
dlbSIM - A Parallel Functional Logic Simulator
Allowing Dynamic Load Balancing

KlausHering
ChemnitzUniversityof Technology
Departmentof ComputerScience

D-09107Chemnitz
hering@informatik.tu-chemnitz.de

JorkLöser
DresdenUniversityof Technology
Departmentof ComputerScience

D-01062Dresden
jork@os.inf.tu-dresden.de

JensMarkwardt
LeipzigUniversity

Departmentof ComputerScience
Augustusplatz10-11,D-04109Leipzig
jens@berta.informatik.uni-leipzig.de

Abstract

To meetthe demandingtime-to-market requirementsin
VLSI/ULSI design, the acceleration of verification pro-
cessesis inevitable. Theparallelizationof cycle-basedsim-
ulation at register-transfer- and gate level is one facet in
a seriesof efforts targetedat this objective. We introduce
dlbSIM, a parallel compiledcodefunctionallogic simulator
thathasbeendevelopedto run on loosely-coupledsystems.
It hastheability to balancetheapplication-specificload of
cooperatingsimulatorinstancesin dependenceof theover-
all load situation on involvedprocessornodes. Thereby,
the load of a simulator instanceis expressedin termsof
a set of circuit modelparts which are to be simulatedby
thecorrespondinginstance. Thecentralizedload manage-
mentrunssimultaneouslywith a parallel simulation. Both
processesinteract after a controllable numberof simulated
clock-cyclesto transmitload informationand realizeload
modifications.dlbSIMis successfullyusedto simulateIBM
S/390processormodels.

1. Intr oduction

Currentdeep-submicrondesignprocessesrequirea so-
phisticatedsystemof verification tools to ensurereliable
designresultsunderdemandingtime-to-marketconditions.
Designverificationmethodsdivideinto two classes:formal
verification [5] andsimulation[7]. While the latter class
representsthetraditionalwayof designverification,formal
methodshavestartedto movefrom theresearchcommunity

to the industrial domainonly in the last years. Thereare
strongindicationsthat both classeswill fruitfully comple-
mentoneanotherin thenearfuture. Following [2], thereis
a promisingpotentialfor the developmentof methodsthat
bring togetheraspectsof bothsimulationandformal verifi-
cation.

In this paperwe focus on functional logic simulation
of synchronousdesignsat gate-andregister-transferlevel.
For systemsimulationprocessesit hasprovento bea good
practiceto separatetiming analysisfrom functionalverifi-
cationandleave correspondingtasksto dedicatedtools as
statictiming verifiersandcycle-basedsimulators[1]. Sev-
eral efforts have beenmadeto acceleratecycle-basedsim-
ulation, including the useof BDDs to representcombina-
tional logic [9], parallelizationof compiledcodesimulation
[3] andputtingsimulationactivities into hardwareresulting
in hardwareacceleratorsandemulators[4]. Amongtheal-
ternativesmentioned,emulatorsby far realizethe highest
performance.Their usebecomesmoreandmoreattractive
becauseof thegrowingcapacityof FPGAcomponents.The
high emulationspeedcomesat the expenseof time con-
sumingmodelbuilding processesanda loss in observable
detailsduring theemulationprocess.To copewith the lat-
ter fact, a statedependentinteractionof an emulatorwith
a simulatorwould be useful. A parallelsimulatorversion
wouldallow fastevaluationduringphasesof trackingincor-
rectbehavior insidea circuit model. In general,simulation
offershigherflexibility thanemulation,bothwith respectto
variationsof theverificationalgorithmandthetargethard-
ware that is necessaryfor its realization. The successful
usageof BDDs in cycle-basedsimulationof large circuits

dependson overcomingmemoryperformanceproblems.A
promisinghybridapproach,replacinggatelevel representa-
tionsof somefunctionalunitswith predefinedmacros,is to
befoundin [6]. Thisapproachallowsacombinationof for-
mal verificationmethodsappliedto certainfunctionalunits
with traditionalcompiledcodesimulationtechniques.

With dlbSIM, we introducea parallel compiled code
functional logic simulator dedicatedto run on loosely-
coupledsystemsandproviding dynamicloadbalancing.It
representsthe successorof parallelTEXSIM [3]. To our
knowledge,thesesimulatorsrepresentfirst approachesto
parallel compiledcodesimulation. During the simulation
of a circuit modelwith parallelTEXSIM,we have a fixed
numberof cooperatingsimulator instances,eachinstance
handlingexactly onepart of the original model. Thereby,
the assignmentof modelpartsto simulatorinstancesdoes
not change.This is adequateto parallelsimulationsunder
exclusive useof a parallelmachineor a workstationclus-
ter. In practice,this conditionis fulfilled only in individual
cases.Sinceadditionalapplicationsandsystemprocesses
canseriouslydisturbthecooperationof simulatorinstances
that are involved in a parallel simulation,we have devel-
opeddlbSIM with anintegratedloadbalancingmechanism
that offers the possibility of adaptingthe simulationpro-
cessto externalinfluences.A similar approachfor parallel
event-drivensimulationcanbefoundin [8].

Within a dlbSIM simulation,we have a fixednumberof
cooperatingsimulatorinstancesagain,but eachinstanceis
handlinga setof modelparts. In general,a modelpart is
assignedto severalsimulatorinstances.During simulation,
atany pointof timeasubsetof themodelpartsbelongingto
a simulatorinstanceis active (undersimulation). For each
modelpart thereis exactly onesimulatorinstancewhereit
is active (activity property). Then,load balancingappears
asa modificationof the setsof active modelpartsleaving
theactivity propertyunchanged.

ThedlbSIM loadmanagementis runningsimultaneously
with parallel simulation. The frequency of their interac-
tion can be controlled via a parameter. An application-
basedloadbalancingapproachhasthegreatadvantagethat
application-specificknowledgecanbe includedinto deci-
sions on load modifications[10]. In our case,a deci-
sion to modify simulation-specificload is basedon esti-
mationsof the time that would be necessaryto simulate
one cycle for the consideredcircuit model under the as-
sumptionthe load modificationhad taken place. Besides
externalperturbancescausedby otherapplicationsandsys-
temprocesses,thedecisionmechanismtakesinto consider-
ation simulation-specificimbalancesand the possiblehet-
erogeneityof theloosely-coupledprocessorsystem(aclus-
terof workstations,for instance)dlbSIM is runningon.

In Section2 we outlinetheparallelizationapproachthat
is underlyingdlbSIM. The startingpoint is representedby

the sequentialsimulatorMVLSIM (IBM). We provide the
notion of a modelpartition andshortly characterizeparal-
lel simulationunderdlbSIM includingenhancedMVLSIM
instances.In the next section,we continuewith basicas-
sumptionsconcerningloadbalancing.Thecombinationof
load managementwith parallel simulationis describedin
Section4. In addition,thephasesof loadmanagementare
consideredin moredetail.Then,in Section5 representative
experimentalresultswith respectto simulationof a large
IBM S/390processormodelaregiven. The lastsectionof
thispapercontainsconclusionsandaddressesaspectsof fu-
turework.

2. Parallelization approach

dlbSIM is basedon thesequentialfunctionallogic simu-
latorMVLSIM (IBM) for synchronousdesignsatgate-and
register-transferlevel. A correspondingstructuralcircuit
modelM is depictedschematicallyin Figure1. The basic
modelcomponentsaregivenby setsof global inputs

�
MI � ,

globaloutputs
�
MO � , logic elements

�
ME � andstoringele-

ments
�
ML � . A setof netsrepresentingwiresthatrealizethe

connectionof circuit componentsis denotedby MS. There
areno feedbacksin combinationallogic.

Figure 1. Structural cir cuit model with cone
representations (shaded)

Within MVLSIM, cycle-basedsimulationis realizedus-
ing the levelizedcompiledcode(LCC) technique.Logic el-
ementsareevaluatedaccordingto a rankorderingfollowed
by the updateof storingelements(for instance,latches)at
cycle boundaries.The basicideafor the parallelizationof
the simulationprocesswas to partition M in an adequate
way andassignthe resultingmodelpartsto MVLSIM in-
stancescooperatingover a loosely-coupledprocessorsys-
tem. We considerthe setCo

�
M � of all fan-in coneswith

headelementsstemmingfrom ML or MO (seeFigure1) as

collectionof basicbuilding blocksfor modelpartitioning.
A correspondingconecomprisesall logic elementsout of
ME which have the capability to influencethe conehead
during the simulationof onecycle. We derive a partition
π of M from a partition π � of Co

�
M � that representsa set

containingconesetsaselements.EachconesetC out of a
partitionπ � directly allows theconstructionof a modelpart
of M for inclusioninto π on thebasisof theunionof all el-
ementsbelongingto conesout of C. Dif ferentmodelparts
of a partition π arenot necessarilydisjoint, theremay be
an overlapbetweenthem. Furthermore,model partsof a
partitionπ generallyhavespecialinputandoutputelements
whichrepresentcommunicationportsfor thesignaltransfer
from andto othermodelpartsof π. Theseportsarerelated
to netsout of MS in the original model M which, at the
onehand,have a coneheadbelongingto a modelpart m0

assourceand,at theotherhand,feeda conebelongingto a
modelpartm1 �� m0. In practice,modelpartitioningfor dlb-
SIM is realizedusinga BOTTOM-UP clusteringtechnique
for cones.

dlbSIM hasbeendevelopedunderthe AIX ParallelEn-
vironment(PE)makinguseof its MessagePassingLibrary
(MPL). It is intendedto run on IBM ScalablePOWERpar-
allel (SP)machinesandonRS/6000workstationclusters.

At run-time, dlbSIM appearsin the form of a master
componentandasetS ��� S1 �	�
�	��� Sm � of slavecomponents.
All slavecomponentsrunondifferentprocessornodes.The
mastercoordinatesthework of theslaves,comprisesa load
managementfacility and provides an API. Slaves repre-
sentMVLSIM simulatorinstancesenhancedby a commu-
nicationshellandspecialfacilitiesto handlecircuit models
within aparallelsimulation.Eachslavehasthecapabilityto
managea setof modelparts. Let usassumeto have a par-
tition π �� M1 �	�
�
��� Mn � of a circuit modelM with n � m
in preparationfor a parallelsimulationrun. Then,first an
initial distribution

D : π � 2S (1)

of model parts(with 2S denotingthe power set of S) has
to be realized. Thereby, D

�
Mi � specifiesthe setof slaves

whichhavethepossibilityto simulateMi in afollowingsim-
ulationrun. In practice,thatmeansfor aslave Sj to loadall
modelpartsMi with Sj � D

�
Mi � beforesimulation.We as-

sume,thateachsimulatorinstanceis includedin the initial
distribution, expressedby the condition � n

i � 1D
�
Mi � � S.

Furthermore,we require,that at any stageof a simulation
run, for eachM j exactly one of its possiblymultiple oc-
currencesshouldbeundersimulation(active). We call this
activity propertyandrepresentthe relationbetweenmodel
parts and slaves that are currently simulating them by a
function

A : π � S. (2)

During a simulationof a sequenceof clock-cyclesfor M,
the slavesSj executea loop in parallel,the body of which
containsfour stepsin the orderasgivenbelow. All slaves
synchronizeeachotherin theTRANSFERstep.

� CLOCK
Simulationof oneclock-cycle for all modelpartsMi

with A
�
Mi � � Sj

� GET
Readingsignalvaluesfrom model-specificdatastruc-
tures(nets)andwriting themto outputportsof model
partsMi with A

�
Mi � � Sj

� TRANSFER
Collectivecommunicationinvolving all slavesbelong-
ing to S to transfersignalvaluesbetweenmodelparts
at cycleboundaries

� PUT
Readingsignalvaluesfrom input portsof modelparts
Mi with A

�
Mi � � Sj and writing them to model-

specificdatastructures(nets)

3. Assumptionson load balancing

If we considera parallel simulationrun with dlbSIM,
we distinguishtwo kinds of load: simulation-specificload
and load causedby applicationsand/orsystemprocesses
runningin additionto dlbSIM on processorsthe simulator
makesuseof. Informationwith respectto the lattercanbe
obtainedin differentforms from theoperatingsystem.We
definesimulation-specificload relatedto a slave Sj (at a
certaintime during theparallelsimulation)asthesetof all
modelpartsMi with A

�
Mi � � Sj accordingto

�
2� . Thusthe

simulation-specificload of a slave determinesthe amount
of work (to bedoneby thecorrespondingslave) connected
with the executionof the four basicstepsfor the simula-
tion of oneclock-cycle asmentionedabove. The time to
realizethis work dependson load influencesfrom outside
thesimulationandon thehardwareconfigurationtheslave
is runningon. Becauseof thesynchronizationof all slaves
in the TRANSFERstep, imbalancesin the cycle simula-
tion timebetweentheslavesthatareinvolvedin theparallel
simulationcausewait intervals.Our objective is to obtaina
shortoverall simulationtime for sequencesof clock-cycles
by balancingthe cycle simulationtimesof the slaves. To
achieve this, dlbSIM comeswith a possibility to change
simulation-specificload. Load modificationappearsas a
modificationof thecurrentfunctionA restrictedby theini-
tial distribution D of model partsaccordingto

�
1� . This

way, a load modificationdoesnot involve a real move of
modelpartsbetweenslaves.If, for instance,it would befa-
vorableto reducethecyclesimulationtimeof slave1 in Fig-
ure 2 at the expenseof the correspondingsimulationtime

of slave 2, the lattercould take on thesimulationof model
parts1 or 2. Including both slave 2 andslave 3, even the
extremecaseof completelydischarging slave 1 would be
possible.LoadbalancingunderdlbSIM avoidsprocessmi-
grationandcompleterepartitioningof acircuit modelunder
simulation.

Figure 2. Set of 3 slaves handling a model par-
tition with 12 components, each component
initiall y distrib uted to 2 slaves

4. Load management

ThedlbSIM loadmanagementis centralizedin themas-
tercomponent.It comprisestherequestof loadinformation,
loadevaluationandthemodificationof simulation-specific
load (dependingon the result of load evaluation). A se-
quenceof clock-cyclesto besimulatedfor a givenpartition
of a circuit model is divided into simulationintervals, the
lengthof which (in termsof a numberof cycles)canbe
controlledvia a parameter. During a simulationinterval In,
slaves work independentof the masterthat makes useof
the time gap to evaluateload informationstemmingfrom
In � 1 (seeFigure3). After terminationof a simulationin-
terval In the masterreceives load information from every
slave with respectto In. If the load evaluationconcerning
In � 1 hasresultedin a decisionto performa modificationof
simulation-specificload, the load informationrelatedto In
becomesinvalid andthe load modificationis initiated (af-
fecting In� 1). Otherwise,thereis no load modificationat
this point of time. Finally, the slavesarerequiredto start
In� 1, andin caseof valid loadinformationrelatedto In, this
informationis evaluatedby themaster.

4.1. Load information

Thedeterminationof adequateloadinformationis anes-
sentialbasisfor the estimationof both a load situationat
handandconsequencesof its modification. During a sim-
ulation interval, eachslave accumulatesthetime necessary

Figure 3. Load management and sim ulation

for theevaluationof logic elementsin theCLOCK step(per
model part) and the time necessaryfor readingand writ-
ing signal valuesto nets in the GET and PUT steps(per
slave). Measuredtime valuesrepresentreal run-time, in-
cluding time intervals usedby applicationsor systempro-
cessesoutsidethe simulation. Correspondingaverageval-
uesaregiven to the mastertogetherwith the ”load” value
providedby theAIX operatingsystem.

4.2. Evaluation of load information

The ”heart” of the loadmanagementis givenby the re-
cursiveloadbalancingalgorithmthatis sketchedin pseudo-
codenotationin Figure4. Basedon a currentsimulation-
specificloadof theslaves,the load informationmentioned
above andstructuralinformationwith respectto themodel
parts, this algorithm investigatesthe effect of sequences
of virtual model moves on the estimatedsimulationtime
for oneclock-cycle of the correspondingmodel. Thereby,
”worstslave” meansa slave thatshows thehighestamount
of time for thesimulationof onecycle at a currentstateof
the executionof rec dlb. It is tried to cometo bettersolu-
tions(for thechoiceof active modelpartson slaves)thana
currentbestsolutionby movingmodelsawayfrom acurrent
worstslave. For beingdeemedbetterthanthebestsolution
at themoment,it is notenoughto show lowercyclesimula-
tion time, thetimegainmustbeat leastof acertainamount
that is controlledby theparameterOFFandthecurrentre-
cursiondepth.Theparametermaxdepthlimits therecursion
depthto guaranteeterminationof thealgorithmandto con-
tain theuseof CPUandmemoryresources.It alsorestricts
thesetof investigatedmodelpartdistributions.Becausewe
allow one model move per recursionstep,maxdepthcor-

relatesto the maximumnumberof modelmovesper load
modification. Obviously, it is possiblethat no bettersolu-
tion than the startsolution is found. In this case,no load
modificationis suggested.Theevaluationof loadinforma-
tion resultsin a (possiblyempty) list describingmovesof
modelparts.

recursiveprocedure rec dlb (depth, maxdepth)
time:= predictedcycletime
s := worstslave
for all m � π : A

�
m� � sdo

for all r � S: r �� s� r � D
�
m� do

move modelm to r
t := predictedcycletime
if t � � 1 � depth � OFF ��� timethen

time:= t
savemovesdoneup to now

fi
if depth � maxdepth then

call rec dlb (depth � 1,maxdepth)
fi
move modelm to s

od
od

Figure 4. Recur sive load balancing algorithm,
depth equals 1 at the fir st call

4.3. Load modification

For load modification,the list of movesresultingfrom
the load balancingalgorithm(if it is not empty)hasto be
transposedinto new simulation-specificloadsof slaves.To
”move” a model part from slave Sk to Sl it hasto be de-
activatedon Sk and activatedon Sl whereit hasbeenal-
readyloadedsincethebeginningof theparallelsimulation
run. Themodelpart’s stateis extractedfrom Sk andtrans-
ferredto Sl . Therethe stateinformationis usedto initial-
ize the local copy of the correspondingmodelpart. Other
slaves(if existent)areinformedof thatmove. Thiswaythey
can modify communication-relateddatastructuresbefore
the startof the next simulationinterval. The time needed
to performa modelmove mainly determinesthe OFF pa-
rameterin Figure4.

5. Experimental results

Wepresentfirst resultsof experimentswith dlbSIM con-
ductedon a small heterogeneouscluster of workstations
consistingof threeRS/6000workstationsW1 (2 GB RAM),

W2 (1 GB RAM) andW3 (64 MB RAM). Thesemachines
areconnectedvia a 10 MBit Ethernetnetwork. In the fol-
lowing, we summarizefurtherconditionswhich all experi-
mentsunderconsiderationhadin common:

� We have simulated30000 clock-cycles of an IBM
S/390processormodelwith about2 � 7 million basicel-
ements,the hierarchylevel being a mixture of gate-
andregister-transferlevel. Themodelhasbeenparti-
tioned into 8 modelpartsM0 �
������� M7 with sizesrang-
ing from 6 � 1 MB to 11 MB. The maximumrecursion
depthof the load balancingalgorithmwas3. (Previ-
ous experimentswith depth5 did not show changes
with respectto movesof modelparts.)

� Therehave alwaysbeenthreeslavesS1 � S2 � S3 with Si

runningonWi . ThemastercomponentranonW1. Fig-
ure 5 shows the initial distribution of the modelparts
to theslave components.

� During the experimentstherewas no load stemming
from other users. ”Disturbing processes”have been
simulatedin the experiments.In suchcases,loadhas
alwaysbeenaddedononenodeafter10000cyclesand
removedafter20000cycles.

Figure 5. Initial distrib ution of model par ts

Beforeconsideringexperimentsin moredetail,we want
to give someremarksrelatedto the result representation.
Thechartsin theFigures6and8show thetotalrealrun-time
that wasneededfor eachsimulationinterval (1000or 500
cycles). This time includesboth simulationtime andtime
spentto realizepossiblemodelmoves. Phasesof moving
modelstookabout1 to 2 secondsdependingonthenetwork
traffic. The tablesin Figure 7 show for eachmodel part
andgivencycle intervals theslave wherethemodelpart is
active.

Experiment ”No load”

During this experimentno load outsidethe simulation
hasbeengenerated.Loadbalancingwasenabled(the load
balancingcapabilityof dlbSIM canbe switchedoff). The
simulation interval comprised1000 cycles. Resultsare
shown in Figure 6 and Table (a) of Figure 7. The total
run-timefor thefirst 1000cyclesamountedto 460s. Four
phasesof moving models(after2000� 4000� 6000and8000
cycles)resultedin a total run-timeof 210 s for onesimu-
lation interval. This time stayedstableuntil theendof the

simulation.Theresultsshow theability of dlbSIM to com-
pensateunfavorable choicesof initial simulation-specific
loadon a heterogeneoussystem.

200

600

1000

1000 5000 10000 15000 20000 25000 30000

cycles simulated

Load 4 w/o dlb

200

600

1000

 ti

m
e

in
 s

 fo
r

10
00

 c
yc

le
s

�
Load 4

Movement of models

200

600

1000

Load 2
Movement of models

200

600

1000

No Load
Movement of models

Figure 6. Total real run-time for sim ulation in-
tervals of 1000 cycles

Experiment ”Load 4 without dlb”

This experimentstartedwith the distribution of active
model parts that was found in the previous experiment.
Load balancingwas disabled(seeTable (c) of Figure 7).
OnW1, whereS1 wasrunning,anadditionalloadof 4 was
generated.Theinfluenceof theadditionalloadis clearlyto
beseenin Figure6.

Experiments ”Load 2” and ”Load 4”

In bothcases,loadbalancingwasenabledandthesimu-
lation interval comprised1000cycles.OnW1, anadditional
load of 2 and 4 was generated,respectively. Resultsare
shown in Figure 6 andTable (b) of Figure 7. The repre-
sentationof modelmovesis restrictedto ”Load 2” because
therearenearlythesameresultsaswith ”Load 4”. During
thefirst 10000cyclestherun-timesfor correspondingsim-
ulation intervals were the sameas in the experiment”No
load”. Under load 2

�
4� theserun-timesincreasedfrom

210s to 580 s
�
990s� . Load information expressingthe

changedload situationwas available for the mastercom-
ponentafter11000cycles.In parallelto thenext simulation
interval, load evaluationresultedin a propositionof load
modification.This modificationtook placeafter12000cy-
cles,reducingthecorrespondingrun-timesto 350s

�
490s� .

After removal of theadditionalload,severalloadmodifica-
tionswererealizedbydlbSIM.Finally, thesamesituationas
immediatelybeforegeneratingadditionalloadwasreached

(both concerningthe run-time of simulationintervals and
thedistributionof activemodelparts).

Figure 7. Slave components where model
par ts are active at given cycle inter vals

0

50

100

150

200

250

300

500 5000 10000 15000 20000 25000 30000

tim
e

in
 s

 fo
r

50
0

cy
cl

es

�

cycles simulated

Load 2
Movement of models

Figure 8. Total real run-time for sim ulation in-
tervals of 500 cycles

Experiment ”Simulation interval 500”

This experiment representsa slight modification of
”Load 2” consideredabove. Different from the latter, the
lengthof thesimulationintervalsis setto 500cycles.As a
consequence,thereis a fasterresponseto thegenerationof
additionalloadanda fasterimprovementof the initial dis-
tribution of active modelparts. The correspondingresults
areshown in Figure8. Thereis no differenceto ”Load 2”
concerningthe distribution of active modelpartsboth im-

mediatelybeforeloadgenerationandat theendof thesim-
ulation.

The above experimentsfocus on the ability of dlbSIM
to adaptto additional load appearingon processornodes
involvedin simulation.In caseof exclusivesequentialsim-
ulationof thecompleteprocessormodelonW1 (W2/W3) the
averagetotal run-timefor 1000cyclesis 41 s (445s/195s).
ExperimentsapplyingparallelTEXSIMto thesimulationof
thesameprocessormodelon anIBM SP2parallelmachine
(underexclusiveuse)show theaccelerationpotentialof par-
allel compiledcodesimulation. In comparisonto sequen-
tial simulation,4-way (12-way)parallelsimulationrunsre-
sultedin averagespeed-upvaluesof 2 � 98(4 � 7).

6. Conclusionsand futur e work

We have introduceddlbSIM, a parallel compiledcode
functional logic simulatorthat hasbeendevelopedto run
on loosely-coupledsystems.It providesthe possibility of
dynamicloadbalancingwith respectto simulation-specific
loadunderconsiderationof theoverall loadsituationof the
processorsystemthe simulatoris runningon. Experimen-
tal resultsconcerningthe parallel simulationof real pro-
cessormodelshave shown that the loadbalancingcapabil-
ity of dlbSIM cansignificantlyreducethe simulationtime
underload influencesstemmingfrom outsidethe simula-
tion. Furthermore,dlbSIM is ableto compensateunfavor-
ablechoicesof initial simulation-specificloadon a hetero-
geneoussystem.It raisestheattractivenessof usingwork-
stationclustersfor long runningsimulationprocesseshan-
dling largecircuit models.

Therearemany factorsinfluencingtheeffectof dynamic
load balancingwith dlbSIM. In future work we will focus
ontheinvestigationof modelpartitioningandtheinitial dis-
tributionof modelpartsto asetof slaves.Furthermore,vari-
ationsof thedecisionstrategy realizedin theloadbalancing
algorithmwill besubjectof our work.

Acknowledgment

Thiswork wassupportedby DEUTSCHE FORSCHUNGS-
GEMEINSCHAFT (DFG) undergrantSp487/1-3. The au-
thors are grateful to W. ROESNER et al. (IBM Labora-
tories Austin (TX)) and K.LAMB et al. (IBM Laborato-
ries Böblingen)for valuableassistance.Specialthanksto
D.ZIKE for helpful discussionsand to A.BLUHM for his
contribution to therealizationof experiments.

References

[1] S. Caplow. Cycle simulation: Technology, method-
ology & mythology. Electronic Product Design,
17(5):34–38,1996.

[2] D. L. Dill. What’sbetweensimulationandformalver-
ification? In Proc. of the 35th DesignAutomation
Conference(DAC’98), pages328–329.ACM/IEEE,
1998.

[3] D. Döhler, K. Hering, and W. G. Spruth. Cycle-
basedsimulationonloosely-coupledsystems.In M. E.
Schrader, R. Sridhar, T. Buechner, andP. P. K. Lee,
editors,Proc. of the 11th Annual IEEE International
ASICConference(ASIC’98), pages301–305,1998.

[4] U. Kebschull, G. Koch, and W. Rosenstiel. The
WEAVER prototyping environment for hard-
ware/softwareco-designandco-debugging. In Proc.
of the Conferenceon Design,Automation& Test in
Europe(DATE’98), pages237–241,1998.

[5] T. Kropf, editor. Formal Hardware Verification.
SpringerVerlag,Berlin, 1997.

[6] Y. Luo, T. Wongsonegoro,andA. Aziz. Hybrid tech-
niquesfor fast functionalsimulation. In Proc. of the
35thDesignAutomationConference(DAC’98), pages
664–667.ACM/IEEE,1998.

[7] K. Olukotun, M. Heinrich, and D. Ofelt. Digi-
tal systemsimulation: Methodologiesandexamples.
In Proc. of the 35th DesignAutomationConference
(DAC’98), pages658–663.ACM/IEEE,1998.

[8] R. Schlagenhaft,M. Ruhwandl, C. Sporrer, and
H. Bauer. Dynamicloadbalancingof a multi-cluster
simulatoronanetwork of workstations.In Proc.of the
9th Workshopon Parallel andDistributedSimulation
(PADS’95), pages175–180,1995.

[9] C. Scholl, R. Drechsler, and B. Becker. Func-
tional simulationusingbinary decisiondiagrams. In
Proc. of the IEEE/ACM InternationalConferenceon
Computer-Aided Design (ICCAD’97), pages8–12,
1997.

[10] J. Watts andS. Taylor. A practicalapproachto dy-
namicloadbalancing.IEEE Transactionson Parallel
andDistributedSystems, 9(3):235–248,1998.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

