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Abstract 
This paper presents an in-depth study of the theory and 

algorithms for the SPFD-based (Set of Pairs of Functions to 
be Distinguished) rewiring, and explores the flexibility in the 
SPFD computation. Our contributions are in the following two 
areas: (1) We present a theorem and a related algorithm for 
more precise characterization of feasible SPFD-based 
rewiring. Extensive experimental results show that for LUT-
based FPGAs, the rewiring ability of our new algorithm is 
70% higher than SPFD-based local rewiring algorithms 
(SPFD-LR) [19][21] and 18% higher than the recently 
developed SPFD-based global rewiring algorithm (SPFD-
GR)[20]. (2) In order to achieve more rewiring ability on 
certain selected wires used in various optimizations, we study 
the impact of using different atomic SPFD pair assignment 
methods during the SPFD-based rewiring. We develop several 
heuristic atomic SPFD pair assignment methods for area or 
delay minimization and show that they lead to 10% more 
selected rewiring ability than the random (or arbitrary) 
assignment methods. When combining (1) and (2) together, 
we can achieve 38.1% higher general rewiring ability. 

1. Introduction 
Rewiring is a technique that replaces a wire with another 

wire in a given Boolean network for area and/or delay 
reduction while maintaining functional equivalence. Recently, 
it has received increased attention due to the need for closer 
synthesis and layout interaction in timing closure. Using 
layout information, rewiring is efficient in post-layout logic 
synthesis. The rewiring problem has been widely studied. 
Existing approaches include the automatic test pattern 
generation (ATPG) based redundancy addition and removal 
[2] [5] [6] [7] [12] [14] [15], symmetry detection [4], and the 
SPFD (Set of Pairs of Functions to be Distinguished) [19] [17] 
[20] based algorithms.  

SPFD is a recently proposed method to represent 
functional permissibility [19]. It can be understood as a 
method to express “don’t-care” conditions [3]. It provides a 
great flexibility in rewiring and other areas. The authors of 
[19] proposed an SPFD-based rewiring algorithm. The authors 
of [17] applied SPFD to the technology-independent logic 
synthesis. SPFD has also been applied to floorplanning and 
placement of multi-level PLAs [8] and low-power designs for 
FPGAs [13].  

The rewiring algorithm proposed in [19] tries to replace the 
target wire with an alternative wire based on SPFD computation. 
Although it achieves a good synthesis result for FPGA area 
minimization, it has an inherent limitation in that it can only 
perform local rewiring, that is, the destination node of the 
alternative wire has to be the same as that of the target wire. In this 
paper, this approach is referred as SPFD-LR. In [20], an SPFD-
based global rewiring algorithm, SPFD-GR, is proposed with 
application to area minimization of FPGA designs. SPFD-GR 
successfully overcomes the limitation of SPFD-LR and is capable of 
finding a global alternative wire that might be far away from the 
target wire.  

Rewiring ability defined in [20] is a useful measurement of 
rewiring algorithms. It is described as the number of wires having 
alternative wires. The higher the rewiring ability, the more rewiring 
choice an algorithm has. Previous work shows that the rewiring 
ability of SPFD-GR is 44% better than that of SPFD-LR. However, 
our study shows that the SPFD computation in both SPFD-LR and 
SPFD-GR did not explore the full flexibility in SPFD computation, 
and both methods over-constrained the rewiring conditions. 

In this paper, we focus on the in-depth study of the SPFD-based 
rewiring algorithm and explore the flexibilities in SPFD 
computation. Our results can be used to improve both SPFD-LR and 
SPFD-GR. Our main contributions are as follows:  
1. We develop a new theorem and an efficient algorithm for more 

precise characterization of feasible SPFD-based rewiring. This 
technique reduces redundant constraints introduced by previous 
methods and brings an 18% higher general rewiring ability than 
SPFD-GR. (Section 4) 

2. We focus on the rewiring ability of certain selected wires that 
are critical for various optimization objectives and develop 
several heuristic algorithms for atomic SPFD pair assignment. 
As the result, these selected wires have more rewiring 
opportunity, which in turn provides better optimization 
potentials. When we focus on wires in the ε-network (timing-
critical network), our criticality-oriented heuristics can gain 
10% more selected rewiring ability than in random 
assignments. When combining with the technique in 1, we can 
achieve 38.1% improvement in general rewiring ability. 
(Section 5) 

3. We integrate these methods into our enhanced SPFD-based 
rewiring algorithm (SPFD-ER). A primitive flow is used to 
illustrate that the additional rewiring ability we achieved can 
help reduce the number of critical paths in the ε-network, and 
subsequently improve the circuit performance. (Section 6) 
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2. Terminologies and Definitions 
This section reviews some terminologies and definitions 

used in this paper. The circuits referred in this paper are 
combinational circuits. We assume that the input circuit is a 
mapped K-LUT network, meaning that each logic cell (or 
node) in the circuit, as shown in Fig. 1, has a single out-pin p0 
and up to K in-pins (p1, p2,…, pn, n≤K). Each node has an 
internal logic function p0 = f(p1, …, pn) that defines the logic 
relationship between the out-pin and the in-pins of the node, 
and can be any K-input function. Every pin in the circuit is 
also associated with a global logic function, denoted as gi in 
Fig. 1, in terms of the primary inputs of the circuit.  
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Fig. 1. A K-input single-output logic cell 

For wire p1→ p2, as shown in Fig. 2, G2 is its source node 
and G3 is its destination node. Transitive fanout nodes of 
pin pi are the nodes on the paths from pi to a primary output 
(PO). Transitive fanout nodes of a node are the transitive 
fanout nodes of the node’s out-pin. A dominator of pin pi is a 
transitive fanout of pi through which all the paths from pi to 
POs must pass. A dominator of a wire is the dominator of the 
wire’s destination pin. For example, in Fig. 2, G5 is the only 
dominator of pin p1; both G3 and G5 are the dominators of pin 
p2, and they are also the dominators of wire p1→ p2.  
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Fig. 2. Illustration of dominator 

We measure the timing criticality of a wire based on its 
time slack. When we do rewiring to improve timing 
performance, we usually try to replace a more critical wire 
with a less critical wire. 

Given a function pair (π1,π0), π1≠0, π0≠0 and π1π0 ≡ 0, 
function f is said to distinguish (π1,π0) if either one of the 
following two conditions is satisfied [17]: 

10

01 or    
ππ
ππ

≤≤
≤≤

f
f  

where 
01 ππ ≤≤ f  can be understood as f = 1 when π1 =1, 

and f = 0 when π0 =1 [19]. The second condition can be 
interpreted in the same way. 

An SPFD is a Set of Pairs of Functions to be 
Distinguished, e.g., P = {(π11, π10), (π21, π20), …, (πm1, πm0)}. 
Function f is said to satisfy an SPFD if f distinguishes all the 

function pairs in the SPFD set. An atomic SPFD pair is a function 
pair in which the two functions are the minimal product terms of the 
input functions of a node.  An atomic SPFD is an SPFD containing 
only one or several atomic SPFD pair(s) [19][20]. SPFD is 
described as a new way to express the “don’t-care” conditions and 
provide flexibility to implement a node [3]. 

3. Review of SPFD Calculation 

We briefly review the method proposed in [19] for SPFD 
calculation. For an existing logic network, the calculation of the 
SPFDs usually consists of two steps: 

1) Traverse the entire circuit from primary inputs (PIs) to 
primary outputs (POs) and calculate the global logic 
functions* at all pins.  

2) Calculate the SPFDs backward from POs to PIs.  

At each pin, the SPFD calculation is carried out in accordance 
with the following 3 cases: 

a) At a PO, Oi, the SPFD has only one function pair, P = {(fi1, 
fi0)}, where fi1 is the on-set of the global function of Oi, and fi0 
is the off-set function of Oi.  

b) At a node’s out-pin, the SPFD is the union of its fanout pins’ 
SPFDs.  

c) For the in-pins of a node, once its out-pin SPFD has been 
obtained, the in-pin SPFDs are obtained by decomposing its 
out-pin SPFD into an atomic SPFD and assigning the atomic 
function pairs backwards to in-pins.  

4. A Precise Characterization of Feasible SPFD-
based Rewiring 

The first contribution of our work is to provide an exact 
formulation of rewiring and present a procedure which can find all 
possible alternative wires under SPFD constraints. 

Recall case b) of the SPFD calculation in Section 3. For a node 
with multiple fanouts, its out-pin’s SPFD is the union of its fanout 
pin’s SPFDs. The union operation is performed as follows: Suppose 
its fanout pins’ SPFDs are P = {(π11, π10), (π21, π20), …, (πm1, πm0)}. 
First, we will find a function f that can distinguish all of them. For 
example, the original function of this out-pin is such a function. 
Without a loss of generality, we can assume 01 ii f ππ ≤≤
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1, π0). In turn, the resulting union (π1, 
π0), is used to calculate the SPFDs of its in-pins. The union 
operation is an important step for SPFD calculation. The SPFD 
method may not be able to create the node function without this 
step. This operation is used in many previous rewiring algorithms, 
including those in [19] and [20]. In this paper, we will refer to P as 
the pre-union SPFD and {(π1, π0)} as the post-union SPFD.  

The union operation here is obviously a sufficient condition for 
rewiring, however, our study shows that it is not a necessary 

                                                 
* When the network is very large, it may be partitioned into 

several sub-networks for rewiring, as in [20].  In this case, we shall 
compute the global function of each node in its sub-network. 



condition for successful rewiring. In many cases, it will create 
unnecessary constraints between disjunctive SPFD pairs. 

For example, suppose that (π11, π10), (π21, π20), …, (πm1, 
πm0) are the SPFDs of the fanout branches of the outpin of 
node G and they are disjunctive. If we unite them with 

and , it will create constraints, such as 
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11, π20), (πm1, π10) which are not among the original SPFDs. 
This will limit the rewiring ability of node G. We perform an 
experiment on the benchmarks we used in Section 6, and find 
that about 25% of the fanouts in the circuits have disjunctive 
SPFD pairs*. The SPFD rewiring ability may significantly 
increase after we eliminate the unnecessary constraints 
introduced by the union operation. Here is a simple example to 
illustrate this problem.  

 
Example: In Fig. 3(a), node G has two fanouts whose 

SPFD requirement are (ab, a’b) and (ab’, a’b’), and the SPFD 
constraint becomes (a, a’) after the union. Now the wires 
which can replace f are only the wires with function a or a’, 
since no other function can distinguish (a, a’). However 
function a⊕ b, and function a ⊕ b, can also replace f and 
satisfy the SPFD constraints (ab, a’b) and (ab’, a’b’). We can 
therefore increase the likelihood of finding an alternative wire 
with the SPFDs prior to union. 

Moreover, we noticed that even without a union, the SPFD 
assigned to each input pin is not a necessary condition. In Fig. 
3(b), the SPFD requirement of (a, a’) can be assigned to the 
two input pins f1 and f2 as shown. We will find that the SPFD 
assigned to input pin f1 can only be satisfied by function a or 
a’. This means that only f=a or f=a’ can replace f1 in 
conventional SPFD methods. However f=a⊕ b and f=a ⊕ b can 
also satisfy the SPFD constraints (a, a’) at the output pin and 
be able to replace  f1. 
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(ab, a’b) (ab’, a’b’) 

(a, a’) 
fanouts 

fanin 
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(a’b, ab’) (a’b’, ab) 

(a, a’)  f 
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Fig. 3. (a) Unnecessary constraints by union 
(b) Not a necessary condition 

Based on these observations, we formulate the general 
form of the rewiring problem and provide a procedure that 
defines an exact characterization for the rewiring based on the 

fanouts’ SPFDs. Our procedure avoids the union operation and, 
thus, does not have to create additional constraints. We formulate 
our rewiring problem as follows: 

                                                 
* It was stated in [17] that disjoint SPFD pairs rarely occurs 
because they map the SPFD to the local inputs, while we 
always map the SPFD to the primary inputs. Therefore 
our SPFD calculation is less redundant and may have 
more disjunctive pairs. 

Given a node G, the SPFD of its out-pins as P={(π11, π10), (π21, 
π20), …, (πm1, πm0)},  the input functions of this node are f1, f2, …, fn 
(Fig. 4). We find a necessary and sufficient condition for f1, f2, …, fn  
which satisfies that there exists a g=f(f1, f2, …, fn) that can 
distinguish (π11, π10), (π21, π20), …, (πm1, πm0).  
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Fig. 4. Illustration of the rewiring problem  
 
We will build a graph to solve this problem. First let 

π=π
11

+π
10
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m1

+π
m0

, and  
β00…0=f1’f2’…fn’π 
β00…1=f1’f

2
’…fnπ 

……  
β11…1=f1f2…fnπ 
We can build a graph S which has 2n vertices, each vertex 

corresponding to one of these β’s. We construct the edge of the 
graph in the following way: If ∃ i, βa∩πi1≠∅  and βb∩πi0≠∅ , we 
add an edge between vertices a and b. Now we have the following: 

Theorem: S is a bi-partite graph if and only if there exists 
g=f(f1, f2,.., fn) which can distinguish (π11, π10), (π21, π20), …, (πm1, 
πm0). 

Reader may refer to [23] for the proof. 
 
With this equivalent condition, the SPFDs of the input pins do 

not need to satisfy the redundant constraints brought by the union 
operation. Thus we can find more alternative wires and increase the 
rewiring ability. 

The work in [17] also represents SPFD in a bi-partite graph 
which reflects the nature of the SPFD technique. The difference 
between our method and previous work is that we distinguish 
between the SPFD used for identifying rewiring (pre-union SPFD) 
and the SPFD used for backward distribution (post-union SPFD). 
Instead, [17] distributes the pre-union SPFDs to its fanins. In their 
method, when a pin has more than one disjunctive SPFD, a non-
bipartition situation may occur and new nodes or multi-valued 
nodes need to be inserted in the circuit, causing trouble for post-
layout rewiring. [19] and [20] use the post-union SPFD for 
rewiring, therefore it may not find all the possible alternative wires. 
Our method properly uses both SPFDs and achieves the maximum 
rewiring ability under current the SPFD assignment.  

Moreover, the rewiring algorithm in [17] only allows one wire 
to be changed at a time. While our problem formulation is a more 
general form of rewiring, since the input functions f1, …, fn could be 



any possible function. It accommodates changing several input 
functions simultaneously, as required by SPFD-GR. 
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Fig. 5. Illustration of rewiring algorithm 

Given target wire wr which is the input of G1, for its 
dominator GD, as shown in Fig. 5, our rewiring algorithm is as 
follows: 

1) Temporarily remove wr from G1 and re-calculate the 
output function of G1; 

2) Propagate G1’s new output function through its 
transitive fanouts until reaching GD; 

3) For the new input functions of GD, build the graph SD 
by the above theorem. If the graph SD is a bi-partite 
graph, we can then remove wr without adding other 
wires. 

4) If 3) fails, try to add another wire wa as an input of 
GD. Then build the graph SD and check whether it is a 
bi-partite graph. If it is, we can then use wa to replace 
wr. If wa fails, we may try another wire as a 
candidate. 

5) If both 3) and 4) fail, we will recover wire wr. 
 
Since we can determine if a graph is a bi-partite graph in 

linear time by DFS, we do not spend much time checking this 
equivalent condition. This algorithm will cost similar CPU 
time with SPFD-GR, while providing more rewiring ability. 

This precise characterization can determine all the possible 
alternative wires which can satisfy the constraints at the fanout 
pins. Thus we can achieve the maximum rewiring ability 
under current SPFD constraints. This method can be added to 
any current algorithms which use the SPFD technique to do 
rewiring.  

5. Atomic SPFD Pair Assignment Methods 
With our problem formulation, we can improve the 

rewiring ability for all the wires in the circuits. This rewiring 
ability is referred as general rewiring ability. In fact, not all 
the wire replacements have the same criticality during circuit 
optimization. For example, when we optimize the 
performance, we only focus on replacing the wires in the 
critical path; when we optimize the routability, we want to 
replace the wires which cause congestion. In other words, we 
want to improve the rewiring ability for a subset of wires 
which are important for optimization.  We refer to this as 
selected rewiring ability.  

 More selected rewiring ability can be achieved in the 
atomic SPFD pair assignment. Recall Case c) of the SPFD 

calculation in Section 3. Given a node’s out-pin SPFD, to calculate 
the SPFDs of the node’s in-pins, we first decompose the out-pin’s 
SPFD into an atomic SPFD, then assign the function pairs 
backwards to the in-pins. In this step, a function pair can be 
assigned to any in-pin if the SPFD can be satisfied, therefore we 
have the flexibility to decide which in-pin to choose. As we know, 
the impact of SPFD assignment has not been fully studied. 

Random assignment methods have been used in [19] and [20]. 
In this paper, we proposed two types of heuristics depending on the 
optimization objectives, one is the criticality-oriented heuristic for 
delay optimization, and the other is the fanout-oriented heuristic for 
area optimization. 

The basic idea is that if a wire has fewer function pairs in its 
SPFD, it is easier to satisfy. As the result, the wire has a greater 
chance to be replaced because it has fewer constraints. Therefore if 
removing a wire will benefit certain objective functions, we will 
assign fewer function pairs to this wire.  

For different purposes, we should use different heuristics to 
guide the atomic SPFD pair assignment. In this paper, we focus on 
two different optimization objectives. One is the delay optimization, 
and the other is the area minimization.  

For the delay optimization, our goal is to reduce the longest path 
delay in the circuits. We use the criticality-oriented heuristics to 
guide the atomic SPFD pair assignment. We first sort the in-pins 
according to their timing criticality in ascending order (i.e., the least 
critical in-pins are at the beginning of the list).  This way, the most 
critical nodes are at the end of the list and tend to receive fewer 
function pairs. 

For the area minimization, we use a fanout-related heuristic. For 
example, when a node has only one fanout p, if we can replace p by 
another wire, the node can be removed since it has no fanout. On 
the other hand, when a node has many fanouts, it is almost 
impossible to remove because it is very hard to replace all the 
fanouts. Based on this consideration, we try to assign fewer 
function pairs to the input wires with smaller fanout numbers so that 
they have a higher opportunity to be removed. 

In order to achieve more rewiring ability, we also combined 
these two heuristics with other heuristics. In [21], an edge 
distribution scheme is applied to ignore atomic pairs that have 
already been assigned. In this paper, we extend the idea and propose 
an SPFD size oriented heuristic (here the size refers to the number 
of function pairs in the set). Consider an atomic function pair P=(α, 
β) at the output of a node and two input wires p and q which can 
distinguish P. Suppose p’s SPFD so far is R and q’s SPFD so far is 
S. If R covers α while S does not cover any of α and β, we assign P 
to wire p. The reason is that after the assignment, R’s size will not 
change. On the other hand, if we assign P to q, S’s size will increase 
by one. 

The experimental results in Section 6 will show that the above 
optimized heuristic assignment methods lead to better results than 
the random assignment method in general, while the differences due 
to different assignment heuristics appear to be small. 

6. Experimental Results 
In our study, we use rewiring ability to compare different 

rewiring algorithms, which is defined as the number of wires having 
at least one alternative wire. The higher the rewiring ability, the  



 
Total 

#wires SPFD-LR 
SPFD-

GR 

SPFD-GR 
 over 

SPFD-LR 
SPFD-

ER 

SPFD-ER 
over  

SPFD-LR 

C1908 423 74 99 33.8% 114 54.1% 
C432 538 154 183 18.8% 208 35.1% 
alu4 939 277 419 51.3% 522 88.4% 

apex6 1025 270 345 27.8% 410 51.9% 
dalu 1338 468 704 50.4% 739 57.9% 

example2 433 85 136 60.0% 169 98.8% 
term1 244 71 99 39.4% 114 60.6% 

x1 557 164 222 35.4% 271 65.2% 
x3 958 154 319 107.1% 366 137.7% 

alu2 510 179 253 41.3% 306 70.9% 
C5315 1772 500 607 21.4% 757 51.4% 

Average    44.3%  70.2% 

Table 1. Comparison of general rewiring ability for 4-LUT 
FPGA designs under circuit depth restriction 

 
more rewiring choices an algorithm has. It usually reflects the 
potential of a rewiring algorithm in performing optimization. 

We combined the new equivalence condition and some 
speed up techniques into our enhanced SPFD-based rewiring 
algorithm (SPFD-ER). We applied SPFD-ER in LUT-based 
FPGA synthesis and integrated it into the RASP system [11]. 
We did the following experiments: 1) Comparison of general 
rewiring ability among SPFD-LR, SPFD-GR and SPFD-ER; 
2) Comparison of selected rewiring ability between different 
atomic SPFD assignment methods. 3) A primitive flow is 
presented to show that a larger rewiring ability helps the 
performance optimization.  

The circuits used in our experiments are the 
combinational networks with 4-LUTs, obtained through 
script.rugged, Cutmap [9], Red_Removal and Greedy_Pack. 
These routines are available in SIS [16] and RASP [11].  

6.1 Comparison of General Rewiring Ability 
 Table 1 compares the general rewiring ability of our 

enhanced method SPFD-ER with SPFD-LR and SPFD-GR. 
We implemented the SPFD-LR algorithm according to [19] 
and SPFD-GR algorithm according to [20]. All three programs 
traverse the entire circuit once, using every wire as a target 
wire and trying to find alternative wires that satisfy the circuit 
depth restriction. For the purpose of collecting statistical data, 
we did not make real changes to the circuit, even when 
rewiring was possible. Column 2 lists the number of wires in 
each circuit. Column 3 shows the rewiring ability of SPFD-
LR, Columns 4 and 6 show the rewiring ability of SPFD-GR 
and SPFD-ER. Columns 5 and 7 show the improvement of the 
rewiring ability of SPFD-GR and SPFD-ER over SPFD-LR 
respectively. The results show that SPFD-ER has 70% more 
target wires that have alternative wires when compared with 
what SPFD-LR has, and 18% more when directly compared 
with SPFD-GR. 

 
 

Circuits Method A Method B Method C Method D Method E 
C1908 31 34 35 35 35 
C432 26 22 26 26 25 
alu4 50 43 55 56 55 

apex6 34 32 35 34 34 
dalu 59 50 57 57 57 

example2 11 14 13 13 13 
term1 4 4 4 4 4 

x1 14 17 18 18 18 
x3 21 25 25 25 25 

alu2 48 50 56 53 56 
C5315 N/A* 49 72 75 74 

Average ** 
Improvement 

over Method A  3.1% 10.5% 9.8% 9.8% 

Table 2. Comparison of selected rewiring ability for different 
atomic SPFD assignment methods 

*It fails after 8 hours runtime limitation 
**The average value does not contain C5315, since one result is N/A. 
 

6.2 Comparison among Atomic SPFD Pair Assignment 
Methods 

In this sub-section, we compare the selected rewiring ability 
among different atomic SPFD pair assignment methods. We will 
consider delay optimization and area minimization respectively. To 
focus on the study of the effect of atomic SPFD assignment, we 
only apply them on SPFD-GR.  

Table 2 shows the selected rewiring ability among the wires in 
the 20% ε-network. We list the result for Methods A ~ E. Given a 
function pair P = (a, b) at a node’s out-pin, these methods work as 
follows: Method A randomly assigns P to an input edge whose 
function distinguishes it. Method B randomly sorts the input edges 
and then assigns P to the first edge that can distinguish it. Method C 
uses a delay oriented heuristic, which sorts the edges according to 
their criticality (with the least critical edge in the first) and assigns 
P to the first edge which can distinguish it; Method D is the 
combination of Method C and the SPFD size oriented heuristic (see 
Section 5); Method E is the combination of Method C and the edge 
assignment scheme of [21]. The criticality-oriented methods can 
achieve about 10% more selected rewiring ability.  

The atomic SPFD assignment methods will also help the wires 
on the non-critical network. Our other experimental results, which 
are not listed here due to page limit, show that when we combine 
SPFD-ER and criticality-oriented heuristic (SPFD-ER + Method C), 
the average general rewiring ability improvement over SPFD-GR + 
Method A is 38.1%.  

Table 3 shows the delay optimization results of various 
function-pair assignment heuristics. We use Quartus (Version II 
1.0) [1] for placement and routing, which reports the delay 
numbers. In Table 3, Column 2 shows the longest delay for the 
original circuits. The remaining columns list the results after 
rewiring. We can find that higher rewire ability results in better 
performance.  



Random methods Criticality-oriented methods 
Circuit 

Original 
Delay Delay A Reduction Delay B Reduction Delay C Reduction Delay D Reduction Delay E Reduction

C1908 15.598 15.474 0.8% 15.466 0.8% 15.625 -0.2% 15.565 0.2% 15.625 -0.2% 
C432 24.731 24.372 1.5% 23.848 3.6% 22.739 8.1% 22.607 8.6% 22.198 10.2%
alu4 18.696 18.505 1.0% 18.668 0.1% 16.807 10.1% 17.094 8.6% 16.65 10.9%

apex6 8.459 8.331 1.5% 8.367 1.1% 8.178 3.3% 8.187 3.2% 8.149 3.7% 
dalu 11.872 11.753 1.0% 11.828 0.4% 11.759 1.0% 11.778 0.8% 11.772 0.8% 

example2 6.482 6.49 -0.1% 6.468 0.2% 6.488 -0.1% 6.484 0.0% 6.488 -0.1% 
term1 6.945 6.944 0.0% 6.923 0.3% 6.927 0.3% 6.935 0.1% 6.927 0.3% 

x1 6.778 6.704 1.1% 6.697 1.2% 6.711 1.0% 6.711 1.0% 6.711 1.0% 
x3 7.706 7.815 -1.4% 7.681 0.3% 7.367 4.4% 7.439 3.5% 7.358 4.5% 

alu2 14.64 14.709 -0.5% 14.737 -0.7% 11.619 20.6% 13.359 8.8% 11.378 22.3%
C5315 14.384 N/A* N/A 13.989 2.7% 14.104 1.9% 13.962 2.9% 14.005 2.6% 

Average   0.5%  0.9%  4.6%  3.4%  5.1% 
 

Table 3. Delay results comparison between different heuristics 
*It fails under 8 hours runtime limitation 

We also did experiments for area minimization, using the 
fanout-number oriented heuristics instead of the delay-
oriented heuristics in C, D and E. The average improvement of 
area minimization is 12.7%, 12.9%, 13.0%, 13.6% and 13.2% 
for Methods A~E respectively.  

From these results, we know that the criticality-oriented 
methods (Methods C~E) are much better than the random 
methods (Methods A~B) in delay reduction with Method E 
performing the best. However, the difference due to different 
delay optimization heuristics is quite small. Moreover, from 
area minimization results, we see that random assignments 
work almost as well as optimized heuristics. The fanout-
oriented methods perform only slightly better than the random 
methods. From these experiments, we conclude that our 
criticality-oriented methods are effective for delay 
minimization, while function-pair assignments have little 
impact for area minimization.  

6.3 A Primitive Flow for Post-layout Rewiring 
We set up a primitive flow to illustrate that the better 

rewiring ability of our methods is helpful for circuit 
performance optimization. We apply our rewiring method for 
post-layout delay optimization for LUT-based designs. For 
each benchmark circuit, we use SIS to do the logic synthesis, 
RASP to do technology mapping and Quartus II 1.0 [1] to do 
placement and routing.  

Our post-layout optimization flow works as follows. 1) 
After Quartus finishes layout design for a circuit, the rewiring 
engine reads the placement information from the Quartus’ 
output file. 2) In order to do delay optimization, we build our 
own delay model. Our model is based on the locations of 
LUTs in Quartus placement. We use statistics to count the 
delay between different locations in the placement. Then we 
estimate the delay between two LUTs as the average delay 
between these two locations. 3) The engine traverses the 
circuit for M passes to do rewiring for the wires on the ε-

critical paths, which will be explained in the following paragraph. 
4) After rewiring, the engine passes the resulting circuit to Quartus 
with the original location information for each logic cell.  In this 
case, Quartus will not re-do the placement, but only perform routing 
for the design and report the delay result. 

By an ε-critical path we mean the path’s delay is larger than (1- 
ε)D, where D is the largest path delay of the circuit. In step 3), we 
increase ε gradually for each pass.  

From Table 1, we know that SPFD-ER achieves 70% more 
rewiring ability than SPFD-LR. This means SPFD-ER has more 
opportunity to replace wires in the ε-critical path, thus reducing the 
size of ε-network. After running our delay optimization flow, we 
check the numbers of paths in the 25% ε-network under our delay 
model, which show that SPFD-ER reduces the paths in the ε-
network by 45.4%, while SPFD-LR reduces by only 26.7%. The 
final average delay reduction is 5.8% by SPFD-ER and 2.6% by 
SPFD-LR.  

This optimization flow is a primitive flow since we do not get 
the accurate timing model and routing structure for the hierarchical 
FPGA device, which is important for performance estimation. Our 
experiment is only intended to illustrate the relationship between 
rewiring ability and the optimization potential.  

The runtime for our method is 12.5 times that of SPFD-LR. This 
longer runtime is due to the equivalent condition test for the 
rewiring. It can be regarded as a trade-off between synthesis quality 
and CPU time.  

ATPG based methods, as [22], usually have fast CPU times. We 
did not directly compare the rewiring ability with them since the 
starting points are different. Our method is for FPGA circuits while 
they are usually operating on simple-gate circuits. 

For large designs, we must use the partition method as [20], 
since the CPU time for BDD operations will explode without 
partition. With partitioning, the CPU time is proportional to the 
circuit size. 



7. Conclusion and Future Work 
In this paper we present an in-depth study of the theory 

and algorithms for the SPFD-based rewiring, and explore the 
flexibility in the SPFD calculation. We develop a theorem and 
an efficient algorithm for a more precise characterization of 
feasible SPFD-based rewiring. Extensive experimental results 
show that for LUT-based FPGAs, the rewiring ability of our 
algorithm is 18% greater than the SPFD-based global rewiring 
algorithm (SPFD-GR) and 70% greater than SPFD-LR.  

We also study the impact of using different atomic SPFD 
pair assignment methods during the SPFD-based rewiring. 
Our study concludes that optimized heuristic assignment 
methods lead to better rewiring ability than the random 
assignment methods in general, while the differences due to 
different assignment heuristics appear to be small. The 
improvement on selected rewiring ability is about 10%, and 
the combination of SPFD-ER and atomic SPFD assignment 
brings us 38% improvement in general rewiring ability. 

Runtime is the bottleneck for our algorithm, and we will 
reduce it in our future work. We will develop some heuristics 
to guide the strategy in selecting target wires and alternative 
wires. Thus we can speed up the rewiring process and achieve 
improved performance. Also a simultaneously SPFD rewiring 
technique can be applied in order to accelerate the process 
(reader may refer to [23]). 
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