
A New Enhanced SPFD Rewiring Algorithm

Jason Cong*, Joey Y. Lin* and Wangning Long+
*Computer Science Department, UCLA

+Aplus Design Technologies, Inc.
{cong, yizhou}@cs.ucla.edu, longwn@aplus-dt.com

Abstract
This paper presents an in-depth study of the theory and

algorithms for the SPFD-based (Set of Pairs of Functions to
be Distinguished) rewiring, and explores the flexibility in the
SPFD computation. Our contributions are in the following two
areas: (1) We present a theorem and a related algorithm for
more precise characterization of feasible SPFD-based
rewiring. Extensive experimental results show that for LUT-
based FPGAs, the rewiring ability of our new algorithm is
70% higher than SPFD-based local rewiring algorithms
(SPFD-LR) [19][21] and 18% higher than the recently
developed SPFD-based global rewiring algorithm (SPFD-
GR)[20]. (2) In order to achieve more rewiring ability on
certain selected wires used in various optimizations, we study
the impact of using different atomic SPFD pair assignment
methods during the SPFD-based rewiring. We develop several
heuristic atomic SPFD pair assignment methods for area or
delay minimization and show that they lead to 10% more
selected rewiring ability than the random (or arbitrary)
assignment methods. When combining (1) and (2) together,
we can achieve 38.1% higher general rewiring ability.

1. Introduction
Rewiring is a technique that replaces a wire with another

wire in a given Boolean network for area and/or delay
reduction while maintaining functional equivalence. Recently,
it has received increased attention due to the need for closer
synthesis and layout interaction in timing closure. Using
layout information, rewiring is efficient in post-layout logic
synthesis. The rewiring problem has been widely studied.
Existing approaches include the automatic test pattern
generation (ATPG) based redundancy addition and removal
[2] [5] [6] [7] [12] [14] [15], symmetry detection [4], and the
SPFD (Set of Pairs of Functions to be Distinguished) [19] [17]
[20] based algorithms.

SPFD is a recently proposed method to represent
functional permissibility [19]. It can be understood as a
method to express “don’t-care” conditions [3]. It provides a
great flexibility in rewiring and other areas. The authors of
[19] proposed an SPFD-based rewiring algorithm. The authors
of [17] applied SPFD to the technology-independent logic
synthesis. SPFD has also been applied to floorplanning and
placement of multi-level PLAs [8] and low-power designs for
FPGAs [13].

The rewiring algorithm proposed in [19] tries to replace the
target wire with an alternative wire based on SPFD computation.
Although it achieves a good synthesis result for FPGA area
minimization, it has an inherent limitation in that it can only
perform local rewiring, that is, the destination node of the
alternative wire has to be the same as that of the target wire. In this
paper, this approach is referred as SPFD-LR. In [20], an SPFD-
based global rewiring algorithm, SPFD-GR, is proposed with
application to area minimization of FPGA designs. SPFD-GR
successfully overcomes the limitation of SPFD-LR and is capable of
finding a global alternative wire that might be far away from the
target wire.

Rewiring ability defined in [20] is a useful measurement of
rewiring algorithms. It is described as the number of wires having
alternative wires. The higher the rewiring ability, the more rewiring
choice an algorithm has. Previous work shows that the rewiring
ability of SPFD-GR is 44% better than that of SPFD-LR. However,
our study shows that the SPFD computation in both SPFD-LR and
SPFD-GR did not explore the full flexibility in SPFD computation,
and both methods over-constrained the rewiring conditions.

In this paper, we focus on the in-depth study of the SPFD-based
rewiring algorithm and explore the flexibilities in SPFD
computation. Our results can be used to improve both SPFD-LR and
SPFD-GR. Our main contributions are as follows:
1. We develop a new theorem and an efficient algorithm for more

precise characterization of feasible SPFD-based rewiring. This
technique reduces redundant constraints introduced by previous
methods and brings an 18% higher general rewiring ability than
SPFD-GR. (Section 4)

2. We focus on the rewiring ability of certain selected wires that
are critical for various optimization objectives and develop
several heuristic algorithms for atomic SPFD pair assignment.
As the result, these selected wires have more rewiring
opportunity, which in turn provides better optimization
potentials. When we focus on wires in the ε-network (timing-
critical network), our criticality-oriented heuristics can gain
10% more selected rewiring ability than in random
assignments. When combining with the technique in 1, we can
achieve 38.1% improvement in general rewiring ability.
(Section 5)

3. We integrate these methods into our enhanced SPFD-based
rewiring algorithm (SPFD-ER). A primitive flow is used to
illustrate that the additional rewiring ability we achieved can
help reduce the number of critical paths in the ε-network, and
subsequently improve the circuit performance. (Section 6)

0-7803-7607-2/02/$17.00 ©2002 IEEE

2. Terminologies and Definitions
This section reviews some terminologies and definitions

used in this paper. The circuits referred in this paper are
combinational circuits. We assume that the input circuit is a
mapped K-LUT network, meaning that each logic cell (or
node) in the circuit, as shown in Fig. 1, has a single out-pin p0
and up to K in-pins (p1, p2,…, pn, n≤K). Each node has an
internal logic function p0 = f(p1, …, pn) that defines the logic
relationship between the out-pin and the in-pins of the node,
and can be any K-input function. Every pin in the circuit is
also associated with a global logic function, denoted as gi in
Fig. 1, in terms of the primary inputs of the circuit.

Internal function
p0=f(p1, …, pn)

 g0

 g1 g2 gn

G

 p1 p2 pn

 p0

(n≤K) in-pins

in-pin function

out-pin

Fig. 1. A K-input single-output logic cell

For wire p1→ p2, as shown in Fig. 2, G2 is its source node
and G3 is its destination node. Transitive fanout nodes of
pin pi are the nodes on the paths from pi to a primary output
(PO). Transitive fanout nodes of a node are the transitive
fanout nodes of the node’s out-pin. A dominator of pin pi is a
transitive fanout of pi through which all the paths from pi to
POs must pass. A dominator of a wire is the dominator of the
wire’s destination pin. For example, in Fig. 2, G5 is the only
dominator of pin p1; both G3 and G5 are the dominators of pin
p2, and they are also the dominators of wire p1→ p2.

p1

O1

O2

G5

G3

p2
G2

G1

G4 PIs
POs

Fig. 2. Illustration of dominator

We measure the timing criticality of a wire based on its
time slack. When we do rewiring to improve timing
performance, we usually try to replace a more critical wire
with a less critical wire.

Given a function pair (π1,π0), π1≠0, π0≠0 and π1π0 ≡ 0,
function f is said to distinguish (π1,π0) if either one of the
following two conditions is satisfied [17]:

10

01 or
ππ
ππ

≤≤
≤≤

f
f

where
01 ππ ≤≤ f can be understood as f = 1 when π1 =1,

and f = 0 when π0 =1 [19]. The second condition can be
interpreted in the same way.

An SPFD is a Set of Pairs of Functions to be
Distinguished, e.g., P = {(π11, π10), (π21, π20), …, (πm1, πm0)}.
Function f is said to satisfy an SPFD if f distinguishes all the

function pairs in the SPFD set. An atomic SPFD pair is a function
pair in which the two functions are the minimal product terms of the
input functions of a node. An atomic SPFD is an SPFD containing
only one or several atomic SPFD pair(s) [19][20]. SPFD is
described as a new way to express the “don’t-care” conditions and
provide flexibility to implement a node [3].

3. Review of SPFD Calculation

We briefly review the method proposed in [19] for SPFD
calculation. For an existing logic network, the calculation of the
SPFDs usually consists of two steps:

1) Traverse the entire circuit from primary inputs (PIs) to
primary outputs (POs) and calculate the global logic
functions* at all pins.

2) Calculate the SPFDs backward from POs to PIs.

At each pin, the SPFD calculation is carried out in accordance
with the following 3 cases:

a) At a PO, Oi, the SPFD has only one function pair, P = {(fi1,
fi0)}, where fi1 is the on-set of the global function of Oi, and fi0
is the off-set function of Oi.

b) At a node’s out-pin, the SPFD is the union of its fanout pins’
SPFDs.

c) For the in-pins of a node, once its out-pin SPFD has been
obtained, the in-pin SPFDs are obtained by decomposing its
out-pin SPFD into an atomic SPFD and assigning the atomic
function pairs backwards to in-pins.

4. A Precise Characterization of Feasible SPFD-
based Rewiring

The first contribution of our work is to provide an exact
formulation of rewiring and present a procedure which can find all
possible alternative wires under SPFD constraints.

Recall case b) of the SPFD calculation in Section 3. For a node
with multiple fanouts, its out-pin’s SPFD is the union of its fanout
pin’s SPFDs. The union operation is performed as follows: Suppose
its fanout pins’ SPFDs are P = {(π11, π10), (π21, π20), …, (πm1, πm0)}.
First, we will find a function f that can distinguish all of them. For
example, the original function of this out-pin is such a function.
Without a loss of generality, we can assume 01 ii f ππ ≤≤

U
m

i
i

1
00

=

= π

, i=1,

2,…, m. Then we will unite and , and set the

SPFD of the outpin to be (π

U
m

i
i

1
11

=

= ππ π

1, π0). In turn, the resulting union (π1,
π0), is used to calculate the SPFDs of its in-pins. The union
operation is an important step for SPFD calculation. The SPFD
method may not be able to create the node function without this
step. This operation is used in many previous rewiring algorithms,
including those in [19] and [20]. In this paper, we will refer to P as
the pre-union SPFD and {(π1, π0)} as the post-union SPFD.

The union operation here is obviously a sufficient condition for
rewiring, however, our study shows that it is not a necessary

* When the network is very large, it may be partitioned into

several sub-networks for rewiring, as in [20]. In this case, we shall
compute the global function of each node in its sub-network.

condition for successful rewiring. In many cases, it will create
unnecessary constraints between disjunctive SPFD pairs.

For example, suppose that (π11, π10), (π21, π20), …, (πm1,
πm0) are the SPFDs of the fanout branches of the outpin of
node G and they are disjunctive. If we unite them with

and , it will create constraints, such as

(π

U
m

i
i

1
11

=

= ππ U
m

i
i

1
00

=

= ππ

11, π20), (πm1, π10) which are not among the original SPFDs.
This will limit the rewiring ability of node G. We perform an
experiment on the benchmarks we used in Section 6, and find
that about 25% of the fanouts in the circuits have disjunctive
SPFD pairs*. The SPFD rewiring ability may significantly
increase after we eliminate the unnecessary constraints
introduced by the union operation. Here is a simple example to
illustrate this problem.

Example: In Fig. 3(a), node G has two fanouts whose

SPFD requirement are (ab, a’b) and (ab’, a’b’), and the SPFD
constraint becomes (a, a’) after the union. Now the wires
which can replace f are only the wires with function a or a’,
since no other function can distinguish (a, a’). However
function a⊕ b, and function a ⊕ b, can also replace f and
satisfy the SPFD constraints (ab, a’b) and (ab’, a’b’). We can
therefore increase the likelihood of finding an alternative wire
with the SPFDs prior to union.

Moreover, we noticed that even without a union, the SPFD
assigned to each input pin is not a necessary condition. In Fig.
3(b), the SPFD requirement of (a, a’) can be assigned to the
two input pins f1 and f2 as shown. We will find that the SPFD
assigned to input pin f1 can only be satisfied by function a or
a’. This means that only f=a or f=a’ can replace f1 in
conventional SPFD methods. However f=a⊕ b and f=a ⊕ b can
also satisfy the SPFD constraints (a, a’) at the output pin and
be able to replace f1.

G

(ab, a’b) (ab’, a’b’)

(a, a’)
fanouts

fanin

f
(a)

G

(a’b, ab’) (a’b’, ab)

(a, a’) f

(a’b, ab)

 f1=a f2=b

(a’b’, ab’)
(b)

Fig. 3. (a) Unnecessary constraints by union
(b) Not a necessary condition

Based on these observations, we formulate the general
form of the rewiring problem and provide a procedure that
defines an exact characterization for the rewiring based on the

fanouts’ SPFDs. Our procedure avoids the union operation and,
thus, does not have to create additional constraints. We formulate
our rewiring problem as follows:

* It was stated in [17] that disjoint SPFD pairs rarely occurs
because they map the SPFD to the local inputs, while we
always map the SPFD to the primary inputs. Therefore
our SPFD calculation is less redundant and may have
more disjunctive pairs.

Given a node G, the SPFD of its out-pins as P={(π11, π10), (π21,
π20), …, (πm1, πm0)}, the input functions of this node are f1, f2, …, fn
(Fig. 4). We find a necessary and sufficient condition for f1, f2, …, fn
which satisfies that there exists a g=f(f1, f2, …, fn) that can
distinguish (π11, π10), (π21, π20), …, (πm1, πm0).

G

(π11, π10)
(π21, π20) (πm1, πm0) ……

f1 f2 fn ……

Fig. 4. Illustration of the rewiring problem

We will build a graph to solve this problem. First let

π=π
11

+π
10

+π
21

+π
20

+…+π
m1

+π
m0

, and
β00…0=f1’f2’…fn’π
β00…1=f1’f

2
’…fnπ

……
β11…1=f1f2…fnπ
We can build a graph S which has 2n vertices, each vertex

corresponding to one of these β’s. We construct the edge of the
graph in the following way: If ∃ i, βa∩πi1≠∅ and βb∩πi0≠∅ , we
add an edge between vertices a and b. Now we have the following:

Theorem: S is a bi-partite graph if and only if there exists
g=f(f1, f2,.., fn) which can distinguish (π11, π10), (π21, π20), …, (πm1,
πm0).

Reader may refer to [23] for the proof.

With this equivalent condition, the SPFDs of the input pins do

not need to satisfy the redundant constraints brought by the union
operation. Thus we can find more alternative wires and increase the
rewiring ability.

The work in [17] also represents SPFD in a bi-partite graph
which reflects the nature of the SPFD technique. The difference
between our method and previous work is that we distinguish
between the SPFD used for identifying rewiring (pre-union SPFD)
and the SPFD used for backward distribution (post-union SPFD).
Instead, [17] distributes the pre-union SPFDs to its fanins. In their
method, when a pin has more than one disjunctive SPFD, a non-
bipartition situation may occur and new nodes or multi-valued
nodes need to be inserted in the circuit, causing trouble for post-
layout rewiring. [19] and [20] use the post-union SPFD for
rewiring, therefore it may not find all the possible alternative wires.
Our method properly uses both SPFDs and achieves the maximum
rewiring ability under current the SPFD assignment.

Moreover, the rewiring algorithm in [17] only allows one wire
to be changed at a time. While our problem formulation is a more
general form of rewiring, since the input functions f1, …, fn could be

any possible function. It accommodates changing several input
functions simultaneously, as required by SPFD-GR.

Target wire

Alternative wire

G4

G1

G2

GD

wr

wa

Dominator of wr

p1 p2

p02

Fig. 5. Illustration of rewiring algorithm

Given target wire wr which is the input of G1, for its
dominator GD, as shown in Fig. 5, our rewiring algorithm is as
follows:

1) Temporarily remove wr from G1 and re-calculate the
output function of G1;

2) Propagate G1’s new output function through its
transitive fanouts until reaching GD;

3) For the new input functions of GD, build the graph SD
by the above theorem. If the graph SD is a bi-partite
graph, we can then remove wr without adding other
wires.

4) If 3) fails, try to add another wire wa as an input of
GD. Then build the graph SD and check whether it is a
bi-partite graph. If it is, we can then use wa to replace
wr. If wa fails, we may try another wire as a
candidate.

5) If both 3) and 4) fail, we will recover wire wr.

Since we can determine if a graph is a bi-partite graph in

linear time by DFS, we do not spend much time checking this
equivalent condition. This algorithm will cost similar CPU
time with SPFD-GR, while providing more rewiring ability.

This precise characterization can determine all the possible
alternative wires which can satisfy the constraints at the fanout
pins. Thus we can achieve the maximum rewiring ability
under current SPFD constraints. This method can be added to
any current algorithms which use the SPFD technique to do
rewiring.

5. Atomic SPFD Pair Assignment Methods
With our problem formulation, we can improve the

rewiring ability for all the wires in the circuits. This rewiring
ability is referred as general rewiring ability. In fact, not all
the wire replacements have the same criticality during circuit
optimization. For example, when we optimize the
performance, we only focus on replacing the wires in the
critical path; when we optimize the routability, we want to
replace the wires which cause congestion. In other words, we
want to improve the rewiring ability for a subset of wires
which are important for optimization. We refer to this as
selected rewiring ability.

 More selected rewiring ability can be achieved in the
atomic SPFD pair assignment. Recall Case c) of the SPFD

calculation in Section 3. Given a node’s out-pin SPFD, to calculate
the SPFDs of the node’s in-pins, we first decompose the out-pin’s
SPFD into an atomic SPFD, then assign the function pairs
backwards to the in-pins. In this step, a function pair can be
assigned to any in-pin if the SPFD can be satisfied, therefore we
have the flexibility to decide which in-pin to choose. As we know,
the impact of SPFD assignment has not been fully studied.

Random assignment methods have been used in [19] and [20].
In this paper, we proposed two types of heuristics depending on the
optimization objectives, one is the criticality-oriented heuristic for
delay optimization, and the other is the fanout-oriented heuristic for
area optimization.

The basic idea is that if a wire has fewer function pairs in its
SPFD, it is easier to satisfy. As the result, the wire has a greater
chance to be replaced because it has fewer constraints. Therefore if
removing a wire will benefit certain objective functions, we will
assign fewer function pairs to this wire.

For different purposes, we should use different heuristics to
guide the atomic SPFD pair assignment. In this paper, we focus on
two different optimization objectives. One is the delay optimization,
and the other is the area minimization.

For the delay optimization, our goal is to reduce the longest path
delay in the circuits. We use the criticality-oriented heuristics to
guide the atomic SPFD pair assignment. We first sort the in-pins
according to their timing criticality in ascending order (i.e., the least
critical in-pins are at the beginning of the list). This way, the most
critical nodes are at the end of the list and tend to receive fewer
function pairs.

For the area minimization, we use a fanout-related heuristic. For
example, when a node has only one fanout p, if we can replace p by
another wire, the node can be removed since it has no fanout. On
the other hand, when a node has many fanouts, it is almost
impossible to remove because it is very hard to replace all the
fanouts. Based on this consideration, we try to assign fewer
function pairs to the input wires with smaller fanout numbers so that
they have a higher opportunity to be removed.

In order to achieve more rewiring ability, we also combined
these two heuristics with other heuristics. In [21], an edge
distribution scheme is applied to ignore atomic pairs that have
already been assigned. In this paper, we extend the idea and propose
an SPFD size oriented heuristic (here the size refers to the number
of function pairs in the set). Consider an atomic function pair P=(α,
β) at the output of a node and two input wires p and q which can
distinguish P. Suppose p’s SPFD so far is R and q’s SPFD so far is
S. If R covers α while S does not cover any of α and β, we assign P
to wire p. The reason is that after the assignment, R’s size will not
change. On the other hand, if we assign P to q, S’s size will increase
by one.

The experimental results in Section 6 will show that the above
optimized heuristic assignment methods lead to better results than
the random assignment method in general, while the differences due
to different assignment heuristics appear to be small.

6. Experimental Results
In our study, we use rewiring ability to compare different

rewiring algorithms, which is defined as the number of wires having
at least one alternative wire. The higher the rewiring ability, the

Total

#wires SPFD-LR
SPFD-

GR

SPFD-GR
 over

SPFD-LR
SPFD-

ER

SPFD-ER
over

SPFD-LR

C1908 423 74 99 33.8% 114 54.1%
C432 538 154 183 18.8% 208 35.1%
alu4 939 277 419 51.3% 522 88.4%

apex6 1025 270 345 27.8% 410 51.9%
dalu 1338 468 704 50.4% 739 57.9%

example2 433 85 136 60.0% 169 98.8%
term1 244 71 99 39.4% 114 60.6%

x1 557 164 222 35.4% 271 65.2%
x3 958 154 319 107.1% 366 137.7%

alu2 510 179 253 41.3% 306 70.9%
C5315 1772 500 607 21.4% 757 51.4%

Average 44.3% 70.2%

Table 1. Comparison of general rewiring ability for 4-LUT
FPGA designs under circuit depth restriction

more rewiring choices an algorithm has. It usually reflects the
potential of a rewiring algorithm in performing optimization.

We combined the new equivalence condition and some
speed up techniques into our enhanced SPFD-based rewiring
algorithm (SPFD-ER). We applied SPFD-ER in LUT-based
FPGA synthesis and integrated it into the RASP system [11].
We did the following experiments: 1) Comparison of general
rewiring ability among SPFD-LR, SPFD-GR and SPFD-ER;
2) Comparison of selected rewiring ability between different
atomic SPFD assignment methods. 3) A primitive flow is
presented to show that a larger rewiring ability helps the
performance optimization.

The circuits used in our experiments are the
combinational networks with 4-LUTs, obtained through
script.rugged, Cutmap [9], Red_Removal and Greedy_Pack.
These routines are available in SIS [16] and RASP [11].

6.1 Comparison of General Rewiring Ability
 Table 1 compares the general rewiring ability of our

enhanced method SPFD-ER with SPFD-LR and SPFD-GR.
We implemented the SPFD-LR algorithm according to [19]
and SPFD-GR algorithm according to [20]. All three programs
traverse the entire circuit once, using every wire as a target
wire and trying to find alternative wires that satisfy the circuit
depth restriction. For the purpose of collecting statistical data,
we did not make real changes to the circuit, even when
rewiring was possible. Column 2 lists the number of wires in
each circuit. Column 3 shows the rewiring ability of SPFD-
LR, Columns 4 and 6 show the rewiring ability of SPFD-GR
and SPFD-ER. Columns 5 and 7 show the improvement of the
rewiring ability of SPFD-GR and SPFD-ER over SPFD-LR
respectively. The results show that SPFD-ER has 70% more
target wires that have alternative wires when compared with
what SPFD-LR has, and 18% more when directly compared
with SPFD-GR.

Circuits Method A Method B Method C Method D Method E
C1908 31 34 35 35 35
C432 26 22 26 26 25
alu4 50 43 55 56 55

apex6 34 32 35 34 34
dalu 59 50 57 57 57

example2 11 14 13 13 13
term1 4 4 4 4 4

x1 14 17 18 18 18
x3 21 25 25 25 25

alu2 48 50 56 53 56
C5315 N/A* 49 72 75 74

Average **
Improvement

over Method A 3.1% 10.5% 9.8% 9.8%

Table 2. Comparison of selected rewiring ability for different
atomic SPFD assignment methods

*It fails after 8 hours runtime limitation
**The average value does not contain C5315, since one result is N/A.

6.2 Comparison among Atomic SPFD Pair Assignment
Methods

In this sub-section, we compare the selected rewiring ability
among different atomic SPFD pair assignment methods. We will
consider delay optimization and area minimization respectively. To
focus on the study of the effect of atomic SPFD assignment, we
only apply them on SPFD-GR.

Table 2 shows the selected rewiring ability among the wires in
the 20% ε-network. We list the result for Methods A ~ E. Given a
function pair P = (a, b) at a node’s out-pin, these methods work as
follows: Method A randomly assigns P to an input edge whose
function distinguishes it. Method B randomly sorts the input edges
and then assigns P to the first edge that can distinguish it. Method C
uses a delay oriented heuristic, which sorts the edges according to
their criticality (with the least critical edge in the first) and assigns
P to the first edge which can distinguish it; Method D is the
combination of Method C and the SPFD size oriented heuristic (see
Section 5); Method E is the combination of Method C and the edge
assignment scheme of [21]. The criticality-oriented methods can
achieve about 10% more selected rewiring ability.

The atomic SPFD assignment methods will also help the wires
on the non-critical network. Our other experimental results, which
are not listed here due to page limit, show that when we combine
SPFD-ER and criticality-oriented heuristic (SPFD-ER + Method C),
the average general rewiring ability improvement over SPFD-GR +
Method A is 38.1%.

Table 3 shows the delay optimization results of various
function-pair assignment heuristics. We use Quartus (Version II
1.0) [1] for placement and routing, which reports the delay
numbers. In Table 3, Column 2 shows the longest delay for the
original circuits. The remaining columns list the results after
rewiring. We can find that higher rewire ability results in better
performance.

Random methods Criticality-oriented methods
Circuit

Original
Delay Delay A Reduction Delay B Reduction Delay C Reduction Delay D Reduction Delay E Reduction

C1908 15.598 15.474 0.8% 15.466 0.8% 15.625 -0.2% 15.565 0.2% 15.625 -0.2%
C432 24.731 24.372 1.5% 23.848 3.6% 22.739 8.1% 22.607 8.6% 22.198 10.2%
alu4 18.696 18.505 1.0% 18.668 0.1% 16.807 10.1% 17.094 8.6% 16.65 10.9%

apex6 8.459 8.331 1.5% 8.367 1.1% 8.178 3.3% 8.187 3.2% 8.149 3.7%
dalu 11.872 11.753 1.0% 11.828 0.4% 11.759 1.0% 11.778 0.8% 11.772 0.8%

example2 6.482 6.49 -0.1% 6.468 0.2% 6.488 -0.1% 6.484 0.0% 6.488 -0.1%
term1 6.945 6.944 0.0% 6.923 0.3% 6.927 0.3% 6.935 0.1% 6.927 0.3%

x1 6.778 6.704 1.1% 6.697 1.2% 6.711 1.0% 6.711 1.0% 6.711 1.0%
x3 7.706 7.815 -1.4% 7.681 0.3% 7.367 4.4% 7.439 3.5% 7.358 4.5%

alu2 14.64 14.709 -0.5% 14.737 -0.7% 11.619 20.6% 13.359 8.8% 11.378 22.3%
C5315 14.384 N/A* N/A 13.989 2.7% 14.104 1.9% 13.962 2.9% 14.005 2.6%

Average 0.5% 0.9% 4.6% 3.4% 5.1%

Table 3. Delay results comparison between different heuristics
*It fails under 8 hours runtime limitation

We also did experiments for area minimization, using the
fanout-number oriented heuristics instead of the delay-
oriented heuristics in C, D and E. The average improvement of
area minimization is 12.7%, 12.9%, 13.0%, 13.6% and 13.2%
for Methods A~E respectively.

From these results, we know that the criticality-oriented
methods (Methods C~E) are much better than the random
methods (Methods A~B) in delay reduction with Method E
performing the best. However, the difference due to different
delay optimization heuristics is quite small. Moreover, from
area minimization results, we see that random assignments
work almost as well as optimized heuristics. The fanout-
oriented methods perform only slightly better than the random
methods. From these experiments, we conclude that our
criticality-oriented methods are effective for delay
minimization, while function-pair assignments have little
impact for area minimization.

6.3 A Primitive Flow for Post-layout Rewiring
We set up a primitive flow to illustrate that the better

rewiring ability of our methods is helpful for circuit
performance optimization. We apply our rewiring method for
post-layout delay optimization for LUT-based designs. For
each benchmark circuit, we use SIS to do the logic synthesis,
RASP to do technology mapping and Quartus II 1.0 [1] to do
placement and routing.

Our post-layout optimization flow works as follows. 1)
After Quartus finishes layout design for a circuit, the rewiring
engine reads the placement information from the Quartus’
output file. 2) In order to do delay optimization, we build our
own delay model. Our model is based on the locations of
LUTs in Quartus placement. We use statistics to count the
delay between different locations in the placement. Then we
estimate the delay between two LUTs as the average delay
between these two locations. 3) The engine traverses the
circuit for M passes to do rewiring for the wires on the ε-

critical paths, which will be explained in the following paragraph.
4) After rewiring, the engine passes the resulting circuit to Quartus
with the original location information for each logic cell. In this
case, Quartus will not re-do the placement, but only perform routing
for the design and report the delay result.

By an ε-critical path we mean the path’s delay is larger than (1-
ε)D, where D is the largest path delay of the circuit. In step 3), we
increase ε gradually for each pass.

From Table 1, we know that SPFD-ER achieves 70% more
rewiring ability than SPFD-LR. This means SPFD-ER has more
opportunity to replace wires in the ε-critical path, thus reducing the
size of ε-network. After running our delay optimization flow, we
check the numbers of paths in the 25% ε-network under our delay
model, which show that SPFD-ER reduces the paths in the ε-
network by 45.4%, while SPFD-LR reduces by only 26.7%. The
final average delay reduction is 5.8% by SPFD-ER and 2.6% by
SPFD-LR.

This optimization flow is a primitive flow since we do not get
the accurate timing model and routing structure for the hierarchical
FPGA device, which is important for performance estimation. Our
experiment is only intended to illustrate the relationship between
rewiring ability and the optimization potential.

The runtime for our method is 12.5 times that of SPFD-LR. This
longer runtime is due to the equivalent condition test for the
rewiring. It can be regarded as a trade-off between synthesis quality
and CPU time.

ATPG based methods, as [22], usually have fast CPU times. We
did not directly compare the rewiring ability with them since the
starting points are different. Our method is for FPGA circuits while
they are usually operating on simple-gate circuits.

For large designs, we must use the partition method as [20],
since the CPU time for BDD operations will explode without
partition. With partitioning, the CPU time is proportional to the
circuit size.

7. Conclusion and Future Work
In this paper we present an in-depth study of the theory

and algorithms for the SPFD-based rewiring, and explore the
flexibility in the SPFD calculation. We develop a theorem and
an efficient algorithm for a more precise characterization of
feasible SPFD-based rewiring. Extensive experimental results
show that for LUT-based FPGAs, the rewiring ability of our
algorithm is 18% greater than the SPFD-based global rewiring
algorithm (SPFD-GR) and 70% greater than SPFD-LR.

We also study the impact of using different atomic SPFD
pair assignment methods during the SPFD-based rewiring.
Our study concludes that optimized heuristic assignment
methods lead to better rewiring ability than the random
assignment methods in general, while the differences due to
different assignment heuristics appear to be small. The
improvement on selected rewiring ability is about 10%, and
the combination of SPFD-ER and atomic SPFD assignment
brings us 38% improvement in general rewiring ability.

Runtime is the bottleneck for our algorithm, and we will
reduce it in our future work. We will develop some heuristics
to guide the strategy in selecting target wires and alternative
wires. Thus we can speed up the rewiring process and achieve
improved performance. Also a simultaneously SPFD rewiring
technique can be applied in order to accelerate the process
(reader may refer to [23]).

8. Acknowledgement
This work is partially supported by the Gigascale Silicon

Research Center (GSRC) and the California MICRO program
with Actel, Altera, Lucent and Xilinx. We thank S. Yamashita,
H. Sawada and A. Nagoya of NTT Corp., Japan, for their
binary code of the original SPFD program [19] for
experimental purposes; and Prof. Robert Brayton of UC
Berkeley for his stimulating discussions on the SPFD
technique during various GSRC workshops.

References
[1] Altera. Quartus II Software Overview. http://

www.altera.com/products/software/quartus2/qts-
index.html.

[2] L. A. Entrena and K.-T. Cheng. Combinational and
Sequential Logic Optimization by Redundancy Addition
and Removal. IEEE Transaction on CAD of ICS, Vol.
14, No. 7, pp. 909-916, July 1995.

[3] R. K. Brayton. Understanding SPFDs: A New Method
for Specifying Flexibility. In International Workshop on
Logic Synthesis, 1997.

[4] C.-W. Chang, C.-K. Cheng, P. Suaris, and M. Marek-
Sadowska. Fast Post-placement Rewiring Using Easily
Detectable Functional Symmetries. In Design
Automation Conference, p. 286-289, 2000.

[5] S.-C. Chang, M Marek-Sadowska, and K-T Cheng.
Perturb and Simplify: Multilevel Boolean Network
Optimizer. IEEE Trans CAD of ICAS, Vol. 15, No. 12,
Dec 1996, pp. 1494 - 1504.

[6] S.-C. Chang, K.-T. Cheng, N.-S. Woo, and M. Marek-
Sadowska. Postlayout rewiring using alternative wires. IEEE
Transaction on CAD of ICS, Vol. 16, No.6, p.587-96, June
1997.

[7] S.-C. Chang, L. V. Ginneken, and M. Marek-Sadowska.
Circuit Optimization by Rewiring. IEEE Transaction on
Computers, Vol. 48, No. 9, pp. 962-970 September 1999.

[8] P. Chong, Y. Jiang, S. Khatri, F. Mo, S. Sinha, and R.
Brayton. Don’t Care Wires in Logical/Physical Design. In
International Workshop on Logic Synthesis, pp. 1- 9, 2000.

[9] J. Cong, Y. Hwang. Simultaneous Depth and Area
Minimization in LUT-Based FPGA Mapping. Proc. ACM 3rd
Int'l Symp. on FPGA, Feb. 1995, pp. 68-74.

[10] J. Cong, S. K. Lim. Edge Separability based Circuit
Clustering With Application to Circuit Partitioning.
IEEE/ACM Asia South Pacific Design Automation
Conference, p. 429-434, 2000.

[11] J. Cong, J. Peck, and Y. Ding. RASP: A General Logic
Synthesis System for SRAM-based FPGAs. In Proc.
ACM/SIGDA Int'l Symp. on FPGAs, p. 137-143, Feb. 1996.

[12] R. Huang, Y. Wang, and K.-T. Cheng. LIBRA-a library-
independent framework for post-layout performance
optimization. In International Symposium on Physical Design,
p.135-140, 1998.

[13] J. - M. Hwang, F. - Y. Chiang, and T.- T. Hwang. A Re-
engineering Approach to Low Power FPGA Design Using
SPFD. In Design Automation Conference, p. 722-725, 1998.

[14] Y.-M. Jiang, A. Krstic, K.-T. Cheng, and M. Marek-
Sadowska. Post-layout rewiring for performance optimization.
In Design Automation Conference, p.662-665, 1997.

[15] W. Kunz and P. R. Menon. Multilevel Logic optimization by
implication Analysis”, In International Conference on
Computer Aided Design, p. 6-13, 1994.

[16] E. Sentovich, et. al. SIS: A System for Sequential Circuit
Synthesis. Memorandum No. UCB/ERL M92/41, Dept.
EECS, UC Berkeley, 1992.

[17] S. Sinha and R. K. Brayton. Implementation and Use of
SPFDs in Optimizing Boolean Networks. In International
Conference on Computer Aided Design, p. 103 – 110, 1998.

[18] Fabio Somenzi. CUDD: CU Decision Diagram Package
Release 2.3.0. Technique Report, Dept. of ECE, Univ. of
Colorado at Boulder, 1998.

[19] S. Yamashita, H. Sawada and A. Nagoya. A New Method to
Express Functional Permissibilities for LUT based FPGAs and
Its Applications. In International Conference on Computer
Aided Design, p. 254 – 261, 1996.

[20] J. Cong, Y. Lin and W. Long. SPFD-based Global Rewiring.
In Proc. ACM/SIGDA Int'l Symp. on FPGAs, p. 77-84, 2002.

[21] S. Sinha, R.K. Brayton. Improved Robust SPFD
Computations. In International Workshop on Logic Synthesis,
p.156-161, 2001.

[22] C. Chang, M.Marek-Sadowska. Single-pass redundancy-
addition-and-removal. In International Conference on
Computer Aided Design, p. 606–9, 2001.

[23] J. Cong, Y. Lin and W. Long. New Advances in SPFD
Rewiring. In UCLA CSD Tech. Report. May 2002.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

