
Hierarchical Memory Mapping During Synthesis in FPGA-Based
Reconfigurable Computers �

Iyad Ouaiss and Ranga Vemuri
Digital Design Environments Lab, University of Cincinnati

Cincinnati, OH 45221-0030, USA
fiouaiss, rangag@ececs.uc.edu

Abstract

One step in the synthesis for FPGA-based Reconfig-
urable Computers (RCs) involves mapping the design data
structures onto the physical memory banks available in the
hardware. The advent of Xilinx Virtex-style FPGAs and of
hierarchical memory schemes on reconfigurable boards in-
troduced an added complexity to this mapping. The new
RC boards offer a wealth of memory banks many of them
on-chip (such as the BlockRAMs available in the Virtex ar-
chitecture) and many of them offering variable number of
ports and several depth/width configurations. Along with
the external RAMs, a hierarchy of memories with varying
access performances are available in a reconfigurable com-
puter. It becomes critical to perform a good mapping to
achieve optimal design performance. This paper presents
an automatic memory mapping methodology which takes
into account: the number of words and word size of de-
sign data segments and physical memory banks, number of
ports on the banks, access latency of the banks, proximity of
the banks to the processing unit, life cycle analysis of data
segments, and it also incorporates configuration selection
from the multiple configurations available in BlockRAMs of
Virtex series FPGAs. In the case of multiple processing el-
ements on board, the paper also provides a framework in
which the task of memory mapping interacts with spatial
partitioning to provide the best implementation.

1 Introduction

When designing a circuit in digital hardware (ASIC or
FPGA), the task usually consists of mapping operations of
the application onto the hardware logic and mapping the
data structures onto physical memory banks of the hard-
ware.

�This work is supported in part by the US Air Force, Wright Labora-
tory, WPAFB, under contract number F33615-97-C-1043.

A synthesis process typically takes the design from a
level of abstraction to a lower one getting the design closer
to a hardware implementation. While doing so, it is impor-
tant to intelligently assign data structures to physical mem-
ory banks in order to minimize the overall cost of mem-
ory accesses. This is especially the case in today’s data-
intensive applications that require a very high-speed data
access and large storage area. In image processing and
speech recognition applications, for instance, the memory
component of an ASIC implementation could contribute to
more than 75% of the entire design area! Such a high area
has a direct effect on memory performance.

Memory mapping has been researched in the case of
ASICs where the mapping consists of selecting memory
components from a library and/or selecting where the mem-
ory components are placed and the way in which they are
connected to the hardware logic. This view assumes that
the hardware is custom-built for the application: starting
with an application, the synthesis process selects the best
physical memory components and interconnects them to the
logic hardware in the most efficient manner. In that case, the
physical constraints consist of area requirements, number
of available pins, etc., and the selection of memory compo-
nents is limited by the richness of the module library.

In reconfigurable computing, the problem is a little dif-
ferent: starting with a fixed hardware platform where only
logic and few interconnection switches are programmable,
the synthesis process tries to map, in the best possible way,
the application onto the RC. Thus, the number of memory
banks, the type of memory banks, and, to a certain extent,
the way they are connected to the processing units, are usu-
ally fixed. Before the introduction of Xilinx Virtex-style
FPGAs, the mapping was limited to the physical banks that
are external to the processing units; and since the number of
external physical banks was typically low, designers would
perform the mapping manually or use a very simple assign-
ment algorithm to do so.

However, in the case where a large number of physical
memory banks is available, a manual assignment is very dif-

Configuration Depth Word Size
Number (# words) (# bits/word)

1 4096 1
2 2048 2
3 1024 4
4 512 8
5 256 16

Table 1. Xilinx BlockRAM Configurations

ficult. Furthermore, the Virtex-style FPGAs introduced three
new complexities to the mapping: First, there is potentially
a large number of on-chip memory banks (BlockRAMs for
Xilinx Virtex devices [22], Embedded Array Blocks for Al-
tera FLEX 10K devices [2], and Embedded System Blocks
for Altera APEX E devices [1]). In the Xilinx Virtex FPGAs,
this number ranges from 8 BlockRAMs for the XCV-50 de-
vice to 208 BlockRAMs for the XCV-3200E device! Sec-
ond, the number of memory ports for each on-chip memory
bank could be greater than one; two ports for every Xilinx
Virtex BlockRAM, each port accessing the same physical
space. And third, the depth/width ratio of each memory
bank could be variable; for each Virtex BlockRAM, the five
configurations are shown in Table 1. Taking into account
these features, and adding the external memory banks to the
on-chip banks, the problem of logical-to-physical memory
mapping becomes quite complicated.

Little work has been done to automatically assign data
structures to complex RC systems; furthermore, features of
on-chip Virtex-style FPGAs have not yet been incorporated
in the synthesis process. This paper exposes the different
features of a complex, hierarchical hardware memory struc-
ture and evaluates the integer-linear programming approach
to memory mapping.

The rest of this paper is organized as follows: Section 2
discusses previous work performed in memory mapping.
Section 3 describes the inputs to the environment in which
memory mapping is performed. Section 4 depicts the In-
teger Linear Programming approach for memory mapping.
Section 5 shows some results obtained and a discussion of
the approach. Finally, Section 6 concludes the paper by pre-
senting ongoing work.

2 Previous Work

There exist several studies on utilizing memory modules
in data path synthesis. As mentioned in Section 1, the ma-
jority of the memory mapping studies focuses on the ASIC

implementation. The tools pick a set of physical memory
modules from a library of available banks and select the in-
terconnection structure to connect the processing units to
the memory banks.

Several studies were conducted in the realm of high-level

synthesis where cliques of the design variables are parti-
tioned to form data segments. Some researchers performed
this task without taking into consideration the interconnec-
tion structure of the hardware [3], while others consider the
cost of interconnection during variable grouping for multi-
port memory banks [19].

An integer linear programming model is used in [13, 8]
to group registers and form multi-port memory modules. In-
stead of dealing with fixed hardware configurations, these
studies construct the hardware based on minimizing the
needs of memory banks and minimizing the cost of inter-
connection.

In the above references, interconnection cost is one of
the most important constraints, and the research aimed at
minimizing this cost as well as minimizing the number of
physical memory banks . With on-chip memory and fixed
external memory banks and interconnection structures, the
problem becomes different. On-chip memory does not re-
quire off-chip communication thus reducing external inter-
connections. Furthermore, given a fixed memory structure
on an RC board, minimizing the number of required mem-
ory banks might not be the best mapping solution; as long
as the mapper does not exceed the physical storage area, it
should be allowed to use as many banks as it sees fit.

It is worth mentioning that, contrary to the older works
mentioned above, FPGA on-chip memory banks are targeted
in [12, 18]. However, the banks are used for implementing
logic. These studies address technology mapping of logic
onto on-chip memories, whereas the storage capability of
the banks is not considered.

In [17], memory mapping for FPGAs with on-chip mem-
ories is addressed; however, only single-ported memory
banks are assumed. The same technique was improved in
[21] so that the mapping caters to recent FPGAs containing
dual-ported on-chip banks. In both works, the focus is on
hardware containing a single type of memory banks (either
single or dual ported).

Given data structures and access constraints to these
structures, [5] finds a legal packing of the logical seg-
ments into the physical segments while minimizing the area.
Again, since the storage area in the RC framework is fixed,
it might not be beneficial to minimize the area. On the other
hand, instead of meeting access constraints to the data struc-
tures, our work targets on minimizing all memory accesses.
The work can be extended in the event hard access con-
straints must be met on some data structures.

As classified in [15], the problem of logical-to-physical
memory mapping [17] can be divided into two steps: Firstly,
translating the storage requirements onto logical memo-
ries; i.e. forming the data structures needed by the design.
Secondly, mapping the logical memories onto the physical
memories of the hardware; i.e. assigning the data structures
to memory banks. In [15], the mapping of logical memories

is onto physical memories chosen from a library; however,
in this paper, the mapping is onto a fixed architecture dic-
tated by the RC board.

An analysis of several memory mapping studies is pre-
sented in [15]. The authors compare the techniques based
on the number and the type of logical memories and physi-
cal banks considered simultaneously. In addition, the book
by Catthoor et al. [6] and the book by Panda, Dutt, and
Nicolau [16] provide an excellent source for topics in mem-
ory system optimization, exploration, and management.

3 Problem Formulation

Several features exist for different types of RC boards.
This section generalizes the approach of memory mapping
by targeting a flexible hierarchical memory structure.

A memory mapper must take as an input both the archi-
tecture of the target RC board as well as a description of
the design to be synthesized and mapped onto the board.
For this paper, it is assumed that the RC board contains
only one processing unit. As part of future enhancement,
this work will be extended to multi-processing units where
logic placement and pin constraints during routing will be
addressed.

3.1 Architecture Description

The RC board architecture is described by a collection
of memory types. There could be several instances of each
memory type, but all instances share the same storage and
access speed specifications, and share the same proximity
and ease of access from the processing unit.

For each memory type, a number of instances tells the
mapper how many instances of each type exist on the board.
The number of ports of a type is one if the memory is a
single-ported memory, two if dual-ported, etc. As shown
in Figure 1, the depth/width ratio of a memory could be
variable; the number of configurations for each type is the
number of possible settings of each port of that type.

The number of words (depth) and the number of bits per
word (width) of a type are unique numbers if only one con-
figuration exists. Otherwise, these are equal-length lists
of numbers describing the possible configurations of the
depth/width ratio. Entry i of the depth list together with
entry i of the width list correspond to configuration i. It is
assumed that the capacity of each configuration is a con-
stant; i.e.

8i 2 con f igurations :

depth(i)�width(i) = capacity(memory) (1)

The access latency for each type of memory is variable;
the read latency is the number of clock cycles required after
performing a read and before getting valid data out of the

Width1

WidthM

Depth1

DepthM

Latency
Model

Pin Traversal
Model

PortN

Port1

TypeJ

Design
Logic

Physical
Memory

Bank

Figure 1. Generic Memory Bank

memory bank. Similarly, the write latency is the number of
clock cycles required after performing a write operation and
before the data is correctly stored in the memory bank.

Finally, with respect to the physical location of the mem-
ory bank, the number of pins traversed depicts the proxim-
ity of the physical memory bank to the processing unit. If
a bank is on-chip, zero pins are traversed. If an off-chip
bank is directly connected to the memory, two pins are tra-
versed. If an indirect connection exist between the process-
ing unit and the external memory bank, then additional pins
are traversed. In general, the aim is to map data structures
to physical banks that are as close as possible to the pro-
cessing unit; the further away they are, the larger the impact
on the overall memory access performance.

A generic physical bank is shown in Figure 1. The la-
tency model captures the number of read and write clock
delays and the pin traversal model captures the number of
pins traversed between the processing unit and the memory
bank. In the Figure, bank type J is an N-ported memory, has
M different configurations: depth1/width1, depth2/width2,
..., depthM/widthM.

3.2 Task graph Description

On the design side, a description of the data structures is
required. Since this work focuses on placing the data struc-
tures on the physical banks, it is assumed that the structures
are already formed.

For each data segment in the design, the number of words
(depth) in the segment and the number of bits per word
(width) are required. A footprint analysis of the memory
accesses could tremendously help in guiding the mapping
process: e.g. data segments that are extensively accessed
should be assigned to faster and closer physical banks. In
this paper, it is assumed that the footprint analysis is not
available. Instead, frequency of accesses is based on the

size of each data segment. The assumption that a large data
segment would be accessed more frequently than a smaller
segment is not very accurate; however, it is used as a rough
metric in the mapping process.

3.3 Conflict Description

During synthesis of a design, scheduling determines the
life times [7, 4] of the variables and data structures. This life
cycle analysis could further improve the memory mapping
since segments that can overlap could be placed in the same
storage area, thus decreasing the total storage requirement.
For this purpose, the mapper needs to know which data seg-
ments life cycles overlap. A set of conflicting pairs captures
this requirement; pair (L1, L2) means that data segment L1
cannot share storage space with segment L2.

Note that on one extreme, if no conflicting pairs are
given, all segments could be ideally mapped to the same
physical bank. On the other end of the spectrum, if all con-
flicting pairs exist, no overlapping of storage space can take
place.

4 ILP Formulation

A 0-1 Integer Linear Programming (ILP) model is pre-
sented in this work. This approach yields an optimal so-
lution to the mapping problem, however, it typically takes
a very long time to execute and might not finish execution
within reasonable time for larger problems.

The advantage of using this approach is that it exposes
the constraints and objectives of the problem and pinpoints
areas that introduce added complexities to the model. The
ILP method is used here as a backbone solution to the prob-
lem where an interaction with heuristical approaches would
result with fast, low-cost solutions.

It should be noted that linearization techniques are used
at times when non-linear constraints arise. A survey of lin-
earization approaches can be found in [14].

For the formulation presented in this section, we assume
the following notation. There are M data structures:

DS = fDS1;DS2; :::;DSMg

to be mapped onto N different types of physical memory
banks:

PB = fPB1;PB2; :::;PBNg

Note that N is not the number of available banks on the RC

system. There could be multiple instances of each type of
memory bank.

For each logical data structure d, we have:
�

Dd Number of words in segment d.
Wd Number of bits per word in segment d.

For each type of physical memory bank t, we have:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

It Number of banks of type t.
Pt Number of ports in a bank of type t.
Ct Number of depth/width configurations in a

bank of type t.
Dt Array of number of words in a bank of type t.
Wt Array of number of bits per word in a bank

of type t.
RLt Read latency in number of clock cycles.
WLt Write latency in number of clock cycles.
Tt Number of pins traversed from the processing

unit to a bank of type t.

where the depth/width ratio variables are:
Dt = fd1;d2; :::;dCtg and: Wt = fw1;w2; :::;wCt g

Finally, there are Q conflict pairs in the design where
each associates two logical structures: (DSx;DSy) where:

x 6= y.
The following are some simplifying assumptions made

in this paper; they can be easily alleviated by adding new
constraints and/or new modeling variables to the formula-
tion:

� All ports of the physical banks are assumed to be
read/write ports. Overlooking capacity constraints,
any data structure could be mapped to any port of a
physical bank.

� If a multi-ported physical bank has several depth/word
configurations, it is assumed that each port can have its
own configuration setting. This is in agreement with
the Virtex BlockRAM architecture. Note that forcing
all ports to have the same configuration setting, simpli-
fies the ILP formulation.

� A data structure that is too deep or two wide to fit on
any single physical bank will be mapped onto more
than one bank. The mapper should select banks hav-
ing the same type in order to preserve similar access la-
tency: an access to any word in a data structure has the
same latency irrespective of the location of the word
within the structure.

Finally, the remaining notations pertain to the 0-1 vari-
ables used in the model. Zdt associates a data structure to a
memory type:

Zdt =

8<
:

1 if data structure d is assigned to some
instance of bank type t.

0 otherwise.

Zdt is used to force an oversized data structure to be split
across banks of the same type. Similarly, Xdtip associates a

data structure to a specific physical bank:

Xdtip =

8<
:

1 if data structure d is assigned to port p
of instance i of bank type t.

0 otherwise.

And, only for multi-configuration physical banks (i.e.
Ct > 1), Ytipc sets a specific configuration to a port of a mem-
ory bank:

Ytipc =

8<
:

1 if configuration c is selected for port p
of instance i of bank type t.

0 otherwise.

4.1 Constraint Formulation

The following are some of the important constraints in
the memory mapping problem.

� Uniqueness constraints: Each data structure should
be mapped to exactly one type of physical bank:

8d 2 DS; ∑
t2PB

Zdt = 1

� Port constraints: Each data structure should be
mapped to at most one port of an instance:

8d 2 DS; 8t 2 PB 8i;1 � i � It :
Pt

∑
p=1

Xdtip � 1

� Capacity constraints: Each data structure should be
fully stored on the hardware. In the case of physical
banks with fixed configuration:

8d 2 DS; 8t 2 PB;

It

∑
i=1

Pt

∑
p=1

Xdtip =

�
Dd

Dt [1]

�
�

�
Wd

Wt [1]

�
�Zdt

where the ceiling operator refers to the closest, greater
or equal to the power of two. This equation is based on
the assumption of Equation 1. In other words,

8i; ;8 j; 1 � i; j �Ct : Dt [i]�Wt [i] = Dt [j]�Wt [j]

For physical banks with multiple configurations, the
formulation is more complex. First, each data structure
must fit in the storage area assigned to it:

8d 2 DS;

dDde � dWde � ∑
t2PB

It

∑
i=1

Pt

∑
p=1

Xdtip �Dt [1]�Wt [1]

Second, the depth of each segment must be less than
the combined depth of the assigned banks:

8d 2 DS; Dd � ∑
t2PB

It

∑
i=1

Pt

∑
p=1

Ct

∑
c=1

Dt [c]�Ytipc

Third, the width of each segment must be less than the
combined width of the assigned banks:

8d 2 DS; Wd � ∑
t2PB

It

∑
i=1

Pt

∑
p=1

Ct

∑
c=1

Wt [c]�Ytipc

Finally, by keeping the last two formulations linear, the
following constraint must be added:

8d 2 DS; 8t 2 PB; 8i;1 � i � It ;

8p;1 � p � Pt ; 8c;1 � c �Ct : Ytipc � Xdtip

� Lifecycle conflict constraints: When there is a con-
flict between two data structures, they cannot be
mapped onto the same port of a physical bank:

8t 2 PB; 8i;1 � i � It ; 8p;1 � p � Pt ;

8q;1 � q � Q : Xq[1]tip +Xq[2]tip � 1

Note that if all data structures conflict with each other,
the formulation can be simplified by condensing the
above into a single constraint:

8t 2 PB; 8i;1 � i � It ; 8p;1 � p � Pt :

∑
d2DS

Xdtip � 1

� Configuration uniqueness constraints: In multi-
configuration banks, at most one configuration can be
selected at a time:

8t 2 PB; 8i;1 � i � It ; 8p;1 � p � Pt :

Ct

∑
c=1

Ytipc � 1

� Physical storage constraints: In multi-ported banks,
the sum of the storage space mapped to every port must
fit within the bank. For single configuration banks, the
constraint can be formulated as:

8t 2 PB; 8i;1 � i � It :

Pt

∑
p=1

max(∑
d2DS

Xdtip � dDde)� Dt

And for multi-configuration banks, the constraint be-
comes:

8t 2 PB; 8i;1 � i � It :

Pt

∑
p=1

max(∑
d2DS

Xdtip � dDde � dWde)� Dt �Wt

In the above two equations, the max() operator can
be dropped if the design assumes that all data struc-
tures conflict with each others (i.e. no space overlap-
ping). This makes the formulation much simpler since
it avoids any non-linearity in the model.

Note that when the number of physical banks is very
large, the model might not need to consider all available
banks. An upper bound on this number, for each type of
physical banks, can be used instead. Also, several other
simplifications could be made in order to speed the execu-
tion while still producing good results.

4.2 Objective Formulation

The objective of the ILP model is to optimize the perfor-
mance and minimize the interconnection cost of the mem-
ory assignment. The cost function takes the form:

minimize[Cost1 �α1 +Cost2 �α2 + :::+Costn �αn]

where αi is a weight coefficient used to normalizeCosti with
respect to all other cost components.

The objective formulation in an ILP model is compact
and allows easy expansions. Three cost components are de-
picted below. They try to cover the speed performance and
the pin limitation constraints while assuming that the depth
of a data segment is proportional to the number of times the
segment is accessed:

� Latency cost: Assuming the number of reads is equal
to the number of writes for every data structure:

∑
d2DS

∑
t2PB

Zdt �Dd � [RLt +WLt]

� Pin delay cost: Assuming the number of pins tra-
versed from the processing unit to reach the memory
bank is inversely proportional to the clock speed:

∑
d2DS

∑
t2PB

Zdt �Dd �Tt

� Pin I/O cost: The larger the width of a data structure
the more pins it will need in the event of off-chip phys-
ical banks:

∑
d2DS

∑
t2PB

Zdt �Wd �Tt

Light-Weight
High-Level
Synthesis
Estimator

Tasks specified in C/VHDL

Bitstreams

Intermediate Format

RTL

Template
Generator

Layout Synthesis

Logic Synthesis

High-Level Synthesis

Spatial Partitioner

Translator

Synthesis
Resource Arbitration

Interconnect Synthesis

Memory Synthesis

Temporal Partitioner

Figure 2. Interaction with the Synthesis Flow

5 Results and Discussion

Figure 2 shows the interaction of the memory map-
per/synthesis tool with an existing synthesis and partition-
ing tool for multi-FPGA RC boards [10]. In this paper, since
a single processing unit is assumed, the interaction with the
memory synthesis tool can take place during temporal par-
titioning or during high-level synthesis.

The ILP model presented in the previous section was ex-
ecuted for designs of different sizes. CPLEX, a commer-
cial linear programming solver [11], was used. Both the
number and types of logical segments as well as physi-
cal banks were varied. Given the constraints and objective
functions, the quality of the mapping produced was opti-
mal. Table 2 shows the execution time on a SUN Ultra-30
(248MHz with 128MB RAM) for designs of various sizes:
For logical memories, the number of segments represents
the main complexity parameter in the ILP formulation. Sim-
ilarly, for physical memories, the three complexity parame-
ters are: the total number of physical banks, the total num-
ber of ports summed over all instances of all bank types, and
the total number of possible configuration settings summed
over all multi-configuration ports of all bank types. The ex-
ecution time is given in seconds.

It is clear that for large designs, the ILP formulation
becomes impractical. However, based on the current RC

technology and current applications, the ILP execution is
satisfactory in several cases. It can also be integrated
with heuristical approaches to limit the search space. By
choosing proper heuristics, the quality of the final mapping
could be preserved to a large extent while gaining execu-
tion speed. The ILP formulation used to obtain the results in
Table 2 contains all constraints stated in this paper; it did,
however, assume that all data structures had conflicting life

Logical Physical Execution
Memories Memories Time
#segments Total Total Total (in

#banks #ports #configs seconds)

22 13 25 50 1.03
32 23 45 100 4.84
32 45 77 150 13.21
42 45 77 150 20.00
32 23 45 100 9.42
32 65 105 150 28.57
32 180 265 375 114.37
72 65 105 150 71.07
72 180 265 375 313.65

132 180 265 375 833.42

Table 2. ILP Execution Times

cycles, thus no overlapping of memory segments. A few
additional constraints were also introduced and the formu-
lation of some constraints was slightly modified to enhance
the ILP execution speed.

Note the following:

� The number of data structures can be larger than the
total number of available physical banks. There are
several ways of coping with this problem. First, if a
physical bank has more than one port, then the map-
per could assign more than one logical segment to this
bank (one logical segment per port). Second, if there
are no life cycle conflicts between two or more logi-
cal segments, then they could be mapped to the same
port of a bank. Third, two or more conflicting data seg-
ments could be mapped to the same port of a physical
bank provided an arbitration mechanism is introduced
(See Section 6). The mapper decides to arbitrate seg-
ments based on the added area and delay estimates due
to arbitration.

� A footprint analysis or software profiling information
depicting the number of memory accesses is not avail-
able to the mapper. As a rough guide, the number of
words in each data structure was assumed to be propor-
tional to the frequency of accesses. A software profil-
ing approach could lead to a lower cost implementa-
tion since the mapper would have knowledge of the
number of memory accesses for every data structure.

� The current work did not take into account constraints
posed by the data structures. In other words, there was
no way of specifying a performance constraint on spe-
cific segments. At the cost of added complexity, the
ILP formulation could handle such constraints.

c) Logic & Memory Partitioning:
 Spatial Partitioning

b) Logic Partitioning with
 Memory Mapping Interaction

 Memory Mapping
a) Post-Partitioning

Partitioner
Logic

Memory
Mapper

Partitioner
Logic

Mapper
Memory

Partitioner
Logic

Memory
Mapper

Figure 3. Partitioning and Memory Mapping

6 Ongoing Work

In a RC system containing multile processing units, logic
partitioning is the task of mapping computational opera-
tions to the processing units. In this case, the memory map-
ping process can occur at different stages of synthesis. Fig-
ure 3 shows three ways of incorporating memory mapping
with logic partitioning:

� Figure 3a depicts a post-partitioning scheme where
memory mapping occurs after the logic partitioning is
complete. The logic partitioner assumes that at least
one memory mapping is possible but does not take into
account how and where data structures are placed on
the board.

� Figure 3b shows an interaction between the logic par-
titioner and the memory mapper. In this scenario, the
logic partitioner contemplates logic partitions while
taking into account possible memory assignments. De-
pending on how many times the logic partitioner in-
vokes the memory mapper, a lighter weight memory
mapper technique could be implemented in order to
speed the interaction. A lighter weight mapper could
be one with fewer, or more relaxed, constraints.

� In Figure 3c, the processes of logic partitioning and
of memory mapping are merged. The resultant spatial
partitioning engine considers both logic and data struc-
tures at the same time. Both problems are tackled as
part of the formulation or of the heuristic algorithm.

The three views are currently being assessed. In this pa-
per, since a single processing unit was used, the three views
are equivalent to the post-partitioning approach where
memory mapping occurs after logic partitioning.

As part of ongoing and future work, the following issues
are being considered:

� In the case of a single processing unit, all design logic
is mapped onto one hardware area, and all logic areas
are assumed equidistant from each physical bank. The
model need to be enhanced to support multiple pro-
cessing units.

� The interconnection structure connecting the process-
ing unit to the physical banks is fixed. In practice,
some RC boards might offer limited programmabil-
ity. New constraints should be added to support pro-
grammable interconnect. Insight to the interconnec-
tion synthesis problem can be found in [20].

� Arbitration is not taken into consideration in this pa-
per. In other words, if two logical segments conflict,
they will be mapped on two different ports. Support
for arbitration could be based on the arbitration scheme
introduced in [9]. This scheme interacts with the syn-
thesis process to provide performance estimates due to
arbitration and introduce arbiter tasks in the design.

� It is seen that heuristic approaches could be used to
prune the design space before or while running the ILP

model. Such approaches include limiting the number
of available physical banks and pre-processing of the
input logical segments.

� Finally, an interfacing mechanism between the mem-
ory mapper and the synthesis tools will allow the de-
sign space exploration phase to take into account dif-
ferent memory assignments.

References

[1] Altera Corporation. “APEX 20K Programmable Logic De-
vice Family Data Sheet”, March 2000.

[2] Altera Corporation. “FLEX 10K Embedded Programmable
Logic Family Data Sheet”, May 2000.

[3] C. J. Tseng and D. Siewiorek. “Automated Synthesis of
Data Paths in Digital Systems”. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
volume 5, pages 379–395, July 1986.

[4] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin. “High-
Level Synthesis, Introduction to Chip and System Design”.
Kluwer, 1992.

[5] D. Karchmer and J. Rose. “Definition and Solution of
the Memory Packing Problem for Field-Programmable Sys-
tems”. In Proceedings of International Conference on Com-
puter Aided Design, pages 20–26. ACM Press, November
1994.

[6] F. Catthoor, et al. “Custom Memory Management Method-
ology”. Kluwer, 1998.

[7] G. De Micheli. “Synthesis and Optimization of Digital Cir-
cuits”. McGraw-Hill, 1994.

[8] I. Ahmad and C. Y. Chen. “Post-Process for Data Path
Synthesis”. In Proceedings of International Conference on
Computer Aided Design, pages 276–279. ACM Press, 1991.

[9] I. Ouaiss and R. Vemuri. “Efficient Resource Arbitration in
Reconfigurable Computing Environments”. In Proceedings
of Design Automation and Test in Europe, pages 560–566.
IEEE Computer Society Press, April 2000.

[10] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and
R. Vemuri. “An Integrated Partitioning and Synthesis Sys-
tem for Dynamically Reconfigurable Multi-FPGA Architec-
tures”. In Proceedings of the 5th Reconfigurable Architec-
tures Workshop, pages 31–36. Springer, March 1998.

[11] ILOG Incorporation. “Using the CPLEX Callable Library”.
http://www.cplex.com.

[12] J. Cong and K. Yan. “Synthesis for FPGAs with Embed-
ded Memory Blocks”. In Proceedings of International Sym-
posium on Field Programmable Gate Arrays, pages 75–81.
ACM press, February 2000.

[13] M. Balakrishnan, et al. “Allocation of Multiport Mem-
ories in Data Path Synthesis”. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
volume 7, pages 536–540, April 1988.

[14] P. Hansen, B. Jaumard, and V. Mathon. “Constrained Non-
linear 0-1 Programming”. In ORSA Journal of Computing,
volume 5, pages 97–119, 1993.

[15] P. Jha and N. Dutt. “High-Level Library Mapping for Mem-
ories”. In ACM Transactions on Design Automation of Elec-
tronic Systems, pages 566–603. ACM Press, July 2000.

[16] P. R. Panda, N. Dutt, A. Nicalau. “Memory Issues In Em-
bedded Systems-On-Chip”. Kluwer, 1999.

[17] S. Wilton. “Architectures and Algorithms for Field-
Programmable Gate Arrays with Embedded Memory”. PhD
thesis, University of Toronto, 1997.

[18] S. Wilton. “Heterogeneous Technology Mapping for FPGAs
with Dual-Port Embedded Memory Arrays”. In Proceedings
of International Symposium on Field Programmable Gate
Arrays, pages 67–74. ACM press, February 2000.

[19] T. Kim and C. L. Liu. “Utilization of Multiport Memories
in Data Path Synthesis”. In Proceedings of the 30th Design
Automation Conference, pages 298–302. ACM Press, June
1993.

[20] V. Srinivasan, S. Radhakrishnan, R. Vemuri, and J. Wal-
rath. “Interconnect Synthesis for Reconfigurable Multi-
FPGA Architectures”. In Proceedings of the 6th Recon-
figurable Architectures Workshop, pages 597–605. Springer,
April 1999.

[21] W. Ho and S. Wilton. “Logical-to-Physical Memory Map-
ping for FPGAs with Dual-Port Embedded Arrays”. In Pro-
ceedings of International Workshop on Field-Programmable
Logic and Applications, pages 111–123. Springer, Septem-
ber 1999.

[22] Xilinx, Inc. “Virtex 2.5V Field Programmable Gate Arrays”,
September 2000.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

