
Optimal Partitioning and Balanced Scheduling with the
Maximal Overlap of Data Footprints �

Zhong Wang
Dept. of Comp. Sci. & Engr

University of Notre Dame
Notre Dame, IN 46556

zwang1@cse.nd.edu

Edwin H.-M. Sha
Dept. of Comp. Sci.

University of Texas at Dallas
Richardson, TX 75083

edsha@utdallas.edu

Yuke Wang
Dept. of Comp. Sci.

University of Texas at Dallas
Richardson, TX 75083

ABSTRACT
The paper proposes a scheme to tolerate the slow memory access
latency for loop intensive applications in the system with memory
hierarchy. The scheme takes into consideration of both the inter-
mediate data and maximal overlap of data footprints for initial data.
Furthermore, a schedule is presented to balance the ALU computa-
tion and memory operations. The memory requirement under such
schedule is calculated. This schedule’s improvement in total exe-
cution time is approximately 20% over existing methods.

1. INTRODUCTION
The contemporary DSP and embedded systems always contain the
memory hierarchy, which can be simplified as on-chip and off-chip
memories. In general, the on-chip memory has the fast speed and
restrictive size, while the off-chip memory has the much slower
speed and larger size. During the execution, the data are loaded
from the off-chip to on-chip memories for the computation. Con-
sequently, the system performance is degraded due to this long off-
chip access latency. How to tolerate the memory latency with mem-
ory hierarchy is becoming a more and more important problem [9].
In this paper, We abstract the on-chip and off-chip memories as the
first and second level memories, respectively.

The prefetching techniques are proposed to attack the problem of
tolerating the memory latency without considering the memory hi-
erarchy. They can be classified into two categories – hardware-
based [4, 3] and software-directed prefetching [9]. Hardware-
based prefetching shows a poor performance when the program has
complex access patterns, since such kind of pattern information
is difficult to catch dynamicly in the execution stage. The tradi-
tional software-directed prefetching generally has little considera-
tion on how to increase the program’s parallelism. On the contrary
of the prefetching techniques, multi-dimensional loop pipelining
techniques [7] can be used to explore more parallelism, even to
the extent of achieving full-parallelism for uniformly nested loops.
These techniques, however, do not consider the memory latency in

�This work is partially supported by CAM Graduate Fellowship

their algorithms.

In this paper, we combine the loop pipelining technique with the
data prefetching approach. Multiplememory units, attached to the
first level memory, will perform operations to prefetch data from
the second to the first level memories. Thesememory unitsare in
charge of preparing all data required by the computation in the first
level memory in advance of computation. MultipleALU unitsex-
ist in the processor for doing the computation. The operations in
the ALU units and memory units execute simultaneously. There-
fore, the remote memory access latency is tolerated by overlapping
the data fetching operations with the ALU operations. This pa-
per presents an approach to balance the ALU and memory parts to
achieve an optimal overall schedule length. Furthermore, the mem-
ory requirement of the first level memory to implement this overall
schedule is calculated.

Loop tiling [8, 5] is a technique used to group basic computations
so as to increase computation granularity and thereby reduce com-
munication time. The traditional loop tiling techniques are mainly
applied to the distributed computer architecture in which each pro-
cessor has his own local memory, which is different from our model
–multi-processors share a common memory hierarchy, which can
be found in embedded computer system [6], multi-processors com-
puter, etc. The traditional loop tiling techniques find a right tile
shape to efficiently reduce the communication cost among multiple
processors without considering the scheduling of the basic opera-
tions. The approaches in [2, 10] are the few approaches to con-
sider the detailed scheduling under memory hierarchy. However,
their memory references consider only the intermediate data, and
ignore the initial data, which are an important influence factor for
performance.

In our approach, we consider both intermediate and initial data.
The intermediate datawill be changed by value during the compu-
tation. They can appear as the left or right operands in the equation.
On the other hand, theinitial data will keep their value during the
computation. They can only appear as the right operands in the
equation.

To increase the data locality, the iterations are grouped as parti-
tions. We use the conceptfootprint [1] to denote those initial data
required by the computations in one partition. Given a partition
shape, we present an polynomial algorithm to find a partition size
which can give rise to the maximum overlap between the adjacent
footprints such that the number of memory operations is reduced to
the largest extent. The new algorithm in this paper exceeds the per-

formance of existing algorithms [2, 4] due to the fact it optimizes
both ALU and memory schedules and considers the influence of
initial data.

2. BACKGROUND
A loop body can be represented by amulti-dimensional data flow
graph (MDFG) [7]. Each node in the MDFG is a computation.
Each edge denotes the data dependence between two computations,
with its weight as the distance vector. The execution of all nodes
in a MDFG for one time is called aniteration. It corresponds to
executing the loop body once. Iterations are identified by a vector
~i, equivalent to the multi-dimensional index.

In this paper, we will always illustrate our ideas under two dimen-
sional loops. Using the same idea presented in this paper. it is not
difficult to extend to loops with a higher dimension.

2.1 Architecture model
The technique in our paper is designed for use in a system with one
or more processors. These processors share a memory hierarchy,
as shown in Fig 1. Multiple ALU and memory units exist. Ac-
cessing the first level is significantly slower than the second level
memory. During a program’s execution, if one instruction requires
data which is not in the first level memory, the processor will have
to fetch data from the second level memory, which will cost much
more time. Therefore, prefetching data into the first level memory
before its explicit use can minimize the overall execution time. Two
types of memory operations,prefetchandkeepare supported by the
memory units. Both of them are issued to get those data ready in
the first level memory for the near future references. It is important
to note that the first level memory in this model cannot be regarded
as a pure cache, because we do not consider the cache associativity.
In other words, it can be thought of as a full-associative cache.

memory units

A
L

U
2

A
L

U
3

m
em

1

m
em

2

m
em

3

(small, fast)

ALUs

A
L

U
1

(large,slow)
internal external memory
memory

Figure 1: The overall schedule

2.2 Partitioning the iteration space
The loop execution corresponds to executing all the iterations in the
iteration space. Regular nested loop execution proceeds in either a
row-wise or column-wise manner. However, this mode of execu-
tion does not take full advantage of either the locality of reference
or the available parallelism. The execution of such structures can
be more efficient by dividing the entire iteration space into regions
called partitions that better exploit spatial locality.

Provided that the total iteration space is divided into partitions of
iterations, the execution sequence will be determined by each parti-
tion. Assume that the partition in which the loop is executing is the
current partition. Then thenext partitionis the partition adjacent
on the right side of the current partition along the X-axis. Theother
partitionsare all partitions except the above two partitions. Based
on this classification, different memory operations will be assigned

to different data in a partition. For a delay dependency that goes
into the next partition, a keep memory operation is used to keep
this data in the first level memory for one partition because of its
immediate reuse in the next partition. Delay dependencies that go
into other partitions result in using prefetch memory operations to
fetch data in advance.

A partition is determined by its shape and size. We use twobasic
vectors(In a basic vector, each element is an integer and all ele-
ments have no common factor except 1) –Px andPy to identify a
parallelogram as the partition shape. These two basic vectors will
be calledpartition vectorsin the paper. Assume without loss of
generality, the angle betweenPx andPy is less than 180Æ, andPx is
clockwise ofPy. Then the partition shape and size can be denoted
by the direction and the multiple of two partition vectors.

How to find the optimal partition size will be discussed in the fourth
section. Here we present the property of a partition shape.

PROPERTY 2.1. A pair of partition vectors that satisfy the fol-
lowing constraints is legal. For each delay vector de, the following
cross product1 relations hold. de�Px � 0 and de�Py � 0

Because nested loops should follow the lexicographical order, we
can choose(1;0) as ourPx vector and use the normalized leftmost
vector of all delay dependencies as ourPy.

Prefetch for
Initial data

Keep for Initial data

Prefetch for
Inter data

Keep for Inter data

CS 1:
CS 2:
CS 3:
CS 4:
CS 5:
CS 6:
CS 7:
CS 8:
CS 9:
CS 10:
CS 11:
CS 12:
CS 13:
CS 14:
CS 15:
CS 16:
CS 17:

1

101112

2
3 4 5 6 7
8 9

5 6

7
8 9

10
1112

1
2 3

4

MemoryALU

Figure 2: The overall schedule

An overall schedulefor a partition consists of two parts: the ALU
and memory parts, as seen in Figure 2. The ALU part schedules
the ALU computations. Since the computation in a loop can be
represented by an MDFG. The ALU part is a schedule of these
MDFG nodes. The memory part schedules the memory operations
– prefetch and keep operations for both initial and intermediate
data.

3. THE THEORY ABOUT INITIAL DATA
The footprint for a partition consists of all the initial data required
by the computations in this partition. It can be determined by the
partition itself and thedisplacement vectorof the initial data. The
displacement vector is defined as the difference between the loop
and initial data indexes. For instance, given the expression of the
initial datas[n+1;m+2] and loop index[n;m], the displacement
vector is(1;2). The corresponding part in footprint for this ini-
tial data is the set of all the integer points lying in a parallelogram
1The cross productp1 � p2 is defined as the signed area of the
parallelogram formed by the points(0,0),p1, p2, and p1 + p2 =
(x1+x2;y1+y2). It is p1� p2 = p1:xp2:y� p1:yp2:x.

formed by moving the left lower corner of the partition from(x;y)
to (x+3;y+2).

The major concern on initial data is to maximize the overlap be-
tween the footprints for two adjacent partitions, and comply with
the memory size restriction. More overlap will lead to less number
of prefetch operations, because the corresponding data can be kept
in the memory for the next partition. A larger partition may lead
to a larger overlap. Nevertheless, the partition cannot be too large
on account of the restrictive memory size. We first give some def-
initions regarding the footprint for a partition. In these definition,
the setR includes all the displacement vectors for the initial data
references.

DEFINITION 3.1. 1. Given a certain partition shape Px�
Py, S(~r;~s) is a set of integer points in a parallelogram which
has the shape Px�Py and size fx� fy , where~r = (a;b) is a
displace vector for a initial data reference, and~s= (fx; fy)
is the partition size.

2. Given a set of integer vectors R= f~r1;~r2; : : : ;~rng, the foot-
print of R for a partition F(R;~s), is the union of all S(~ri ;~s)
for each~ri in R.

3. The footprint for the next partition F(Rs;s) is built upon set
Rs, in which each element~ri

s =~ri + fxPx.

In one dimension case, all the vectors become into integers and the
second dimension elements are zero. Therefore, One dimensional
case can be regarded as a simplification to the two dimensional
problem. It provides the theoretic foundation to two dimensional
problem. The following example demonstrates the problem in one
dimensional case. In the example, the setR is f1;2;7g. The solid
line represents the correspondingS(r;s) for eachr in the setR. The
dotted line denotes the correspondingS(rs;s) for eachrs in setRs.
The union of all solid lines is setF(R;s), while the union of all dot-
ted lines is the setF(Rs;s). The figure shows the case whens= 5,
which is the minimums value to obtain the maximum intersection
betweenF(R;s) andF(Rs;s).

0 2 4 6 8 10 12 14 16 18

Figure 3: The one dimensional line segments

The following two lemmas show the properties of the intersection
between two adjacent footprints.

LEMMA 3.1. The minimum s is r2� r1 which makes the maxi-
mum intersection between segments(r1+s; r1+2s�1) and(r2; r2+
s�1), where r2 � r1.

LEMMA 3.2. For the intersection between segments(r1+s; r1+
2s�1) and(r2; r2+s�1), where r2 � r1, it will keep constant, ir-
relevant to the value of s, as long as s� r2� r1.

Both F(R;s) and F(Rs;s) are the union of some line segments.
Their overlap is the union of all intersections of two line segments
from F(R;s) andF(Rs;s), respectively.

F(R;s) = (r1;r1+s�1)[(r2;r2+s�1)[(r3;r3+s�1)���[(rn;rn+s�1)

F(Rs;s) = (r1+s;r1+2s�1)[(r2+s;r2+2s�1)���[(rn+s;rn+2s�1)

At following, we reveal the relation between the overlap of the ad-
jacent footprints and the line segment sizes.

LEMMA 3.3. LetCm be the intersection(rm; rm+s�1)\(rm�1+
s; rm�1 +2s�1). Then the intersection of F(R;s) and F(Rs;s) is
Sn

2Cm, where the number of integers in R is n.

THEOREM 3.4. Given the set R= (r1; r2; r3; : : : ; rn), the max-
imum intersection between F(R;s) and F(Rs;s) can be achieved
when s= maxnm=2(rm� rm�1).

THEOREM 3.5. For two sets F(R;s) and F(Rs;s), the intersec-
tion of these two sets will keep constant if the value of s continues
to increase from the s value obtained by the Theorem 3.4.

When considering to maximize the overlap between two adjacent
footprints in the 2-dimensional case, we can notice thatfy element
of the partition size is not so important asfx element, since the
intersection always increases whenfy is increased. As indicated
later, the value offy can be determined based on other conditions.
Therefore, the key is what is the minimum value offx to make the
intersection maximal under a certainfy.

Given a certain partition size of~s and the setR, an augment set
R0 can be obtained with the following method :r 0i = ri ; r 0i+n =
ri + fyPy:y, where n is the size of setR andPy = (Py:x;Py:y). Ar-
ranging all the points in setR0 with the increasing order alongY
axis, the overall footprint for one partition can be divided into a
series of stripes. Each stripe is determined by two horizontal lines
which pass the adjacent two points in sortedR0. For instance, in the
Figure 4, theRset isf(0;0);(6;1);(3;2);(1;3)g. Assume the value
of fyPy:y is 5, R0 is f(0;0);(0;5);(6;1);(6;6);(3;2);(3;7);(1;3);(1;8)g. After
sorting, it will becomef(0;0);(6;1);(3;2);(1;3);(0;5);(6;6);(3;7);(1;8)g. The
overall footprint consists of 7 stripes as indicated in the figure.

1
2
3

4

5
6
7

Figure 4: The stripe division of a footprint

In each stripe, a horizontal line will intersect with left bounds of
some setsS(~r;~s). Thus, the two dimensional footprint overlap prob-
lem of this stripe can be reduced to one dimensional problem, which
can be solved using Theorem 3.4. Applying this idea to each stripe,

Algorithm 1 Calculating the minimum x to make the overlap max-
imum
Input: The setRand the shape of the partition
Output: The fx to make the overlap maximum under a certainfy

1. Set fx to 0.
2. Based on the setRand partition shape, choose afy such that the productfy �Py:y
is larger than the difference between the largest and leastb element of all vectors in
setR.
3. Using thefy above, generate the augment setR0

4. Sort all the value in theR0 in increasing order according to theb element and kept
them in a event list.
5. Use a horizontal line to sweep the whole iteration space. When a lower bound
event point is met, insert the corresponding setS(~r;~s) in a visiting list. Otherwise
delete the correspondingS(~r;~s) from the list.
6. Calculate the intersection point of this line with the leftbound and righbound of
each set in the visiting list, respectively. Use Theorem 3.4 to derive af 0

x value to
make the intersection in current stripe maximal.
7. Replacefx with f 0

x if f 0

x > fx.

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

100

y=3

y=5

y=6

y=8

(a) 2D

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

y=3

y=5

y=7

(b) WDF

Figure 5: The tendency of intersection withx and y

we can solve the whole two dimensional problem, as demonstrated
in the following algorithm.

From the Lemma 3.2, the intersection will keep unchanged iffx is
greater than the value chosen by this algorithm, and reduce under
the lessfx. We can demonstrate this phenomenon by two examples.
The setR for the first example isf(0;1);(5;3);(�3;1);(4;�1);(�2;�2)g and
the partition shape is(1;0)� (0;1). It is the partition shape for
Wave Digital filter. The setR is f(0;2);(3;5);(1;3)(�1;�1)g in the second
example and the partition shape is(1;0)�(�3;1). It is the partition
shape forTwo Dimensional filter. The Figure 5(a) and 5(b) show
the varying trends of footprint overlap with the value offx and fy
for two examples, respectively.

4. THE OVERALL SCHEDULE
The overall schedule can be divided into two parts – ALU and
memory schedules. For the ALU schedule, themulti-dimensional
rotation scheduling algorithm[7] is used to generate a static sched-
ule for one iteration. Then the entire ALU schedule can be formed
by simply replicating this schedule for each iteration in the par-
tition. The schedule obtained by this way is the most compact
schedule since it only considers the ALU hardware resource con-
straints. The overall schedule length must be larger than it. There-
fore, this ALU schedule provides a lower bound for the overall
schedule. This lower bound can be calculated by #leniteration�
#nodes, whereleniteration represents the schedule length obtained
by multi-dimensional rotation scheduling algorithm for one itera-
tion, and #nodesdenotes the number of nodes in one partition. Our
objective is to find a partition whose overall schedule length can be
very close to this lower bound.

4.1 Balanced overall schedule

Different from the ALU schedule, which is the replication of a sin-
gle iteration schedule, The memory schedule is considered based
on the entire partition. It schedules the memory operations for ini-
tial and intermediate data, as shown in Figure 2. Both operations
consist of the prefetch and keep operations for the corresponding
data. Since all the prefetch operations have no relation to the cur-
rent computation, they can be arranged at the start of the memory
schedule. On the contrary, the keep operation for intermediate data
can only be issued after the corresponding computation has fin-
ished. The keep operations for initial data can be issued as soon as
they are prefetched from the second level memory. The memory
schedule length is the summation of all these operations, execution
time.

d1 d2

(a) Prefetch region

d1 d2

(b) Keep region

Figure 6: The tendency of intersection withx and y

For the intermediate data, a prefetch operation is necessary if there
is a delay dependency going to the other partition from the current
partition. Thereby each delay vector will delimit a parallelogram
in which the corresponding data are prefetched from the second
level memory. The number of prefetch operations for this delay
dependency is the area of this parallelogram. The overall number
of prefetch operations for intermediate data in one partition is all
such parallelogram for all delay dependencies. It is the summation
of all the parallelograms’ area under the condition that there is no
common intersection among the parallelograms. If such intersec-
tion does exist, we have the definition ofequivalent prefetch class.
An equivalent prefetch class comprises of all those prefetch oper-
ations with the delay dependencies that start from the same data
node and go into the same other partition. The prefetch operation
will be counted only once for each equivalent prefetch class. The
Figure 6(a) shows the example with two delay dependencies exist
in the partition. Those prefetching parallelograms are the shadow
regions decided by two delay dependencyd1 andd2, respectively.
The overall number of prefetch operations for these two delays is
the summation of the two areas, except those equivalent prefetch
classes.

For the initial data, they can be prefetched from the second level
memory in blocks. This kind of operation can fetch several data
at one time and costs only a little longer time than general prefetch
operation. To calculate the number of such operations, we first have
the following observation.

PROPERTY 4.1. As long as fy�Py:y, the projection of partition
size along Y coordinate, is larger than the maximum difference of
the Y coordinates in all displacement vectors for initial data, the
footprint will increase at a constant rate with the increment of fy,
so does the number of prefetch operations for initial data.

Therefore, given a certainfx and fy, which satisfying the condition

in the above property, the number of prefetch operations for the ini-
tial data isPreBaseini +(fy� fy0)�Preincr ini , wherefy0 = d y0

Py:y
e,

y0 is the maximal distance of theY coordinates in all displacement
vectors,PreBaseini denotes the number of prefetch operations for a
partition with sizefx� fy0, andPreincr ini represents the increment
of the number of prefetch operations whenfy is increased by one.

As the prefetch operation, there are keep operations for the inter-
mediate and initial data. The number of keep operations for the in-
termediate data can be calculated by the same principle for prefetch
operations. The definition of anequivalent keep classis similar to
theequivalent prefetch class. An equivalent keep class comprises
of all those keep operations with the delay dependencies that start
from the same data node. The Figure 6(b) shows the corresponding
keep regions for those two delay dependencies.

To the initial data, the intersection of the current and next foot-
prints will be needed by both partitions. They can be kept in the
first level memory, thereby spare some high-cost prefetch opera-
tions. This is the reason to use minimal value offx to achieve
the maximal intersection. Different from keep operations for the
intermediate data, these operations have no relation to the current
partition’s computation. They can be arranged after they have been
prefetched from the memory. The number of such operations is
KeepBase ini +(fy� fy0)�Keepincr ini , wherey0 and fy0 have the
same meaning as above.KeepBaseini denotes the number of keep
operations for a partition with sizefx� fy0, andKeepincr ini rep-
resents the increment of keep operations whenfy is increased by
one.

In order to understand what is a good partition size, we first need
the definition of the balanced overall schedule.

DEFINITION 4.1. A balanced overall scheduleis a schedule
in which the memory schedule is at most one unit time of keep op-
eration longer than the ALU schedule.

To obtain a balanced overall schedule, some conditions need to be
satisfied. In theorem 4.1,d = (dx;dy) denotes a delay dependency.
#preand #keepare the number of the prefetch and keep operations
for intermediate data.Tpre is the time consumption of a prefetch
operation,Tblock pre is the time consumption of a block prefetch
operation for initial data, andTkeep is the time needed for a keep
operation.LALU represents the ALU schedule length for one itera-
tion and #iter is the number of iterations in one partition.Nmem is
the number of memory units. Other symbols have the same mean-
ings as we discussed above.

THEOREM 4.1. The size of the partition should satisfy the fol-
lowing three constraints to make the overall schedule balanced.

1. There is no delay dependency which can span more than two
partitions along the Y coordinate direction, that is fy�Py:y�
dy;8d = (dx;dy) 2D.

2. There is no delay dependency which can span more than
two partitions along the X coordinate direction, that is fx >

maxfdx�dy
Py:y
Py:x

g.

3.
l

#pre
Nmem

m
�Tpre+ d

PreBase ini+(fy� fy0)�Preincr ini

Nmem
e�Tblock pre+

l
#keep+KeepBase ini+(fy� fy0)�Keepincr ini

Nmem

m
�Tkeep� LALU �#iter+

Tkeep.

The theorem not only gives the balanced overall schedule’s con-
straints. but also provides the method to find a partition size which
can generate a balanced overall schedule.

4.2 Algorithm for finding balanced overall sched-
ule

As long as the first two conditions in Theorem 4.1 are satisfied,
we can guarantee that, when partition size is enlarged, the overall
time consumption of prefetch and keep operations for intermediate
data in memory schedule increases slower than the ALU schedule
length. At this time, if a partition size cannot be found to meet
the third constraints, it means the time consumption of the block
prefetch operations for initial data increased too fast. Due to the
property of block prefetch, increasingfx will increase the number
of block prefetch operations only by a small number, while increase
the ALU schedule by a relative large length. Consequently, a parti-
tion size which can satisfy all of the three conditions can be found.

After the optimal partition size is determined, the operations in the
ALU and memory schedules can be easily arranged. For the ALU
schedule, it is the duplication of the schedule for one iteration. For
the memory schedule, the memory operations for initial data are al-
located first, then are the memory operations for intermediate data,
as we discussed before.

Algorithm 2 Find a balanced overall schedule
Input: The ALU schedule for one iteration, the partition shapePx�Py and the initial

data displacement vector setR
Output: A partition size which can generate a balanced overall schedule

1. Based on the information of the initial data, use algorithm 1 to calculate the
minimum partition sizef 0

x and f 0

y
2. Using the first two condition in Theorem 4.1 to calculate another pair of minimal
f 00

x and f 00

y

3. Get a new pairfx = max(f 0

x; f 00

x) and fy = max(f 0

y; f 00

y).
4. Using this pair(fx; fy), calculate the number of prefetch operations, block
prefetch operations and keep operations.
5. Calculate the ALU schedule length to see if the third condition in Theorem 4.1
is satisfied.
6. If it is satisfied, this pair(fx; fy) is the partition size. Otherwise, increasefx by
one, use the third condition to find the minimalfy which make the inequation true.
If such fy does not exist, continue increasingfx until the feasiblefy is found. Use
them as the partition size.
7. Based on the partition size, Output the corresponding ALU part and memory
schedules.

4.3 The memory requirement for the overall
schedule

The memory requirement consists of four parts, the memory space
for the calculation of the in-partition data, for prefetching interme-
diate data, for keeping intermediate data and for those operations on
initial data. We will discuss these four part memory requirements
respectively.

For those in-partition data, they will be computed and reused in the
same partition. Their memory requirement computation is a little
complicated due to the consideration of memory reuse, which can
be refer to /citeDAC.

For the other part memory requirements, they can be computed
simply by multiply the number of operations with the memory
requirement of each operation. The memory requirement for a

Benchmark Par Vector New algo PSP algo list hardware
Px Py size m r len size m r len ratio len ratio len ratio

WDF (1,0) (-3, 1) 4�7 221 4.107 4�4 143 5.312 22.68% 18 77.18% 10 58.93%
IIR (1,0) (-2, 1) 4�9 407 6.028 4�7 350 6.893 12.55% 36 83.26% 37 83.71%

DPCM (1,0) (-2, 1) 8�10 736 4.01 8�8 628 4.891 18.01% 25 83.96% 21 80.9%
2D (1,0) (0,1) 3�5 233 12 3�4 207 12 0.0% 55 78.18% 51 76.47%

Floyd (1,0) (-3,1) 7�5 301 6.057 4�4 174 6.312 4.04% 32 81.72% 30 79.81%

Table 1: Experimental results with only one initial data

Benchmark par Vector New algo PSP algo List hardware
Vx Vy size m r len size m r len ratio len ratio len ratio

WDF (1,0) (-3, 1) 8�7 474 4.018 4�4 206 8 49.78% 22 81.74% 10 58.92%
IIR (1,0) (-2, 1) 5�13 772 6.015 4�7 472 7.857 23.44% 40 84.96% 37 83.74 %

DPCM (1,0) (-2, 1) 8�14 1207 4.001 8�8 811 5.266 24.02% 29 86.2% 21 80.95%
2D (1,0) (0,1) 4�5 346 12 3�4 253 13.833 13.25% 59 79.66% 51 76.47%

Floyd (1,0) (-3,1) 8�6 526 6 4�4 223 8.812 31.91% 36 83.33% 30 80%

Table 2: Experimental results with three initial data

prefetch operation is 2. One is used to store the data prefetched
by the previous partition and consumed in the current partition, the
other stores the data prefetched by the current partition and con-
sumed in the next partition. As the same rule, the keep operation
will take 2 memory locations. The block prefetch operations will
take 2�block sizememory locations.

5. EXPERIMENT
In this section, we use several DSP benchmarks to illustrate the ef-
fectiveness of our new algorithm. They are WDF, IIR, DPCM, 2D
and Floyd, as indicated in the tables, which stand forWave Digital
filter, Infinite Impulse Response filter, Differential Pulse-Code Mod-
ulation device, Two Dimensional filter and Folyd-Steinberg algo-
rithm, respectively. We applied four different algorithms on these
benchmarks: list scheduling, hardware prefetching scheme, PSP
partition algorithm [2] and our new partition algorithm. In list
scheduling, the same architecture model is used. However, the
ALU part uses the traditional list scheduling algorithm, and the iter-
ation space is not partitioned. In hardware prefetching scheduling,
we use the model presented in [4]. In this model, whenever a block
is accessed, the next block is also loaded.

In the experiment, we assume a prefetch time of 10 CPU clock cy-
cles and a block prefetch time of 16 CPU clock cycles, which is
reasonable when the big performance gap between CPU and the
main memory is considered. The first table presents results with
only one initial data with the displacement vector(1;1), and the
second table is results with three initial data with the displacement
vector setf(1;1);(2;�2);(0;3)g. In the tables, thepar vectorcol-
umn determines the partition shape. Thelist column includes the
schedule length for list scheduling and the improvement ratio our
algorithm can get compared to list scheduling. Thehardwarecol-
umn includes the schedule length for hardware prefetching and our
algorithm’s relative improvement ratio. In thePSP algoandnew
algo columns, thesizecolumn is the size of partition presented
with the multiple of the partition vectors. Them r column repre-
sents the corresponding memory requirement and thelen column
is the average scheduling length for corresponding algorithms. The
ratio column inPSP algois the improvement our new algorithm
can get relative to the PSP algorithm.

All the experiments are done on SUN Ultra-SPARC2 platform.
Given aMDFG for DSP filter and the initial datadisplacement vec-
tor set, a program is run to determine the balanced partition size
and the corresponding ALU, memory schedules. The computation

for each DSP filter can be finished in no more than 2 seconds.

As we can see from these tables, list scheduling and hardware
prefetching scheduling have much worse performance than other
two algorithms, due to the reason that long memory part schedule
dominates the overall schedule and is far from the balanced sched-
ule. The PSP partition algorithm gets the worse results because of
the lacking of consideration on the initial data. The time cost for
the initial data will lead to an unbalanced schedule. Our new al-
gorithm considers both data locality and the initial data. Therefore,
the much better performance can be achieved through balancing the
ALU part and memory part schedule.

6. REFERENCES
[1] Anant Agarwal, David A. Kranz, and Venkat Natarajan. Automatic partitioning

of parallel loops and data arrays for distributed shared-memory multiprocessors.
IEEE Trans on Parallel and Distributed Systems, 6(9), September 1995.

[2] F.Chen and E.H.-M.Sha. Loop scheduling and partitions for hiding memory
latencies. InProc. IEEE 12th International Symposium on System Synthesis,
pages 64–70, San Jose, November 1999.

[3] F.Dahlgren and M.Dubois. Sequential hardware prefetching in shared-memory
multiprocessors.IEEE Transactions on Parallel and Distributed Systems, 6(7),
July 1995.

[4] J.-L.Baer and T.-F.Chen. An effective on-chip preloading scheme to reduce data
access penalty. InProc. of Supercomputing’91, pages 176–186, 1991.

[5] J.Chame and S. Moon. A tile selection algorithm for data locality and cache
interference. InProc. of the 1999 ACM International Conference on
Supercomputing, Rhodes, Greece, June 1999.

[6] J. Madsen and P.Bjorn-horgensen. Embedded system synthesis under memory
constraints. InProc. of 7th International Workshop on Hardware/Software
Codesign, pages 188–193, Rome, May 1999.

[7] N.Passos and E.H.-M.Sha. Scheduling of uniform multi-dimensioanl systems
under resource constraints.Journal of IEEE Transactions on VLSI Systems,
6(4), December 1998.

[8] P.Bouilet, A.Darte, T.Risset, and Y.Robert. (pen)-ultimate tiling. InScalable
High-Performance Computing Conference, pages 568–576, May 1994.

[9] T.Mowry. Tolerating latency in multiprocessors through compiler-inserted
prefetching.ACM Transactions on Computer Systems, 16(1):55–92, February
1998.

[10] Z. Wang, M. Kirkpatrick, and E.H.-M.Sha. Optimal two level partitioning and
loop scheduling for hiding memory latency for dsp applications. InProc. ACM
37th Design Automation Conference, pages 540–545, Los Angeles, California,
June 2000.

	Main Page
	GLSVLSI'01
	Front Matter
	Table of Contents

