEC JTC 1/SC 29/WG 11 11172-4, “Information Technol-
ogy — Coding of moving pictures and associated audio for digital
storage media up to 1.5 Mbit/s — Part 4: Compliance Testing,” In-
ternational Organization for Standardization, 1995.

[23] ISO/IEC JTC 1/SC 29/WG 11 13818-3, “Information Technol-
ogy — Generic Coding of Moving Pictures and Associated Audio:
Audio,” International Organization for Standardization, November
1994.

[24] ISO/IEC JTC 1/SC 29/WG 11 13818-4, “Information Technol-
ogy — Generic Coding of Moving Pictures and Associated Audio:
Conformance,” International Organization for Standardization,
1996.

[25] P. Noll, “MPEG Digital Audio Coding,” IEEE Signal Processing
Magazine, pp. 59–81, September 1997.

[26] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao,
E. Bugnion, M. Lam, “Maximizing multiprocessor performance
with the SUIF compiler,” IEEE Computer vol. 29, no. 12, pp. 84–
89, Dec. 1996.

[27] D. Bacon, S. Graham and O. Sharp, “Compiler transformations for
high-performance computing,” ACM Computing Surveys, vol. 26,
no. 4, pp. 345–420, Dec. 1994.

[28] S. Muchnick, Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

[29] Workshop on Code generation for Embedded Processors in Design
Automation for Embedded Systems, vol. 4, no. 2-3, March 1999.

	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

