
Fast Seed Computation for Reseeding Shift Register
in Test Pattern Compression

Nahmsuk Oh, Rohit Kapur, and T. W. Williams
Synopsys Inc., 700 E. Middlefield Road, Mountain View, CA 94043

{nahmsuk, rkapur, tww}@synopsys.com

ABSTRACT
Solving a system of linear equations has been widely used to
compute seeds for LFSR reseeding to compress test patterns.
However, as chip size is growing, solving linear equations
requires a large number of computations that is proportional to n3.
This paper proposes a new scan chain architecture and algorithm
so that the order of computation is proportional to the number of
scan cells in a chip. The new architecture is a methodology
change that does not require complex Design-For-Testability
(DFT) as proposed in the previous techniques. Instead of solving
linear equations, the proposed new seed computation algorithm
topologically determines seeds for test vectors. The compression
ratio might be slightly lower than the other approaches, but the
proposed approach can handle larger designs in a reasonable
amount of time. Computation analysis shows that, for 1 million
scan cell design, if we assume it takes 1 msec for the proposed
technique to compute seeds, it would take more than 14 minutes
for other techniques that solve linear equations.

1. INTRODUCTION
As more and more transistors are placed on a single chip, the test
data storage on the tester and the test data bandwidth (needed to
adequately test the chip) between the tester and the chip grows
rapidly [1]. With the escalating cost of test, the need for reducing
test data is increasing. A Linear Feedback Shift Register (LFSR)
with reseeding method has been used to compress test patterns. In
this method, a seed is a starting state of the LFSR, and the LFSR
runs autonomously for a certain number of cycles after each seed
is loaded into the LFSR. The seed can be loaded as frequently as
required to obtain a balance between the amount of test data and
the test application time, which depends on the number of test
patterns generated from the seeds. Thus, the tester stores much
smaller seeds instead of storing full test patterns. In other words,
the test patterns can be compressed into seeds.
 There is a direct relationship between the seed values and the
values that are achieved in the scan chains connected to the LFSR.
Due to dependencies between the relationships, a seed is
computed by solving a system of linear equations [2]. Several
techniques have been proposed to improve encoding efficiency of
reseeding the LFSR, but they are all based on solving linear
equations. The computation complexity of solving linear
equations is O(n3), where n represents the number of variables in
the equations. Thus, for larger chip sizes, the number of
unknowns in the equations could be quite large, and the
computation time grows rapidly. For example, in [3], the largest
number of unspecified bits – the same as the number of unknowns
in linear equations – is 85, and a few hours of computation time
for 340 test patterns were reported. Suppose the chip contains
more than 1 million scan cells, with an assumption that 0.1% of
scan cells are specified in each test pattern - 1000 bits in each test

pattern are specified. Solving 1000 unknowns in 1000 equations
will take much longer than a few hours.
 In this paper, we propose a new scan chain architecture and
Fast Seed Computation (FSC) algorithm to encode a test pattern
into a seed vector with the computation complexity O(n). Since
the order of computation increases linearly with the number of
scan cells in the Circuit Under Test (CUT), our FSC technique
can handle large size of chips easily.
 This paper is organized as the following: Section 2 discusses
previous works briefly. Section 3 illustrates our new scan chain
architecture and describes the FSC algorithm. Section 4 and 5
analyzes the computation complexity of the FSC, and compares it
with the previous approaches. Finally, Sec. 6 concludes the paper.

2. PREVIOUS WORK
Encoding scan test patterns using LFSR was originally proposed
in [2], in which LFSR length needed for successfully finding
seeds for tests should be 20 more bits than the specified bits in test
cubes. A test cube is a test pattern in which the bits, that are not
specified by ATPG, are left as don’t cares. Thus, each bit of the
test cube has one of the three values: logic-0, logic-1, and logic-X
(don’t care). An efficient encoding approach using multiple-
polynomial LFSR was later proposed in [4]. Instead of using a
single LFSR that has more bits than specified bits in the test cube,
this technique used 16 different polynomials for LFSR. In this
approach, the LFSR size can be reduced to the maximum number
of specified bits in test cubes.
 Since the number of specified bits in a test cube varies among
test cubes, variable-length seeds for LFSR may encode test cubes
more efficiently than the fixed size of seeds. Variable-length seed
approach was proposed in [5][6]. A larger size of LFSR is used
for larger number of specified bits in test cubes, and a smaller size
of LFSR is used to encode test cubes with the smaller number of
specified bits.
 One of the disadvantages of the previous approaches is that
they are static reseeding methods [3]. After loading a seed into
CUT, the tester should stop so that the LFSR runs autonomously
to fill in the scan chains. A dynamic reseeding approach using
partial reseeding method was proposed in [3] to avoid stopping
testers during testing. In this technique, not only the LFSR but
also scan-in vectors (which are seeds) generate a test cube. Instead
of loading an entire seed onto the LFSR, the partial reseeding
technique lets the LFSR run continuously and performs XOR
operation with the LFSR output and the scanned-in vector to fill
in the scan chain. The dynamic reseeding shows very good
compression ratio by preserving the degrees of freedom in the
solution space for the test cube, but it may take longer than other
techniques to compute seed vectors because it has to solve much
larger system of linear equations.
 All the previous approaches for reseeding the LFSR requires
solving a system of linear equations. Suppose each arithmetic

0-7803-7607-2/02/$17.00 ©2002 IEEE

computation and logical operation is a single operation. Then, the
number of operations to solve linear equations with n unknowns is
approximately n3/3 [7]. However, the number of operations in the
FSC method proposed in this paper increases linearly with the
number of scan cells. The next section describes this technique in
detail.

3. PROPOSED APPROACH

3.1. Architecture

m ode select

n
 b
it sc

a
n
 c
h
a
in

S
c
a
n
 c
h
a
in

S
c
a
n
 c
h
a
in

l-bit shift register

Feed back

scan in

LFSR

m scan chains

M ISR

Figure 3.1. The FSC architecture.

Figure 3.1 shows the architecture of the proposed approach. In
this example, the CUT has at least mn scan cells and each scan
chain of m scan chains has maximum n scan cells. Every scan
chain is connected to one bit of l bit shift register (SR). The SR
operates in two modes: the linear feed back shift register with feed
back loop and shift register with scan-in port. The LFSR is used
for autonomous run to fill scan chains with random test patterns to
prune out easy faults. The remaining undetected faults are random
resistant faults and the second mode is used for reseeding the SR
to detect random pattern resistant faults. The size of the shift
register, l, should be large enough to produce pseudo random
values for the longest scan chain in the first mode, but can be m in
the second mode. Thus, l is the maximum of the two values.
 Note that this architecture does not have a phase shifter
between the LFSR and the scan chains as proposed in STUMPS
architecture [8].

3.2. Overview of our approach
Our approach has two modes in testing a CUT. In the first phase,
the LFSR runs autonomously and fills the scan chains with
random patterns. Capture clocks are applied and the scan chains
are filled with measured values. These patterns are scanned out to
the MISR to detect any faults while the next input patterns are
shifted in to the scan chains by running the LFSR again. The first
phase of the test detects easy faults in the system.
 The second phase of the test targets the random pattern
resistant faults remained after the first phase. We assume that a
test cube has the number of specified bits less than m + n – 1.
After removing easy faults by running LFSR autonomously, only
a few number of scan cells in a test cube need to be specified to
detect one or a few of the remaining faults. The rest of the scan

cells are don’t cares. Thus, the maximum number of specified bits
smax is m + n – 1.
 The Automatic Test Pattern Generation (ATPG) tool generates
patterns for the second phase. It generates a pattern with the
constraint of specifying smax bits at maximum. Therefore, mn –
smax bits are unspecified in one test pattern and filled with some
values. This test cube is encoded into a seed of smax bits. In the
second phase, the feed back loop of the SR is disconnected and
the multiplexor selects the input from scan-in port so that a seed is
shifted into the shift register. As shifting bits into the SR, the seed
is expanded and fill in the scan chains. After smax of scan shift
clocks, the required bits of the scan chains are specified, and the
remaining bits are filled with either 0 or 1. The following section
describes how to encode the test cube into a seed, and how the
seed is expanded to fill in the scan chains.

3.3. Seed computation
Before describing the detailed method, we explain some of the
basic concepts.

1 0 1

1

0 0

0

1

1

1

t = 1 t = 3t = 2

0 0 0

scan
cells

shift register

Figure 3.2. The first three clock cycles shifting 1 into SR.

Suppose the CUT has 3 scan chains that have 3 scan cells in each,
and the scan chains are connected to a 3 bit LFSR as shown in
Figure 3.2. The LFSR is in the second phase; thus, the SR is fed
by not the feed back loop of the LFSR but the scan-in input. An
input vector 001 is applied to the scan in pin, and Figure 3.2
shows how the scan chains are filled in at each shift cycle. Note
that the logic value 1 is always diagonal on the cells at each cycle.
In other words, our method fills the scan cells on the same
diagonal with the same logic value. We use this characteristic to
determine a seed for a given test cube.

1

1

0

0 X

X

0

X

0 01

X 01

Scan in vector = 10010

10010 1

1

0

0 1

0

0

0

0 01

t = 0 t = 6

(a) (b) (c)

Figure 3.3. Determination of a seed for a given test cube.

?

0

1

1

Figure 3.4. Two different logic value 0 and 1 on the same
diagonal cells.

For example, suppose ATPG specifies 5 bits of the scan cells in a
9-bit scan cube as shown in Figure 3.3 (a). Circles around the scan
cells represent the specified bits in the test cube. The remaining
bits are don’t cares and represented by X in the scan cells. Then,
the specified bits are projected diagonally onto the SR as shown in
Figure 3.3 (a). The projected bits in the SR form a seed vector for
this test cube (excluding the first bit of the SR). In this example,
thus, the seed vector for this particular test cube is 10010. Figure
3.3 (b) shows the state of CUT at t = 0 before the seed 10010 is
shifted into the SR. After 6 shift clock cycles, the scan cells are all
filled in – all the circled scan cells are successfully filled with the
specified bit values as shown in Figure 3.3 (c).
 Because the number of diagonal lines in an m by n matrix is m
+ n –1, the maximum number of specified scan bits in a test
pattern is limited to m + n – 1, which is also the length of the seed
vector. This is the reason why we made the assumption that smax =
m + n – 1. However, if there are two different logic values 0 and 1
on the same diagonal cells as shown in Figure 3.4, we cannot
project these two different values onto one bit of the SR. Non-
uniform diagonal cells are the diagonal cells that have at least one
specified bit with logic value 0 and one specified bit with logic
value 1. There are three approaches to resolve this issue. The first
one is for ATPG to generate a different pattern to detect the same
faults if possible. The second approach is to reconfigure the scan
chain so that all the scan chains are connected to form one scan
chain, and use the traditional scan method. The third approach is
to use Design-for-Test (DFT) technique so that scan chains are
independent of one another. In other words, inputs of any logic
cones are always in one scan chain. Therefore, a test vector testing
a particular logic cone can be always in one of the scan chains.
The first two approaches are trivial, thus, the following sections
describes the DFT method in detail.

3.4. DFT: Independent scan chains
We can construct scan chains in such a way that the scan chains
are independent of one another, i.e., all inputs of any logic cones
are always in one scan chain; then, we can divide the test cube
into multiple cubes that have no different logic values on the same
diagonal cells. For example, consider a scan chain configuration
shown in Figure 3.5 (a). To detect the stuck-at 0 fault in one of the
inputs of the OR gate as illustrated, we need to specify 0 in the
first input of the logic cone and 1 in the last input of the logic
cone. Note that the three inputs of the logic cone are placed in two
scan chains, sc1 and sc2. Thus, one of the specified bits is in sc1
and the other is in sc2 as shown in Figure 3.5 (b). The scan chain
sc1 is not independent of sc2 because we need to use the two scan
chains at the same time to detect the fault. However, in Figure 3.5
(c), those two bits are placed in only sc1. Thus, sc1 contains two
specified bits as shown in Figure 3.5 (d) and independent of sc2.
 Independent scan chains can be implemented in any netlist
using a hierarchical methodology as illustrated in Figure 3.6.
Hierarchies of the design are IP’s possibly created by different
teams that are bounded by flip-flops. Scan chains are constructed
for these hierarchical entities by putting all the flip-flops that are
not at the output of the hierarchical entity into a single scan chain.
The output flip-flops are put into a separate scan chain. Thus
every hierarchical entity merged into the next level of hierarchy
would have two scan chains within it. In the integration of the
scan chains at the next level of hierarchy, the output chains of the
lower level hierarchies are incorporated into the single scan chain
created for the non-output flip-flops of the top levels scan chains.
The other chains of the hierarchies being incorporated are kept

separate. The top-level hierarchies output flip-flops are put into a
separate scan chains. Thus, the number of scan-chains at any level
of hierarchy equals two more than the number of non-output scan
chains coming from the hierarchical entities being incorporated.
This methodology of creating scan chains is repeatable for
multiple levels of hierarchies.
 In the example shown in Figure 3.6, each IP block has two
scan chains. One scan chain consists of the scan cells that are
inputs of the outside logic (such as glue logic). Boundary scan
cells are examples of the inputs of the outside logic. The other
scan chain consists of the rest of the scan cells that are inputs of
logic cones inside the IP block. The two scan chains in one IP
block are independent of each other because the logic cones that
have outputs to outside logic are separated from the logic cones
that have outputs inside the IP. Therefore, the three scan chains
shown in Figure 3.6 – the internal scan chain in IP block 1, the
internal scan chain in IP block 2, and the scan chain connecting
output interface logic of IP blocks are independent.

0

X

1

0

X

1

0

(b)

(c) (d)

(a)

0

X

1

0

sc1 sc2

sc1 sc2

0

X

1

sc1 sc2

sc1 sc2

logic cone

stuck-at 0

stuck-at 0

Figure 3.5. (a) Inputs of the logic cone are placed in two scan
chains. (b) The two specified bits are in sc1 and sc2; thus, sc1 and
sc2 are not independent of each other. (c) Inputs of the logic cone
are placed in one scan chain. (d) The scan chain sc1 and sc2 are
independent of each other.

scan-in

IP block 1

IP block 2

Glue logic

Internal scan chain

in IP block 2

Internal scan chain

in IP block 1

Glue logic

Scan chain connecting output

interfaces of IP blocks

Figure 3.6. Scan chains of IP blocks are independent of one
another.

3.5. Resolving non-uniform diagonal scan cells
Since scan chains are independent, one test cube can be
partitioned into multiple test cubes as long as the partitioned
cubes preserve specified bits in each scan chain. For example,
suppose a test pattern P has two different values on the same
diagonal cells as shown in Figure 3.7. Since one seed vector is
able to specify one full scan chain, this cube can be partitioned
into two test cubes: the one with the specified bits in sc1 and the
other with the specified bits in sc2. Then, two seed vectors for sc1
and sc2 can be obtained as shown in Figure 3.7.

?

0 0

1

1

?

1

0

1

0

0

0

1

1

P1 seed vector = X01XX

P2 seed vector = X10XX

P

P1

P2

sc1 sc2

sc1

sc2

Figure 3.7. Test cube P is partitioned into P1 and P2.

More complex cases occur when there are multiple non-uniform
diagonal cells. An example is shown in Figure 3.8 (a), in which
D1 and D2 represent two non-uniform diagonal cells. Partitioning
the test cube into minimum number of cubes is a graph coloring
problem. A graph is constructed such a way that vertices represent
scan chain numbers and edge (Si, Sj) represents two scan chains
with different values on the non-uniform diagonal cells. The
corresponding graph is shown in Figure 3.8 (b). S1 has 1 on D1
while S2 and S3 have 0 on D1, thus two edges, (S1, S2) and (S1, S3)
are drawn in Figure 3.8 (b). Similarly, for D2, S2 has 1, but S4 has
0, thus, (S2, S4) is drawn in the graph. After constructing a graph,
a graph coloring algorithm is applied. In graph coloring problem,
no edge has two end-points with the same color, and the number
of colors is minimized. The minimum number of colors is the
number of partitioned test cubes, and each partitioned test cube
consists of the scan chains with the same color. In the example,
the graph can be painted with two colors – white and gray. Thus,
it is partitioned into two test cubes, and they are shown in Figure
3.8 (c).

(a)

0

0

1 1

0

S1 S4S3S2

D1 D2

S1

S4S2

S3

1

0

S1 S4S3S2

0

0

1

S1 S4S3S2

(c)(b)

Figure 3.8. (a) Non-uniform diagonal cells D1 and D2. (b) A
graph representing four scan chains with two colors. (c) Two test
cubes based on the colored graph.

 Test cube partitioning will increase the number of seed
vectors. However, one partitioned test cube might be merged with

another partitioned cube. An example is shown in Figure 3.9. In
this example, two test cubs P1 and P2 are partitioned into P11 and
P12, and P21 and P22 respectively. Then, P11 and P21 are merged
into P’1, and P12 and P22 are merged into P’2. There may be some
loss of fault detection coverage in the new P’1, but those faults
missed by P’1 will be detected by P’2. Therefore, the number of
test cubes is not increased while the same number of faults can be
detected.

1

0

1

11

1

0

1

1

1

0 0

1

00
0 0

0

1

0

1

0 1

10

0 01

01

P1

P22

P21

P12

P11

P2

P'1 = P11 + P21

P'2 = P12 + P22

Figure 3.9. Test cube partitioning and re-composition.

4. COMPUTATION ANALYSIS
This section discusses the computation complexity of the
proposed FSC algorithm. The algorithm is the following.

1. For each diagonal line of the test pattern that contains any
specified bits

If specified bits have different logic values
Draw edges between the vertices (scan chains) that contain

different logic values
Else

Specify the corresponding bit in the seed
2. Color the graph and partition the pattern into the patterns

with the same color.

The algorithm has two steps. In the first step, it walks through the
diagonal lines of the test cube that contains specified bits and
checks whether the specified bits have different logic values. If
they have different values, put edges between the vertices
(representing scan chains) that have different logic values. This
procedure is repeated until all specified bits in the test pattern are
visited. The computation complexity of the first step is O(m + n)
because the number of diagonal lines is bounded by m + n – 1,
where m is the number of scan chains and n is the maximum
number of scan cells in one scan chain as previously shown in
Figure 3.1.
 In the second step, if there exist any edges between vertices in
the graph constructed in the first step, i.e., if there exist non-
uniform scan cells, a graph coloring algorithm is applied to
partition the test cube. A graph coloring is an intractable problem,
but there are well known heuristic algorithms with polynomial
computation time. In our approach, the algorithm described in [9]
is used. In this algorithm, coloring can be done in O(m + |E|) time

for chordal graphs, where |E| represents the number of edges in
the graph. Thus, the computation complexity of the first step in
the FSC is:

O(m + n) + O(m + |E|) = O(2m + n + |E|) � O(m + n).

Previous approaches calculate the seed vectors solving a system
of linear equations. It is well known that solving n unknowns of
linear equations take n3/3 operations [7]. Assuming m + n – 1
unknowns in the linear equations (m + n – 1 specified bits in the
cube), solving these equations takes (m + n)3 /3 operations. Thus,
the computation complexity of the previous approaches is
O((m+n)3).

100 1K 10K 100K 1M

num ber of scan cells

1 sec

1 m in

1 hour

60 hrs

c
o
m
p
u
ta
ti
o
n
 t
im
e

FSC

Solving linear equations

 Figure 4.1. Comparison of computation times between the FSC
and the previous approaches.

The graph in Figure 4.1 compares the normalized computation
time (normalized to 1 sec/1 million cells in the FSC) between the
proposed FSC and the previous approaches solving linear
equations. The number of scan cells less than 1000 does not make
much difference in computation time between the two methods.
However, as the number of scan cells increases and reaches to 1
million, the FSC becomes more and more powerful and extremely
outperforms the previous approaches. Note that the Y-axis is in
log scale. For example, assume a circuit that contains 1 million
scan cells resulting in 1000 scan chains of 1000 scan cells. Thus,
m = n = 1000 and the number of computations are (assuming |E| =
0 for simplicity):

FSC: 2m + n = 3000 computations
Linear equations: (m+n)3/3 = 8/3 x 109 computations.

If we assume our approach takes 1 msec to calculate the seed
vector, solving linear equations takes 14.8 minutes.

5. RESULTS COMPARISON
In this section, we compare the proposed FSC technique with
previous two techniques. Let us define two metrics for
comparison.

seed ain bits ofnumber the
cube test ain bits ofnumber the ration compressio �

ration compressio
seed aobtain tonscomputatio ofnumber the cost n compressio � .

We used the largest ISCAS 89 sequential benchmark circuits. In
Table 5.1, the first column shows the number of scan cells in the
circuit, the second column shows the number of test cubes
remaining after detecting easy faults by running LFSR
autonomously to produce 10000 patterns, and the third column
shows the number of specified bits. They are based on the data
shown in [3]. The last column shows the compression ratio of our
proposed approach using DFT for independent scan chains.
 Table 5.2 compares the FSC with the two previous techniques
– Test cube concatenation [4] and Partial reseeding [3] – in terms
of compression ratio. The compression ratio was obtained from
the data shown in [3] and [4]. The compression ratio of the FSC is
higher than the compression ratio of the Test cube concatenation,
but slightly lower than the compression ratio of the Partial
reseeding. However, if we consider the compression cost, our
technique outperforms other techniques. The results are shown in
Table 5.3. In this table, the number of operations (computations)
is calculated by using the equations shown in the previous section,
and the compression cost is obtained. For example, the benchmark
circuit s38417 requires a compression cost of 62798 in Test cube
concatenation and 80018 in Partial reseeding because they have to
solve linear equations. However, the FSC requires a compression
cost of only 11.83. This result shows that our technique is much
powerful in larger circuits in terms of the cost of compression.

Table 5.1. Results for the proposed FSC approach.

Circuit
name

scan
cells

test
cubes

specifi-
ed bits

LFSR
 size

comp.
ratio

s5378 214 30 493 29 7.49
s9234 247 138 4674 33 7.48

s13207 700 157 2824 53 13.21
s15850 611 167 5092 49 12.46
s38417 1664 340 23984 81 20.54
s38584 1464 62 2848 77 19.01

Table 5.2. Comparison of compression ratio.

Test cube
concatenation

Partial
reseeding

Proposed
FSCCircuit

name LFSR
size

comp.
ratio

LFSR
size

comp.
ratio

LFSR
size

comp.
ratio

s5378 27 5.55 38 12.8 29 7.49
s9234 61 2.77 81 6.8 33 7.48

s13207 24 20.00 44 36.5 53 13.21
s15850 46 7.69 58 19.6 49 12.46
s38417 91 4.00 105 23.1 81 20.54
s38584 70 16.67 75 30.9 77 19.01

Table 5.3. Comparison of compression cost.

Test cube
concatenation

Partial
reseeding

Proposed
FSCCircuit

name # of
oper-
ations

comp.
cost

of
oper-
ations

comp
cost

of
oper-
ations

comp
cost

s5378 6561 1182 52488 4101 87 11.9
s9234 75660 27314 533871 78510 99 13.3

s13207 4608 230 83349 2284 159 12.2
s15850 32445 4219 234990 11989 147 11.8
s38417 251190 62798 1848411 80018 243 11.8
s38584 114333 6846 605283 19588 231 12.2

6. CONCLUSION
Solving linear equations has been a traditional approach to
compute seed vectors for LFSR or to compress test cubes using
LFSR. It works nicely in reasonable size of the designs. However,
as technology improves, the number of transistors and sequential
cells is increasing and it is getting difficult to handle larger and
larger size of circuit using linear equations solver that has
computation complexity of O(n3).
 The FSC requires only O(n) computation time. The
compression ratio might be slightly lower than the compression
ratio of the previous approaches, but the FSC gives us the great
advantage of saving computation time to calculate seed vectors.
Thus, our technique is more suitable for a very large circuit
exhibiting large number of scan cells than the circuit that requires
very high compression ratio on test data volume.

7. REFERENCES
[1] Khoche, A., and J. Rivoir, “I/O Bandwidth Bottleneck for

Test: Is it Real?,” Proc. of International Workshop on Test
Resource Partitioning, 2000.

[2] Konemann, B., “LFSR-Coded Test Patterns for Scan
Designs,” Proc. of European Test Conference, pp. 237-242,
1991.

[3] Krishna, C., A. Jas, and N. Touba, “Test Vector Encoding
Using Partial LFSR Reseeding,” Proc. of International Test
Conference, pp. 885-893, 2001.

[4] Hellebrand, S., J. Rajski, S. Tarnick, S. Venkataraman and B.
Courtois, “Built In Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers,” Trans. on Computers, No. 2, Vol. 44, pp. 223-
233, Feb. 1995.

[5] Zacharia, N., J. Rajski, J. Tyszer, and J. Waicukauski, “Two
Dimensional Test Data Decompressor for Multiple Scan
Designs,” Proc. of International Test Conference, pp. 186-
194, 1996.

[6] Rajski, J., J. Tyszer, and N. Zacharia, “Test Data
Decompression for Multiple Scan Designs with Boundary
Scan,” IEEE Trans. on Computers, Vol. 47, No. 11, pp.
1188-1200, Nov. 1998.

[7] Gilbert Strang, Linear Algebra And Its Applications,
Academic Press, Inc., 1980.

[8] Bardell, P.H., and W.H. McAnney, “Self-Testing of
Multichip Logic Modules,” Proc. of International Test
Conference, pp. 200-204, 1982.

[9] M. Golumbic, Algorithmic Graph Theory and Perfect
Graphs, Academic Press, San Diego, CA, 1980.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

