

Whirlpool PLAs: A Regular Logic Structure and Their Synthesis

Fan Mo and Robert K. Brayton
Department of EECS, University of California, Berkeley

{fanmo,brayton}@eecs.berkeley.edu

Abstract A regular circuit structure called a Whirlpool PLA
(WPLA) is proposed. It is suitable for the implementation of finite state
machines as well as combinational logic. A WPLA is logically a four-
level Boolean NOR network. By arranging the four logic arrays in a
cycle, a compact layout is achieved. Doppio-ESPRESSO, a four-level
logic minimization algorithm is developed for WPLA synthesis. No
technology mapping, placement or routing is necessary for the WPLA.
Area and delay trade-off is absent, because these two goals are usually
compatible in WPLA synthesis.

1. Introduction

A conventional method of implementing FSMs is to use standard-cells
and a design flow (possibly iterated) of logic synthesis, technology
mapping, and physical design, such as placement and routing. In deep-
sub-micron (DSM) designs, such a design flow exacerbates the timing
closure problem [6]. It has become widely accepted that regular circuit
and layout structures are a means of alleviating the problem [14].
Generally, regular structured circuits, such as memory [8,9] and array
structures [10,13] are more predictable. Various regular structures are
being explored [8-13]. Arranging cells in rows as in standard-cell
designs is not enough, because routing is unpredictable. Although
regular structures may aid timing closure, area and/or delay penalties (if
any) should be minimized. In addition, regular structures are also
favorable from the manufacturing point of view.

A new regular structure is proposed and synthesis methods for this
are given. It is a cyclic four-level programmable array, called a
Whirlpool Programmable Logic Array (WPLA). Since this cascaded
NOR structure allows binary inputs to each plane, it extends the
conventional Sum-of-Products (SOP) form. An algorithm called
Doppio-ESPRESSO is developed to synthesize logic into WPLAs.
Unlike ESPRESSO [2], which could be used to minimize two two-level
circuits separately, Doppio-ESPRESSO uses the extra structural
flexibility in WPLAs for further optimization. An important feature is
that after logic minimization, the layout is completely determined. No
technology mapping, placement or routing is needed for the WPLA;
neither is prediction necessary, because area and delay are solely
determined by the logic embedded in the WPLA. Another interesting
feature is that area and delay minimization rarely conflict in this
structure (primarily because 4-level logic is required). If the delay
requirements are not satisfied, the user’s only option is to modify the
specification rather than re-running many optimizations with different
synthesis parameters.

The WPLA structure is suitable for circuits with up to several
thousand gates. Therefore it can be a building block on the chip. Block-
level placement and routing are still needed to complete the
interconnections between the WPLAs. To maintain global regularity,
regular global interconnections are desired. Fortunately, both a block-
level placer and a regular global wiring scheme have been reported
[16,14]. However, the question remains of how to optimally partition
the circuit into pieces that can fit the size requirements of WPLAs. In
this paper, we focus on the synthesis of WPLAs.

The paper is organized as follows. In Section 2, the WPLA
structure is described, and area and delay computations are given. In
Section 3, a synthesis algorithm for the WPLA structure is detailed.
Section 4 gives some experimental results, and Section 5 concludes.

2. The circuit structure of the WPLA

The WPLA structure is shown in Figure 1. The four programmable
planes, labeled 0, 1, 2 and 3, are organized in a cycle. In each plane,
input signals consist of external inputs as well as outputs from the
preceding plane. Placing latches between planes 3 and 0 breaks the
combinational loops. A plane is logically one level of NOR gates.
Positive and/or negative (inverters) buffers are inserted between two
neighboring planes; hence inputs to a NOR plane can have both
polarities. WPLA circuits consume only 2 metal layers.

B(0)

REG

NOR(0)

NOR(1)

NOR(2)

NOR(3) D
Q

D
Q

BO(0)

I(1)

BO(1)

I(2)BO(2)

I(3)

BO(3)

T(0)

O(0)

B(1)T(1) O(1)

B(2)

T(2)

O(2)

B(3) T(3)O(3)

I(0)

B(0)

D
Q

D
Q

BO(0)

I(1)

BO(1)

I(2)BO(2)

I(3)

BO(3)

T(0)

O(0)

B(1)T(1) O(1)

B(2)

T(2)

O(2)

B(3) T(3)O(3)

I(0)
Figure 1. Schematic and layout view of a WPLA.

B(3)

T(3)

I(0)

B(0)

T(0)

I(1)
O(0)

B(1)

T(1)

I(2)
O(1)

B(2)

T(2)

I(3)
O(2) O(3)

B(3)

T(3)

NAND(0) NAND(1) NAND(2) NAND(3)

Figure 2. Abstract view of a WPLA.

Two cascaded NOR gates, together with the buffers, can be modeled as
a NAND-NAND structure, shown in Figure 2, which is equivalent to a
SOP. However, the inputs to the NAND gates can have both polarities
available by choosing buffer polarities.
 The signals of a WPLA are divided into four categories. T(.) denotes
the set of signals used only internally by the next NAND. B(.) denotes
the set of primary outputs that also feed the next NAND. O(.) are the
primary outputs that do not fanout to the next NAND. I(.) are the
primary inputs. The union of T(.) and B(.) is abbreviated by TB(.).
Similar abbreviations include BO(.) and TBO(.).

The width and height of a plane are:

BUFIBT

TBI

SnOnunBnunTnH

nunTnunBnunInW

+++=

−−+−−+=

)()()()()()(

)1()1()1()1()()()(

0-7803-7607-2/02/$17.00 ©2002 IEEE

where |.| is the number of the signals in the type, SBUFI is the size of the
input buffer, and u(.) is a variable denoting the ratio of unate signals of
a type. If only one polarity of a signal is used in the plane, then this
signal is classified as unate. Otherwise it is binate. A unate signal
occupies one line in the plane, while a binate signal occupies two. So
the binate coefficient of B(.) type is defined as:

[]
(.)

(.)(.)2(.)
(.)

B
BBB

u unauna
B

−×+
=

where Buna(.) is the set of unate signals in B(.). Similar definitions can
be derived for uT(.) and uI(.). The size of the WPLA is:

[] []
[] []
HWArea

SWHHWH

SWHHWW

LATCH

BUFM

×=
++=
++=

)1(),2(max)0(),3(max

)2(),1(max)3(),0(max

where SBUFM and SLATCH are the size of the intermediate buffer and the
latch, respectively. Hence the area of the WPLA is completely
determined by the embedded logic.

The total delay is a summation of the delays of the four planes,
assuming the last switching buffer determines the delay of its driving
plane. The delay formulation of a static PLA plane follows [15], thus:

()

()
() ()[])(,)(max

)()()()()(

)1()1()1()1()()(
3~0

iLdDiLdD

iuiTiuiBiOK

iuiTiuiBiuiIKeD

BUFMBUFMBUFMBUFIBUFIBUFI

TBP

i
TBITN

+++

+++

−−+−−+= ∑
= ,

in which, KT, KP are coefficients determined by the technology, DBUFI
and DBUFM are the intrinsic (load independent) delays of the input and
intermediate buffers, dBUFI and dBUFM are the load dependent delays of
the two kinds of buffers, LBUFI(.) and LBUFM(.) are the loads of the
corresponding buffers, and eN is the density of the plane that can be
derived from the bit map of the plane. The formula does not include the
set-up and hold times of the latches. Although more precise delay
formulations can be used, the essential point is that there are no extra
elements to predict in the delay computation, given the logic
implemented in the WPLA.

The delay formulation shows that reducing size can usually reduce
delay, if eN does not grow fast at the same time. This characteristic
makes the design flow straightforward; synthesis algorithms only need
to focus on minimizing the area since usually delay is minimized as
well. This can be explained by two factors; 1) the number of logic
levels1 is fixed, and 2) uniform buffering is used in WPLAs. In a
standard-cell design, collapsing nodes on a critical path can reduce the
logic levels in the hope of reducing delay, essentially introducing more
parallelism. However, real gates have limited drive capacities.
Increasing parallelism means larger loading; hence buffers are inserted,
or driving gates themselves are duplicated. Inserting buffers may
introduce additional delays; duplicating gates actually shifts the load
burden backwards. In addition, such timing optimization may trigger an
unexpected blow-up in area. Placement and routing factors may further
complicate the problem. When a standard-cell implementation does not
meet delay requirements, it is difficult to decide whether further
collapsing should be done and if so, how. The WPLA synthesis
approach has no such scenario.

3. Doppio-ESPRESSO, a four-level minimization algorithm

3.1. Overview

The basic idea of WPLA synthesis is to minimize a pair of NANDs,
and iterate for different pairs until no further improvement. The
possible pairs in the WPLA are 0-1, 1-2 and 2-3. The minimization of a
pair of NANDs differs from conventional SOP minimization since the

1 level: A PLA is a two-level circuit, or a SOP. To prevent confusion in the
description of the so-called multi-level logic minimization where PLAs stay in
different levels, we use the terminology “depth” instead. So the depth of a
circuit is in fact half of the number of the levels.

WPLA structure allows negated products. To employ SOP
minimization, we transform form the NAND-NAND to SOP form,
apply a SOP minimizer and transform the result back. The Doppio-
ESPRESSO is summarized in the following pseudo code:

do
{nA,nB}=SOP2NN(ESPRESSO(NN2SOP(n0,n1)))
if {nA,nB} better than {n0,n1}

{n0,n1}={nA,nB}
end if
{nA,nB}= SOP2NN(ESPRESSO(NN2SOP(n1,n2)))

 if {nA,nB} better than {n1,n2}
{n1,n2}={nA,nB}

 end if
{nA,nB}= SOP2NN(ESPRESSO(NN2SOP(n2,n3)))

 if {nA,nB} better than {n2,n3}
{n2,n3}={nA,nB}

 end if
until no improvement

Here “improvement” and “better” mean smaller total area. We use an
example throughout the discussion of the transformation and
optimization algorithms. Following are the initial NAND-NAND
matrices,

a b c d
k0

k1

u
v

h0

h1

z

TB(0) I(1)

T(1)

B(1)
O(1)

T(1) B(1)I(2)

TB(2)

1

O(2)

nand2

nand1

f

k2

k3

k4

k5

k6

k7

k0 k1 k2 k3 k4 k5 k6 k7 u

h2

1

0
1 0

1 0

1 0
1

0
1

0 1

0 1

0
1

0

1 0
1

1 0

1 1
0

1 0

1
1

1
1

1

11

1
1

1

1

d e

g0 g1 g2

y
x00

called nand1 and nand2. The inputs to nand1 include TB(0) and I(1),
and the outputs of nand1 include T(1), B(1) and O(1). T(1), B(1) and
I(2) form the inputs to nand2, and nand2 outputs TB(2) and O(2). For
better visualization, only the care bits are shown. The SOP form has a
product matrix and a sum matrix. The vacant space in the product
matrix means ‘-’, while the vacant space in the sum matrices means ‘0’,
or “don’t output”. The conventions of the SOP form include:

(1) The use of negative products is forbidden.
(2) The products output to the sums only.
(3) The sums only take the products as inputs.

The transformation algorithm should generate and accept the SOP form
with these restrictions. In addition, the polarities of the primary inputs
and outputs can be obtained by using the appropriate input and output
buffers. So if the original function outputs signal Z, it is possible to end
up with an optimized function of the complement Z .

3.2. NN2SOP, the NAND-NAND to SOP transformation

We start with the simplest case, that is, I(2)=Φ, BO(1)=Φ and the
nand2 matrix is positive unate. Then the transformation is simply
copying the nand1 matrix to the product matrix and copying the
transpose2 of the nand2 matrix to the sum matrix. Suppose BO(1)≠Φ.
This is one of the major structural differences between WPLAs and
conventional PLAs. Since the SOP form can only output from the
sums, the BO(1) signals have to be raised to O(2). Suppose Y is a BO(1)
signal. We can create a new O(2) signal, Y , which is simply the
complement of Y, but now corresponds to an output of the sum.
Another case is I(2)≠Φ, which means some external signals enter nand2
directly. Since only product terms can enter the sums in SOP form, the
I(2) signals need need to be pushed back to I(1):

2 transpose: here transpose means a 90 degree clockwise rotation followed by a

mirroring of the X-axis.

∏∏∏∏ ==
j

j
i

i
j

j
i

i TYyYZ

where Z is an O(2) signal, yj’s belong to I(2), and
jj yT = , for all j, are

the new T(1) signals. They replace I(2) and can be used in nand2.
Finally, nand2 is not positively unate (it is always so in a SOP), which
means nand2 can use both polarities of its input signals. Suppose an
O(2) signal Z is the NAND of a set of positive T(1) signals Yi and a set
of negative T(1) signals Yj. Each Yj can be expressed by a NAND of a
set of TB(0)∪I(1) signals xjk. Then replace Yj by xjk’s:

∏∏∏∏∏∏∏∏∏∏ ==∏=∏==
kj

jk
i

i
kj

jk
i

i
kj

jk
i

i
j

jk
i

i
j

j
i

i xYxYxYxYYYZ
,,,

 (1)
However as mentioned above, xjk’s have to be relayed to T(1); thus
their polarities should be adjusted. Now the steps of the transformation
to SOP form are described.
Step 1. The inputs of the product matrix include TB(0) and I(1)∪I(2).
The outputs of the sum matrix include TB(2), O(2) and)1(BO 3.
Step 2. Copy nand1 to the product matrix.
Step 3. For each input signal in the product matrix, build two rows, one
with a ‘0’ in the column of that signal, and one with a ‘1’ in the
column. By doing so, all the inputs of the product matrix, including
TB(0) and I(1)∪I(2), are relayed. The relayed signals appear as if they
are new T(1) signals that can be used by nand2. We call them pseudo-
T(1) signals.
Step 4. Copy the transpose of nand2 to the sum matrix. Use the
pseudo-T(1) signal when I(2) is required. For example, dkkkh 4300 =

where d is an I(2) signal. Then the pseudo T(1) signal d is used instead.
Thus the 0’s in the sum matrix come only from the TB(1) part of nand2,

ukx 1= , for instance. Equation (1) is used to break the negative TB(1)
literals into a set of TB(0)∪I(1) signals, which have their pseudo-T(1)
versions available.
Step 5. Use a column singleton to relay a BO(1) signal, such as u and
v . Notice that if the net is)1(O , then it is also a row singleton in the

sum matrix, because no TBO(2) signal uses it. But)1(B must not be
row singleton, because by definition some of the TBO(2) use it.

product sum

a b c d
k0

u
v

h0 h1 zy
TB(0) I(1)UI(2)

T(1)

B(1)
O(1)

OB(1)TB(2)

1

O(2)
e h2

1

0
1 0

1 0

1 0
1

0
1

0 1

0 1

0
1

0

1 0
1

1 0

fg0 g1 g2

1

1
1

1

0

1

k1

k2

k3

k4

k5

k6

k7

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

u v

1

1

1

1

1

1
1

1

1

1

1

1

d
e 1 1

x

1

1d

g2

f 1

g1

b

1

1

3)1(BO means the set of complemented BO(1) signals. Similar for other

abbreviations.

It is obvious that all the pseudo-T(1) signals are not always utilized.
But keeping them does not affect the SOP minimization. A more
succinct SOP representation, with all unused pseudo-T(1) rows
removed, looks like:

product sum

a b c d h0 h1 zy
TB(0) I(1)UI(2) TB(2)

1

O(2)
e h2

1

0
1 0

1 0

1 0
1

0
1

0 1

0 1

0
1

0

1 0
1

1 0

fg0 g1 g2

1
1

1

1

0
1

1

1
0

0
1

1

1

1

1

1

1
1

1

1

1

1

1

d
e 1 1

x

1

1d

g2

f 1

g1

b

1

1

OB(1)
u v

k0

u
v

T(1)

B(1)
O(1)

k1

k2

k3

k4

k5

k6

k7

3.3. ESPRESSO, the SOP minimization algorithm

ESPRESSO is employed to perform the SOP minimization [2,5]. It
makes no change to the input net list and the output net list. However,
the content of the product and sum matrices may change. In the
example, ESPRESSO gives the following optimized SOP form.

sum

a b c d h0 h1 zy
TB(0) TB(2)

1
e h2

0

1
1

0

1

0

0 1

0

1

0 1

0

1

0

1
0

1

10

fg0 g1 g2

1

1

1

1

1

1

1
11

1

1

1

1

product

1
11

1 1
0 1

1 1
1 1

1

x u v

3.4. SOP2NN, the SOP to NAND-NAND transformation and
optimization

During the transformation from the minimized SOP back to a nand1-
nand2 form, the original BO(1) and O(2) may have a new distribution
between the two NANDs. The external inputs I(1) and I(2) may have
new distributions as well. We will show that the re-distribution
provides additional opportunities to optimize the logic functions.
However, TB(0) and TB(2) are unchanged, because these signals are
fixed, due to the structural restriction of the WPLA.

The algorithm consists of two parts. The first part, Steps 1 to 4,
produces the nand1 and nand2 matrices from the SOP. These steps are
mostly done by definition. Then the nand1-nand2 is further optimized
using Steps 5 to 7.
Step 1. This step distinguishes)1(B ,)1(O and O(2). In the sum
matrix, the TB(2) columns are left alone. In the remaining columns, the
ones with a single 1 become)1(BO , because these columns correspond

to relays. The others are O(2). Shade the)1(BO columns. Then check

the rows associated with the)1(BO column singletons. If a ‘1’ is also

a row singleton, then the associated)1(BO signal should be)1(O .

Otherwise it is)1(B . Label the signal types of the recognized)1(B and

)1(O , and obtain the following SOP matrices.

sum

a b c d h0 h1 zy
TB(0) TB(2)

1
e h2

0

1
1

0

1

0

0 1

0

1

0 1

0

1

0

1
0

1

10

fg0 g1 g2

1

1

1

1

1

1

1
11

1

1

1

1

product

1
11

1 1
0 1

1 1
1 1

1

x

B(1)

O(1)
O(1)

O
(2

)
O

(1
)

O
(1

)
B(

1)

O
(2

)

u v

Step 2. This step recognizes I(2) and)1(T . In the product matrix, leave

alone the)1(BO rows. Check the remaining rows. If a row has care
bit(s) in TB(0) columns, or it has two or more care bits in the row, then
the row is associated with a)1(T signal. The remaining rows, with
single ‘0’ or ‘1’ in the non-TB(0) columns are I(2). Shade these rows,
and label the corresponding columns with I(2).

sum

a b c d h0 h1 zy
TB(0) TB(2)

1
e h2

0

1
1

0

1

0

0 1

0

1

0 1

0

1

0

1
0

1

10

fg0 g1 g2

1

1

1

1

1

1

1
11

1

1

1

1

product

1
11

1 1
0 1

1 1
1 1

1

x

B(1)
T(1)

T(1)

T(1)
T(1)

T(1)

O(1)
O(1)

T(1)

I(
2)

u v

O
(2

)
O

(1
)

O
(1

)
B(

1)

O
(2

)

I(
2)

I(
2)

I(
2)

Step 3. This step identifies I(2)-only signals, because some I(2) can
also be I(1), if they are used by both the nand1 and nand2. Check each
column that has been identified as I(2). An I(2)-only signal requires
that each care bit appearing in the column should be the row singleton.
Otherwise it is also I(1). In the example, signal e is identified as an
I(2)-only signal. Shade all the I(2)-only columns in the product matrix.

I(
1)

I(
1)

I(
1)

I(
1)

I(
1)

j0

u
y

sum

a b c d h0 h1 zy
TB(0) TB(2)

1
e h2

0

1
1

0

1

0

0 1

0

1

0 1

0

1

0

1
0

1

10

fg0 g1 g2

1

1

1

1

1

1

1
11

1

1

1

1

product

1
11

1 1
0 1

1 1
1 1

1

x

v

j1

j2

j3

j4

j5

e

d

b
d
f

u v

I(
2)

I(
2)

I(
2)

I(
2)

O
(2

)
O

(1
)

O
(1

)
B(

1)

O
(2

)

Step 4. The non-shaded region in the product matrix is copied to
nand1, and the transpose of the non-shaded region in the sum matrix is
copied to nand2, but the I(2) care bits should be inverted. After the
operation, the TB(1) columns in the nand2 matrix should contain no
0’s.

a b c d

h0

h1

z

TB(0) I(1)

TB(2)

1

O(2)

nand2

nand1

f
j0 j1 j2 j3 j4

h2

0

1 0
10 1

1
0

0
1

0 1

01

0

1
0

1
1

01

1

1
0

11

1
1

d e
g0 g1 g2

j0

j1

j2

j3

j4

u

v

y

v

1

11

1 j5

x

j5 b f

11 0 1 0

I(
2)

I(
2)

I(
2)

I(
2)

Re-arranging rows and columns, we get:

T(1)

T(1)

B(1)

O(1)

B(
1) I(2)

a b c d

h0

h1

z

TB(0) I(1)

TB(2)

1

O(2)

nand2

nand1

f

j0 j1 j2 j3 j4

h2

0
1 0

10 1

1
0

0
1

0 1
01

0

1
0

1

1
01

1

1
0

11

1
1

d e

g0 g1 g2

j0

j1

j2

j3

j4

u
v

y

v

1

11
1 j5 x

j5 b f

11 0 1 0

So far, the optimization comes only from the SOP minimization.
Further optimization is possible. Suppose:

∏∏=
j

j
i

i TYZ

where,
jj xT = , is a single-literal function in the nand1 and the literal xj

is a TB(0). Then all Tj’s can be combined in nand1 using a new T(1)
signal N:

∏=
j

jxN

which leads to:
NYZ

i
i∏=

Now we have the option of removing some care bits in nand2 and
replacing them with a new signal. If enough care bits are removed from
the nand2 matrix by applying this transformation, then some columns
might become empty and thus can be deleted. The cost is to introduce
new columns for signals like N in the above formulas. We want to
maximize the total reduction. The following steps implement this idea.
Step 5. First, search for qualified TB(1) signals in the nand1 matrix,
i.e., row singleton with the single care bit in a TB(0) columns. Shade
the columns in the nand2 matrix associated with the selected TB(1)
signals. Also in the nand2 matrix, shade the I(2) columns except the
I(2)-only columns.

T(1)

T(1)

B(1)

O(1)

B(
1) I(2)

a b c d

h0

h1

z

TB(0) I(1)

TB(2)

1

O(2)

nand2

nand1

f

j0 j1 j2 j3 j4

h2

0
1 0

10 1

1
0

0
1

0 1
01

0

1
0

1

1
01

1

1
0

11

1
1

d e

g0 g1 g2

j0

j1

j2

j3

j4

u
v

y

v

1

11
1 j5 x

j5 b f

11 0 01

All the shaded columns in nand2 form a sub-matrix S.

h0

h1

z

j2 j3

h2

0

0

11

1

d

x

j5 b f

11 0 01

S

I(2)T(1)
Step 6. To maximize the reduction, we identify common patterns in the
S matrix. To eliminate a column, all the care bits in the column should
be covered by some selected pattern(s). Denote the number of T(1)
columns eliminated by CT, and the number of I(2) columns eliminated
by CI. Eliminating these columns will save CT+CI columns in nand2
and CT rows in nand1, at the expense of creating RP new rows in nand1
and RP new columns in nand2. Here RP is the number of patterns used.
Define gain as the total reduction in size of the two matrices:

12)()(WRCHRCCgain PTPIT −+−+=
where H2 is the height of the nand2 matrix, and W1 is the width of the
nand1 matrix. To simply the pattern recognition when different
polarities may exist in the same signal, the S matrix is expressed in a
pattern matrix SP as shown below.

h0

h1

z

h2

*

*

**

*

d

x

b f

** * **

j2 j3 j5 b d fj2 j3 j5

SP

I(2)T(1)

Each column in S is split into two, one for the positive literal, and one
for the negative literal. Then the care bits are replaced by *’s. The
algorithm has two parts. The first collects a set candidate patterns for
the covering, and the second selects a subset that maximizes the gain.
The first part is summarized below.

all the *’s are labeled “uncovered”
PATTERN=Φ
for each column c
 temp pattern p=*’s in c
 hasCommon=false
 for each column cc except c
 if p⊆cc

the *’s of p∩cc are labeled “covered”
hasCommon=true

 end if
 end for
 if hasCommon=true
 the *’s in c are labeled “covered”

PATTERN∪=p
end if

end for
After the first step, the set PATTERN contains the candidate patterns.
Define the size of a pattern as the product of the number of *’s in the
column and the number of columns in matrix SP that are covered by
this pattern. Then a seed pattern, p0, is chosen from the candidate set,
which gives the highest gain. Notice that the highest gain provided by
p0 alone might not be positive, because RP = 1, while CT and CI might
both be 0 at this moment. If a tie occurs, choose the larger pattern.
Further ties can be broken by choosing the one with the larger number
of *’s in the column. The second part of the algorithm is as follows.

select the seed pattern p0
list[0]= p0
pattern-= p0
get gain[0]
i=1
while PATTERN≠Φ
 choose p from PATTERN that increases gain the most,
 or, if none exists, choose the one decreases gain the least.
 list[i]=p
 PATTERN−=p
 get gain[i]
 i++
end while
find the maximum gain[n]. If tie, use the first one.
if gain[n]≤0
 choose nothing.
else

choose the first n patterns in list.
end if

In this example, two patterns are chosen as shown below.

h0

h1

z

h2

*

*

**

*
x** * **

SP

db fj2 j3 j5 b d fj2 j3 j5
I(2)T(1)

Remove the columns in nand2 covered by the chosen patterns, and
replace their functions with new T(1) signals. In the example, column
j2, j5, d, b and f in nand2 are removed, and m0 and m1 are created.

T(1)

T(1)

B(1)

O(1)

B(
1)

I(
2)

a b c d

h0

h1

z

TB(0) I(1)

TB(2)

1

O(2)

nand2

nand1

f

j0 j1 j4

h2

0
1 0

10 1

1
0

0

0 1
01

0

1
0

1

1
1

1

1 1

e

g0 g1 g2

j0

j1

m0
j4

u
v

y

v

1

11
x

0

m0

0

0

m1

01 m10 0 1 0

j3

1j30

Step 7. Check if an O(2) signal now becomes a row singleton in the
nand2 matrix. For instance, O(2) signal x now has only a single care bit

in the row, which means that it can be pulled back to nand1 and
become a O(1). When the row is saved, it might generate empty
columns in the nand2 matrix, m1 in this case. Then the m1 column can
be saved. This operation concludes the SOP2NN transformation and
optimization algorithm; the final nand1-nand2 matrices are shown
below.

T(1)

T(1)

B(1)

O(1)

a b c d

h0

h1

z

TB(0) I(1)

TB(2)

1

O(2)
nand2

nand1

f

j0 j1 j4

h2

0
1 0

10 1

1
0

0

0 1
01

0

1
0

1

1
1

1

1 1

e

g0 g1 g2

j0

j1

m0
j4

u
v

y

v

1
11

0

m0

0

0

1 x0 0 1 0

j3

1j30

B(
1)

I(
2)

Finally we give the original logic functions:

efbgcbggekkzbgky

fdgbgukxedgedukh

cbaggbfgkkkkhdggcbgdkkkh

cbvfdgu

cbgkcbkaggkgk
gkbfgkbgkcbggk

++====

++++==++==

++==+++==

==

====
====

2202011

211032

212765211024300

2

17621514

032211200

,

,,

,,

,,

,,,,
,,,,

and the final logic functions:

efbgcbggejjzbgy

fdgbgfdbggxedgemh

cbaggbfgvjjhdggcbgmjjh
cbvfdgu

dgmaggj

gjbfgjcbggj

++===

++++==++==

++==+++==
==

==

===

2201011

2121002

2124110120300

2

00214

1321200

,

,,

,,
,,

,,

,,,

Comparing u, v, h0, h1, h2, x, y and z, the optimized functions are
logically equivalent to the original ones, but the nand-nand size reduces
from 8×10+11×6 to 8×9+7×4. ESPRESSO gives a nand2-nand2 with
the size of 8×9+11×5. The additional improvement is due to the
SOP2NN algorithm.

4. Experimental results

We compare the following methods of implementation: standard-cells
(SCs), network of PLAs (NPLAs) [7], River PLAs (RPLAs) [13] and
Whirlpool PLAs (WPLAs). An NPLA can be regarded as an
intermediate representation between technology independent and
technology dependent logic optimizations [4]. The RPLA is a regular
structure composed of a stack of PLAs; the adjacent PLAs are
connected via river routing. Logically it represents a multi-level
Boolean network. In fact, a depth=2 NPLA or RPLA is logically
similar to the WPLA, except that 1) WPLAs can have primary outputs
directly from the product terms and 2) the product terms can appear in
both polarities. The depth=1 NPLA and RPLA degrade to a single
PLA. A 0.35-micron technology was used for the comparisons, since a
standard-cell gate library was available for this, with over 100 gates,
and each logic gate has at least two choices of drive strength. Typical
parameters of the gate library are given in Table 1.

Parameter ND2 ND2X4
logic function 2-input nand 2-input nand
area (um2) 54 126
load limit 12 22
input pin load 1.0 1.2
intrinsic delay (ps) 170 540
load dependent delay (ps/load) 60 30

Table 1. Typical parameters of the gate library

Standard-cell implementations use over-the-cell-routing. Since the
gates use metal-1 for internal connections, metal-2 and -3 are needed

for inter-gate connections. NPLAs use metal-1 and -2 for internal
connections, so the NPLA needs metal-3 and -4 for inter-PLA
connections. The RPLAs only need metal-1 and -2 for routing. A
WPLA uses only metal-1 and -2. Some typical parameters in the PLA
designs are given in Table 2.

Parameter value

size of a programmable bit (um) 0.8x1.0
width of input/output buffer (um) 4.0
width of intermediate buffer (um) 10.0
intrinsic delay of a transistor (ps) 30
load dependent delay of a transistor (ps/loading transistor) 40
intrinsic delay of in/out buffer (ps) 250
load dependent delay of in/out buffer (ps/loading transistor) 8
intrinsic delay of intermediate buffer (ps) 150
load dependent delay of intermediate buffer (ps/loading transistor) 5

Table 2. Typical parameters in the PLA designs

Fifteen FSM examples from the LGSynth 91 benchmark set [3]

were tested. After the latches are removed from each example, (we do
not deal with state minimization and encoding), the combinational part
is optimized with SIS [1] (using script.rugged) to achieve an initial
Boolean network with depth d0. Then for SC, NPLA and RPLA
synthesis, we generate area/delay trade-off curves, by decreasing the
depth gradually from d0 using the SIS command “reduce_depth –d d”.
At each depth d 4, for SC we use SIS “map –n1 –AFG” command
(minimum delay circuit that respects load limit) for technology
mapping; for NPLAs, we cluster all single-output nodes at the same
level, and call ESPRESSO with its default settings to minimize the
clustered multiple-output PLAs. The RPLAs are synthesized with its
own algorithm [13]. WPLAs have a fixed depth of 2, so it only has one
solution per example (no area-delay trand-off).

In Table 3, the number of programmable bits of NPLAs, RPLAs
(both depth=2) and WPLAs are compared. In this case, both the NPLA
and RPLA are four-level structures. However due to the different
algorithms used to synthesize them, their results are slightly different.
The differences in the bit numbers show the additional improvement
achieved by the Doppio-ESPRESSO algorithm; Doppio-ESPRESSO
achieves on average 20% more optimization than ESPRESSO.
However, fewer programmable bits do not necessarily imply smaller
areas, because PLA structures also contain components such as buffers
etc. For WPLAs, there can be “white space” along the boundary and in
the center, as illustrated in Figure 1.

example NPLA RPLA WPLA example NPLA RPLA WPLA
s208.1 1623 1609 1038 s420.1 4691 4728 4439
s298 4053 4133 3800 s444 7152 7288 7046
s344 7559 7559 6234 s526 8208 8208 7490
s349 7902 7819 6582 s641 21175 21175 16583
s382 7428 7508 7198 s820 17862 18840 13675
s386 10200 10200 8228 s838.1 37353 35759 28032
s400 6575 6616 5714 s1488 53958 54884 44211

 s1494 56481 56070 47533
 Average 120% 120% 100%
Table 3. Bit counts of NPLA, RPLA (depth=2) and WPLA

Area/delay and synthesis times are given in Table 4. The “tech-

indep. depth” refers to the depth during the technology-independent
logic minimization. The values in the column are exact for the NPLA,
RPLA and WPLA, since their logic levels will not change. However
for the SC, there is a technology-mapping step after that, and the gate
levels (including buffers when calculating levels) are shown in the “SC
gate level” column. No placement or routing has been done for SCs and
NPLAs, so these areas are just the raw areas of the logic components.
Although we can assume that routing is done on higher metal layers, in

4 The SIS “reduce_depth –d x” command may not always reduce the depth to the
designated value x, but to some value no greater than x.

reality, SCs may need cap cells on both sides of the rows and feed-thru
cells. NPLAs require block-level placement, which may generate white
space. The RPLAs have their finalized layouts, which contain white
space, so they give fair comparisons. In addition, the delays of the SCs
and NPLAs may change after routing, due to parasitics on wires. In
contrast, WPLAs consume no additional area nor have additional delay
uncertainties.

For a better view of the experimental results, the area/delay data of
the SCs, NPLAs and RPLAs are normalized with respect to the WPLA
results and plotted in Figure 3. The (1,1) point represents the WPLA
single point for all examples. Connected points for SC, NPLA or RPLA
represent area/delay trade-off curves for a single example. Figure 3
shows that SCs generally have larger areas than WPLAs, but can
provide smaller delays if more area is allowed. NPLAs are just the
opposite; they can provide smaller (raw) areas, but usually are slower.
Comparing the depth = 2 cases, on average, WPLAs are 37% and 0%
smaller than SCs and NPLAs respectively, but only 5% and 3% slower
than SCs and NPLAs. However, recall that the areas of SCs and
NPLAs only account for raw logic components and use more metal
layers. After placement, the areas of both are expected to grow,
especially NPLAs. So in reality, these area/delay curves would shift to
the right relative to the WPLA point. The WPLA is on average 56%
smaller than the depth=2 RPLA and 13% faster than it. The RPLAs are
not expected to be as useful in implementing small circuits such as
those in this experiment [13], because when the circuit is small or the
depth is small, the river routing region may occupy a large portion of
the entire RPLA area. A rough estimate of the river routing area can be
obtained by the difference between the area of the RPLA and the
NPLA. Comparing the area of SC, NPLA, RPLA and WPLA with
similar delays (may have different depths), we find that WPLA is on
average 19% larger than NPLA (raw area), 26% smaller than SC and
32% smaller than RPLA.

Note that some SC, NPLA and RPLA curves are not monotone
decreasing with area; thus reducing the depth may not necessarily lead
to faster circuits. Other curves are unpredictable in shape, so timing
closure becomes even more difficult. Thus, in addition to uncertainty
caused by physical design, area/delay relations of SCs, NPLAs and
RPLAs are also unpredictable, while WPLAs do not suffer from such
problems.

We also found that the number of gate levels after technology
mapping is non-linear to the depth of the technology-independent
optimized circuit, and the relationship is not even monotonic. An
interesting phenomenon is that in some circuits like “s838.1”, when the
depth is reduced, the actual number of gate levels increases. This can
be explained by two factors. One is from the covering in the technology
mapping. Suppose the classical tree covering is used, where the
technology-independent optimized netlist is first transformed into a
generic netlist with only nand2’s and inverters. If the depth is not small,
the level of the generic netlist follows the depth quite well. But when
the depth is very small, the nodes in the netlist are large, and many
levels of nand2’s and inverters have to be used to represent them. This
makes the levels of the generic netlist and thus the mapped gate netlist
almost unpredictable. The other factor is the loading problem. As the
depth goes down, it is conceivable that the loads (on nets between
nodes, and the SOP connections within nodes) tend to increase. To
obey the load limit and improve speed, appropriate buffering should be
done during technology mapping, which also increases the levels of
gates. This shows that even within logic synthesis, the technology-
independent step has difficulty predicting the behavior of the
technology-dependent step. The relationship between depth, gate
levels, area and delay is complicated.

Logic synthesis times for NPLAs and WPLAs are usually smaller
than SCs, because SCs need a technology mapping stage, which
becomes notably slower as the circuit size increases. The RPLA
synthesis times are the slowest, due to its iterative node-placement
algorithm [13].

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 1 2 3 4area

de
la

y

� SC ∆ NPLA Ο RPLA

Figure 3. Normalized area/delay curves

5. Conclusions

Whirlpool PLAs (WPLAs) are logically four-level NOR networks.
Their cyclic structure makes them compact. The design methodology
for WPLAs involves only logic synthesis; no prediction is needed
because area and delay are totally determined by the logic embedded in
the WPLA. Doppio-ESPRESSO, a new four-level logic minimization
algorithm for WPLA synthesis exploits additional structural flexibility.
Experimental results show that WPLAs are quite competitive, in terms
of area and delay, with standard cell implementations and network of
PLA implementations, but are much more regular and predictable. It
also is superior to another regular structure, the River PLA, in both area
and delay, for the examples tested. A comparison between WPLAs and
depth = 2 NPLAs and RPLAs also shows the advantage of the Doppio-
ESPRESSO algorithm in terms of the total number of programmable
bits needed to build a circuit. However, some remaining problems
require more discussion:
(1) The regularity of a chip involves both local and global regularity.

The WPLA provides a structure with local regularity. However to
integrate multiple WPLAs on a chip and achieve global regularity is
not easy. The problem includes, partitioning of the circuit into
many WPLAs, placing and routing them in a regular way.

(2) The pin positions of the WPLA are fixed after the synthesis. This
seems worse than for SC implementations. However consider
implementing the same logic functions (a part of a large circuit)
with SC. The gates are usually placed closer, although not
necessarily in a rectangular region. The pins connecting to the
external circuit are actually on some of the gates. It is unlikely that
these pins can be moved arbitrarily, because the gates need to
maintain some spatial relations indicated by the gate-level
placement. The pins can move within a small range by moving the
gates carrying them. To move them farther, the only way is to flip
the entire “SC block”. However changing orientation of a “SC
block” is not as flexible as a WPLA, because the “SC block” cannot
do things like “rotate 90o”. Therefore, the fixed pin position is not a
serious drawback of the WPLA compared to the SC, because the
WPLA can be thought of as “placed and routed”.

(3) The PLA structures experimented with in this paper are static.
These consume quiescent DC power because they use pull-up/down
devices. In fact, dynamic PLA structures are more power efficient

and are faster than static PLAs [17]. The WPLA structure can have
a dynamic version, which is faster than its static counterpart.

(4) PLAs can also be re-sized to get different area/performance
characteristics. Also the characterization of a set of PLA parameters
is much faster than that of a library of hundreds of gates.

(5) Engineer Change Orders (ECOs) for SC implementations involve
both synthesis and physical design modifications. But for the
WPLA, it is mainly a synthesis problem.

(6) A programmable version of the WPLA is anticipated, and
experiments need to be done to show if it is a good alternative to
the LUT-based structures.

6. Acknowledgement

This work was supported by GSRC (grant from MARCO/DARPA
98DT-660, MDA972-99-1-0001).

7. References

[1] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H.
Savoj, P. Stephan, R. Brayton and A. Sangiovanni-Vincentelli, “SIS: A
system for sequential circuit synthesis”, Tech. Rep., UCB/ERL M92/41,
Electronics Research Lab, University of California, Berkeley, May 1992

[2] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimization
for PLA optimization”, IEEE Transactions on Computer Aided-Design, vol.
6, Sep 1987, pages 727-750

[3] http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth91/
[4] R. Brayton, G. Hachtel and A. Sangiovanni-Vincentelli, “Multi-level logic

synthesis’, Proc. of IEEE, vol. 78, Feb. 1990
[5] R. Brayton, G. Hachtel, C. McMullen and A. Sangiovanni-Vincentelli,

“Logic minimization algorithms for VLSI synthesis”, Kluwer Academic
Publishers, 1984

[6] R. Bryant, K-T. Cheng, A. Kahng, K. Keutzer, W. Maly, R. Newton, L.
Pileggi, J. Rabaey, A. Sangiovanni-Vincentelli, “Limitations and challenges
of computer-aided design technology for CMOS VLSI”, Proceedings of the
IEEE, vol. 89, issue 3, Mar 2001, pages 341-365

[7] S. Khatri, R. Brayton and A. Sangiovanni-Vincentelli, “Cross-talk immune
VLSI design using a network of PLAs embedded in a regular layout fabric”,
Proceedings of International Conference on Computer aided Design, Nov
2000, pages 412-418

[8] Y. Iguchi, T.Sasao and M. Matsuura, “Realization of multiple-output
functions by reconfigurable cascades”, Proceedings of International
Conference on Computer Design, 2001, pages 388-393

[9] T. Sasao, M. Matsuura and Y. Iguchi, “A Cascade Realization of Multiple-
Output Function for Reconfigurable Hardware”, International Workshop on
Logic Synthesis, 2001

[10] F. Mo and R. Brayton, “River PLA: Structure and Design Methodology”,
Tech. Rep., University of California, Berkeley, 2001

[11] J. Cong, H. Huang and X. Yuan, “Technology Mapping for k/m-macrocell
Based FPGAs”, Proc. ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Feb 2000, pages 51-59

[12] A. Singh, G. Parthasarthy and M. Marek-Sadowska, “Interconnect
Resource-Aware Placement for Hierarchical FPGAs”, International
Conference on Computer-aided Design, Nov 2001, pages 132-136

[13] F. Mo and R.K. Brayton, “River PLA: A Regular Circuit Structure”, Design
Automation Conference, Jun 2002, pages 201-206

[14] F. Mo and R.K. Brayton, “Regular Fabrics In Deep Sub-Micron Integrated-
Circuit Design”, International Workshop on Logic and Synthesis, Jun 2002,
pages 7-12

[15] C.A. Papachristou, A.L. Pandya, “A Design Scheme for PLA-Based
Control Tables with Reduced Area and Time-Delay Cost”, IEEE
Transactios on Computer Aided Design, vol. 9, no. 5, May 1990, pages 453-
472

[16] F. Mo, A. Tabbara and R.K. Brayton, “A Force-Directed Macro-Cell
Placer”, International Conference on Computer Aided Design”, Nov 2000

[17] Y.B. Dhong and C.P. Tsang, “High Speed CMOS POS PLA using
Predischarged OR Array and Charge Sharing AND Aray”, IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 39, no. 8, Aug 1992, pages 557-564

area (1000um2) delay (ns) synthesis time (min)

example
tech-indep

depth
SC gate

level SC NPLA RPLA WPLA SC NPLA RPLA WPLA SC NPLA RPLA WPLA
s208.1 8 9 4.91 1.72 8.82 3.12 3.91 3.92 0.1 0.1 1.2

 4 9 5.26 1.70 8.10 3.02 2.33 2.49 0.1 0.1 1.3
 3 9 5.94 1.82 7.86 2.47 1.92 2.02 0.2 0.1 1.2
 2 9 5.98 2.22 8.36 2.46 2.47 1.70 1.74 1.89 0.2 0.1 1.2 0.1
 1 9 6.71 2.90 2.47 1.41 0.3 0.1

s298 5 9 9.05 3.39 9.94 3.03 3.55 3.51 0.1 0.1 1.1
 3 9 11.0 4.72 10.6 2.84 3.04 3.14 0.1 0.1 1.0
 2 6 10.1 4.92 12.1 4.24 2.06 2.42 2.28 2.60 0.2 0.1 1.4 0.1
 1 6 11.3 3.73 2.06 2.48 0.2 0.1

s344 9 13 9.83 5.08 8.81 3.94 5.92 5.76 0.1 0.1 1.2
 5 11 14.8 7.06 8.46 3.56 4.41 4.33 0.1 0.1 1.2
 4 11 15.5 5.84 10.1 3.21 3.69 3.65 0.1 0.1 1.3
 3 10 14.1 7.62 10.6 2.78 3.56 3.50 0.2 0.1 1.2
 2 11 18.4 8.57 10.1 8.44 3.12 3.10 3.09 3.32 0.2 0.1 1.2 0.1
 1 8 19.6 19.1 2.96 4.59 0.3 0.2 1.2

s349 9 13 10.3 5.26 9.25 3.94 6.01 6.21 0.1 0.1 1.5
 5 11 14.2 7.28 8.01 3.56 4.41 4.92 0.1 0.1 1.5
 4 11 16.8 6.31 10.6 3.21 3.84 4.57 0.1 0.1 1.5
 3 10 14.5 8.04 10.6 2.78 3.62 4.00 0.2 0.1 1.4
 2 11 18.5 8.88 12.6 8.8 3.12 3.16 3.77 3.30 0.3 0.1 1.5 0.1
 1 8 19.7 19.1 2.96 4.59 0.4 0.2

s382 8 13 12.6 4.14 12.6 3.56 5.23 5.52 0.2 0.1 1.5
 4 11 15.5 5.60 11.6 3.12 3.81 4.02 0.2 0.1 1.5
 3 10 15.4 6.61 10.6 2.82 3.47 3.76 0.3 0.1 1.5
 2 9 17.1 8.43 13.6 10.1 2.68 3.10 3.50 3.38 0.4 0.1 1.5 0.1

s386 7 11 10.6 9.11 14.2 4.32 4.34 4.43 0.1 0.1 1.4
 5 10 11.2 13.2 14.4 3.94 3.58 4.20 0.2 0.1 1.4
 3 11 13.2 17.6 16.3 3.82 3.44 3.50 0.3 0.1 1.4
 2 11 19.1 17.2 16.0 15.8 3.79 4.02 4.10 3.97 0.4 0.1 1.5 0.1

s400 8 12 12.7 4.64 10.5 3.88 5.38 5.38 0.1 0.1 1.4
 4 10 12.8 5.42 10.1 3.17 3.66 3.70 0.2 0.1 1.4
 3 8 12.7 6.34 9.96 2.93 3.28 3.31 0.3 0.1 1.4
 2 10 14.9 7.44 9.20 8.0 2.46 2.88 2.99 3.11 0.3 0.1 1.4 0.1
 1 6 17.0 12.2 2.16 3.09 0.5 0.3

s420.1 12 17 10.1 3.47 11.5 4.55 6.39 5.95 0.1 0.1 1.6
 6 17 10.9 3.58 11.0 4.55 3.93 4.06 0.2 0.1 1.6
 4 17 12.0 4.74 11.2 4.55 3.39 4.22 0.2 0.1 1.7
 3 17 12.9 5.83 12.6 4.55 3.19 3.90 0.3 0.1 1.7
 2 17 14.5 7.45 15.0 9.0 4.51 2.86 3.74 3.15 0.4 0.1 1.7 0.1
 1 17 15.7 14.6 4.51 3.50 0.5 0.2

s444 8 13 12.1 4.41 11.5 3.98 5.38 5.53 0.1 0.1 1.6
 4 9 13.5 5.23 10.1 3.22 3.66 4.61 0.2 0.1 1.7
 3 8 13.7 6.13 10.0 2.82 3.22 4.20 0.3 0.1 1.6
 2 9 16.4 8.10 12.1 9.0 2.54 3.04 3.09 3.23 0.4 0.2 1.7 0.2
 1 7 17.1 12.2 2.37 3.09 0.4 0.2

s526 7 10 13.8 6.24 10.5 3.32 5.37 5.47 0.1 0.1 1.4
 4 9 16.8 8.62 10.0 3.16 4.30 4.46 0.2 0.1 1.5
 3 9 15.9 7.84 13.5 2.76 3.47 3.75 0.3 0.1 1.4
 2 8 16.3 9.08 18.8 9.7 2.46 3.16 3.31 3.33 0.3 0.2 1.5 0.2
 1 9 19.5 10.5 2.29 2.73 0.5 0.2

s641 14 18 13.1 5.94 12.7 5.29 8.33 8.30 0.1 0.1 1.3
 7 16 19.5 8.19 13.0 4.82 6.22 7.75 0.2 0.2 1.3
 5 15 22.2 10.5 13.4 4.39 5.62 7.86 0.3 0.2 1.4
 3 13 29.5 13.9 18.6 4.47 5.70 6.98 0.5 0.3 1.3
 2 12 35.8 14.0 25.4 14.9 4.04 4.81 7.06 4.41 0.6 0.3 1.3 0.4

s820 7 11 23.3 11.9 20.3 4.96 7.18 7.21 0.3 0.2 1.4
 4 10 25.6 13.9 22.1 4.89 5.69 5.93 0.3 0.3 1.5
 3 10 24.9 14.8 25.7 4.33 4.89 5.03 0.5 0.4 1.5
 2 11 28.7 18.1 29.9 15.3 3.95 4.30 4.42 4.28 0.5 0.5 1.5 0.4

s838.1 20 21 23.0 18.6 33.5 8.67 11.5 10.0 0.3 0.2 1.5
 10 21 24.1 19.1 39.9 8.67 7.32 9.91 0.3 0.2 1.5
 7 21 28.1 21.8 44.1 8.67 6.70 10.4 0.3 0.2 1.5
 5 21 27.2 34.0 49.8 7.41 6.13 8.02 0.3 0.2 1.5
 4 21 30.7 37.1 55.2 6.92 5.98 6.79 0.3 0.3 1.6
 3 33 33.4 43.3 55.8 7.02 6.10 5.81 0.5 0.4 1.5
 2 33 36.1 45.8 54.1 33.2 6.51 6.77 5.92 7.16 0.7 0.6 1.5 0.6
 1 33 47.1 90.5 6.30 9.70 0.9 0.6

s1488 5 11 46.5 38.2 59.2 7.04 9.62 9.21 0.5 0.5 2.7
 3 11 49.9 44.5 60.3 6.96 7.68 7.70 1.6 0.7 2.8
 2 11 54.2 50.5 65.3 54.2 6.87 7.15 6.96 6.94 2.0 0.8 2.8 0.9

s1494 5 11 47.0 38.4 50.2 7.11 9.67 9.58 0.8 0.5 2.9
 4 11 50.5 43.1 55.1 7.02 8.66 8.47 1.0 0.6 3.2
 3 11 48.2 38.8 67.2 6.92 7.51 77.9 2.4 0.8 3.3
 2 10 54.6 52.6 70.1 54.5 7.05 7.21 7.31 7.03 3.2 0.9 3.3 0.9

Table 4. The comparison of area/delay and synthesis time

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

