
A Formal Approach to Component Based Development of Synchronous Programs

P. S. Roop, A. Sowmya S. Ramesh

School of Computer Science and Engineering Department of Computer Science and Engineering
University of New South Wales Indian Institute of Technology

Sydney, 2052 Bombay 400 076
Tel: (602) 9385 3980, x3936 Tel: (91-22) 576 7722

Fax: (602) 9385 1814 Fax: (91-22) 572 0290
e-mail: proop,sowmya@cse.unsw.edu.au email: ramesh@cse.iitb.ernet.in

Abstract| Synchronous languages may be used for

speci�cation and design of embedded systems. As-

suming the availability of a library of synchronous pro-

grams, we propose a technique to enable reuse of these

programs, via an algorithm for automatic matching

of a design function to a program from the library.

The algorithm, when successful, generates an interface

which automatically adapts the program. The algo-

rithm is based on a new simulation relation called syn-

chronous forced simulation, which is shown to be neces-

sary and suÆcient for matching a given pair of func-

tion and program.

I. Introduction

Component reuse methodologies have been the recent
focus of industry and academia alike, mainly driven by the
increasing complexities of modern systems. Other major
factors inuencing this revolution are immense competi-
tion from competing vendors and consequently less time
to market, the need for more open (generic) solutions of
the Internet era, as opposed to the more closed solutions
of the pre-Internet era and the need for developing solu-
tions that can be easily veri�ed-often referred to as design
for veri�ability. Intellectual property (IP) reuse in Sys-
tem on a Chip (SoC) [3] design is an enabling trend for
component reuse.
Though component-based development has several ad-

vantages over existing methods, many unresolved issues
remain to be addressed. Some of the more important
ones are developmental issues which try to identify and
develop generic products that are easily reusable, database
issues which address how to store, index and retrieve the
components, matching issues which decide if a compo-
nent matches some requirements, and compositional is-

sues which try to compose a set of matched components.
The focus of this paper is the issue of component match-

ing for embedded systems which are application speci�c
reactive systems. Synchronous languages such as Esterel
[1] are very popular for describing embedded systems be-
haviourally.

During embedded system design, a system designer
spends substantial amount of e�ort on developing and
verifying synchronous programs. Once the speci�cations
are developed standard design tools may be employed to
design the target system. If these programs are suitably
archived in a database, there is immense scope of reuse.

Consider a library of such synchronous programs which
have been successfully designed. We use the term device
D to denote a component of this library. Let F denote the
speci�cation of a target function which is to be designed.

In this paper we propose a polynomial time algorithm
for reusing a D to match the requirements in a given F .
The basis of the algorithm is a novel simulation relation
called synchronous forced simulation which is also pro-
posed by us.

This paper is organized as follows: In section 2, we pro-
vide the problem de�nition and motivate an informal so-
lution. In section 3, we propose a new simulation relation
called synchronous forced simulation and show that it is
a necessary as well as suÆcient condition for our com-
ponent matching algorithm. In section 4, we present the
component matching algorithm and illustrate it via a sim-
ple example. The �fth and �nal section makes concluding
remarks.

II. Component Matching

Given F and D, component matching tries to address
the question \can D be used to realise F ?"

Several techniques [5] based on the notion of re�nement
have been proposed to test if a low level implementation
I is a simulation of a high level speci�cation S. The main
idea is that I is a simulation of S if all traces of I are
included in S. Equivalence checking techniques such as
bisimulation [4] have also been used for checking process
equivalence.

Though both bisimulation equivalence and re�nement
based techniques have been widely applied to the veri-
�cation of hardware, they are not directly applicable to
our problem, since the implementation I is a re�nement
of the speci�cation S, and is not arrived at by adapting a
general implementation to a given speci�cation, which is
the essence of reuse. We illustrate this by the following

example.
The Car Controller Example

Consider the speci�cation of a car controller, as shown
in Figure 1, which is implemented in many automatic
cars. The controller waits for ignition to be turned on
and also for the gear to be in the parking position. It
then generates a chk-belt signal to check if all seat belts of
seated passengers are fastened. It also starts the engine
(start engine) and sets the mode of operation to man-

ual mode (where the speed of the car depends on the value
of throttle pressed).

ignition ^ in_park / chk_belts,start_engine, manual_mode

belt_unfastened / generate_alarm

break V toggle_cruise / manual_mode
cruise/auto_mode

0

1

2

Fig. 1. complex car controller: D

If the seat belts are unfastened then an alarm is gener-
ated. The driver can set the cruise mode by setting the
cruise control button and as a result the car drives in auto-

mode (where the speed is determined by the speed set for
cruise mode). Any time the driver presses the break or
toggles the cruise control button, the car goes back to the
manual mode of operation. Let this synchronous program
be one of the Ds.
Consider the speci�cation of a di�erent car controller

in which there is no checking during ignition to see if
the gear is in a parked position. Also, this controller is
being developed for cars in countries where seat-belts are
not mandatory. As a result no checking of seat-belts are
required. This car after starting drives in manual mode
until the driver selects the cruise mode. It reverts back
to manual mode when the driver applies the breaks. Let
this be the new car controller speci�cation F , that needs
to be implemented. Behaviour of F can be described as
in Figure 2.
There are a number of constraints while reusing D. We

cannot access the internal states of D nor can D be mod-
i�ed directly. However, the sequence of events consumed
by D may be observed to determine the state of a deter-
ministic D. Note that, in the above example, F is not
in any way directly equivalent to D. Also, there is no
re�nement relation between the two.
The intuition behind using a generic implementation to

implement a new speci�cation is to construct an external
process which moves synchronously with D and adapts D,
so that D then matches F . In this paper, such an external
process is termed as an interface process. The task of the

0

1

2

ignition / start_engine, manual_mode

cruise/ auto_mode

break V toggle_cruise / manual_mode

Fig. 2. simple car controller: F

interface process is to generate the inputs to D (termed
as forcing) whenever the environment satis�es the inputs
of F and then to hide any extra outputs of D that do not
match those of F . Also, if D has any extra behaviours
not present in F , then these are disabled by the interface.
In our example, for D to match F , the interface must

perform the following actions:

1. In state zero of D when the ignition input is given,
the interface has to force the in park input of D. The
interface must also hide the extra output chk belts

that D generates.

2. In state 1 of D the interface must suppress the
belt unfastened input of D.

(0, 0)

(1, 1)

(2, 2)

ignition / [in_park], chk_belts

cruise /break V toggle_cruise /

Fig. 3. interface for car controller

The interface for this example is shown in Figure 3. Any
transition of the interface has an input identical to the
input of the transition in F being simulated by D in that
step and can have two kinds of outputs associated with
the transition. The �rst kind of outputs corresponds to
generating the inputs of D (forcing) and we enclose these
outputs in `[]' to denote forcing outputs. The other set of
outputs of the interface are the outputs of D that must be
hidden. The interface can also disable extra transitions in
D not matching F . In this example, the interface disables

the transition triggered by belt unfastened from state 1 of
D.
This example illustrates the need for adapting a generic

device D to match a function F by constructing an in-
terface and composing it with the device. Thus, given
arbitrary pairs F and D which are synchronous programs
the main issue is to decide whether such an interface ex-
ists and if so, to determine the interface. In the next
section, we formalise this matching problem by represent-
ing F and D as input-output boolean automata (IOB)
[6] (which are models of synchronous programs) and then
formalising the interface generation question.

III. Synchronous Forced Simulation: a formal

approach to component matching

De�nition 1:

An input/output boolean automaton (IOB) [6] is a tuple
< S; s0; I; O;!>, where: S is a �nite set of states, s0 2 S

is a unique start state, I is the set of inputs, O is the set
of outputs, and !� S� B(I)� fffg � 2O � S denotes
the transition relation. B(I) is a set of boolean formulas
with variables in I which is isomorphic to to the set of
functions from 2I to f0; 1g and ff denotes the identically
false formulas.
Let the IOB of the function F =< SF ; sf0; IF ; OF ;!F>

and that of the device D =< SD; sd0; ID; OD ;!D>

Interface Process

The main task of an interface process will be to per-
form forcing, disabling as well as hiding. The IOB of the
interface process I=< SI ; si0; II ; OI ;!I> where:
!I � SI � B(II)�fffg �M(OI)� 2OI � SI . Here,
M(OI) denotes the set of complete monomials over OI .
The �rst set of outputs are the forcing outputs to force
any extra inputs in the device guard and the second set
of interface outputs are the hidden outputs. Thus, an

interface transition is of the form si
b=[b0];oj
�! s0i where b

denotes the boolean guard and [b0] and oj denote the sets
of forcing outputs and hidden outputs respectively. [b0] is
an operator that given the boolean guard b0 of D to be
forced generates the appropriate o0 2 M(OI) such that
o0) b0.
Having de�ned the interface and the device processes

formally, we now de�ne their interaction by the following
rule.
De�nition 2: Given I; D as above, I==sD is de-
�ned to be a process described by an IOB, <

S(I==sD); (si0; sd0); I(I==sD); O(I==sD);!(I==sD)> where
the transition relation!(I==sD) is de�ned by the following
rule:

si
b=[b1];oj
�! si1;sd

b1=o
�!sd1

(si;sd)
b=o�oj
�! (si1;sd1)

This rule asserts that a device consuming inputs b1 and
producing outputs o can be composed with an interface
that consumes inputs b producing two sets of outputs [b1]
(forcing outputs) and oj (hidden outputs). The resultant

transition in the composition makes a transition consum-
ing input b and producing outputs o� oj .

Component matching

We can now formalize the matching problem. Intu-
itively, given F and D, we would like to determine
whether there exists an I such that I==sD has equiva-
lent behaviour to F . To de�ne the equivalence we use
the standard notion of synchronous bisimulation [6] for
synchronous programs.

De�nition 3: A device can be adapted to a function
provided there exists an interface process I such that
F �s (I==sD) where �s is the synchronous bisimulation
de�ned over IOBs [6].

Now we give a necessary and suÆcient condition for the
existence of such an I.

De�nition 4:

Given IOBs F and D, a relation R � SF � SD is
called a synchronous forced simulation relation (in short,
an sf�simulation relation) provided the following holds:

1. sf0Rsd0.

2. sfRsd) (8b; o; s0f : [(sf
b=o
! s0f)) 9s0d; b

0; o0 :

(sd
b0=o0

! s0d ^ o � o0 ^ s0fRs
0

d)]).

De�nition 5:

We say that F vsfsim D provided there exists an
sf�simulation relation between them.

Example:

Consider processes F and D as shown in Figure 4.
F vsfsim D since there exists R = f(0; 0); (1; 1); (2; 2)g
which can be easily shown to be an sf�simulation rela-
tion.

However, R need not be unique as shown by the exis-
tence of another relation R0 which is also an sf�simulation
relation. R0 = f(0; 0); (1; 1)g.

x ^ y / ox / o1 x ^ y / o
x ^ ~y/o

~y / o1, o2, o3~x / o1,o2

0

1

0

1 2

Fig. 4. sf-simulation example

Theorem 1:

Given F vsfsim D there exists I such that F =
(I==sD).

Theorem 2:

Given a deterministic I such that I==sD �s F ,
F vsfsim D.

The proofs are omitted due to space constraints; they
appear in [7].

Matching Algorithm
match(F; D)
//F and D are the IOBs of the function and device respectively
1. �I = fBsf

jsf 2 SF g where Bsf
= ffsfg � SDg

2. � = �I
3. waiting = �I
4. repeat
choose and remove any B

s0
f

2 waiting

matchB = fBsf
2 �jsf

b=o
! s0

f
for some b; og ;

for each Bsf
2 matchB do

for each transition sf

b=o
! s0

f
out of sf do

if jreduceBj < jBsf
j then

reduceB = Reduce(Bsf
; o; B

s0
f

)

� = �� Bsf

S
reduceB

waiting = waiting � Bsf

S
reduceB

endif

endfor

endfor

until waiting = �

if any (sf ,[])2 � where sf 2 SF then

return FALSE;
else

Generate Interface(�)
endif

//the Reduce() function
Reduce(Bsf

; o; B
s0
f

)

reduceB = ffsfg

S
fsd 2 Bsf

j9s0
d
2 B

s0
f

^9o0 � OD^sd

b0=o0

! s0
d
^o � o0gg

return reduceB

Fig. 5. component matching algorithm

IV. Matching Algorithm

We now give an algorithm for matching a function to a
device in Figure 5. The inputs to the algorithm are the
IOBs of the function and device, F and D respectively.
The algorithm is an adaptation of a standard bismulation
algorithm [4].

The essential idea of the matching algorithm is to start
with a initial set of blocks (�I) such that in each block a
function state sf is paired with all states of D. To start
with, we have as many blocks as the number of states in
F . After initialization, the re�nement process starts.

Once the initial set of blocks �I is computed, a set of
blocks waiting and another set of blocks � are also ini-
tialized to �I . waiting denotes the set of blocks that are
waiting to be picked up as the re�ning blocks and � de-
notes the set of blocks being re�ned and will be the �nal
output of the algorithm. The initialization steps are steps
one, two and three in Figure 5.

The re�nement process is carried out as a set of itera-
tions (step 4) where in each iteration one block is arbi-
trarily removed from waiting as the re�ning block and all
blocks in � are re�ned based on this re�ning block and an
output set o (which is the output on the current transition
from sf to s0f under consideration).

The re�nement process stops when waiting is empty.
The algorithm outputs � which contains a set of blocks
where each block contains all device states sd that are
sf-similar to a given sf .

Interface Generation

Given the output of the matching algorithm �, it is easy
to construct an abstract interface of the form shown in
Figure 6.

This abstract interface has to be �nally realized in hard-

0, 0

1, 1 2, 2

x ^ y/ [x ^ ~y] x^y/ [x^y]
x / [~y], o2, o3

x/ [~x],o2

Fig. 6. speci�cation of abstract interface

ware. The realization involves computation of [b] for each
forcing output. This is in general a hard problem. How-
ever, eÆcient algorithms using BDDs [2] can be used for
computing [b].We are currently investigating this problem.

V. Conclusion

In this paper, we have formalized the component
matching problem and proposed a algorithm based on
synchronous forced simulation for component matching.
Given a library of synchronous programs which have been
implemented and a new system to be developed, we can
use the matching algorithm to automatically adapt a suit-
able component from the library to arrive at the new im-
plementation. The proposed algorithm has polynomial
time complexity.
There are issues such as indexing of components in the

library and also composition of matched components that
this paper does not address. We are currently exploring
these possibilities.

VI. Acknowledgement

The �rst two authors thank Australian Research Coun-
cil for partial support of this project; the third author
thanks an Indo-US project.

References

[1] G. Berry and G. Gonthier. The ESTEREL synchronous programming language.
Sc. Comput. Prog., 19:87{152, 1992.

[2] R. E. Bryant. Binary decision diagrams and beyond: Enabling technologies for
formal verification. In International Conference on Computer Aided Design (ICCAD),
1995.

[3] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd. Surviving

the SOC revolution: a guide to platform based design. Kluwer Academic, 1999.

[4] P. C. Kanellakis and S. C. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86:43{68, 1990.

[5] N. Lynch and F. Vaandrager. Forward and backward simulations part i: Un-
timed systems. Information and Computation, 121(2):214{233, Sept. 1995.

[6] F. Maraninchi and N. Halbwachs. Compositional semantics of nondeterministic
synchronous languages. In Proc. of ESOP'96, LNCS Vol. 630, 1996.

[7] Parthasarathi Roop. Forced Simulation: A Formal Approach to Component Based De-

velopment of Embedded Systems. PhD thesis, Computer Science and Engineering,
University of New South Wales, 2000. under review.

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

