Optimal Partitioning and Balanced Scheduling with the

Maximal Overlap of Data Footprints

Zhong Wang
Dept. of Comp. Sci. & Engr
University of Notre Dame
Notre Dame, IN 46556

zwangl@cse.nd.edu

ABSTRACT

Edwin H.-M. Sha
Dept. of Comp. Sci.
University of Texas at Dallas
Richardson, TX 75083

edsha@utdallas.edu

*

Yuke Wang
Dept. of Comp. Sci.
University of Texas at Dallas
Richardson, TX 75083

their algorithms.

The paper proposes a scheme to tolerate the slow memory access

latency for loop intensive applications in the system with memory In this paper, we combine the loop pipelining technique with the
hierarchy. The scheme takes into consideration of both the inter- data prefetching approach. Multipleemory unitsattached to the
mediate data and maximal overlap of data footprints for initial data. first level memory, will perform operations to prefetch data from
Furthermore, a schedule is presented to balance the ALU computa-the second to the first level memories. Thesemory unitsare in

tion and memory operations. The memory requirement under suchcharge of preparing all data required by the computation in the first

schedule is calculated. This schedule’s improvement in total exe-
cution time is approximately 20% over existing methods.

1. INTRODUCTION

The contemporary DSP and embedded systems always contain
memory hierarchy, which can be simplified as on-chip and off-chip
memories. In general, the on-chip memory has the fast speed an
restrictive size, while the off-chip memory has the much slower
speed and larger size. During the execution, the data are loade
from the off-chip to on-chip memories for the computation. Con-
sequently, the system performance is degraded due to this long off-
chip access latency. How to tolerate the memory latency with mem-
ory hierarchy is becoming a more and more important problem [9].
In this paper, We abstract the on-chip and off-chip memories as the
first and second level memories, respectively.

The prefetching techniques are proposed to attack the problem of
tolerating the memory latency without considering the memory hi-
erarchy. They can be classified into two categories — hardware-
based [4, 3] and software-directed prefetching [9]. Hardware-
based prefetching shows a poor performance when the program ha;
complex access patterns, since such kind of pattern information
is difficult to catch dynamicly in the execution stage. The tradi-
tional software-directed prefetching generally has little considera-
tion on how to increase the program’s parallelism. On the contrary
of the prefetching techniques, multi-dimensional loop pipelining
techniques [7] can be used to explore more parallelism, even to
the extent of achieving full-parallelism for uniformly nested loops.
These techniques, however, do not consider the memory latency in

*This work is partially supported by CAM Graduate Fellowship

level memory in advance of computation. Multipd.U unitsex-

ist in the processor for doing the computation. The operations in
the ALU units and memory units execute simultaneously. There-
fore, the remote memory access latency is tolerated by overlapping

théhe data fetching operations with the ALU operations. This pa-

per presents an approach to balance the ALU and memory parts to

Oachieve an optimal overall schedule length. Furthermore, the mem-

ory requirement of the first level memory to implement this overall

dschedule is calculated.

Loop tiling [8, 5] is a technique used to group basic computations
S0 as to increase computation granularity and thereby reduce com-
munication time. The traditional loop tiling techniques are mainly
applied to the distributed computer architecture in which each pro-
cessor has his own local memory, which is different from our model
—multi-processors share a common memory hierarchy, which can
be found in embedded computer system [6], multi-processors com-
puter, etc. The traditional loop tiling techniques find a right tile
shape to efficiently reduce the communication cost among multiple
processors without considering the scheduling of the basic opera-

éions. The approaches in [2, 10] are the few approaches to con-

sider the detailed scheduling under memory hierarchy. However,
their memory references consider only the intermediate data, and
ignore the initial data, which are an important influence factor for
performance.

In our approach, we consider both intermediate and initial data.
Theintermediate datavill be changed by value during the compu-
tation. They can appear as the left or right operands in the equation.
On the other hand, thiaitial data will keep their value during the
computation. They can only appear as the right operands in the
equation.

To increase the data locality, the iterations are grouped as parti-
tions. We use the conceftiotprint [1] to denote those initial data
required by the computations in one partition. Given a partition

shape, we present an polynomial algorithm to find a partition size

which can give rise to the maximum overlap between the adjacent
footprints such that the number of memory operations is reduced to
the largest extent. The new algorithm in this paper exceeds the per-

formance of existing algorithms [2, 4] due to the fact it optimizes to different data in a partition. For a delay dependency that goes
both ALU and memory schedules and considers the influence of into the next partition, a keep memory operation is used to keep

initial data. this data in the first level memory for one partition because of its
immediate reuse in the next partition. Delay dependencies that go
2. BACKGROUND into other partitions result in using prefetch memory operations to

A loop body can be represented bynailti-dimensional data flow ~ féich datain advance.

graph (MDFG) [7]. Each node in the MDFG is a computation.
Each edge denotes the data dependence between two computation
with its weight as the distance vector. The execution of all nodes
in a MDFG for one time is called aiteration. It corresponds to
executing the loop body once. Iterations are identified by a vector
i equivalent to the multi-dimensional index.

4 partition is determined by its shape and size. We uselasic
vectors(In a basic vector, each element is an integer and all ele-
ments have no common factor except 1p—andP, to identify a
parallelogram as the partition shape. These two basic vectors will
be calledpartition vectorsin the paper. Assume without loss of
generality, the angle betwe@g andP, is less than 18Q andP is

In this paper, we will always illustrate our ideas under two dimen- Clockwise ofPy. Then the partition shape and size can be denoted
sional loops. Using the same idea presented in this paper. it is notPY the direction and the multiple of two partition vectors.

difficult to extend to loops with a higher dimension.
P g How to find the optimal partition size will be discussed in the fourth

21 Architecture model section. Here we present the property of a partition shape.

The technique in our paper is designed for use in a system with one
or more processors. These processors share a memory hierarchy, PROPERTY 2.1. A pair of partition vectors that satisfy the fol-

as shown in Fig 1. Multiple ALU and memory units exist. Ac- lowing constraints is legal. For each delay vecte the following
cessing the first level is significantly slower than the second level cross product relations hold. d x Px<0and & xR, > 0

memory. During a program’s execution, if one instruction requires

data which is not in the first level memory, the processor will have

to fetch data from the second level memory, which will cost much Because nested loops should follow the lexicographical order, we
more time. Therefore, prefetching data into the first level memory can choosgl,0) as ourP vector and use the normalized leftmost
before its explicit use can minimize the overall execution time. Two Vvector of all delay dependencies as &yr

types of memory operationgrefetchandkeepare supported by the
memory units. Both of them are issued to get those data ready in
the first level memory for the near future references. It is important
to note that the first level memory in this model cannot be regarded
as a pure cache, because we do not consider the cache associativity.
In other words, it can be thought of as a full-associative cache.

Memory

'Fih;efetch for
Initial data

| :Keepfor Initial da@

p ~ Prefetch for
- Inter data
ALUs memory units -
EINENE! Ik o
<Q : E Keepforlnterdat%
I

(amat,) (argesion) Figure 2: The overall schedule

internal external memory,
memory

- J

An overall scheduldor a partition consists of two parts: the ALU
Figure 1: The overall schedule and memory parts, as seen in Figure 2. The ALU part schedules

the ALU computations. Since the computation in a loop can be

represented by an MDFG. The ALU part is a schedule of these

292 Partitioning the iteration space MDFG nodes. The memory part schedules the memory operations
The loop execution corresponds to executing all the iterations in the aart)arlefetch and keep operations for both initial and intermediate

iteration space. Regular nested loop execution proceeds in either a

row-wise or column-wise manner. However, this mode of execu-

tion does not take full advantage of either the locality of reference 3. TH_E THEORY ABO_UT INITIA_I—_DATA)

or the available parallelism. The execution of such structures can The footprint for a partition consists of all the initial data required

be more efficient by dividing the entire iteration space into regions by the computations in this partition. It can be determined by the
called partitions that better exploit spatial locality. partition itself and thelisplacement vectaof the initial data. The

displacement vector is defined as the difference between the loop
Provided that the total iteration space is divided into partitions of and initial data indexes. For instance, given the expression of the
iterations, the execution sequence will be determined by each parti-initial datasin+ 1, m-+ 2] and loop indexn, m, the displacement
tion. Assume that the partition in which the loop is executing is the Vector is(1,2). The corresponding part in footprint for this ini-
current partition Then thenext partitionis the partition adjacent tial data is the set of all the integer points lying in a parallelogram
on the right side of the current partition along the X-axis. ®tieer 1The cross producp; x p, is defined as the signed area of the

partitions are all partitions except the above two partitions. Based parallelogram formed by the points(0,Q)1, p, and p1+ p2 =
on this classification, different memory operations will be assigned (X1 +X2,y1+V2). Itis p1 X p2 = p1.XpP2.y— P1.YP2-X.

formed by moving the left lower corner of the partition frgmy) Both F(R s) and F(RS,s) are the union of some line segments.
to (x+3,y+2). Their overlap is the union of all intersections of two line segments
from F(R,s) andF (RS, s), respectively.
The major concern on initial data is to maximize the overlap be-
tween the footprints for two adjacent partitions, and comply with
the memory size restriction. More overlap will lead to less number F(Rs) = (ri+sri+2s—1)u(rz+srz+2s—1)--U(rntsn+2s-1)
of prefetch operations, because the corresponding data can be kept
in the memory for the next partition. A larger partition may lead
to a larger overlap. Nevertheless, the partition cannot be too large
on account of the restrictive memory size. We first give some def-
initions regarding the footprint for a partition. In these definition,
the setR includes all the displacement vectors for the initial data
references.

F(Rs) = (ry,ri+s—1)u(ra,ro+s—1)U(ra,ra+s—1)--U(ry,r+s—1)

At following, we reveal the relation between the overlap of the ad-
jacent footprints and the line segment size

LEMMA 3.3. LetGybe the intersectiofrm,rm+s—1)N(rm-1+
S,'m—1+ 2s—1). Then the intersection of (R 's) and F(RS,s) is
UECm, where the number of integers in R is n.

DerINITION 3.1. 1. Given a certain partition shapeyxk
Py, ST, 9) is a set of integer points in a parallelogram which
has the shape,P< P, and size f x fy , wherer = (a,b) is a
displace vector for a initial data reference, agd= (fx, fy)
is the partition size.

THEOREM 3.4. Given the set R= (ry,rp,r3,...,rn), the max-
imum intersection between(R,s) and F(R®,s) can be achieved
when s=maX]_,(frm—rm-1).

2. Given a set of integer vectors=R{r1,r>,...,fn}, the foot-)
print of R for a partition FR,§), is the union of all &,8) _ THEOREM 3.5. For two sets RR,s) and F(R®,s), the intersec-
for eachf, in R. tion of these two sets will keep constant if the value of s continues

to increase from the s value obtained by the Theorem 3.4.
3. The footprint for the next partition (R®,s) is built upon set
RS, in which each elemem® =} + fyPy.
When considering to maximize the overlap between two adjacent
footprints in the 2-dimensional case, we can notice thalement
In one dimension case, all the vectors become into integers and thepf the partition size is not so important dg element, since the
second dimension elements are zero. Therefore, One dimensionalntersection always increases whépis increased. As indicated
case can be regarded as a simplification to the two dimensionallater, the value ofy can be determined based on other conditions.
problem. It provides the theoretic foundation to two dimensional Therefore, the key is what is the minimum valuefgto make the
problem. The following example demonstrates the problem in one intersection maximal under a certafip
dimensional case. In the example, theRés$ {1,2,7}. The solid

line represents the correspondifig, s) for eachr in the seRR. The Given a certain partition size afand the seR, an augment set
dotted line denotes the correspondi®g®, s) for eachr® in setR®. R can be obtained with the following methodr = rj, r{, =

The union of all solid lines is sé&t(R, s), while the union of all dot- ri + fyPy.y, where n is the size of s&andPR, = (Py.x,R,.y). Ar-

ted lines is the sef (R®,s). The figure shows the case whes 5, ranging all the points in sé® with the increasing order along
which is the minimuns value to obtain the maximum intersection axis, the overall footprint for one partition can be divided into a
betweerF (R, s) andF (RS, s). series of stripes. Each stripe is determined by two horizontal lines

which pass the adjacent two points in sorRdFor instance, in the
Figure 4, thRsetis{(0,0),(6,1),(3,2),(1,3)}. Assume the value

0 2 4 6 8 10 12 14 16 18

Figure 3: The one dimensional line segments

The following two lemmas show the properties of the intersection
between two adjacent footprints.

LEMMA 3.1. The minimum s isy;r—rq which makes the maxi- Figure 4: The stripe division of a footprint
mum intersection between segménist-s,r1 +2s—1) and(ro,ro+
s—1), where p >ry.

In each stripe, a horizontal line will intersect with left bounds of

LEMMA 3.2. For the intersection between segmefmist-s,ri + some setS§(T,). Thus, the two dimensional footprint overlap prob-
2s—1) and(rz,r2 +s—1), where p > ry, it will keep constant, ir- lem of this stripe can be reduced to one dimensional problem, which
relevant to the value of s, as long a&g, —r;. can be solved using Theorem 3.4. Applying this idea to each stripe,

Algorithm 1 Calculating the minimum x to make the overlap max- Different from the ALU schedule, which is the replication of a sin-

imum gle iteration schedule, The memory schedule is considered based

Input: The seRand the shape of the partition , on the entire partition. It schedules the memory operations for ini-

Oult_p;tétfr?g bto make the overlap maximum under a certéin tial and intermediate data, as shown in Figure 2. Both operations
2. Based on the s&and partition shape, chooséiasuch that the produdy, = P,.y consist of the prefetch and keep operations for the corresponding

is larger than the difference between the largest and beeleiment of all vectors in data. Since all the prefetch operations have no relation to the cur-

setR. :
3. Using thef, above, generate the augmentRet rent computation, they can be arranged at the start of the memory

4. Sort all the value in thE in increasing order according to theslement and kept schedule. On the contrary, the keep operation for intermediate data
them in a event list. can only be issued after the corresponding computation has fin-

5. Use a horizontal line to sweep the whole iteration space. When a lower bound jsheq The keep operations for initial data can be issued as soon as
event point is met, insert the corresponding §&t3S) in a visiting list. Otherwise

delete the correspondirgfr, 8) from the list. they are prefetched from the second level memory. The memory
6. Calculate the intersection point of this line with the leftbound and righbound of - schedule length is the summation of all these operations, execution
each set in the visiting list, respectively. Use Theorem 3.4 to derifjevalue to time.

make the intersection in current stripe maximal.
7. Replacefy with fy if ;> fy.

@ o d1 d2
- [/ / /
17 (a) Prefetch region (b) Keep region

(2) 2D (b) WDF Figure 6: The tendency of intersection withx and y

For the intermediate data, a prefetch operation is necessary if there
Figure 5: The tendency of intersection withx and y is a delay dependency going to the other partition from the current
partition. Thereby each delay vector will delimit a parallelogram
in which the corresponding data are prefetched from the second
we can solve the whole two dimensional problem, as demonstratedjeye| memory. The number of prefetch operations for this delay

in the following algorithm. dependency is the area of this parallelogram. The overall number
)))) of prefetch operations for intermediate data in one partition is all
From the Lemma 3.2, the intersection will keep unchanged i such parallelogram for all delay dependencies. It is the summation

greater than the value chosen by this algorithm, and reduce underof gl the parallelograms’ area under the condition that there is no

the lessfx. We can demonstrate this phenomenon by two examples. common intersection among the parallelograms. If such intersec-
The seRfor the first example i§(01),(5,3),(-3.1),(4,-1),(-2-2)} and tion does exist, we have the definitionexjuivalent prefetch class

the partition shape i$1,0) x (0,1). Itis the partition shape for ap equivalent prefetch class comprises of all those prefetch oper-
Wave Digital filter The seRis {(0.2),(35),(1.3)(-1-1)}inthesecond ations with the delay dependencies that start from the same data

example and the partition shapg1s0) x (—3,1). Itis the partition node and go into the same other partition. The prefetch operation
shape forfwo Dimensional filter The Figure 5(a) and 5(b) show |l be counted only once for each equivalent prefetch class. The
the varying trends of footprint overlap with the value fafand fy Figure 6(a) shows the example with two delay dependencies exist
for two examples, respectively. in the partition. Those prefetching parallelograms are the shadow
regions decided by two delay dependegyandd,, respectively.
4., THE OVERALL SCHEDULE The overall number of prefetch operations for these two delays is
The overall schedule can be divided into two parts — ALU and the summation of the two areas, except those equivalent prefetch
memory schedules. For the ALU schedule, thelti-dimensional classes.

rotation scheduling algorithnj7] is used to generate a static sched-
ule for one iteration. Then the entire ALU schedule can be formed For the initial data, they can be prefetched from the second level
by simply replicating this schedule for each iteration in the par- memory in blocks. This kind of operation can fetch several data
tition. The schedule obtained by this way is the most compact at one time and costs only a little longer time than general prefetch
schedule since it only considers the ALU hardware resource con- operation. To calculate the number of such operations, we first have
straints. The overall schedule length must be larger than it. There-the following observation.

fore, this ALU schedule provides a lower bound for the overall
schedule. This lower bound can be calculated Bn#ation X
#nodes wherelenieration represents the schedule length obtained
by multi-dimensional rotation scheduling algorithm for one itera-
tion, and #hodesdenotes the number of nodes in one partition. Our
objective is to find a partition whose overall schedule length can be
very close to this lower bound.

PROPERTY 4.1. As long as §* P,.y, the projection of partition
size along Y coordinate, is larger than the maximum difference of
the Y coordinates in all displacement vectors for initial data, the
footprint will increase at a constant rate with the increment @f f
so does the number of prefetch operations for initial data.

4.1 Balanced overall schedule Therefore, given a certaify and fy, which satisfying the condition

in the above property, the number of prefetch operations for the ini-
tial data isPregaseini + (fy — fy,) X Préincr_ini, wherefy, = (%1,
Yo is the maximal distance of thé coordinates in all displacement
vectors,Pregaseini denotes the number of prefetch operations for a
partition with sizefy x fy,, andPreincr_ini represents the increment) ’
of the number of prefetch operations whiris increased by one. The theorem not only gives the balanced overall schedule’s con-
straints. but also provides the method to find a partition size which
As the prefetch operation, there are keep operations for the inter-Can generate a balanced overall schedule.
mediate and initial data. The number of keep operations for the in- . o
termediate data can be calculated by the same principle for prefetchd.2 Algorithm for finding balanced overall sched-
operations. The definition of amquivalent keep clags similar to ule
the equivalent prefetch classin equivalent keep class comprises s |ong as the first two conditions in Theorem 4.1 are satisfied,
of all those keep operations with the delay dependencies that star{ye can guarantee that, when partition size is enlarged, the overall
from the same data node. The Figure 6(b) shows the correspondingjme consumption of prefetch and keep operations for intermediate
keep regions for those two delay dependencies. data in memory schedule increases slower than the ALU schedule
length. At this time, if a partition size cannot be found to meet
the third constraints, it means the time consumption of the block
prefetch operations for initial data increased too fast. Due to the

’V#keepi'Kee [Baseini +(fy— fyo) x Kee her_ini

mem

—| *Tkeepg LaLy *#iter+
Tkeep

To the initial data, the intersection of the current and next foot-
prints will be needed by both partitions. They can be kept in the
first level memory, thereby spare some high-cost prefetch opera- honerty of block prefetch, increasirfg will increase the number
tions. This is the reason to use minimal valuefgfto achieve of block prefetch operations only by a small number, while increase
the maximal intersection. Different from keep operations for the ha ALU schedule by a relative large length. Consequently, a parti-
intermediate data, these operations have no relation to the currentjy, size which can satisfy all of the three conditions can be found.
partition’s computation. They can be arranged after they have been

prefetched from the memory. The number of such operations is agier the optimal partition size is determined, the operations in the
Keefaseini + (fy — fy,) x Keepner_ini, whereyp and fy, have the ALU and memory schedules can be easily arranged. For the ALU
same meaning as abovkee Baseini denotes the number of keep gchedule, it is the duplication of the schedule for one iteration. For
operations for a partition with sizé x fy,, andKee fher_ini rep- the memory schedule, the memory operations for initial data are al-
resents the increment of keep operations wheis increased by |ocated first, then are the memory operations for intermediate data,
one. as we discussed before.

In order to understand what is a good partition size, we first need Algorithm 2 Find a balanced overall schedule
the definition of the balanced overall schedule.

Input: The ALU schedule for one iteration, the partition sh&pe P, and the initial
data displacement vector $et
Output: A partition size which can generate a balanced overall schedule

DEFINITION 4.1. A balanced overall schedulds a schedule 1. Based on the information of the initial data, use algorithm 1 to calculate the
in which the memory schedule is at most one unit time of keep op- Jimum partition sizef; and fy
. ry pop- ; Using the first two condition in Theorem 4.1 to calculate another pair of minimal
eration longer than the ALU schedule. fi and)/

3. Get a new paify = max fy, fY') and fy = max fj, fy/).
4. Using this pair(fy, fy), calculate the number of prefetch operations, block
; it prefetch operations and keep operations.
To .Ob.tam a balanced overall schedule, some conditions need to be 5. Calculate the ALU schedule length to see if the third condition in Theorem 4.1
satisfied. In theorem 4.8,= (dx,dy) denotes a delay dependency. is satisfied.
#preand #kee pare the number of the prefetch and keep operations 6. If itis satisfied, this paiffy, fy) is the partition size. Otherwise, increafseby
for intermediate dataTpre is the time consumption of a prefetch ~ ne. use the third condition to find the minimigluuhich make the inequation true.
. . . - such fy does not exist, continue increasifiguntil the feasiblefy is found. Use
operation, Thiock pre i the time consumption of a block prefetch them as the partition size.
operation for initial data, andieepis the time needed for a keep 7. Based on the partition size, Output the corresponding ALU part and memory
operation.La y represents the ALU schedule length for one itera- _ schedules.
tion and #ter is the number of iterations in one partitioNmemis

the number of memory units. Other symbols have the same mean-4 3 The memory requirement for the overall
ings as we discussed above.) schedule

The memory requirement consists of four parts, the memory space
THEOREM 4.1. The size of the partition should satisfy the fol- for the calculation of the in-partition data, for prefetching interme-
lowing three constraints to make the overall schedule balanced. diate data, for keeping intermediate data and for those operations on
initial data. We will discuss these four part memory requirements

)) respectively.
1. There is no delay dependency which can span more than two
partitions along the Y coordinate direction, that is«PRy.y > For those in-partition data, they will be computed and reused in the
dy,vd = (dx,dy) € D. same partition. Their memory requirement computation is a little

complicated due to the consideration of memory reuse, which can

2. There is no delay dependency which can span more than be refer 1o /CiteDAC.

two partitions along the X coordinate direction, that ig>f
R.y
max{ch — W}' For the other part memory requirements, they can be computed
simply by multiply the number of operations with the memory
* Tolock_pret requirement of each operation. The memory requirement for a

3. ’V #pre-‘ % Tpre + |— PreBas&inH‘(fy* fyO)X Préncr_ini -|

Nmem mem

Benchmark Par Vector New algo PSP algo list hardware

Px Py size m_r len size | mr len ratio len ratio len ratio
WDF (1,0) | (-3,1) 4x7 | 221 | 4107 || 4x4 | 143 | 5.312 | 22.68% || 18 | 77.18% || 10 | 58.93%
IR 1,0) | (-2,1) 4%x9 | 407 | 6.028 || 4x7 | 350 | 6.893 | 12.55% || 36 | 83.26% || 37 | 83.71%

DPCM (1,00 | (-2,1) || 8x10 | 736 | 4.01 8x8 | 628 | 4.891 | 18.01% || 25 | 83.96% || 21 | 80.9%
2D (1,0) | (0,1) 3x5 | 233 12 3x4 | 207 12 0.0% 55 | 78.18% || 51 | 76.47%
Floyd (1,0) | (-3,1) 7x5 | 301 | 6.057 || 4x4 | 174 | 6.312 | 4.04% 32 | 81.72% || 30 | 79.81%

Table 1: Experimental results with only one initial data

Benchmark par Vector New algo PSP algo List hardware
VX Vy size m.r len size | mr Ten ratio len ratio len ratio
WDF (1,0) | (-3,1) 8x7 474 | 4.018 || 4x4 | 206 8 49.78% (| 22 | 81.74% || 10 | 58.92%
IR (1,0) | (-2,1) || 5x13 | 772 | 6.015|| 4x7 | 472 | 7.857 | 23.44% || 40 | 84.96% || 37 | 83.74%

DPCM || (1,0) | (-2,1) || 8x14 | 1207 | 4.001 || 8x8 | 811 | 5266 | 24.02% || 29 | 86.2% || 21 | 80.95%
2D (1,0) | ©1) || 4x5 | 346 | 12 || 3x4 | 253 | 13.833 | 13.25% || 59 | 79.66% || 51 | 76.47%
Floyd || (1,0) | (-31) || 8x6 | 526 | 6 4x4 | 223 | 8812 | 31.91% | 36 | 83.33% || 30 | 80%

Table 2: Experimental results with three initial data

prefetch operation is 2. One is used to store the data prefetchedfor each DSP filter can be finished in no more than 2 seconds.

by the previous partition and consumed in the current partition, the

other stores the data prefetched by the current partition and con-As we can see from these tables, list scheduling and hardware
sumed in the next partition. As the same rule, the keep operation prefetching scheduling have much worse performance than other
will take 2 memory locations. The block prefetch operations will two algorithms, due to the reason that long memory part schedule

take 2x block sizememory locations. dominates the overall schedule and is far from the balanced sched-
ule. The PSP partition algorithm gets the worse results because of
5. EXPERIMENT the lacking of consideration on the initial data. The time cost for

In this section, we use several DSP benchmarks to illustrate the ef-the initial data will lead to an unbalanced schedule. Our new al-
fectiveness of our new algorithm. They are WDF, IIR, DPCM, 2D gorithm considers both data locality and the initial data. Therefore,
and Floyd, as indicated in the tables, which stand/fawe Digital the much better performance can be achieved through balancing the
filter, Infinite Impulse Response filter, Differential Pulse-Code Mod- ALU part and memory part schedule.
ulation device, Two Dimensional filter and Folyd-Steinberg algo-
rithm, respectively. We applied four different algorithms on these 6. REFERENCES
benchmarks: list scheduling, hardware prefetching scheme, PSP (1] Anant Agarwal, David A. Kranz, and Venkat Natarajan. Automatic partitioning

iti Igorithm [2] and our new partition algorithm. In list of parallel loops and data arrays for distributed shared-memory multiprocessors.
ngt:lgttlj?ﬂinagg?;":e same architecture mF:)deI is usgd HoWever the IEEE Trans on Parallel and Distributed Syster§9), September 1995.
ALU part uses the traditional list scheduling algorithm, and the iter- (21 F.-Chen and E.H.-M.Sha. Loop scheduling and paritions for hiding memory
ation space is not partitioned. In hardware prefetching scheduling Iatenc'%i' I;Erosc' IEJEE lzr\tlh |merbnaulog§€|)5ymposlum on System Synihesis

v I ! pages 64—/0, san Jose, November .

we use the model presented in [4]. In this model, whenever a block
is accessed, the next block is also loaded. [3

F.Dahlgren and M.Dubois. Sequential hardware prefetching in shared-memory
multiprocessordEEE Transactions on Parallel and Distributed Systef(3),

) . July 1995.

In the experiment, we assume a prefetch time of 10 CPU clock cy-

cles and a block prefetch time of 16 CPU clock cycles, which is [4] J.-L.Baerand T.-F.Chen. An effective on-chip preloading scheme to reduce data
reasonable when the big performance gap between Cbu and the °°° penalty. IRroc. of Supercomputing'9pages 176-186, 1991.

main memory is considered. The first table presents results with [5] J.Chame and S. Moon. A tile selection algorithm for data locality and cache

onIy one initial data with the displacement vec(dJ; 1) and the interference. IrProc. of the 1999 ACM International Conference on
. . L . . SupercomputingRhodes, Greece, June 1999.
second table is results with three initial data with the displacement
vector sef{(1,1),(2,-2),(0,3)}. In the tables, thear vectorcol- (6] J. Madsen arrg P-Bjogrymolrgenser)- ET&?dﬁeﬁ Systern S)énthesli; Ufrt\v?iler memory
H T4 H constraints. roc. of 7th International Workshop on Hardware/Software
umn determines the_partltlon shape. Tise cc_JIumn includes the Codesignpages 188-193, Rome, May 1999,
schedule length for list scheduling and the improvement ratio our
algorithm can get compared to list scheduling. Haedwarecol- [7] N.Passos and E.H.-M.Sha. Scheduling of uniform multi-dimensioanl systems

under resource constraingaurnal of IEEE Transactions on VLSI Systems

umn includes the schedule length for hardware prefetching and our 6(4), December 1998.

algorithm’s relative improvement ratio. In tieSP algoand new

a|g0 Columns’ thesize column is the size of partition presented [8] P.BOU”EI, A.Darte, T.RiSSEIl, and Y.Robert. (pen)-ultimate tilingStalable
with the multiple of the partition vectors. Thar column repre- High-Performance Computing Conferenpages 568-576, May 1994.
sents the corresponding memory requirement andeiheolumn [9] T.Mowry. Tolerating latency in multiprocessors through compiler-inserted
is the average scheduling length for corresponding algorithms. The prefetching ACM Transactions on Computer Systeti(1):55-92, February
ratio column inPSP algois the improvement our new algorithm 1998.

can get relative to the PSP algorithm. [10] Z. Wang, M. Kirkpatrick, and E.H.-M.Sha. Optimal two level partitioning and
loop scheduling for hiding memory latency for dsp application®roc. ACM

. 37th Design Automation Confere es 540-545, Los Angeles, California,
All the experiments are done on SUN Ultra-SPARC2 platform. June 2008’_ neRg 9

Given aMDFG for DSP filter and the initial datdisplacement vec-
tor set, a program is run to determine the balanced partition size
and the corresponding ALU, memory schedules. The computation

	Main Page
	GLSVLSI'01
	Front Matter
	Table of Contents

