
Fine-Grain CAM-Tag Cache Resizing Using Miss Tags

Michael Zhang
MIT Laboratory for Computer Science

200 Technology Square
Cambridge, MA 02139

rzhang@cag.lcs.mit.edu

Krste Asanović
MIT Laboratory for Computer Science

200 Technology Square
Cambridge, MA 02139

krste@cag.lcs.mit.edu

ABSTRACT
A new dynamic cache resizing scheme for low-power CAM-
tag caches is introduced. A control algorithm that is only
activated on cache misses uses a duplicate set of tags, the
miss tags, to minimize active cache size while sustaining
close to the same hit rate as a full size cache. The cache
partitioning mechanism saves both switching and leakage
energy in unused partitions with little impact on cycle time.
Simulation results show that the scheme saves 28–56% of
data cache energy and 34–49% of instruction cache energy
with minimal performance impact.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Associative

Memory, Cache Memory, Primary Memory

General Terms
Design

Keywords
Content-Addressable-Memory, Low-Power, Cache Resizing,
Energy Efficiency, Leakage Current

1. INTRODUCTION
Energy dissipation has emerged as one of the primary con-

straints for microprocessor designers. In most microproces-
sor designs, caches dissipate a significant fraction of total
power. For example, the Alpha 21264 dissipates 16% [12]
and the StrongArm dissipates more than 43% [19] of overall
power in caches. As a result, there has been great interest
in reducing cache power consumption.

Initial cache energy reduction techniques focused on dy-
namic switching power [1, 2, 3, 4, 7, 10, 13, 22]. With
technology scaling, leakage current is increasing exponen-
tially, and more attention has been paid to leakage power
reduction [9, 11, 15, 16, 18, 20].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

One approach for reducing cache power consumption is
cache resizing, where the active size of the cache is reduced
to match the current working set. Previously reported cache
resizing schemes can be categorized by the mechanism used
to activate and deactivate cache entries, and by the control
policy used to select the active partition. Some schemes
deactivate cache entries line by line [9, 11], while others de-
activate the cache by sets, ways, or both [1, 16, 20]. The
control policy used to select the active set can be off-line,
where the working set is statically determined by profiling
the application [1], or on-line, where the working set is dy-
namically determined as the application executes [9, 11, 16,
20].

Previous cache resizing techniques are designed for RAM-
tag caches, where cache tags are held in RAM structures.
However, commercial low-power microprocessors use CAM-
tag caches, where the cache tags are held in Content Ad-
dressable Memory [14, 19]. CAM-tag caches are popular in
low-power processors because they provide high associativ-
ity, which avoids expensive cache misses, and results in lower
overall energy [23].

This paper introduces miss tag resizing (MTR), a new
cache resizing scheme for CAM-tag caches. MTR uses hi-
erarchical bitlines to divide each cache subbank into small
way partitions, such that switching and leakage power is
only dissipated in active ways. In addition, individual cache
lines within an active partition can be disabled to further
reduce leakage power. Because CAM-tag caches have high
associativity (32-way for the design simulated), partition-
ing the cache by way gives much finer grain control over
cache size compared to RAM-tag way activation [1]. It also
avoids the data remapping problem inherent in set resizing
schemes [16]. In addition, the scheme proposed here adapts
associativity independently in each sub-bank, thereby al-
lowing total cache size to be varied a single line at a time.
Resizing of different subbanks is spaced evenly in time so
that at most a single dirty line needs to be written back for
a resize event.

The size of an MTR cache is governed using an on-line
control policy which aims to reduce the cache size to the
smallest value that will give a minimal miss rate increase
compared to the full sized cache. The control policy uses an
extra set of tags, the miss tags, which are only accessed on
misses to determine if a full-sized cache would have hit. Be-
cause the miss tags are only accessed on misses, they add no
additional switching energy to hits and can be implemented
using slower, denser, and less leaky transistors, e.g., high VT

or long channel transistors. The main penalty for using miss

S
ta

tu
s

Tag Array Data Array

Tag Bank Offset

Bank 0

Bank 1

Bank 2

Data

Hit?

Data Address

Figure 1: CAM-tag cache organization.

tags is the additional area overhead, which we estimate at
around 10% depending on actual layout styles.

The rest of the paper is organized as follows. Section 2
reviews related work on cache resizing. Section 3 presents
the MTR algorithm. Section 4 describes the hardware mod-
ifications for energy reduction. Section 5 gives results for
active cache size reductions. Section 6 presents the energy
savings achieved by MTR. And Section 7 concludes.

2. RELATED WORK
In this section, we discuss existing cache resizing tech-

niques and cache line deactivation techniques. An off-line
resizing technique was proposed in [1]. Applications are
profiled prior to execution to determine an optimal set-
associativity. At run-time, cache ways of the L1 RAM-tag
set-associative cache are turned off according to the pro-
file information. This technique reduces both switching and
leakage energy by powering down the entire cache way. How-
ever, it does not adapt to varying cache usage during differ-
ent phases of the program execution. As we will show later,
many benchmarks have working sets that vary widely during
various phases of execution. Furthermore, these static tech-
niques do not work well for multi-programmed machines,
where working set size also varies as a function of the active
process. The DRI I-cache [16] is an on-line resizing tech-
nique that resizes a RAM-tag instruction cache by measur-
ing the miss rate and keeping it under a preset threshold.
This performance threshold is set to a typical cache miss
rate prior to execution, which does not adapt to program
execution phases. Line deactivation techniques are similar
to the above resizing techniques. These techniques usually
turn off individual cache lines that are not necessarily con-
tiguous. In cache decay [11], a per-line counter tracks the
usage of each cache line. Lines with no recent uses are turned
off. This technique eliminates the static energy of dead lines
but does not reduce switching energy. Adaptive mode con-
trol (AMC) [9] resizes a RAM-tag cache using a technique
similar to cache decay. AMC keeps all tags turned on. An
ideal miss rate is obtained by searching the entire tag ar-
ray, and an actual miss rate is obtained by only searching
the tags of all the active lines. When these two miss rates
differ by more than a preset performance factor, the resize

cache_access(action, addr_tag, addr_offset, data) {
if (addr_tag in tag_array) { /* hit case */
if (action == Read) {

return data_array[addr_tag, addr_offset];
} else {

data_array[addr_tag, addr_offset] = data;
}
return hit;

} else { /* miss case */
/* fetch data from L2 and update the cache */
fetch_from_memory(addr_tag, addr_offset);
/* check whether tag is in MTR tag array */
if (addr_tag in MTR_tag_array) {

/* if tag is found in MTR, */
/* increment MTR hit counter */
MTR_hits++;

} else {
/* otherwise, write the tag into MTR array */
update_MTR_tag_content(addr_tag);

}
return miss;

}
}

cache_resize() {
if (MTR_hits > HI_BOUND) {
upsize();

} else if (MTR_hits < LO_BOUND) {
downsize();

} else {
do_nothing();

}
/* reset the MTR hit counter for */
/* next resizing interval */
MTR_hits = 0;

}

Figure 2: Pseudo-code for MTR.

interval is adjusted. This technique eliminates the need for
presetting the desired miss rates, but only reduces leakage
power in the data arrays. Tag array lookup, however, is a
significant portion of the cache access energy, especially for
CAM-tag caches. In [20], various design choices are com-
pared to evaluate the usefulness of resizable caches. On av-
erage, over 50% cache size reduction is achieved with either
selective ways [1] or selective sets [16]. Turning off por-
tions of the cache generally discards the stored data, thus
increasing miss rate and the number of L2 accesses. In [8],
the effect of L2 energy overhead is examined. Our MTR
scheme is similar to AMC in that we resize based on the
difference between the full cache hit rate and the reduced
cache hit rate. However, we employ a separate set of tags
that are only accessed on misses to gather the full cache hit
rate. This avoids additional switching and leakage power in
the regular CAM tags. Also, we use the miss rate differ-
ence to control a fine-grain partitionable cache which can
save switching as well as leakage power. Another problem
with previous partitioning schemes is that when applied to
a data cache, they can generate a large number of dirty line
writebacks in a short time interval when a set or way is
deactivated, or when a decay interval elapses. These write
back bursts add to cache control complexity and can cause
additional performance degradation. MTR performs way
deactivation within a highly associative cache one line at a
time, thus avoids write back bursts.

3. MISS-TAG RESIZING TECHNIQUE
Figure 1 shows a typical CAM-tag cache organization.

The entire cache is divided into subbanks, each consisting
of a tag array and a data array, where a subbank is a cache
set. Within each set are the cache ways. The tags are stored
in CAM structures to give high associativity at low power.
During each cache access, one subbank (set) of the cache is
accessed and the tag is broadcast to the entire tag array.
A matched tag results in a hit and triggers the appropriate
wordline to enable the access.

To implement MTR, we add an extra set of tags, the miss-

tags, which act as the tags of a fixed-size cache. These tags
keep track of what the cache contents would have been if
the cache was always full size. During a regular cache miss,
we consult the miss-tag arrays to see whether having a full
cache could have avoided the miss. A per-subbank counter
is used to record the number of miss-tag hits, which is pre-
cisely the difference between the number of misses in the
down-sized cache and in a full size cache. A large differ-
ence in the miss rates suggests that having a larger cache
will reduce the miss rate; a small difference indicates that
perhaps a smaller cache would be adequate. Two scenarios
could explain a small difference in miss rate between the full
size and reduced size caches. First, there are no misses in
the regular tags, indicating that the program has a small
working set. In the second scenario, there are many misses
in the regular tags, most of which also miss in the miss tags.
This suggests that the program has little temporal locality,
such as a data streaming application.

The resizing decision is based on the difference in miss
rates between the active tags and the miss tags. The pseudo-
code in Figure 2 illustrates the resizing control loop of MTR.
There are three parameters in the MTR scheme: miss lower

bound, miss upper bound, and resize interval. In Section 5.2,
we will discuss the choices of resizing parameters in detail.
Each subbank is independently resized once during each re-
sizing interval. Resizing events are spread out evenly within
each interval so that only one subbank resizes at a time to
minimize writeback traffic burst to the lower levels of the
memory hierarchy.

4. HARDWARE MODIFICATION
Figure 3 details three circuit techniques used by MTR.

For the SRAM cells in both data and tag arrays, we use
the Gated-Vdd technique [15] to reduce leakage energy by
adding an N-type stack transistor. When signal Line On

is turned off, it virtually eliminates leakage current in the
SRAM cells. We also use the leakage-biased bitline (LBB)
technique proposed in [17] to reduce the leakage in SRAM
bitlines, CAM bitlines and search lines, and CAM match
lines. The leakage power of the circuit depends on the actual
voltage of these heavily capacitive lines. The LBB technique
turns off the precharge of these lines, allowing them to self-
bias their voltage levels to the optimal values, at which leak-
age power is minimized using leakage currents. The cache
subbanks are divided into eight equal partitions using hi-
erarchical bitlines [7]. The Partition On bits are used to
control the activation of each partition. An inactive par-
tition consumes no switching energy and minimal leakage
energy.

Since the miss-tags are only used during a cache miss,
we can use slow, low-leakage components without incurring

RAM Cell

CAM Cell

R
A

M
_g

lo
b

al
_b

l

C
A

M
_g

lo
b

al
_b

l

C
A

M
_g

lo
b

al
_s

l

CAM_pch

Partition_On[0]

Partition_On[6]

Partition_On[7]

Line_On

RAM_wl

R
A

M
_l

o
ca

l_
b

l

C
A

M
_l

o
ca

l_
sl

C
A

M
_l

o
ca

l_
b

l

CAM_wl

CAM_match

RAM_pch_local

Line_On

Figure 3: Energy reduction techniques used by

MTR: Gated-Vdd for SRAM cell leakage reduction;

Leakage-Bias for CAM match line; hierarchical bit-

lines for subbank partitioning.

delay overhead. The energy overhead of miss-tag accesses
is added to L2 access energy and is discussed in Section 6.
The area overhead can be reduced by using a denser layout
for the tags, for example, adopting a hybrid RAM-CAM
structure to reduce the number of match comparators.

5. CACHE SIZE REDUCTION RESULTS
In order to evaluate MTR, we modified the SimpleScalar [5]

simulator. We modeled an in-order single issue core in our
experiments. The benchmark set we used is a subset of
SpecINT2000 and SpecFP2000, each running for 1.5 billion
cycles with the reference inputs. We chose a typical low-
power cache configuration [14] as a baseline. It is a 32KB
cache implemented in 32 1KB subbanks. Each subbank con-
sists of 32 cache lines of 32 bytes. The cache is 32-way set-
associative with a FIFO replacement policy in each subbank.

One unary encoded resizing pointer per subbank is used to
control which cache lines to activate/deactivate, similar to
the XScale FIFO pointer [14]. When a cache is downsized,
only the last active line is turned off. When it is upsized,
however, the entire partition where the last active line re-
sides is turned on. If all the lines in the entire partition are
already active, the next partition is turned on. When all
the lines in a partition are inactive, the partition is turned
off. To avoid thrashing with small cache sizes, we set the
minimum cache size to be one partition.

5.1 Baseline Case
We implemented a baseline resizing technique to compare

against the miss tags scheme. This baseline technique works
exactly like MTR except it compares the actual cache miss

rate with the miss bounds to make resizing decisions, similar
to DRI I-cache [16]. We will refer to this baseline technique
as Miss-Rate-Based-Resizing (MRBR).

5.2 Impact of Resizing Parameters
From simulation results, we found that no individual pa-

rameter has a large impact on resizing performance. The
most important parameter, rather, is the ratio of the miss
upper/lower bounds to the resize interval. For example, set-
ting the miss bound of 5 to 10 misses for a 32k resizing in-
terval yields similar results for a range of 10 to 20 misses for

8 16 24 32
1.57

1.58

1.59

1.6

1.61

1.62
D−Cache Size vs. Average CPI

A
ve

ra
ge

 C
P

I (
cy

cl
e/

in
st

r)

Average Effective Cache Size (kB)

fixed size
MRBR
MTR

Figure 4: CPI versus effective cache size for L1

data cache. MTR gives the smallest effective

cache size for a given CPI.

8 16 24 32
2.4

2.6

2.8

3

3.2
D−Cache Size vs. Average Miss Rate

A
ve

ra
ge

 M
is

s
R

at
e

(%
)

Average Effective Cache Size (kB)

fixed size
MRBR
MTR

Figure 5: Miss Rate versus effective cache size for

L1 data cache. MTR gives the smallest effective

cache size for a given miss rate.

a 64k resizing interval. Simulations show that for larger re-
size intervals, the number of writebacks decrease. However,
when the resize interval is too large, MTR starts to yield
sub-optimal results. We have found that resize intervals of
128K references worked well for the benchmarks studied,
i.e., resize every 128k memory references.

5.3 Data Cache Resizing Results
Figure 4 shows the resizing results for the L1 data cache.

Each data point (effective cache size and CPI pair) is ob-
tained by varying the miss bounds and resizing interval
length to obtain the optimal CPI for a given effective cache
size. Average cache size is calculated by averaging the per-
centage of active partitions in each resizing period. In order
to verify that both resizing techniques work better than a
fixed-size cache, we simulated the CPI of fixed-size caches of
sizes 32KB, 16KB, and 8KB. This figure shows that for the
same CPI, MTR yields much smaller effective cache sizes.
We limited ourselves to considering configurations that yield
less than a 2% CPI increase to ensure MTR does not incur a
large performance penalty. Parameters were varied to show
the trade off between effective cache size and performance.
For the same effective cache size, MTR performs much bet-
ter than the baseline technique. Figure 5 further supports
the above result. MTR introduces less than a 16% increase
in the largest fixed cache miss rate. Again, for the same
effective cache size, MTR has the lowest miss rate. On av-
erage, MTR uses less than an 8KB effective cache size while
increasing the CPI by less than 1.5%.

Figure 6 shows how the effective cache size and the ac-
tual miss rates change over time with MTR. The figures on
the left-hand side show the effective cache size over time.
We observe two different behaviors. Benchmarks 164.gzip,
177.mesa, 183.equake, 197.parser, and 256.bzip2 demon-
strate MTR’s ability to adapt to different phases of the exe-
cution with varying cache usage. For the rest of the bench-
marks, cache usage is constant throughout the execution.
MTR is able to find the optimal size for each benchmark
without prior profiling information. The figures on the right-
hand-side show how the miss rates change throughout the
execution. We observe that an increase in the miss rate
is countered by an increase in cache size, which in return,
reduces miss rate.

5.4 Instruction Cache Resizing Results
For our benchmark set, the instruction cache has extremely

low miss rates. Therefore, it is easier to find a common
reference miss rate for a large set of benchmarks. For all
the benchmarks we used in this paper, the baseline resiz-
ing technique and MTR have similar performance. Both of
them outperform the fixed size instruction cache. Figures 9
and 8 show that MTR uses an effective cache size of less than
12KB while introducing, on average, less than 12% increase
in miss rate and 1.4% increase in CPI.

6. ENERGY REDUCTION RESULTS
In this section, we present the energy savings obtained by

MTR. The energy consumption figures are obtained through
HSpice simulation of extracted layout from Cadence [6] us-
ing TSMC 0.25µm technology [21]. The cache design has
been significantly optimized for low power, including divided
word lines and low-swing bitlines. Table 1 shows the differ-
ent energy components of this CAM-tag cache. MTR re-
duces the data array and CAM-tag array access energy but
not decoding energy. Since the actual percentage of cache
leakage power in the total cache power can vary significantly
due to process technology, operating temperatures and volt-
ages, among other factors, we quantify cache leakage as a
percentage of total cache power, and demonstrate the sav-
ings across a range of possible values. We perform a similar
sensitivity analysis for L2 cache energy by quantifying L2
access energy as a multiple of L1 access energy and give re-
sults for a range of values. We include the search energy for
the miss-tags as part of L2 energy. The energy reduction is
calculated as

L1 switching energy reduction × % of switching energy
+ L1 leakage energy reduction × % of leakage energy
− Miss Rate Increase × L2 access energy

Figures 10 and 11 show the energy reduction of data and
instruction cache. The x-axis represents the percentage of
leakage energy in the total energy consumption. The y-axis
represents the energy savings. From previous experiments,
we use resizing parameters such that the effective data cache
size is 8KB and effective instruction cache is 12KB. These
parameters are chosen to minimize the performance impact

0

50

100
164.gzip

%

0

50

100
168.wupwise

%

0

50

100
175.vpr

%

0

50

100
176.gcc

%

0

50

100
177.mesa

%

0

50

100
179.art

%

0

50

100
181.mcf

%

0

50

100
183.equake

%

0

50

100
188.ammp

%

0

50

100
197.parser

%

0

50

100
256.bzip2

%

Figure 6: Different effective cache sizes during

different phases of a 32KB data cache determined

by MTR. The x-axis represents 0 to 1.5 billion

cycles.

0

5

10

15

%

164.gzip

0

5

10

15

%

168.wupwise

0

5

10

15

%

175.vpr

0

5

10

15

%

176.gcc

0

5

10

15

%

177.mesa

0

5

10

15

%

179.art

0

5

10

15

%

181.mcf

0

5

10

15

%

183.equake

0

5

10

15

%

188.ammp

0

5

10

15

%

197.parser

0

5

10

15

%

256.bzip2

Figure 7: Cache miss rates during different

phases of a 32KB data cache determined by MTR.

The x-axis represents 0 to 1.5 billion cycles.

8 16 24 32
1.55

1.6

1.65

1.7

1.75
I−Cache Size vs. Average CPI

A
ve

ra
ge

 C
P

I (
cy

cl
e/

in
st

r)

Average Effective Cache Size (kB)

fixed size
MRBR
MTR

Figure 8: CPI versus effective cache size for L1

instruction cache. MTR and MRBR have similar

performance.

8 16 24 32

0.36

0.38

0.4

0.42

0.44
I−Cache Size vs. Average Miss Rate

A
ve

ra
ge

 M
is

s
R

at
e

(%
)

Average Effective Cache Size (kB)

fixed size
MRBR
MTR

Figure 9: Miss rate versus effective cache size

for L1 instruction cache. MTR and MRBR have

similar performance.

0 10 20 30 40 50

20

30

40

50

60

70

80
D−Cache Energy Reduction

D
−C

ac
he

 E
ne

rg
y

R
ed

uc
tio

n
(%

)

Leakage of Total (%)

16X
64X
128X

Figure 10: Data cache energy savings. X-axis

represent the percentage of leakage energy of to-

tal energy. Y-axis represents savings. Each curve

represents a different L2 access energy quantified

as a factor of L1 write access energy.

0 10 20 30 40 50

35

40

45

50

55

60
I−Cache Energy Reduction

I−
C

ac
he

 E
ne

rg
y

R
ed

uc
tio

n
(%

)

Leakage of Total (%)

16X
64X
128X

Figure 11: Instruction cache energy savings. X-

axis represent the percentage of leakage energy

of total energy. Y-axis represents savings. Each

curve represents a different L2 access energy

quantified as a factor of L1 write access energy.

Table 1: Energy components of CAM-tag cache in

TSMC 0.25 µm technology.. A
√

means the read or

write access performs that operation, thus uses that en-

ergy component.

Operation Energy (pJ) Read Write
CAM-Array Search 57.1

√ √

Data-Array Read 26.2
√

Data-Array Write 53.5
√

Decoding & I/O 12.2
√ √

Total 95.5 pJ 122.8 pJ

while turning off the maximum number of partitions in the
cache.

Each different curve represents the energy savings of a
specific L2 access energy. We chose an range of L2 access
energy, from 16× to 128× of the L1 write access energy. For
data cache, MTR reduces energy by 28%, when there is no
leakage energy and L2 penalty is 128× of L1 write access
energy, to 56%, when 50% of the cache energy is leakage
and L2 penalty is 16× of L1 access energy. Similarly, MTR
reduction ranges from 34% to 49% for instruction cache de-
pending on leakage percentage and L2 penalty.

7. CONCLUSION
In this paper, we presented MTR, a dynamic cache re-

sizing technique for CAM-tag caches. The dynamic control
mechanism of MTR uses a set of duplicate miss tags to keep
track of the miss rate as if the entire cache was used. Re-
sizing decisions are made according to the difference in the
actual miss rate and the miss rate of the miss-tags. The con-
trol mechanism is only activated on misses, thereby saving
energy and allowing the duplicate tags to be implemented
in slower and denser logic using low leakage transistors. The
cache partitioning mechanism saves both switching and leak-
age energy in unused partitions, and allows resizing at a sin-
gle line granularity. The subbanks are resized independently
in non-overlapping phases to avoid write back bursts. With
around 10% area overhead, MTR reduces 28–56% of data
cache energy and 34–49% of instruction cache energy, where
the baseline caches were highly optimized for low-power but
fixed-size operation.

8. ACKNOWLEDGMENTS
We would like to thank members of the MIT SCALE

group for feedback and comments on earlier drafts of this pa-
per. We also appreciate the comments from the anonymous
reviewers. This work was partly funded by DARPA award
F30602-00-2-0562, NSF CAREER award CCR-0093354, and
a donation from Infineon Technologies.

9. REFERENCES
[1] D. Albonesi. Selective cache ways: On-demand cache

resource allocation. In MICRO-32, November 1999.

[2] B. Amrutur and M. Horowitz. Techniques to reduce
power in fast wide memories. In ISLPED, pages
92–93, October 1994.

[3] B. Amrutur and M. Horowitz. A replica technique for
wordline and sense control in low-power SRAMs.
IEEE JSSC, 33(8):1208–1219, August 1998.

[4] N. Bellas, I. Hajj, and C. Polychronopoulos. Using
dynamic cache management techniques to reduce
energy in a high-performance processor. In ISLPED,
pages 64–69, August 1999.

[5] D. Burger and T. Austin. The SimpleScalar tool set,
version 2.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison, June 1997.

[6] Cadence Corporation. http://www.cadence.com/

[7] K. Ghose and M. B. Kamble. Reducing power in
superscalar processor caches using subbanking,
multiple line buffers and bit-line segmentation. In
ISLPED, pages 70–75, August 1999.

[8] H. Hanson et. al. Static energy reduction techniques
for microprocessor caches. In ICCD, May 2001.

[9] H. Zhou et. al. Adaptive mode control: A
static-power-efficient cache design. In PACT,
September 2001.

[10] K. Inoue, T. Ishihara, and K. Murakami.
Way-predicting set-associative cache for high
performance and low energy consumption. In
ISLPED, pages 273–275, August 1999.

[11] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache
leakage power. In ISCA-28, June 2001.

[12] R. Kessler. The Alpha 21264 microprocessor. IEEE

Micro, 19(2):24–36, March/April 1999.

[13] J. Kin, M. Gupta, and W. Mangione-Smith. The
Filter Cache: An energy efficient memory structure. In
Micro-30, December 1997.

[14] L. Clark et. al. An embedded 32-b microprocessor core
for low-power and high-performance applications.
JSSC, 36(11):1599–1608, November 2001.

[15] M. Powell et. al. Gated-Vdd: a circuit technique to
reduce leakage in cache memories. In ISLPED, July
2000.

[16] M. Powell et. al. Reducing leakage in a
high-performance deep-submicron instruction cache.
TVSLI, 9(1):77–89, February 2001.

[17] S. Heo et. al. Dynamic fine-grain leakage reduction
using leakage-biased bitlines. In ISCA-29, Anchorage,
Alaska, May 2002.

[18] S. Narendra et. al. Scaling of stack effect and its
application for leakage reduction. In ISLPED, pages
195–200, 2001.

[19] S. Santhanam et al. A low-cost, 300-MHz, RISC CPU
with attached media processor. IEEE JSSC,
33(11):1829–1838, November 1998.

[20] S. Yang et. al. Exploiting choice in resizable cache
design to optimize deep-submicron processor
energy-delay. In HPCA-8, Feburary 2002.

[21] Taiwan Semiconductor Manufacturing Company.
http://www.tsmc.com/

[22] L. Villa, M. Zhang, and K. Asanović. Dynamic zero
compression for cache energy reduction. In
MICRO-33, 2000.

[23] M. Zhang and K. Asanović. Highly-associative caches
for low-power processors. In Koolchips Workshop,

MICRO-33, December 2000.

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

