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Abstract 
 

As the impact of interconnect on IC performance and 
chiparea in deep submicron design increases, research 
activities on technologies for three-dimensional 
integrated circuits intensify. Nevertheless, there is not 
much work done on the automation of 3D-layout design. 
In this paper we survey slicing structures for 3D 
floorplans. We present an upper bound for the volume of 
such floorplans, which shows the usability of slicing 
structures for three-dimensional floorplanning. 

 
 

1. Introduction 

In recent years the investigation of the third dimension 
in IC design attracts growing attention due to several 
reasons.  One of the most important ones is the increasing 
influence of the interconnect delays on IC performance 
and the fact that the wiring length can be evidently 
reduced by 3D technology [1, 2, 3, 4]. There are several 
proposed applications for three-dimensional ICs [5, 6, 7, 
8, 9, 10, 11] and much research effort has been carried 
out on the new technologies for vertically integrated 
circuits. Beside the stacking of Multi-Chip-Modules 
(MCMs) [12], there exist several basic approaches to 
vertically connect multiple silicon layers [13, 14, 15, 16, 
17]. 

Floorplanning plays a very important role in three-
dimensional circuit design, since heat distribution on the 
chip gets a crucial factor [18, 19, 4] and should be 
accurately planned in an early phase of the physical 
design. Moreover, the growing size of the circuits enforce 
the necessity to stack and interconnect several silicon 
layers and therefore will make common placers obsolete. 

In the two-dimensional case slicing floorplans [20, 21] 
have proved to produce good results [22, 23]. Therefore, 
we study the facilities of slicing structures for general 
three-dimensional floorplans. Those floorplans will be 
capable of handling vertically stacked ICs (two and a half 
dimensional) as well as complete three-dimensional chip 
technologies that might come up in the future. 

The remainder of this paper is organized as follows. In 
Section 2 we will review previous work on mathematical 
estimation of slicing floorplans. In Section 3 we introduce 
the problem and some notation. We present our main 
result in Section 4 and give some concluding remarks and 
an outlook to future work in Section 5. 

2. Previous work  

Slicing floorplans in 3D are not explored yet, but there 
was much research on slicing floorplans in 2D. Young 
and Wong proposed an upper bound for the area of such 
floorplans in [24]. They showed that this bound is given 
by the following formula: 
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and the shape flexibility 2r ≥ . In [25] this bound was 
even improved. Both papers followed the same idea for 
their proof. They used a special constructive packing 
algorithm to obtain a slicing floorplan that is at most as 
large as the given bound. Therefore, they could show that 
at least one floorplan exists, which fulfills the proposed 
bounds. In our paper, we will follow this idea and modify 
the algorithm for the three-dimensional case. 

3. Problem statement 

A slicing floorplan in 3D is one that can be obtained 
by recursively dividing a cuboid with a plane in two 
parts. In our 3D floorplan problem we have to pack n 
modules of given volume Vi (i=1..n) tightly, so that the 
resulting volume of the enclosing cuboid is minimized. 

Each module is represented by a cuboid C. We use 
V(C), h(C), w(C) and d(C) to denote the volume, the 
height, the width and the depth of C respectively. A soft 
cuboid is one that can change its shape while its volume 
is fixed. The shape flexibility of a soft cuboid specifies 
(analogical to the definition in 2D) the range of the aspect 
ratios of the height, width and depth respectively. 



Therefore, we define, that a soft cuboid is said to have 
shape flexibility r, if C can be represented as any cuboid 
of given volume that meets all of the following three 
conditions: 
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Equivalently the shape flexibility can be defined by the 
following single condition: 
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In this paper we give an upper bound for the volume of 
the optimal slicing floorplan, defined by the volume of 
the enclosing cuboid, if all the modules have shape 
flexibility of at least 2. 

4. Main results 

Theorem   Given a set of soft modules each having 
shape flexibility r≥2  there exists a slicing floorplan F of 
these cuboids so that 
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This theorem follows directly from Lemma 1, Lemma 
2 and Lemma 3 that are presented in the following. Note, 
that Lemma 1 is valid only for r≥8, but for 2≤r<8 the first 

term is 
3
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 and therefore the theorem still 

holds.  
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Figure 1. The upper bound of slicing floorplans 
in 3D (solid line) and 2D (dashed line). 

Figure 1 shows the result in comparison with the upper 
bounds of the 2D case that is given in [24]. As expected, 
the dead space is larger in the three-dimensional case in 
most regions. But for large values of the shape flexibility 
r and the ratio 

max total
A A  the difference is negligible. 

Remarkably, there exist even regions where the bound is 
lower in the three-dimensional case. 

4.1. A bound for high shape flexibility 

Lemma 1 Given a set of soft modules with each 
having shape flexibility r≥8 there exists a slicing 
floorplan F of these cuboids so that   
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Proof  We think of the optimal floorplan to be 

a cube of volume 
total

V . Therefore, the final floorplan is 

assumed to have a base area of 
1 1 2
3 3 3

total total total
V V V⋅ = . W.l.o.g. 

we assume 1
total

V = . Thus, all values are dimensionless in 

the following. Moreover, we suppose the shape flexibility 
r to be a perfect cubic number. If it is not, we take r as the 
next lower number that is perfect cubic. 

We divide the modules into groups depending on their 
volume. The packing algorithm sizes the cuboids, so that 
all modules of the same group have the same width and 
depth. The classification of the groups with the volume, 
the corresponding base area and height of the modules is 
given in Table 1.  

 

Table 1. Classification of volumes in Lemma 1. 
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A cuboid 
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C  representing a module that belongs to 

Group i therefore has a volume 
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Now we place the modules one at a time from the 

largest to the smallest. We place each cuboid at the 
lowest possible level and then move it to the hindmost 
and leftmost position on that level. Because both, the 

width and the depth of the modules, decrease by 3
r  

from one group to another, it is always possible to place a 
cuboid in the described way and, moreover, the only 
wasted area appears at the irregular upper boundary. Now 
consider the uppermost cuboid Cup. Its lower boundary 
must be on a level less than the unit level, because 
otherwise 1

total
V > . A module from Group 1 produces no 

dead space, thus the dead space size is upper bounded by 

3

1

r

, because this is at most equal to the height of Cup and 

therefore the maximum height above the unit level, which 
gives us an upper bound on the volume. When r is not a 

perfect cubic number, then the upper bound is 
3
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Figure 2. Example of a floorplan with 3
3r  =   in 

Lemma 1. Cuboids of the same color belong to 
the same group, the dashed line indicates the 
unit level. 

Figure 2 shows an example of a floorplan that is 
obtained by this packing algorithm. One can easily see 
that the resulting floorplan is slicing. □ 

4.2. A general upper bound 

Lemma 2 Given a set of soft modules with each 
having a shape flexibility r≥2 there exists a floorplan F of 

these cuboids so that 
3
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2
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V F V≤ ⋅ . 

Proof  As before, we assume 1
total

V =  and 

divide the cuboids in groups depending on their volume 
and use fixed base areas for packing them. However, we 
decrease the base area by a constant factor of 2. In order 
to ensure, that the cuboids fit in the base area of the 
complete floorplan and that the flexibility constraint is 
not violated, we have to do this as shown in Figure 3. 
Therefore, we can divide the modules into groups as 
given in Table 2. 

 

 

Figure 3. Base area reduction in Lemma 2. 

 
The upper bound 1/2 for the dead space cannot be 

directly obtained from the heights of the modules in this 
case. Consider the uppermost cuboid Cup. Let 
(1 )x w d h− ⋅ ⋅ ⋅  be the part of it that is above the unit 

level, with 1x < . A comparison of the striped and the 
dotted volume in Figure 4 leads to 
(1 ) (1 )x w d h w d x h− ⋅ ⋅ ⋅ ≤ − ⋅ ⋅ ⋅ . Thus, it follows 

w d x⋅ ≤ . Therefore, (1 )B w d h= − ⋅ ⋅  is an upper bound 

for the dead space. 
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Figure 4. An example of a floorplan in Lemma 2. 

 



Table 2. Classification of volumes in Lemma 2. 
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From Table 2 we obtain, that only cuboids from group 

3 can cause a dead space of more than 1/2. So consider 
Cup to be a cuboid of Group 3 with volume 
1 1
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Survey of two cases: 
Case I: Besides Cup there are cuboids with a total base 

area of at least 1/2, which are above the unit level. Let 
(1 )x w d h− ⋅ ⋅ ⋅  be the part of ( )
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unit level, with 1x < . We obtain 1 1

4 4
(1 )x h x h− ⋅ ⋅ ≤ ⋅ ⋅  by 

following the same argumentation that leads to the bound 
B and considering all modules above the unit level. Thus 
it follows 1
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x ≥ . Therefore, 1

2
(1 )x h− ⋅ ≤  is an upper 

bound for the total dead space in this case. 
Case II: Besides Cup there is less than a total base area 

of ½ above the unit level. 
Subcase (i): Among the other cuboids, which are 

above the unit level, there is no other one of Group 3. 
Then we can move all these cuboids to the right half of 
the total floorplan and extend Cup to a depth of 
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constraints are not violated. Since the other cuboids are 
from other groups, the bound is not exceeded by them 
either. 

Subcase (ii): Among the other cuboids above the unit 
level there is another cuboid C’ from Group 3. Figure 5 
shows an example. Let h’ be its height and 
(1 ) ' ' 'x h w q− ⋅ ⋅ ⋅  be the part of it above the unit level. 

Then 1 1

4 2
(1 ) ' 2 'x h x h− ⋅ ⋅ ⋅ ≤ ⋅ ⋅ . It follows that 1

2
x ≥  and 

thus 1

2
(1 ) 'x h− ⋅ ≤ . Therefore, we can pack the cuboid Cup 

as in subcase (i) and neither the cuboid C’ nor the Cup will 
exceed the upper bound of 1/2 for the dead space. □ 
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Figure 5. Post-processing of the striped cuboid 
Cup in Case II (ii) of Lemma 2. 



4.3. An upper bound considering the relative 
sizes of the volumes 

Lemma 3 Given a set of soft modules with each 
having a shape flexibility r≥2 there exists a floorplan F of 
these cuboids so that 
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Proof  As before, we assume 1
total

V =  and 

divide the modules into groups depending on their 
volume. In this case we take the size of the largest 
module into account for defining the base area x2 of the 
cuboids of Group 1. Then the base area is halved from 
group to group in the same way as described in Lemma 2. 
An example of a floorplan, which is obtained in this way, 
is shown in Figure 6. The classification of the groups is 
given in Table 3. 
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easily see that the flexibility constraint is not violated, 
since 4
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r≤ for all 2r ≥ . As before, the lower boundary 

of the uppermost cuboid Cup has to be below the unit level 

and thus its height gives an upper bound on the total 
height. The dead space can be obtained from 
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Figure 6. An example of a floorplan in Lemma 3. 
Cuboids of the same group are illustrated in the 
same color.  

5. Conclusion and future work 

In this paper we gave an upper bound for the volume 
of 3D slicing floorplans. The proposed bound shows that 
slicing structures are well suited for investigating the 
third dimension in floorplanning. In three-dimensional 
layout design it is important to reserve space for routing, 
since basically there are no special routing layers. 
Therefore, even the bound of 3/2 is an admissible value. 
Moreover, this is only an upper bound, and we expect to 
obtain a much lower value in the average case, as it is the 
case in two dimensions [24]. Therefore, we will 
implement an algorithm for 3D slicing floorplans to 
compare the theoretical bound given in this paper with 
the average case of an actual implementation. 
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