
Multiple-Precision Circuits Allocation Independent of Data-Objects Length∗

M.C. Molina, J.M. Mendías, R. Hermida
Dpto. Arquitectura de Computadores y Automática

Universidad Complutense de Madrid
{cmolinap, mendias, rhermida}@dacya.ucm.es

∗ Supported by the Spanish Government Research Grant TIC99-0474

Abstract

This paper presents an heuristic method to solve the
combined resource selection and binding problems for the
high-level synthesis of multiple-precision specifications.

Traditionally, the number of functional (and storage)
units in a datapath is determined by the maximum number
of operations scheduled in the same cycle, with their
respective widths depending on the number of bits of the
wider operations. When these wider operations are not
scheduled in such “busy” cycle, this way of acting could
produce a considerable waste of area.

To overcome this problem, we propose the selection of
the set of resources taking into account the only truly
relevant aspect: the maximum number of bits calculated
and stored simultaneously in a cycle. The implementation
obtained is a multiple-precision datapath, where the
number and widths of the resources are independent of
the specification operations and data objects.

1. Introduction

Some fragments of a multiple-precision specification
are shown in Fig. 1a, and a possible scheduling in Fig. 1b.
Traditional high–level synthesis (HLS) allocation
algorithms provide solutions where each operation is
implemented over a unique functional unit of the same or
greater width. This intuitive solution is shown in Fig. 1c.
However, it is possible to obtain circuits with smaller
area, following different design strategies.

Two additions scheduled in the same cycle can be
executed simultaneously over the same functional unit,
linking them together and avoiding the carry signal
propagation affect the results. In order to cut the carry
chain the operands should simply be separated with a 0, as
it is shown in Fig. 1d.

An addition can be allocated to a set of functional
units, if these are linked to propagate the carry signal. The
carry out of the functional unit which calculates the least
significant bits should be supplied as the carry in of the
functional unit which calculates the most significant ones.

In Fig. 1e, the and gate is used to allow the carry
propagation during the first cycle, and to avoid it during
the second one. The control line used to permit or not the
carry propagation is the same used by the multiplexer to
select the operands.

A similar problem appears in the storage units
selection and binding processes. Traditional HLS systems
are able to reuse registers to store variables of the same or
less width. However, if some variables are divided into
several fragments and stored each of them in a different
register, or different variables are stored simultaneously in
the same register, it is possible to obtain notorious area
savings.

Fig.1. a) fragments of a VHDL multiple-
precision specification, b) possible
scheduling, c) implementation proposed
by more traditional algorithms, d) and e)
more efficient implementations.

c)

...
main: process
...
variable A, B, C : std_logic_vector (7 downto 0);
variable D, E, F : std_logic_vector (3 downto 0);
variable G, H, I : std_logic_vector (2 downto 0);
...
begin
...
A := B + C ;
D := E + F ;
G := H + I ;
...
end process main;

H I

0...0F B 0..0E C F0I B E0H C

0I 0H E

a)

d)

e)

+ 8 bits + 3 bits + 8 bits

B 7 ..B 4 C 7 ..C 4 C 3 ..C 0 F

+ 4 bits

B 3 ..B 0

+ 4 bits

c)

...
main: process
...
variable A, B, C : std_logic_vector (7 downto 0);
variable D, E, F : std_logic_vector (3 downto 0);
variable G, H, I : std_logic_vector (2 downto 0);
...
begin
...
A := B + C ;
D := E + F ;
G := H + I ;
...
end process main;

...
main: process
...
variable A, B, C : std_logic_vector (7 downto 0);
variable D, E, F : std_logic_vector (3 downto 0);
variable G, H, I : std_logic_vector (2 downto 0);
...
begin
...
A := B + C ;
D := E + F ;
G := H + I ;
...
end process main;

H I

0...0F B 0..0E C F0I B E0H C

0I 0H E

a)

d)

e)

b) A 8 bits Cycle i
Cycle i+1 D 4 bits G

b)
Cycle i
Cycle i+1 3 bits

b)
Cycle i
Cycle i+1

+ 8 bits + 3 bits + 8 bits

B 7 ..B 4 C 7 ..C 4 C 3 ..C 0 F

+ 4 bits

B 3 ..B 0

+ 4 bits

Additionally, it must be highlighted that, in general,
the use of any of the cited design strategies does not imply
the use of additional multiplexers.

In this paper we propose an algorithm able to offer
solutions like the presented before. This allocation style
leads to datapaths where the number and widths of the
resources are independent of the specification operations
and variables, and the amount of area due to the functional
and storage units is the minimum necessary. The
algorithm performs simultaneously the functional and
storage units selection and binding, guided by the main
objective of saving the maximum amount of
interconnection area.

2. Related work

The multiple-precision problem appears both in
software and hardware, specially in the development of
DSP applications.

The software DSP computation model consists of a set
of predesigned fixed-wordlength computational units
responsible of implementing all the operations. So, the
problem to be solved consists in the transformation of the
original multiple–lenght specification into another one
with a unique and uniform wordlength. This obligates to
use the truncation and extension operators to adapt the
operations widths, with the consequent loss of precision in
the first case, and the resulting waste of HW in the second
one. Recent research in multiple-precision software
problems takes fixed-point implementations to be derived
both from floating-point or infinite-precision descriptions.
Some examples of these are [1], [2], [3], and [4]. In [5] the
authors present a method to find the minimum number of
bits for both integer and floating point variables, used in
high level signal and image processing algorithms
described in MATLAB.

Within the hardware field there has been little research
in HLS for multiple-precision specifications. Up to now,
most systems have adopted trivial solutions, as treating
separately every different precision of the original
specification; they bind operations to functional units with
identical widths. Some examples are presented in [6], [7],
and [8].

More efficient systems are able to implement
operations over wider functional resources, filling in the
operands with 0’s, and discarding some bits of the
solution produced. Some of them are the ones proposed in
[9], [10], [11], and [12]. In [12] the authors also take into
account the operation widths during the scheduling phase,
which is performed as the same time as the resource
selection and binding.

 Nevertheless, some authors admit that these trivial
solutions are not good enough and suggest (but not
implement) another alternatives, like the execution of an
operation during several cycles [11], or the execution of
two multiplications over a unique multiplier during the

same cycle [10]. In the first case, the least significant bits
of an operation can be calculated in a cycle, and the
remaining ones in subsequent cycles, by storing not only
the partial results but also the partial carries. In the second
case, the authors study FPGA’s implementations of
multipliers structures with more than two operand entry
points.

3. Proposed algorithm

The actual version of our algorithm performs the
resource selection and binding of multiple-precision
specifications. The algorithm treats in a special way all the
operations with an additive kernel (comparisons,
maximum/minimum, subtractions, ...), and uses a classical
functional unit selection and binding algorithm (not
shown in this paper) to deal with non additive operations.

It takes as inputs both a circuit specification and a
scheduling given by any HLS tool. The output is a
complete multiple-precision datapath and a controller. The
datapath is composed of a set of adders, and other non–
additive functional units, some glue logic to link carry
chains and to execute additive operations over adders, a
set of storage units, and a set of multiplexers.

 The datapaths provided have always two features:
1) The sum of all additive functional units widths is

equal to the maximum number of bits computed
simultaneously in a cycle.

2) The sum of all registers widths is equal to the
maximum number of bits stored simultaneously in a
cycle.

These novel features result in datapaths where the
resources widths are, in general, independent of the circuit
specification, that is, of the operations and data objects
used.

The algorithm is divided into four phases. During the
first one all the additive operations of the original
specification are transformed into additions. In the second
phase an allocation, based on the binding of sets of
operations to a single functional unit, is performed.
During the third phase the circuit obtained is transformed
into a more compact one, and the number of control
signals is reduced. The selection and binding of the
routing resources take place during the fourth and last
phase.

The figure Fig. 2 shows a schema of the algorithm, in
which each phase has been separated of the others by a
dotted line. The next subsections explain in detail the
central phases of the algorithm proposed.

)
_

1

)(_

1
)(_(

_

1
)(_∑

=
∑
==

=
funum

i

jopenum

k
opekopewidthMax

cyclesnum

j
fuifuwidth

)
_

1

)var(_

1
)varvar(_(

_

1
)(_∑

=
∑
==

=
regnum

i

jnum

k
kwidthMax

cyclesnum

j
regiregwidth

3.1. Original specification transformation

Since our algorithm optimises the adder usage, the
preprocessing phase transforms all the specification
operations with an additive kernel into additions. For this
purpose we use a set of equations whose correctness has
been previously proven. The set of equations applied, as
well as the way they are applied is explained in [13].

3.2. Functional and storage resources selection
and binding

The objective of this phase is to construct a datapath

with a minimum interconnection area, composed of as
many 1-bit adders and 1-bit registers as, respectively, the
maximum number of bits calculated and stored
simultaneously in a cycle. Some of these 1-bit resources

will be compacted in the next phase to form wider
functional units and registers.

During this phase the algorithm works with an array of
linked 1-bit adders. The carry out of each adder is
connected, through an and gate, to the carry in of the one
on its left, as it is shown in Fig. 3. An operation can only
be allocated to a contiguous portion of this array, because
a less restrictive allocation policy would not result in
higher HW savings and could create combinational loops.

Next some concepts will be defined in order to ease
the explanation of this phase of the algorithm. With the
same purpose we will use a simple example , whose
circuit specification and scheduling are shown in Fig. 4a
and Fig. 4b respectively.
Candidate: set of operations with aligned operands
scheduled in different cycles (different alignments result
in different candidates). Since the creation of all these sets
requires exponential time, the algorithm only calculates a
limited number of them. These are the ones made up of a
minimum of one operation, and a maximum of one
operation per cycle:whose left operands have a maximum
number of bits in common (because either they belong to
the same variable, or they come from the same previously
allocated HW resource).
1) whose right operands have a maximum number of

bits in common.
2) whose left operands have the same size, and not

overlapped lifetimes.
3) whose right operands have the same size, and not

overlapped lifetimes.
In the example the creation of all candidates amounts

a total of 36 possibilities. Fig. 4c shows all the possible
candidates made of operations D and G, corresponding to
3 different operands alignments.

Supposing that variables B(3 downto 1) and K are
stored in the same register, and that operations D and G
have not overlapped operands lifetimes, the algorithm
only calculates 7 of the 36 previously cited candidates.
These ones are shown in Fig. 4d.
Location of a candidate: set of contiguous 1-bit
functional units which are not busy during the cycles in
which the candidate operations are scheduled. The
creation of all of them is again infeasible, so the algorithm
only calculates the next ones:
1) those inside the array of functional units where there

are operations allocated which have some operands
bits in common with any of the candidate operations.

2) the location situated the nearest to the left edge of the
array of functional units.

Fig. 2. Algorithm to solve the combined
resource selection and binding problems
of multiple-precision specifications.

INPUTS:
Scheduled DFG
OUTPUTS:
Complete Datapath and Controller
BEGIN

Preprocessing (Ope)
REPEAT

C = Calculate_Candidates (Reg)
L = Select_Possible_Locations (C, FU, Reg)
IS = Calculate_Interconnect_Savings (C, FU, Reg)
Best = Select_Best_Candidate (C, L, IS)
Allocate (Best, FU, Reg)
Remove (C, Best)

UNTIL C = 0
Compact_Datapath (FU, Reg)
Create_Interconnections (FU, Reg, Datapath)

END

Ope: List of specified operations. C: List of candidates, L:
list of locations, and IC : list of interconnections costs.
Reg: Array of size n x m, with n = maximum number of
bits stored simultaneously in a cycle, and m = number of
cycles. A 1-bit variable stored during cycle x in the 1-bit
register y occupies the position [y, x] of the array.
FU: Array of size n x m, with n = maximum number of bits
calculated simultaneously in a cycle, and m = number of
cycles. A 1-bit operation scheduled in cycle x, and
implemented over the 1-bit adder y occupies the position
[y, x] of the array.
Best: Candidate with maximum interconnection saving.
Datapath: Final implementation of the problem.

Fig. 3. Array of 1-bit adders linked by 2-input and gates.

+1 bit
Cout Cin Cin Cout Cout Cin Cin Cout +1 bit +1 bit +1 bit

3) the location situated the nearest to the right edge of
the array of functional units.
The locations 2) and 3), have been taken into

consideration because they fragment minimally the array
of functional units, leaving wider contiguous regions of 1-
bit functional units to allocate the remaining operations.
These two locations are the ones with the best possibilities
of allowing the algorithm to reach valid solutions.

In the example, if there is not any operation allocated
yet to the array of functional units, there are 4 possible
locations for the candidate formed by A and J.
Nevertheless the algorithm only calculates 2 of them,
which are shown in fig. 4e.
Valid location: location that leaves enough contiguous
regions of 1-bit functional units to allocate the still not
allocated operations. The locations shown in fig. 4e are
not valid ones because they make impossible the
allocation of the operations scheduled in cycle i+1.
Interconnection saving:
IS(C,L) = BitsOpe(C) + Bits_Res(C) + BitsLoc(C,L)
IS(C,L): interconnection saving of the candidate C in the
location L, being:
BitsOpe(C): number of bits of the candidate C left and
right operands which are able to come from the same
sources.
BitsRes(C): number of bits of the candidate C results
which can be stored in the same register.
BitsLoc(C,L): number of candidate C operands bits which
can be stored in the same registers as the ones used by the
operations already allocated in location L.

This phase of the algorithm consists of a loop. In each

iteration the candidates and their locations are created.
When a candidate has no any location, the algorithm
determines the operations responsible for it. If the
problem can be solved changing these operations for
another ones, in accordance with candidates definition,
then they are changed. If not, these operations are
removed from the candidate. In both cases, the algorithm
recalculates the set of locations.

After creating the candidates and selecting the valid
locations, the algorithm calculates, for each location of
every candidate, the interconnection saving. And finally,
the candidate with the maximum interconnection saving
is allocated.

The allocation of a candidate consists in the individual
allocation of each of its constituent operations to a set of
contiguous 1-bit functional units, and the allocation of
their respective operands and results to a set of 1-bit
registers (not necessary contiguous). In order to reduce the
interconnection area, the algorithm always tries to allocate
all the right operands of the candidate operations to the
same set of registers, all the left operands to the same set
of registers, and the results to the same set of registers. If
there were other operations already allocated to the
location selected, then the algorithm would try to use the
same registers used by these operations to store the
candidate operands. This is possible if both the lifetimes
of the variables already stored in the registers and those of
the candidate operands do not overlap. If not, the
algorithm selects a set of registers able to store the
candidate variables. The loop finishes when all the
operations and variables have been allocated.

Fig. 4. a) Example of multiple-precision specification, b) scheduling proposed by a HLS
tool, c) and d) some candidates, e) locations of a candidate.

c)

a)

G2 bits J3 bits M3 bits

A5 bits D2 bitsCycle i

Cycle i+1

D1 D0

G0G1

A4 A3 A2 A1 A0

J1 J0J2

A4 A3 A2 A1 A0

J0J2 J1

A4 A3 A2 A1 A0
d)

b)

e)

...
main: process

variable A, B, C: std_logic_vector (4 downto 0);
variable D, E, F: std_logic_vector (1 downto 0);
variable G, H, I: std_logic_vector (1 downto 0);
variable J, K, L: std_logic_vector (2 downto 0);
variable M, N, O: std_logic_vector (2 downto 0);

begin
A := B + C;
D := E + F;
G := H + I;

M := N + O;
J := K + L;

end process main;
...

D1 D0

G1 G0

D1 D0

G1 G0

D1 D0

G1 G0

D1 D0

J2 J1 J0

G1 G0

M2 M1 M0

A4 A3 A2 A1 A0

J0J2 J1

i

i
i+1

i+1

3.3. Compacting the datapath

Once all the operations of the original specification
have been allocated, the algorithm joins those 1-bit-width
functional units which must remain linked to propagate
the carry signal during all the cycles of the given
scheduling, to form the definitively functional units.
Every 1-bit-width register with compatible load signals
are also joined to form greater ones, reducing in this case
the number of control signals which the controller should
provide.

4. Experimental results

In this section we have measured the quality of the
solutions given by the proposed algorithm in terms of
those proposed by Synopsys Behavioral Compiler. With
that purpose we have synthesised a collection of 10
random multiple-precision specifications, with the
characteristics shown in Table 1.

Table 1 shows the results given by Synopsys
Behavioral Compiler, our proposed algorithm and the
percentage of area saved in columns named S, A and %
respectively. For each example it has been specified the
number of operatios (Num. Oper.), the number of
different widths in the specification (Num. Width.), and
the sum of adder and register widths used in the circuit
implementation (Adder Bits, and Register Bits
respectively).

Results show that the area of the implementations
obtained by the algorithm is always smaller than or equal
to the area of the circuits proposed by Synopsys. The area
savings depend neither on the number of operations of the
synthesized specifications nor on the latency. The unique
aspect with real influence in the area of the final
implementation is the homogeneity of the operations
widths scheduled in every cycle.

Adder Bits Register Bits Num.

Oper.
Num.
Width.

Latency S A % S A %

8 7 3 20 18 10 30 23 10
10 4 3 19 15 21 26 24 8
12 6 3 26 22 15 38 32 16
15 5 4 29 20 31 32 28 13
16 7 4 53 23 56 31 24 23
21 5 4 23 18 21 29 25 14
25 8 5 38 16 57 27 21 22
30 7 7 27 21 22 33 27 18
35 6 8 53 26 50 41 35 15
40 10 10 30 22 26 38 30 21

5. Conclusion

This paper presents a novel allocation algorithm for
multiple-precision specifications, which guarantees a
maximum reuse of adders and registers, and at the same
time it also tries to reduce the interconnection area. The
circuit implementations obtained are multiple-precision
datapaths, where the number and widths of the resources
are independent of the circuit specification.

Experimental results obtained show that the
implementations given by the algorithm have smaller area
than the ones offered by commercial tools, and that the
more heterogeneous the operations widths scheduled in
every cycle are, the more efficient in terms of the amount
of area saved our algorithm becomes.

Future work will include the generalization of the
algorithm to increase the reuse of all kinds of functional
units, not only the additive ones.

References

[1] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I.

Bolsens. “A methodology and design environment for DSP
ASIC fixed point refinement”. Proc. DATE, München, 1999.

[2] G.A. Constantinides, P.Y.K. Cheung, W.Luk. “Multiple
precision for resource minimization”. Proc. IEEE
Symposium on FCCM, 2000.

[3] K. Kum, and W. Sung. “Word-length optimization for high-
level synthesis of digital signal processing systems”. Proc.
IEEE Int. Workshop on Signal Processing Systems SIPS’98.

[4] M. Willens, V. Bürsgens, H. Keding, T.Grötker, and M.
Meyer. “System-level fixed-point design based on an
interpolative approach”. Proc. ACM/IEEE DAC 1997.

[5] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee.
“Precision and error analysis of MATLAB applications
during automated hardware synthesis for FPGA’s”. Proc.
DATE, 2001.

[6] C. Huang, Y. Chen, Y. Lin, and Y. Hsu. “Data path
allocation based on bipartite weighted matching”. Proc. 27th
ACM/IEEE DAC, 1990.

[7] K. Küçükçakar, and A. Parker. “Data Path tradeoffs using
MABAL”. Proc. ACM/IEEE DAC, 1990.

[8] F. Tsai, and Y. Hsu. “Data path construction and
refinement”. Proc. ICCDCS, vol. CAD-5, nº3, July 1986.

[9] B. Landwehr, P. Marwedel, and R. Dömer. “OSCAR:
Optimum simultaneous scheduling, allocation and resource
binding based on integer programming”. Proc. EDAC, 1994.

[10] G.A. Constantinides, P.Y.K. Cheung, and W.Luk.
“Multiple-wordlength resource binding”. In H. Gruenbacher
and R. Hartenstein, editors, Field-Programmable Logic: The
Roadmap to reconfigurable systems, LNCS, 2000.

[11] M. Ercegovac, D. Kirovski, and M. Potkonjak. “Low-power
behavioural synthesis optimization using multiple precision
arithmetic”. Proc. ACM/IEEE DAC, 1999.

[12] G.A. Constantinides, P.Y.K. Cheung, and W.Luk.
“Heuristic datapath allocation for multiple wordlength
systems”. Proc. DATE, 2001.

[13] J.M. Mendías, R. Hermida, M. Fernández. “Formal
techniques for hardware allocation”. Proc. International
Conference on VLSI Design, VLSI´97, Jan. 1997.

Table 1. Experimental results.

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

