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Abstract 
 

This paper presents an heuristic method to solve the 
combined resource selection and binding problems for the 
high-level synthesis of multiple-precision specifications.  

Traditionally, the number of functional (and storage) 
units in a datapath is determined by the maximum number 
of operations scheduled in the same cycle, with their 
respective widths depending on the number of bits of the 
wider operations. When these wider operations are not 
scheduled in such “busy” cycle, this way of acting could 
produce a considerable waste of area. 

To overcome this problem, we propose the selection of 
the set of resources taking into account the only truly 
relevant aspect: the maximum number of bits calculated 
and stored simultaneously in a cycle. The implementation 
obtained is a multiple-precision datapath, where the 
number and widths of the resources are independent of 
the specification operations and data objects. 

 
 

1. Introduction 
 

Some fragments of a multiple-precision specification 
are shown in Fig. 1a, and a possible scheduling in Fig. 1b. 
Traditional high–level synthesis (HLS) allocation 
algorithms provide solutions where each operation is 
implemented over a unique functional unit of the same or 
greater width. This intuitive solution is shown in Fig. 1c. 
However, it is possible to obtain circuits with smaller 
area, following different design strategies. 

Two additions scheduled in the same cycle can be 
executed simultaneously over the same functional unit, 
linking them together and avoiding the carry signal 
propagation affect the results. In order to cut the carry 
chain the operands should simply be separated with a 0, as 
it is shown in Fig. 1d.  

An addition can be allocated to a set of functional 
units, if these are linked to propagate the carry signal. The 
carry out of the functional unit which calculates the least 
significant bits should be supplied as the carry in of the 
functional unit which calculates the most significant ones. 

In Fig. 1e, the and gate is used to allow the carry 
propagation during the first cycle, and to avoid it during 
the second one. The control line used to permit or not the 
carry propagation is the same used by the multiplexer to 
select the operands.  

A similar problem appears in the storage units 
selection and binding processes. Traditional HLS systems 
are able to reuse registers to store variables of the same or 
less width. However, if some variables are divided into 
several fragments and stored each of them in a different 
register, or different variables are stored simultaneously in 
the same register, it is possible to obtain notorious area 
savings.  

Fig.1. a) fragments of a VHDL multiple-
precision specification, b) possible
scheduling, c) implementation proposed
by more traditional algorithms, d) and e)
more efficient implementations. 

c ) 

... 
main: process 
... 
variable A, B, C : std_logic_vector (7 downto 0); 
variable D, E, F : std_logic_vector (3 downto 0); 
variable G, H, I : std_logic_vector (2 downto 0); 
... 
begin 
... 
A := B + C ; 
D := E + F ; 
G := H + I ; 
... 
end process main; 
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Additionally, it must be highlighted that, in general, 
the use of any of the cited design strategies does not imply 
the use of additional multiplexers.  

In this paper we propose an algorithm able to offer 
solutions like the presented before. This allocation style 
leads to datapaths where the number and widths of the 
resources are independent of the specification operations 
and variables, and the amount of area due to the functional 
and storage units is the minimum necessary. The 
algorithm performs simultaneously the functional and 
storage units selection and binding, guided by the main 
objective of saving the maximum amount of 
interconnection area.  
 
2. Related work 
 

The multiple-precision problem appears both in 
software and hardware, specially in the development of 
DSP applications.  

The software DSP computation model consists of a set 
of predesigned fixed-wordlength computational units 
responsible of implementing all the operations. So, the 
problem to be solved consists in the transformation of the 
original multiple–lenght specification into another one 
with a unique and uniform wordlength. This obligates to 
use the truncation and extension operators to adapt the 
operations widths, with the consequent loss of precision in 
the first case, and the resulting waste of HW in the second 
one. Recent research in multiple-precision software 
problems takes fixed-point implementations to be derived 
both from floating-point or infinite-precision descriptions. 
Some examples of these are [1], [2], [3], and [4]. In [5] the 
authors present a method to find the minimum number of 
bits for both integer and floating point variables, used in 
high level signal and image processing algorithms 
described in MATLAB.  

Within the hardware field there has been little research 
in HLS for multiple-precision specifications. Up to now, 
most systems have adopted trivial solutions, as treating 
separately every different precision of the original 
specification; they bind operations to functional units with 
identical widths. Some examples are presented in [6], [7], 
and [8]. 

More efficient systems are able to implement 
operations over wider functional resources, filling in the 
operands with 0’s, and discarding some bits of the 
solution produced. Some of them are the ones proposed in 
[9], [10], [11], and [12]. In [12] the authors also take into 
account the operation widths during the scheduling phase, 
which is performed as the same time as the resource 
selection and binding. 

 Nevertheless, some authors admit that these trivial 
solutions are not good enough and suggest (but not 
implement) another alternatives, like the execution of an 
operation during several cycles [11], or the execution of 
two multiplications over a unique multiplier during the 

same cycle [10]. In the first case, the least significant bits 
of an operation can be calculated in a cycle, and the 
remaining ones in subsequent cycles, by storing not only 
the partial results but also the partial carries. In the second 
case, the authors study FPGA’s implementations of 
multipliers structures with more than two operand entry 
points. 

 
3. Proposed algorithm 
 

The actual version of our algorithm performs the 
resource selection and binding of multiple-precision 
specifications. The algorithm treats in a special way all the 
operations with an additive kernel (comparisons, 
maximum/minimum, subtractions, ...), and uses a classical 
functional unit selection and binding algorithm (not 
shown in this paper) to deal with non additive operations. 

It takes as inputs both a circuit specification and a 
scheduling given by any HLS tool. The output is a 
complete multiple-precision datapath and a controller. The 
datapath is composed of a set of adders, and other non–
additive functional units, some glue logic to link carry 
chains and to execute additive operations over adders, a 
set of storage units, and a set of multiplexers. 

 The datapaths provided have always two features:  
1) The sum of all additive functional units widths is 

equal to the maximum number of bits computed 
simultaneously in a cycle. 

2) The sum of all registers widths is equal to the 
maximum number of bits stored simultaneously in a 
cycle.  

These novel features result in datapaths where the 
resources widths are, in general, independent of the circuit 
specification, that is, of the operations and data objects 
used. 

The algorithm is divided into four phases. During the 
first one all the additive operations of the original 
specification are transformed into additions. In the second 
phase an allocation, based on the binding of sets of 
operations to a single functional unit, is performed. 
During the third phase the circuit obtained is transformed 
into a more compact one, and the number of control 
signals is reduced. The selection and binding of the 
routing resources take place during the fourth and last 
phase.  

The figure Fig. 2 shows a schema of the algorithm, in 
which each phase has been separated of the others by a 
dotted line. The next subsections explain in detail the 
central phases of the algorithm proposed. 
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3.1. Original specification transformation 
 

Since our algorithm optimises the adder usage, the 
preprocessing phase transforms all the specification 
operations with an additive kernel into additions. For this 
purpose we use a set of equations whose correctness has 
been previously proven. The set of equations applied, as 
well as the way they are applied is explained in [13]. 

 

3.2. Functional and storage resources selection 
and binding 

 
The objective of this phase is to construct a datapath 

with a minimum interconnection area, composed of as 
many 1-bit adders and 1-bit registers as, respectively, the 
maximum number of bits calculated and stored 
simultaneously in a cycle. Some of these 1-bit resources 

will be compacted in the next phase to form wider 
functional units and registers. 

During this phase the algorithm works with an array of 
linked 1-bit adders. The carry out of each adder is 
connected, through an and gate, to the carry in of the one 
on its left, as it is shown in Fig. 3. An operation can only 
be allocated to a contiguous portion of this array, because 
a less restrictive allocation policy would not result in 
higher HW savings and could create combinational loops. 

Next some concepts will be defined in order to ease 
the explanation of this phase of the algorithm. With the 
same purpose we will use a simple example , whose 
circuit specification and scheduling are shown in Fig. 4a 
and Fig. 4b respectively. 
Candidate: set of operations with aligned operands 
scheduled in different cycles (different alignments result 
in different candidates). Since the creation of all these sets 
requires exponential time, the algorithm only calculates a 
limited number of them. These are the ones made up of a 
minimum of one operation, and a maximum of one 
operation per cycle:whose left operands have a maximum 
number of bits in common (because either they belong to 
the same variable, or they come from the same previously 
allocated HW resource). 
1) whose right operands have a maximum number of 

bits in common. 
2) whose left operands have the same size, and not 

overlapped lifetimes. 
3) whose right operands have the same size, and not 

overlapped lifetimes. 
In the example the creation of all candidates amounts 

a total of 36 possibilities. Fig. 4c shows all the possible 
candidates made of operations D and G, corresponding to 
3 different operands alignments. 

Supposing that variables B(3 downto 1) and K are 
stored in the same register, and that operations D and G 
have not overlapped operands lifetimes, the algorithm 
only calculates  7 of the 36 previously cited candidates. 
These ones are shown in Fig. 4d. 
Location of a candidate: set of contiguous 1-bit 
functional units which are not busy during the cycles in 
which the candidate operations are scheduled. The 
creation of all of them is again infeasible, so the algorithm 
only calculates the next ones:  
1) those inside the array of functional units where there 

are operations allocated which have some operands 
bits in common with any of the candidate operations. 

2) the location situated the nearest to the left edge of the 
array of functional units. 

Fig. 2. Algorithm to solve the combined 
resource selection and binding problems 
of multiple-precision specifications.  

INPUTS: 
Scheduled DFG
OUTPUTS: 
Complete Datapath and Controller
BEGIN

Preprocessing (Ope)
REPEAT 

C = Calculate_Candidates (Reg)
L = Select_Possible_Locations (C, FU, Reg)
IS = Calculate_Interconnect_Savings (C, FU, Reg)
Best = Select_Best_Candidate (C, L, IS)
Allocate (Best, FU, Reg)
Remove (C, Best)

UNTIL  C  = 0 
Compact_Datapath (FU, Reg)
Create_Interconnections (FU, Reg, Datapath) 

END 

Ope: List of specified operations. C: List of candidates, L:
list of locations, and IC : list of interconnections costs. 
Reg: Array of size n x m, with n = maximum number of 
bits stored simultaneously in a cycle, and  m = number of
cycles. A 1-bit variable stored during cycle x in the 1-bit 
register y occupies the position [ y, x ] of the array. 
FU: Array of size n x m, with n = maximum number of bits
calculated simultaneously in a cycle, and  m = number of 
cycles. A 1-bit operation scheduled in cycle x, and 
implemented over the 1-bit adder y occupies the position 
[ y, x ] of the array. 
Best: Candidate with maximum interconnection saving. 
Datapath: Final implementation of the problem. 

Fig. 3. Array of 1-bit adders linked by 2-input and gates. 

+1 bit 
Cout Cin Cin Cout Cout Cin Cin Cout +1 bit +1 bit +1 bit 



3) the location situated the nearest to the right edge of 
the array of functional units. 
The locations 2) and 3), have been taken into 

consideration because they fragment minimally the array 
of functional units, leaving wider contiguous regions of 1-
bit functional units to allocate the remaining operations. 
These two locations are the ones with the best possibilities 
of allowing the algorithm to reach valid solutions.  

In the example, if there is not any operation allocated 
yet to the array of functional units, there are 4 possible 
locations for the candidate formed by A and J. 
Nevertheless the algorithm only calculates 2 of them, 
which are shown in fig. 4e. 
Valid location: location that leaves enough contiguous 
regions of 1-bit functional units to allocate the still not 
allocated operations. The locations shown in fig. 4e are 
not valid ones because they make impossible the 
allocation of the operations scheduled in cycle i+1. 
Interconnection saving:  
IS(C,L) = BitsOpe(C) + Bits_Res(C) + BitsLoc(C,L) 
IS(C,L): interconnection saving of the candidate C in the 
location L, being: 
BitsOpe(C): number of bits of the candidate C left and 
right operands which are able to come from the same 
sources. 
BitsRes(C): number of bits of the candidate C results 
which can be stored in the same register. 
BitsLoc(C,L): number of candidate C operands bits which 
can be stored in the same registers as the ones used by the 
operations already allocated in location L. 

This phase of the algorithm consists of a loop. In each 

iteration the candidates and their locations are created. 
When a candidate has no any location, the algorithm 
determines the operations responsible for it. If the 
problem can be solved changing these operations for 
another ones, in accordance with  candidates definition, 
then they are changed. If not, these operations are 
removed from the candidate. In both cases, the algorithm 
recalculates the set of locations. 

After creating the candidates and selecting the valid  
locations, the algorithm calculates, for each location of 
every candidate, the interconnection saving. And finally, 
the candidate with the maximum interconnection saving 
is allocated.  

The allocation of a candidate consists in the individual 
allocation of each of its constituent operations to a set of 
contiguous 1-bit functional units, and the allocation of 
their respective operands and results to a set of 1-bit 
registers (not necessary contiguous). In order to reduce the 
interconnection area, the algorithm always tries to allocate 
all the right operands of the candidate operations to the 
same set of registers, all the left operands to the same set 
of registers, and the results to the same set of registers. If 
there were other operations already allocated to the 
location selected, then the algorithm would try to use the 
same registers used by these operations to store the 
candidate operands. This is possible if both the lifetimes 
of the variables already stored in the registers and those of 
the candidate operands do not overlap. If not, the 
algorithm selects a set of registers able to store the 
candidate variables. The loop finishes when all the 
operations and variables have been allocated. 

Fig. 4. a) Example of multiple-precision specification, b) scheduling proposed by a HLS 
tool, c) and d) some candidates, e) locations of a candidate. 
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main: process

variable A, B, C: std_logic_vector (4 downto 0);
variable D, E, F: std_logic_vector (1 downto 0);
variable G, H, I: std_logic_vector (1 downto 0);
variable J, K, L: std_logic_vector (2 downto 0);
variable M, N, O: std_logic_vector (2 downto 0);

begin
A := B + C;
D := E + F;
G := H + I;

M := N + O;
J := K + L;

end process main;
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3.3. Compacting the datapath 
 

Once all the operations of the original specification 
have been allocated, the algorithm joins those 1-bit-width 
functional units which must remain linked to propagate 
the carry signal during all the cycles of the given 
scheduling, to form the definitively functional units. 
Every 1-bit-width register with compatible load signals 
are also joined to form greater ones, reducing in this case 
the number of control signals which the controller should 
provide. 

 
4. Experimental results 
 

In this section we have measured the quality of the 
solutions given by the proposed algorithm in terms of  
those proposed by Synopsys Behavioral Compiler. With 
that purpose we have synthesised a collection of 10 
random multiple-precision specifications, with the 
characteristics shown in Table 1.  

Table 1 shows the results given by Synopsys 
Behavioral Compiler, our proposed algorithm and the 
percentage of area saved in columns named  S, A and % 
respectively. For each example it has been specified the 
number of operatios (Num. Oper.), the number of 
different widths in the specification (Num. Width.), and 
the sum of adder and register widths used in the circuit 
implementation (Adder Bits, and Register Bits 
respectively). 

Results show that the area of the implementations 
obtained by the algorithm is always smaller than or equal 
to the area of the circuits proposed by Synopsys. The area 
savings depend neither on the number of operations of the 
synthesized specifications nor on the latency. The unique 
aspect with real influence in the area of the final 
implementation is the homogeneity of the operations 
widths scheduled in every cycle.  

 
Adder Bits Register Bits Num. 

Oper. 
Num. 
Width. 

 
Latency S A % S A % 

8 7 3 20 18 10 30 23 10 
10 4 3 19 15 21 26 24 8 
12 6 3 26 22 15 38 32 16 
15 5 4 29 20 31 32 28 13 
16 7 4 53 23 56 31 24 23 
21 5 4 23 18 21 29 25 14 
25 8 5 38 16 57 27 21 22 
30 7 7 27 21 22 33 27 18 
35 6 8 53 26 50 41 35 15 
40 10 10 30 22 26 38 30 21 

 

5. Conclusion 
 

This paper presents a novel allocation algorithm for 
multiple-precision specifications, which guarantees a 
maximum reuse of adders and registers, and at the same 
time it also tries to reduce the interconnection area. The 
circuit implementations obtained are multiple-precision 
datapaths, where the number and widths of the resources 
are independent of the circuit specification.  

Experimental results obtained show that the 
implementations given by the algorithm have smaller area 
than the ones offered by commercial tools, and that the 
more heterogeneous the operations widths scheduled in 
every cycle are, the more efficient in terms of the amount 
of area saved our algorithm becomes. 

Future work will include the generalization of the 
algorithm to increase the reuse of all kinds of functional 
units, not only the additive ones. 
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