
A Partitioning and Storage Based Built-In
Test Pattern Generation Method for Scan Circuits+

Irith Pomeranz and Sudhakar M. Reddy
School of Electrical & Computer Eng. Electrical & Computer Eng. Dept.

Purdue University University of Iowa
W. Lafayette, IN 47907, USA Iowa City, IA 52242, USA

Abstract
We describe a built-in test pattern generation method for scan
circuits. The method is based on partitioning and storage of test
sets. Under this method, a precomputed test set is partitioned
into several sets containing values of different primary inputs or
state variables. The on-chip test set is obtained by implementing
the Cartesian product of the various sets. The sets are reduced as
much as possible before they are stored on-chip in order to
reduce the storage requirements and the test application time.

1. Introduction
Storage-based methods for built-in test pattern generation store
certain data on-chip. For example, the data may consist of a test
set that was generated off-chip (or parts of such a test set).
Storage-based methods use the stored information as part of an
on-chip test pattern generator (TPG ) in order to achieve com-
plete fault coverage. The simplest form of a storage-based TPG
consists of a memory that stores the complete test set, and a
counter that can go through the memory addresses where the test
set is stored. In this way, a precomputed test set can be applied to
the circuit in full. To reduce the size of the on-chip memory
required, one of the following two general approaches can be
used.

Encoding techniques [1] allow the complete test set to be
stored in a compressed way.

Alternatively, on-chip computations [2], [3] allow new
test vectors to be obtained from existing ones. Under the method
of [2], the next test vector to be applied to the circuit is obtained
from the test vector currently applied by complementing single
bits. The implementation of [2] stores in an on-chip memory the
description of the operations to be applied to each test vector in
order to obtain the next one. This method was applied to combi-
national circuits. The method of [3] was designed for synchro-
nous sequential circuits. It is based on storage of short input
sequences that are expanded on-chip into test sequences.

Recently [4], we proposed a new approach to storage-
based test-pattern generation for synchronous sequential circuits.
This method uses a simpler test application scheme than [3],
reduces the overall amount of data that needs to be loaded to the
chip (thus reducing the load time), and in several cases also
reduces the memory requirements compared to [3]. The basic
idea behind the method of [4] is demonstrated by the following
example (although the method of [4] was proposed for synchro-
nous sequential circuits, we demonstrate in the following exam-
ple its application to a combinational circuit since it is closer to
hhhhhhhhhhhhhhhhhhhhh
+ Research supported in part by NSF Grant No. CCR-0098091, and in part
by SRC Grant No. 2001-TJ-949,950.

the application to scan circuits that we consider here). Consider a
test set T = {00000, 00111, 01000, 01110, 10110, 10111}
precomputed off-chip for a 5-input combinational circuit. To
store this test set on-chip, we need a memory of 6.5 = 30 bits.
Let us partition the test set into two subsets T 1 and T 2 such that
T 1 contains the values of the first two inputs, and T 2 contains the
values of the last three inputs. Thus, the pattern 00000 contri-
butes 00 to T 1 and 000 to T 2, the pattern 00111 contributes 00 to
T 1 and 111 to T 2, and so on. We obtain T 1 = {00, 01, 10} and
T 2 = {000, 110, 111}. To store T 1 we need 3.2 = 6 bits and to
store T 2 we need 3.3 = 9 bits, for a total of 15 bits. The memory
requirements are thus reduced to half by partitioning the test set.
To apply the original test set to the circuit, we need to apply cer-
tain pairs t 1t 2 simultaneously, where t 1 ∈ T 1 and t 2 ∈ T 2. For
example, we need to apply t 1 = 00 and t 2 = 000 to obtain the first
vector 00000 in T , while the pair t 1 = 00 and t 2 = 110 yields
00110 which is not in T . However, storing the pairs that need to
be applied to the circuit may be a space consuming solution.
Instead, we observe that T is contained in the Cartesian product
T 1×T 2 of T 1 and T 2. The Cartesian product T 1×T 2 consists of
every pair t 1t 2 such that t 1 ∈ T 1 and t 2 ∈ T 2. In the example,
we obtain T 1×T 2 = {00000iiiii, 00110, 00111iiiii, 01000iiiii, 01110iiiii, 01111,
10000, 10110iiiii, 10111iiiii}, where the underlined vectors are in T . To
implement the Cartesian product we only need two counters that
will go through all the elements of T 1 and T 2. If the size of T is
N , the size of T 1 and T 2 is at most N , and the size of the Carte-
sian product is at most N 2. Two effects help keep the number of
tests in the Cartesian product significantly lower than N 2.
(1) The number of patterns in T 1 and T 2 is typically smaller than
N . This is because some vectors in T contribute the same vector
to T 1 or T 2. For example, both 00000 and 00111 contribute 00 to
T 1 in the example above. Thus, instead of six vectors we
obtained three vectors in each one of T 1 and T 2 above.
(2) We apply a procedure where we omit as many patterns as
possible from T 1 and T 2. This serves to reduce the memory
requirements, but also reduces the number of tests applied to the
circuit. Since the Cartesian product contains more tests than T ,
it is typically possible to omit patterns from T 1 and T 2 and still
obtain complete fault coverage when applying T 1×T 2 to the cir-
cuit. In the example above, if we omit the pattern 10 from T 1,
we obtain T 1 = {00, 01}, T 2 = {000, 110, 111} and T 1×T 2 =
{00000, 00110, 00111, 01000, 01110, 01111}. If this test set
detects all the circuit faults, it can replace the original test set.
The memory requirements are reduced by two bits, and the
number of tests applied to the circuit is reduced by three tests.

It is important to note that in most storage-based methods,
including [2], [3], [4] and the method proposed here, encoding
[1] can be used to further reduce the memory sizes required. It is
also important to note that similar to [3] and [4], the number of



test vectors applied to the circuit under the method proposed
here is larger than the number of vectors in the precomputed test
set T . Consequently, improved defect coverages are likely to be
obtained. We present experimental results to support this point
by showing that the extra tests applied to the circuit are effective
in detecting the circuit faults multiple times [5], [6].

Although the example above was given for a combina-
tional circuit, we consider full-scan sequential circuits in this
work. We assume that a test τi for a full-scan circuit has the fol-
lowing components. (1) A scan-in vector SIi . The vector SIi is
applied through the scan chain at the beginning of the test. (2) A
primary input sequence Ti consisting of one or more primary
input vectors. The sequence Ti is applied to the primary inputs
after SIi is scanned in. While Ti is applied, the flip-flops are
driven from the next-state variables of the circuit (without using
the scan chain). At the end of a test, the final state is scanned out.
We use the notation τi = (SIi ,Ti ) for a scan-based test. For
example, for a circuit with four state variables and two primary
inputs, a possible test is (0000, (01, 10)), where 0000 is the ini-
tial state scanned in, and (01, 10) is the sequence applied to the
primary inputs following the scan operation. The importance of
applying input sequences Ti of length larger than one is that it
contributes to at-speed testing of the circuit [7], [8].

A test set for a scan circuit consists of tests τ1,τ2, . . . ,τN
where τi = (SIi ,Ti ). In contrast, for a non-scan synchronous
sequential circuit, a single test sequence Ti is considered in [4],
and Ti is significantly longer than the sequences Ti included in
scan-based tests. The difference in test set structure results in
significant differences in the partitioning and test application
schemes for the two types of circuits. For example, in [4], Ti is
partitioned into equal length subsequences over which the Carte-
sian product is defined, whereas here, the subsequences Ti are
short enough to be kept intact.

Earlier works on built-in test generation for scan circuits
using tests of the form (SIi ,Ti ) were based on random patterns
[9]-[11]. The methods of [9] and [10] do not achieve complete
fault coverage, and all three methods do not guarantee that com-
plete fault coverage would be achieved. Although the method of
[11] achieves complete fault coverage for all the benchmark cir-
cuits considered in [11], this is achieved at the cost of a more
complex test application scheme. The method proposed here
guarantees that the same fault coverage achieved by an off-chip
test set would be achieved by the test set generated on-chip.

The paper is organized as follows. In Section 2 we
describe the proposed procedure for partitioning a test set T =
{τ1,τ2, . . . ,τN } of a scan circuit. We also describe the procedure
for reducing the number of elements in the sets obtained after
partitioning. This procedure reduces the storage requirements
and the number of tests applied to the circuit while ensuring that
the Cartesian product would detect all the faults detectable by T .
In Section 3 we consider the test application process and the
hardware required for implementing it in the case of scan cir-
cuits. In Section 4 we present experimental results. Section 5
concludes the paper.

2. Test set partitioning
Let T = {τ1,τ2, . . . ,τN } be a test set for a scan circuit, with
τi = (SIi ,Ti ) for 1 ≤ i ≤ N . In this section, we first consider the
partitioning of T . We then describe a procedure for reducing the
sizes of the resulting sets. For illustration, we consider the test
set for ISCAS-89 benchmark circuit s 27 shown in Table 1. The
circuit has three state variables and four primary inputs. Each

test is shown on a separate row in the table. Storing this test set
requires 36 bits (12 bits for storing 4 scan-in vectors and 24 bits
for storing 6 primary input vectors contained in the input
sequences Ti ).

Table 1: Test set for s 27

i SIi Tiiiiiiiiiiiiiiiiiiiiiiiiiii
1 011 (0000)
2 011 (1101)
3 000 (1010)
4 110 (0100, 0111, 1001)c

c
c
c
c
c

c
c
c
c
c
c

The first level of partitioning we apply to the test set T
results in a set Ψ that contains all the scan-in vectors SIi , and a
set Σ that contains all the primary input sequences Ti . For s 27,
we obtain Ψ = {000, 011, 110} and Σ = {(0000), (1101), (1010),
(0100, 0111, 1001)}. This requires storage of 33 bits. The
Cartesian product Ψ×Σ defines the test set that will be applied to
the circuit. We obtain Ψ×Σ = {(000, (0000)), (000, (1101)), (000,
(1010)), (000, (0100, 0111, 1001)), (011, (0000)), . . . , (110,
(0100, 0111, 1001))} containing 12 tests.

The partitioning into Ψ and Σ as defined above is
motivated by the fact that the number of state variables of a cir-
cuit is typically much larger than the number of primary inputs.
In addition, the primary input sequences are typically short.
Consequently, it is advantageous to deal with the state variables
separately. When reducing the sizes of the sets Ψ and Σ, we will
give a higher priority to reducing the size of Ψ since the vectors
in Ψ tend to be larger than the input sequences in Σ when the
number of state variables is large.

When the number of state variables is large, it is also
advantageous to further partition the set Ψ. We achieve this by
dividing the set of state variables of the circuit, denoted by Y ,
into two or more subsets Y 1,Y 2, . . . ,Yk , and including the pat-
terns obtained on each subset Yj in a separate set Ψj . For simpli-
city and since the number of tests in the Cartesian product grows
fast with k , we use k = 2. For a circuit with NSV state variables,
we include the first NSV 1 = NSV /2 state variables in the first subset
Y 1, and the remaining NSV 2 = NSV −NSV 1 state variables in the
second subset Y 2. The patterns obtained under T on the state
variables in Y 1 are included in a set Ψ1, and the patterns obtained
under T on the state variables in Y 2 are included in a set Ψ2. The
test set to be applied to the circuit is obtained by computing the
Cartesian product Ψ1×Ψ2×Σ. For s 27, Y 1 contains the first state
variable and Y 2 contains the last two state variables. We obtain
Ψ1 = {0, 1}, Ψ2 = {00, 10, 11} and Σ = {(0000), (1101), (1010),
(0100, 0111, 1001)}. Storage of these sets requires 32 bits. The
Cartesian product includes 2.3.4 = 24 tests.

Once the sets Ψ and Σ (or Ψ1, Ψ2 and Σ) are defined, we
attempt to reduce their sizes as much as possible without reduc-
ing the fault coverage achieved by Ψ×Σ (or Ψ1×Ψ2×Σ). We con-
sider the case where Ψ1, Ψ2 and Σ are used. The case where Ψ is
not partitioned into Ψ1 and Ψ2 can be accommodated by setting
Ψ1 = Ψ and Ψ2 = φ. Procedure 1 below describes how the sets
are reduced. Procedure 1 accepts the sets Ψ1, Ψ2 and Σ, and the
set of faults F detected by the original test set T . The procedure
attempts to omit elements of Ψ1, Ψ2 and Σ one at a time in an
order that will be explained below. After every element is omit-
ted, the reduced test set obtained by the Cartesian product
Ψ1×Ψ2×Σ is fault simulated. If, during the simulation process, it
turns out that a fault f ∈ F is not detected by Ψ1×Ψ2×Σ, fault
simulation stops and the omitted element is restored. Only if all



the faults in F are detected, the omission is accepted. It is then
made final, and the omitted element is never restored.

Procedure 1 first considers the patterns in Ψ1. To deter-
mine the order by which the patterns will be considered, we
associate with every pattern ψ1i ∈ Ψ1 the number of times it
appears in the original test set T , i.e., the number of tests in T
that contain ψ1i . We denote this number by n (ψ1i ). For exam-
ple, for s 27, ψ11 = 0 appears three times in T (in three different
tests), and ψ12 = 1 appears once in T (in a single test). Thus,
n (ψ11) = 3 and n (ψ12) = 1. We attempt to omit patterns that
appear small numbers of times before we attempt to omit pat-
terns that appear large numbers of times in T . The motivation
for this is as follows. If ψ1i appears a large number of times in
T , it is likely to contribute to a large number of tests in Ψ1×Ψ2×Σ
that detect new faults. If we omit it, there are likely to be many
other patterns that it will not be possible to omit without reduc-
ing the fault coverage. Therefore, we prefer to keep ψ1i in Ψ1. In
contrast, if ψ1i appears a small number of times in T , it is likely
that it will be possible to omit it, and that omitting it will have a
small impact on the ability to omit other patterns. In the exam-
ple of s 27, we try to omit ψ12 = 1 first, and then we try to omit
ψ11 = 0. In this example, none of them can be omitted.

We repeat the same process for Ψ2. In the case of s 27, we
have ψ21 = 00 with n (ψ21) = 1, ψ22 = 10 with n (ψ22) = 1, and
ψ23 = 11 with n (ψ23) = 2. We attempt to omit ψ21, then ψ22 and
finally ψ23. We find that ψ21 = 00 can be omitted.

For the input sequences in Σ, the order is based on two
parameters. The first parameter, n (Ti ), is the number of times Ti
appears in T . This is similar to the parameter n (ψij ) used for the
patterns in Ψ1 and Ψ2. The second parameter is the length of Ti ,
denoted by L (Ti ). We prefer to omit long sequences first, since
their storage requirements are higher. We use the sequence
length as the primary criterion, and the number of appearances in
T to break ties. For s 27, we have T 1 = (0000), T 2 = (1101), T 3 =
(1010) and T 4 = (0100, 0111, 1001) with n (Ti ) = 1 for
i = 1,2,3,4, L (Ti ) = 1 for i = 1,2,3 and L (T 4) = 3. We consider
the sequences in the order <T 4,T 1,T 2,T 3>. We find that T 2 can
be omitted.

The final result we obtain for s 27 is Ψ1 = {0, 1}, Ψ2 =
{10, 11} and Σ = {(0000), (1010), (0100, 0111, 1001)}. Storage
of these sets requires 26 bits. The number of tests applied to the
circuit is 2.2.3 = 12.

Procedure 1 that reduces the sets Ψ1, Ψ2 and Σ is given
next.
Procedure 1: Reducing Ψ1, Ψ2 and Σ
(1) Let F be the set of faults detected by T . Mark all the pat-

terns in Ψ1 unselected .
(2) Select the unselected pattern ψ1i ∈ Ψ1 with the

minimum value of n (ψ1i ). Mark ψ1i selected .
(3) Omit ψ1i from Ψ1 and simulate Ψ1×Ψ2×Σ. If any fault in

F remains undetected, restore ψ1i into Ψ1.
(4) If there are any unselected patterns in Ψ1, go to Step 2.
(5) Mark all the patterns in Ψ2 unselected .
(6) If there are no unselected patterns in Ψ2, go to Step 10.
(7) Select the unselected pattern ψ2i ∈ Ψ2 with the

minimum value of n (ψ2i ). Mark ψ2i selected .
(8) Omit ψ2i from Ψ2 and simulate Ψ1×Ψ2×Σ. If any fault in

F remains undetected, restore ψ2i into Ψ2.
(9) Go to Step 6.

(10) Mark all the input sequences in Σ unselected .
(11) Select the unselected sequence Ti ∈ Σ that has the max-

imum length. If a choice exists, select Ti with the
minimum value of n (Ti ). Mark Ti selected .

(12) Omit Ti from Σ and simulate Ψ1×Ψ2×Σ. If any fault in F
remains undetected, restore Ti into Σ.

(13) If there are any unselected sequences in Σ, go to Step 11.
Note that the Cartesian product Ψ1×Ψ2×Σ does not have to

be maintained explicitly. Instead, the tests can be generated as
needed. This prevents excessive storage requirements during
fault simulation. Fault simulation time is reduced by stopping the
simulation of Ψ1×Ψ2×Σ as soon as an undetected fault which was
detected by T is identified.

To further reduce the fault simulation time in Procedure
1, we observe that for every fault f ∈ F , it is possible to
express the test τ ∈ T that detects it as a combination
ψ1i

1

∈ Ψ1, ψ2i
2

∈ Ψ2 and Ti
3

∈ Σ, where Ψ1, Ψ2 and Σ are the

original sets found based on T . If ψ1i
1

, ψ2i
2

and Ti
3

are still in the

corresponding sets, f is guaranteed to be detected by the Carte-
sian product and need not be simulated. Every time f has to be
simulated again under the Cartesian product because ψ1i

1

, ψ2i
2

or

Ti
3

is removed from the corresponding set, we store the new

combination that allows f to be detected. If the removal is
accepted, we update ψ1i

1

, ψ2i
2

and Ti
3

according to the new com-

bination. In this way, we minimize the number of times a fault f
has to be simulated after removing an element from one of the
sets.

3. Hardware implementation
In this section, we compare the hardware required to implement
the proposed partitioning-based method with the hardware
required when the complete test set is stored.

One way to store the complete test set is by using the fol-
lowing memories (other options exist, but they have similar
overheads). The memory referred to as SI stores the scan-in
vectors. The i th memory entry, SI [i ], is the scan-in vector SIi of
τi . The memory referred to as T stores the test sequences as
consecutive input vectors. To mark where a sequence starts and
where it ends, we use a memory called B such that B [i ] marks
the beginning of Ti , and a memory called L such that L [i ] is the
length of Ti . The following procedure needs to be implemented
in hardware to apply the test set to the circuit.

For i = 0 to N −1 (where N is the number of tests in the test
set):

Scan in SI [i ].
For u = 0 to L [i ]−1:

Apply to the primary inputs the vector T [B [i ]+u ].
This implementation requires two counters, i and u .
The test set partitioned as proposed here can be stored

using the following memories. The memory referred to as Ψ1
stores the vectors contained in Ψ1. The i th entry, Ψ1[i ], is equal
to the vector ψ1i ∈ Ψ1. The memory referred to as Ψ2 stores the
vectors contained in Ψ2. The entry Ψ2[i ] is equal to the vector
ψ2i ∈ Ψ2. The memory referred to as Σ stores the test
sequences in Σ as consecutive input vectors. A memory called B
is arranged such that B [i ] marks the beginning of Ti , and a
memory called L is arranged such that L [i ] is the length of Ti .
The following procedure needs to be implemented in hardware
to apply the test set to the circuit.



For i 1 = 0 to N 1−1 (where N 1 is the number of vectors in
Ψ1):

For i 2 = 0 to N 2−1 (where N 2 is the number of vectors in
Ψ2):

For i 3 = 0 to N 3−1 (where N 3 is the number of input
sequences in Σ):

Scan in the vector consisting of Ψ1[i 1] followed
by Ψ2[i 2].
For u = 0 to L [i 3]−1:

Apply to the primary inputs the vector
T [B [i 3]+u ].

This implementation requires four counters, i 1, i 2, i 3 and
u . Except for the difference in the number of counters, the main
difference in size between the two implementations results from
the memory sizes. Experimental results presented in the follow-
ing section show that the sizes are significantly reduced by the
proposed method.

4. Experimental results
We applied the proposed built-in test generation method to
ISCAS-89 and ITC-99 benchmark circuits. In two separate
experiments, we used two precomputed test sets for every cir-
cuit. The first test set is derived from a combinational test set (a
test set designed for the combinational logic of the circuit). For
ISCAS-89 benchmark circuits, the combinational test set is the
compacted test set generated by the procedure from [12]. For
ITC-99 benchmark circuits, a combinational test set is obtained
by applying 100,000 combinational test patterns and including in
the test set only the patterns that detect new faults. A combina-
tional test ci is transformed into a scan-based test τi as follows.
The values of the state variables obtained under ci are assigned
to the scan-in vector SIi ; and the primary input vector obtained
under ci is included in a test sequence Ti of length one. Starting
from the test set obtained in this way, we apply the static com-
paction procedure of [13]. After static compaction, the number
of tests is lower and the lengths of the sequences Ti is higher (the
lower number of tests reduces the number of scan operations and
the test application time; the total length of all the primary input
sequences is kept the same or it is reduced by compaction).
Since the test sets obtained in this way tend to contain very short
input sequences, we also consider the test sets generated by the
simulation-based test generation procedure of [14]. These test
sets contain longer input sequences, and in most cases also a
larger number of tests.

Information about the circuits we consider is shown in
Table 2. Information about the test sets is shown later in Tables 3
and 4. In Table 2, after the circuit name we show the number of
primary inputs and the number of state variables. We then show
the number of faults and the number of faults detected by the test
sets we consider. For ISCAS-89 benchmark circuits, all the
detectable faults are detected by the test sets we use.

In Table 3, we show the following information for the test
sets obtained by static compaction [13]. Under column original ,
we show the number of tests in T , the length of all the input
sequences Ti in T , and the number of bits required to store T .
Under column partitioned , we show the results obtained after
partitioning T but before applying Procedure 1 to reduce the
resulting set sizes. In all the cases, the test set is partitioned into
three sets, Ψ1, Ψ2 and Σ. Under subcolumn st 1 we show the
number of vectors in Ψ1, under subcolumn st 2 we show the
number of vectors in Ψ2, under subcolumn seq we show the
number of input sequences in Σ, and under subcolumn len we

Table 2: Circuit parameters

circuit inp s.v. flts detiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s208 11 8 215 215
s298 3 14 308 308
s344 9 15 342 342
s382 3 21 399 399
s386 7 6 384 384
s400 3 21 421 415
s420 19 16 430 430
s510 19 6 564 564
s526 3 21 555 554
s641 35 19 467 467
s820 18 5 850 850
s953 16 29 1079 1079
s1423 17 74 1515 1501
s1488 8 6 1486 1486iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 3 5 135 135
b02 2 4 70 70
b03 5 30 452 452
b04 12 66 1346 1344
b06 3 9 202 202
b09 2 28 420 420
b10 12 17 512 512
b11 8 30 1089 1078cc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

show the total length of all the sequences in Σ. Under column
f inal we show the results obtained after applying Procedure 1.
In addition to the sizes of Ψ1, Ψ2 and Σ shown under subcolumns
st 1, st 2, seq and len , we show under subcolumn tst the number
of tests applied to the circuit. This is the size of the Cartesian
product Ψ1×Ψ2×Σ. Under subcolumn stor we show the storage
requirements of the partitioned and reduced sets Ψ1, Ψ2 and Σ in
bits. Under column ratio we show the storage requirements of
the proposed method divided by the storage requirements for the
original test set. In the last row of Table 3 we show the total
storage requirements and the average ratio. In the last column of
Table 3 we show the normalized run time of Procedure 1. The
run time is normalized by dividing it by the time it takes to fault
simulate the original test set. It is important to note that the origi-
nal test set is small and fault simulation time for this test set is
very short. The run time of Procedure 1 can be further reduced
by incorporating techniques to speed-up the identification of ele-
ments that cannot be removed from the partitioned test set.

Storage requirements are computed as follows. For the
original test set T , let the number of tests in T be N and let the
length of Ti be Li . The total length of all the sequences Ti in T is

L =
i=1
Σ
N

Li . The number of bits required to store T is NNSV +LNPI,

where NSV is the number of state variables and NPI is the number
of primary inputs. The first component of the sum corresponds to
storage of scan-in vectors, and the second component
corresponds to storage of the input sequences. We ignore the
memories required to store beginnings and lengths of sequences
since they depend on the implementation, and they can only be
reduced by the proposed method. For a partitioned test set with
sets Ψ1, Ψ2 and Σ, let the size of Ψ1 be N 1, let the size of Ψ2 be
N 2, and let the size of Σ be N 3. The number of bits required to
store these sets is N 1NSV 1+N 2NSV 2+LNPI, where NSV 1 is the
number of state variables whose vectors are stored in Ψ1, NSV 2 is
the number of state variables whose vectors are stored in Ψ2, and

L is the length of all the input sequences in Σ, i.e., L =
i=1
Σ
N

3

Li .



Table 3: Results for test sets obtained by static compaction

original partitioned
circuit tst len stor st1 st2 seq leniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s208 23 27 481 10 14 23 27
s298 20 24 352 19 17 10 14
s344 11 15 300 10 8 5 8
s382 23 25 558 23 23 8 10
s386 42 70 742 8 8 36 64
s400 20 24 492 19 20 10 13
s420 40 43 1457 23 32 24 27
s510 23 54 1164 8 8 20 51
s526 44 50 1074 36 38 11 17
s641 15 22 1055 11 14 15 22
s820 42 94 1902 4 8 42 94
s953 19 76 1767 17 19 19 76
s1423 26 26 2366 26 26 26 26
s1488 38 101 1036 8 8 38 101iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 5 24 97 4 4 5 24
b02 6 13 50 3 2 5 12
b03 22 34 830 22 22 17 29
b04 30 69 2808 30 30 30 69
b06 8 20 132 6 7 7 19
b09 22 36 688 22 22 10 18
b10 25 72 1289 23 25 25 72
b11 40 85 1880 40 39 40 85iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
total 22520cc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

final
circuit tst st1 st2 seq len stor ratio n.timeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s208 343 7 7 7 9 155 0.32 131.27
s298 108 12 3 3 5 120 0.34 167.08
s344 75 5 5 3 5 120 0.40 23.79
s382 132 4 11 3 4 173 0.31 114.73
s386 420 6 7 10 20 179 0.24 19.41
s400 156 4 13 3 4 195 0.40 94.73
s420 5202 17 17 18 20 652 0.45 339.63
s510 420 5 7 12 33 663 0.57 26.75
s526 512 16 8 4 6 266 0.25 336.30
s641 330 5 6 11 18 735 0.70 37.39
s820 544 4 8 17 50 932 0.49 16.00
s953 132 12 1 11 63 1191 0.67 95.22
s1423 3672 17 24 9 9 1670 0.71 339.35
s1488 385 5 7 11 38 340 0.33 23.30iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 16 2 2 4 21 73 0.75 4.00
b02 12 2 2 3 9 26 0.52 NA
b03 175 5 7 5 12 240 0.29 185.36
b04 594 6 9 11 37 939 0.33 394.95
b06 36 3 4 3 8 56 0.42 7.88
b09 210 7 10 3 4 246 0.36 100.28
b10 200 5 5 8 20 325 0.25 347.33
b11 456 8 19 3 7 461 0.25 758.57iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
total 9757 0.43cc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The following points can be seen from Table 3. We first
consider the results after partitioning T but before applying Pro-
cedure 1. In the worst case, if the number of tests in T is N , the
numbers of vectors in Ψ1 and Ψ2 and the number of sequences in
Σ are also N . In most cases, the numbers are smaller than N ;
however, they are not significantly smaller. This implies that par-
titioning alone does not reduce the storage requirements
significantly. For example, for s 208, the test set obtained by
static compaction contains 23 tests. After partitioning, the
numbers of vectors in Ψ1 and Ψ2 are 10 and 14, respectively, but
the number of input sequences in Σ is 23. In this case, all the
input sequences in T are different. Procedure 1 reduces the
numbers of vectors in Ψ1 and Ψ2, and the number of input

sequences in Σ substantially. As a result, it reduces the storage
requirements, in most cases, to less than half of the original
value. For s 208, the numbers of vectors in Ψ1 and Ψ2 and the
number of sequences in Σ are all 7. The storage requirements
are reduced from 481 bits to 155 bits, or 0.32 of the original
value.

Results using the test sets from [14] are shown in Table 4.
The original test sets in this case are larger than the test sets of
Table 3, which were obtained by static compaction. Conse-
quently, their storage requirements are higher.

Table 4: Results for test sets from [14]

original partitioned
circuit tst len stor st1 st2 seq leniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s208 29 50 782 10 16 29 50
s298 16 124 596 16 15 15 122
s344 11 92 993 10 11 11 92
s382 26 194 1128 26 26 21 173
s420 58 75 2353 37 51 58 75
s526 43 378 2037 41 43 36 320
s641 34 332 12266 32 34 34 332
s820 91 221 4433 4 8 91 221
s1423 49 770 16716 49 49 49 770
s1488 78 218 2212 8 8 77 216iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 11 32 151 4 6 11 32
b02 8 19 70 4 2 7 18
b03 22 122 1270 19 19 22 122
b04 32 889 12780 27 27 32 889
b06 13 28 201 7 11 9 21
b09 30 143 1126 29 29 16 96
b10 33 176 2673 29 29 33 176
b11 35 515 5170 34 34 35 515iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
total 66957c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

final
circuit tst st1 st2 seq len stor ratioiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s208 288 6 8 6 15 221 0.28
s298 24 4 2 3 30 132 0.22
s344 48 3 4 4 43 440 0.44
s382 112 4 7 4 37 228 0.20
s420 1287 11 13 9 14 458 0.19
s526 192 6 8 4 25 223 0.11
s641 120 3 2 20 208 7327 0.60
s820 608 4 8 19 30 572 0.13
s1423 630 5 9 14 239 4581 0.27
s1488 576 6 6 16 39 348 0.16iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 18 1 3 6 22 77 0.51
b02 12 2 2 3 6 20 0.29
b03 168 4 6 7 32 310 0.24
b04 228 3 4 19 664 8199 0.64
b06 60 3 4 5 8 56 0.28
b09 165 5 11 3 19 262 0.23
b10 169 4 4 10 50 668 0.25
b11 420 4 7 15 245 2125 0.41iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
total 26247 0.30c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

From Tables 3 and 4 it can be seen that the number of
tests applied by the proposed method (the size of the Cartesian
product) is larger than the number of tests in the original test set
T . Next, we provide evidence to show that the extra tests
applied under the proposed method are not arbitrary tests with
respect to the circuit-under-test, but rather high-quality tests that
detect large numbers of faults. It was established in earlier works
([5], [6]) that n -detection test sets for stuck-at faults (i.e., test
sets that detect each stuck-at fault n times, where n > 1) are
effective in detecting defects. Using this result, showing that the



tests applied by the proposed method achieve large numbers of
detections of stuck-at faults will support the argument that the
proposed method, by applying a number of tests which is larger
than necessary, improves the defect coverage.

Results regarding the numbers of detections achieved by
the proposed method are given in Table 5. The original test set in
this case is the one obtained by static compaction [13]. Table 5 is
organized as follows. After the circuit name, we show the
minimum and the maximum number of times a stuck-at fault is
detected by the tests generated by the proposed method. We
then show the average number of times a stuck-at fault is
detected. For comparison, we show the same information for the
original test set. The following points can be seen from Table 5.

Table 5: Numbers of detections

proposed original
circuit min max ave min max aveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s208 1 337 71.51 1 22 5.58
s298 1 108 29.68 1 17 5.02
s344 1 75 24.61 1 11 3.44
s382 1 132 30.15 1 22 5.32
s386 1 420 55.48 1 42 5.25
s400 1 156 35.75 1 19 4.84
s420 1 4986 934.16 1 38 9.13
s510 1 420 123.93 1 23 5.80
s526 1 444 97.17 1 40 8.60
s641 1 328 111.75 1 15 5.03
s820 1 543 61.80 1 42 5.05
s953 1 132 43.65 1 19 6.16
s1423 1 3264 868.19 1 23 6.42
s1488 1 385 71.49 1 38 6.04iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 1 16 10.26 1 5 3.12
b02 1 12 5.86 1 6 2.31
b03 2 165 64.28 1 21 6.38
b04 1 574 184.38 1 29 8.52
b06 1 36 14.25 1 8 3.22
b09 1 201 53.21 1 21 6.10
b10 1 200 50.28 1 25 6.78
b11 1 428 92.62 1 39 9.04c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The minimum number of times a fault is detected by the
Cartesian product is in most cases one. This is a result of the fact
that the subsets Ψ1, Ψ2 and Σ are minimized as much as possible.
Specifically, the omission of any additional entry from either one
of these subsets will leave a fault undetected. The faults that
prevent the omission of another entry are the ones detected only
once. A similar situation can be seen for the original test set
which is a compacted test set.

The maximum and average numbers of detections are
significantly higher for the Cartesian product than for the origi-
nal test set. This supports our argument that the Cartesian pro-
duct includes tests of high quality that detect large numbers of
faults.

5. Concluding remarks
We described a partitioning and storage based built-in test pat-
tern generation method for full-scan circuits. Under the pro-
posed method, a precomputed test set is partitioned into several
sets. One or more of the sets contain values of state variables.
The remaining set contains input sequences. The on-chip test set
is obtained by implementing the Cartesian product of the various
sets. The sets were reduced as much as possible by omitting vec-

tors or input sequences in order to reduce the storage require-
ments and the test application time.

In the application to full-scan circuits, we used the fact
that in most cases, the number of primary inputs is smaller than
the number of state variables, and the primary input sequences
are relatively short. Consequently, we partitioned the scan-in
vectors, but we did not partition the input sequences. If neces-
sary, it is possible to partition the input sequences by partitioning
the set of primary inputs (if it is large), or by partitioning the
input sequences into subsequences of limited lengths (if the input
sequences are long).

To further reduce the storage requirements, it is possible
to use the proposed method in conjunction with a random pattern
generator, and apply it only to faults that remain undetected after
random pattern generation. This would reduce the sizes of the
sets that need to be stored on-chip.

References
[1] V. Iyengar, K. Chakrabarty, and B. T. Murray "Built-in Self Test-

ing of Sequential Circuits Using Precomputed Test Sets," in
Proc. VLSI Test Symp., April 1998, pp. 418-422.

[2] R. Dandapani, J. H. Patel and J. A. Abraham, "Design of Test
Pattern Generation for Built-In Test", in Proc. Intl. Test Conf.,
1984, pp. 315-319.

[3] I. Pomeranz and S. M. Reddy, "Built-In Test Sequence Genera-
tion for Synchronous Sequential Circuits Based on Loading and
Expansion of Test Subsequences", in Proc. 36th Design Autom.
Conf., June 1999, pp. 754-759.

[4] I. Pomeranz and S. M. Reddy, "A Partitioning and Storage Based
Built-In Test Pattern Generation Method for Synchronous
Sequential Circuits", in Proc. Intl. Conf. on Computer-Design,
Sept. 2001.

[5] S. C. Ma, P. Franco and E. J. McCluskey, "An Experimental
Chip to Evaluate Test Techniques Experiment Results", in Proc.
1995 Intl. Test Conf., Oct. 1995, pp. 663-672.

[6] J. T.-Y. Chang, C.-W. Tseng, C.-M. J. Li, M. Purtell and E. J.
McCluskey, "Analysis of Pattern-Dependent and Timing-
Dependent Failures in an Experimental Test Chip", in Proc. 1998
Intl. Test Conf., Oct. 1998, pp. 184-193.

[7] P. C. Maxwell, R. C. Aitken, K. R. Kollitz and A. C. Brown,
"IDDQ and AC Scan: The War Against Unmodelled Defects", in
Proc. 1996 Intl. Test Conf., Oct. 1996, pp. 250-258.

[8] "Best Methods for At-Speed Testing?", Panel 3, 16th VLSI Test
Symp., April 1998, p. 460.

[9] H.-C. Tsai, K.-T. Cheng and S. Bhawmik, "Improving the Test
Quality for Scan-based BIST Using General Test Application
Scheme", in Proc. Design Autom. Conf., June 1999, pp. 748-753.

[10] Y. Huang, I. Pomeranz, S. M. Reddy and J. Rajski, "Improving
the Proportion of At-Speed Tests in Scan BIST", in Proc. Intl.
Conf. on Computer-Aided Design, Nov. 2000.

[11] I. Pomeranz, "Random Limited-Scan to Improve Random Pattern
Testing of Scan Circuits", in Proc. 38th Design Autom. Conf.,
June 2001, pp. 145-150.

[12] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy, "Cost-
Effective Generation of Minimal Test Sets for Stuck-at Faults in
Combinational Logic Circuits", IEEE Trans. on Computer-Aided
Design, Dec. 1995, pp. 1496-1504.

[13] I. Pomeranz and S. M. Reddy, "Static Test Compaction for
Scan-Based Designs to Reduce Test Application Time", in Proc.
7th Asian Test Symp., Dec. 1998, pp. 198-203.

[14] I. Pomeranz and S. M. Reddy, "Simulation Based Test Genera-
tion for Scan Designs", in Proc. Intl. Conf. on Computer-Aided
Design, Nov. 2000, pp. 544-549.


	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index




