
Simultaneous Circuit Transformation and Routing

Hiroaki Yoshida Motohiro Sera Masao Kubo Masahiro Fujita

Department of Electronic Engineering
University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
E-mail:hiroaki@silicon.u-tokyo.ac.jp

Abstract

In this paper, we propose a new methodology to integrate
circuit transformation into routing. More specifically, this
paper shows an approach for performing routing and wire
reconnection simultaneously. To accomplish this, we intro-
duce a new logic representation that implements all possible
wire reconnections implicitly by enhancing global flow op-
timization techniques. Since our method takes into account
circuit transformation during routing phase where the accu-
rate physical information is available, we can obtain better
results than the conventional routing algorithms. In addi-
tion, we can succeed in routing even if other routers like
rip-up and reroute methods fail. The algorithm has been im-
plemented and the experimental results are presented. We
believe this is the first approach which combines them com-
pletely.

1. Introduction

As feature sizes decrease and chip sizes increase, the
area and performance of chips become dominated by the
interconnect. Since it is difficult to obtain the physical im-
plementation until routing phase, most logic synthesis tools
cannot estimate the effects of the interconnect accurately. In
addition, when some nets cannot be routed properly or de-
sign doesn’t satisfy constraints in routing phase, we have to
perform logic synthesis again.

Logic optimization algorithms based on rewiring
techniques[1] have been developed in the last decade. The
basic idea of these algorithms is to add and remove re-
dundant wires in a circuit. Due to the incremental nature,
the techniques can easily be applied to a circuit even af-
ter its placement is fixed. For performance optimization,
Jianget al. proposed a post-layout logic restructuring tech-
nique based on the rewiring technique[2]. It picks one of
the rewiring , and then performs routing incrementally. In
this approach, wire reconnection and routing are performed

independently.
In this paper, we present an approach for performing

routing and wire reconnection simultaneously. To accom-
plish this, we introduce a new logic representation that im-
plements all possible wire reconnections implicitly. Since
our method takes into account circuit transformation dur-
ing routing phase where the accurate physical information
is available, we can obtain better results than the conven-
tional routing algorithms.

The rest of this paper is organized as follows. In the next
section, we briefly review global flow optimization and ex-
act routing methods. In Section 3, we introduce a multi-
level logic representation of an implication flow graph and
show how to derive all solutions from the representation.
Section 4 describes our approaches to unify routing and
wire reconnection. Experimental results are presented in
Section 5.

2. Overview of Existing Algorithms

2.1. Global Flow Optimization

In [3], global flow optimization technique has been pro-
posed. It gathers a circuit information using techniques
of data flow analysis, and then reconnect the immediate
fanouts of a node to the inputs of other nodes (so called
fanout global flow optimization). Recently, Changet al.
have shown that the method cannot fully characterize a cir-
cuit and hence the optimality may be lost[4]. They have also
introduced a modified technique using new graph, which is
called an implication flow graph.

We briefly review the global flow optimization method
using the implication flow graph. It is assumed that a circuit
consists of only NOR gates. It first assigns a target node
s to a value 1 and then propagate it towards the primary
outputs. Figure 1 illustrates the value assignments of an
example circuit, where the target node is the nodes. Next,
an implication flow graph is constructed as follows.

S

14

15

16

17

1

2

3

4

18

7 9

19

5

6
8

10

11 13

1

1

1
1

1

1

1

0

0

0

0

0

0
0

0

0 12

Figure 1. Example circuit.

1. Add a source nodeSrc representing the nodes and a
sink nodeSnk.

2. Add a corresponding node for a node with implica-
tion. If a node has a controlling value, the correspon-
ing node in the implication flow graph has an IMPOR
type with weight 1. If a node has a non-controlling
value, the corresponding node has an IMPAND type
with weight infinite.

3. Edges are added as follows. First, the IMPAND node
is connected to all its corresponding input nodes. An
IMP OR node is connected to all its corresponding
nodes with controlling value to the node. Add the
edges from all the frontier nodes to the sink node.

After building the implication flow graph, a degenerated im-
plication flow graph is constructed by removing all but one
fanin edges for each IMPOR node. Any cutset in the de-
generated implication flow graph can form a solution for the
fanout reconnection. Figure 2 shows one of the degenerated
implication flow graphs derived from the circuit shown in
Figure 1. Since the node 8 and 9 form a cutset of the graph,
we can reconnect the immediate fanouts of the nodes to the
inputs of the node 8 and 9 in Figure 1. The resulting circuit
is shown in Figure 3. Obviously, the quality of the solu-
tion heavily depends on the way how to remove fanin edges
from the implication flow graph and how to obtain a cutset
in the graph.

2.2. Exact Routing Using Symbolic Representation

In [5], Schmiedleet al. have presented an exact ap-
proach for solving channel routing problems. They have
also shown a search space reduction technique[6]. They use
Multi-valued Decision Diagrams(MDDs) for representation
of the routing space. All possible solutions are represented
in a single MDD. Figure 4 shows an example of MDD. The
function f represented by this MDD satisfiesf = 1 only
when (a, b, c, d) = (0, 0, 2, 1), (1, 0,0,2), (1, 0, 2,0).

We briefly review the exact routing method. The method
assumes that the grid-based model is used,i.e., the routing

src

1

2

3

4

18

9

8

13

12

snk

11
7

: IMP_AND

: IMP_OR

1

1

1

1

1

1

1

1

1

Figure 2. Degenerated implication flow graph.

S

14

15

16

17

1

2

3

4

18

7 9

19

5

6
8

10

11 13

12

Figure 3. Example circuit after wire reconnec-
tion.

region are divided to rectilinear grids. In routing region, x-
direction is referred tocolumns, y-direction totracks and
z-direction tolayers. Every grid point is represented by an
MDD variablemxyz (x = 1, ..., length, y = 1, ...,width, z =
1, ..., height). Given netsN = {N1, ..., Nn} to be routed, the
set of legal values for these variables is{0, ..., n}. mxyz = k
means that the routing grid at (x, y, z) is occupied by netNk

andmxyz = 0 means that the routing grid at (x, y, z) is not
occupied by any net.

For constructing the MDD representation corresponding
to the set of all solutions,conectivity predicates are com-
puted first by a fixed point iteration. A connectivity predi-
cateCi,t(p) indicates thatp is connected witht via netNi.
An iteration starts withC0

i,t(t) = (t = i) for a terminalt and

C0
i,t(p) = f alse for all p � t. In jth iteration,C j

i,t(p) for each
grid point p is computed by the following equation

C j
i,t(p) = C j−1

i,t (p) ∨ (
∨

p′
(C j−1

i,t (p′) ∧ (mxyz = i))) (1)

where p′ and p are adjacent. The iteration is continued
until a fixed point reaches. Then connectivity predicate
Ci,t(p) = C jmax

i,t is obtained. In other words, we can view this
process as exploring the grid in every direction like Lee’s
maze router [7] and recording all possible paths.

0
1 2

3

0
1 2

30
1 2

3

0
1 2

3

0
1 2

3 0
1 2

3 0
1 2

3

0
1 2

3

1

a

b

c

d d d

c

b

Figure 4. Multi-valued Decision Diagram
(MDD).

An MDD ni representing all possible paths of netNi can
be derived from the equation:

ni =

|Ni|∧

j=2

Ci,ti1(ti j) (2)

whereti j is the jth terminal of netNi. Finally, the MDD rep-
resenting routing solutions for all nets is obtained by com-
bining allni.

s =
∧

Ni∈N
ni (3)

A given routing problem is solvable if and only ifs � 0.

3. New Logic Representation of Implication
Flow Graph

In this section, we introduce a new logic representation
of the implication flow graph. Since this representation con-
tains all possible wire reconnections implicitly, we don’t
have to care about how a degenerate implication flow graph
is obtained. In addition, it enables us to solve a global flow
optimization problem efficiently.

We can derive a logic representaion from a given impli-
cation flow graph as follows.

1. Transform IMPAND and IMP OR nodes into AND
and OR gates respectively.

2. ReplaceSnk node with AND gate.

3. RemoveSrc node and its fanout edges.

4. Create new Boolean variables which correspond to
each OR gate. Each variable is inserted as the cor-
responding OR gate’s fanin.

1

2

3

4

18

9

8

13

12

t

t
t

t

t

t

t

t

t

f

Figure 5. Logic representation of the implica-
tion flow graph.

Let t1, ..., tn be the new Boolean variables. Then the result-
ing Boolean function is represented byf (t1, ..., tn). Each
input pattern which satisfies the functionf corresponds to
a wire reconnection. Figure 5 shows the logic representa-
tion of the implication flow graph in Figure 2. For instance,
(t8 = 1, t9 = 1) satisfies the functionf , then we can recon-
nect the immediate fanouts of the nodes to the inputs of the
node 8 and 9 in Figure 1.

As can easily be seen, each prime implicant of the
Boolean function corresponds to a cutset of a degenerated
implication flow graph. Since the function is a unate func-
tion, all prime implicants are essential and will appear in the
minimized function[8]. Therefore we can use many existing
two-level logic minimization algorithms in order to obtain
the solutions of a global flow optimization problem. In the
case of Figure 5, the functionf is minimized to:

f = t1 · t2 + t2 · t9 + t3 · t9 + t8 · t9 (4)

and so possible rewires are{1, 2}, {2, 9}, {3, 9}, {8, 9}, i.e.,
the immediate fanouts of the nodeS in Figure 1 can be re-
connected to node 1 and node 2, or node 2 and node 9, and
so on.

4. Simultaneous Wire Reconnection and Rout-
ing

In this section, we present an exact approach for solv-
ing the reconnection and routing problems simultaneously.
Since both problems have already been transformed into
Boolean functions, unification of these two algorithms can
be easily accomplished.

Our layout model is illustrated in Figure 6. There is a
routing region between two parallel rows of cells with ter-
minals at the top or bottom of the routing region. Some
cells have extra terminals and the nets can be reconnected
to them. It is assumed that the cells are replaced with the
appropriate cells if the reconnections are performed.

placed cells

routing region

Figure 6. Layout model.

At first, we create the logic representation of implica-
tion flow graph for the netNi and then obtain the Boolean
formula f (ti2, ..., tin) whereti2, ..., tin are Boolean variables
corresponding to the candidate terminals. To combine this
Boolean formula with an exact routing, we just replace the
Equation (2) with:

ni = f (Ci,ti1(ti2), ...,Ci,ti1(tin)) (5)

Note that we can use the multi-level logic representation
of the function f to calculate the Equation (5), rather than
the two-level logic representaion. The resulting MDD rep-
resents all possible routing solutions with consideration
of wire reconnection. That is, in this framework, logical
rewiring and detail routing are done simultaneously. We
believe this is the first approach which combines them com-
pletely.

As shown in the original paper[5], the exact router can
handle only small problems because the size of the MDDs
become too large. If one’s objective is just to obtain one
of the solutions, we can solve larger problems. We evalu-
ate the Equation (3) for each connectivity predicate calcu-
lation step, and stop the calculation when any solutions are
found. Using this technique, we can hope that the solutions
are found before the MDDs blow up.

5. Experimental Results

The technique presented in Section 3 was implemented
and we performed experiments on MCNC91 benchmark
circuits. The circuits are first decomposed to only NOR
gates and then the technique is applied to each wire. Each
logic representation of implication flow graph is collapsed
to two-level logic and minimized by ESPRESSO[8]. The
number of the wire reconnections corresponds to the num-
ber of the product terms in the minimized expression. The
results are shown in Table 1. The third column shows the

Table 1. Number of wire reconnections.
CPU

circuit #nets #rec. nets #rec. [sec.]

C432 283 63 108 1.0
C499 604 18 78 2.9
C880 532 112 307 5.1
C1355 644 122 206 3.1
C1908 671 70 174 3.8
C5315 2144 194 228 10.2
C6288 2432 435 435 13.0
C7552 3219 272 384 25.1
alu2 284 31 196 8.0
alu4 547 30 1038 8.9
b9 209 57 142 0.7
c8 230 45 302 1.0
cc 120 33 80 0.3
cm150a 101 42 42 0.3
cmb 68 32 64 0.2
comp 218 86 102 1.0
cu 80 28 425 0.4
lal 202 47 6986 12.5
mux 81 36 36 0.3
pair 2154 604 1228 10.5
pm1 93 21 137 0.2
rot 854 43 207 2.1
sct 171 19 70 0.5
term1 633 325 1217 7.8
x1 448 23 75 4.3

number of the nets with one or more wire reconnections.
In column 4, the cumulated sum of the number of the wire
reconnections for each net is shown. Note that the original
connections are excluded from the wire reconnections. The
results show that there are many wire reconnections in the
circuits. For some circuits which are not shown in Table 1,
such as C2670 and C3540, we couldn’t obtain the results be-
cause the resulting two-level expressions became too large.
This may be avoided by using the implicit prime implicants
enumeration methods like [9].

Next, the algorithm presented in Section 4 and [5] was
implemented and we performed experiments on some ex-
ample circuits. We consider an example circuit that con-
sists of three nets and a routing grids with a channel that
has 6 columns, 4 tracks and 2 layers as shown in Figure
7. The Boolean functions that are derived from the method
described in Section 3 are as follows:

fx = (b + d)eg (6)

fy = c f h (7)

fz = ai (8)

In Equation (6)-(8), the Boolean functionsfx, fy, fz corre-
spond to the terminalsx, y, z in Figure 7 respectively and

a xb c y d

e f z g h i

a xb c y d

e f z g h i

a xb c y d

e f z g h i

a xb c y d

e f z g h i

(a) (b) (c) (d)

Figure 7. Routing solutions.

Table 2. Experimental results with the heuris-
tic technique.

memory CPU
name #grids #nets #iter. (MByte) (sec)

example1 6× 4× 2 3 9 4 1.8
example2 7× 5× 2 3 10 30 19.9
example3 8× 6× 2 3 8 276 281.0

each Boolean variable corresponds to the terminal in Figure
7. That is, the terminalx can be connected to the terminals
b, e, g or the terminalsd, e, g. The terminaly must be con-
nected to terminalsc, f , h and the terminalz to the terminals
a, i. We were able to find all possible solutions within 800
seconds. Figure 7 shows some of the solutions. In Figure 7
(a)(b), the terminalx is connected to the terminalsb, e, g,
and the terminalx is connected to the terminalsd, e, g in
Figure 7(c)(d).

For larger examples, the heuristic technique described
in Section 4 was applied. Equation (3) in Section 2.2 are
evaluated for each connectivity predicate calculation step
and the calculation is stopped when any solutions are found.
Table 2 shows some results for some example circuits up to
8 columns, 6 tracks, 2 layers and 3 nets. The fourth column
shows the number of the evaluations of Equation (3). In
column 5 and 6, memory usage and CPU time are shown
respectively.

6. Conclusions and Future Work

In this paper, we first introduced a logic representation
of an implication flow graph. This representaion enables
us to solve the global flow optimization problem efficiently.
Then, we showed an exact approach for performing rout-
ing and wire reconnection simultaneously. Although the
approach can handle only small portions of circuits, it al-
lows us to explore larger solution space than the previous

routing methods. In the future, we plan to integrate other
routing algorithms to handle practical problems.

As mentioned earlier, the global flow optimization
technique assumes that circuits consist of only NOR
gates. Therefore our method cannot handle general cir-
cuits containing complex gates such as XOR, AND-OR-
INVERTER, etc. An extension to general circuits is cur-
rently being investigated.

References

[1] K.-T. Cheng and L. A. Entrena. Multi-level logic optimization
by redundancy addition and removal. Inin Proc. ACM/IEEE
European Conf. Design Automation, pages 373–377, Feb.
1993.

[2] Y. M. Jiang, A. Krstic, K. T. Cheng, and M. Marek-Sadowska.
Post-Layout Logic Restructuring for Performance Optimiza-
tion. In Proc. ACM/IEEE Design Automation Conf., pages
662–665, June 1997.

[3] C. L. Berman and L. H. Trevillyan. Global flow optimiza-
tion in automatic logic design.IEEE Trans. Computer-Aided
Design, 9(5):557–564, May 1991.

[4] S. C. Chang, Z. Z. Wu, and H. Z. Yu. Wire Re-Connections
Based on Implication Flow Graph. InProc. IEEE/ACM Int.
Conf. Computer-Aided Design, pages 533–536, Nov. 2000.

[5] F. Schmiedle, R. Drechsler, and B. Becker. Exact Channel
Routing Using Symbolic Representation. InProc. IEEE Int.
Symp. Circuit and Systems, pages 394–397, May 1999.

[6] F. Schmiedle, D. Unruh, and B. Becker. Exact Switchbox
Routing with Search Space Reduction. InProc. ACM Int.
Symp. Physical Design, pages 26–32, Apr. 2000.

[7] C. Y. Lee. An algorithm for path connections and its applica-
tions. IRE Trans. Electronic Computers, EC10(3):346–365,
Sept. 1961.

[8] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. M.
Sangiovanni-Vincentelli.Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Puclishers, Boston, 1984.

[9] O. Coudert and J. C. Madre. Implicit and incremental compu-
tation of primes and essential primes of boolean functions. In
in Proc. ACM/IEEE Design Automation Conf., pages 36–39,
June 1992.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

