

A Low-Cost and Low-Power Multi-Standard Video Encoder
R. Peset Llopis, R. Sethuraman, C. Alba Pinto, H. Peters, S. Maul and M. Oosterhuis

Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

+31 40 2742422
[rafael.peset.llopis, ramanathan.sethuraman, carlos.alba.pinto, harm.peters, steffen.maul]@philips.com

ABSTRACT
Video encoders are an important IP block in mobile multimedia
systems. In this paper, we describe a low-cost low-power multi-
standard (MPEG4, JPEG, and H.263) video/image encoder. The
low-cost and low-power aspects are achieved by the right choice of
algorithms and architectures. In the algorithm front, an embedded
compression technique for reducing the size of loop memory has
enabled a single-chip low-cost realization of the encoder. In the
architectural front, an efficient hardware-software partitioning has
contributed to the design of a low-power encoder. Further, the
hardware components that accelerate the kernels of encoding are
implemented as application specific instruction-set processors
(ASIPs) thereby providing flexibility to address multi-standard
encoding. The power and area estimates for the encoder for
QCIF@15fps in 0.18µm CMOS technology are 30mW and 20mm2
respectively including the loop memory.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-based Systems – real-time and embedded systems,
signal processing systems.

General Terms
Algorithms, Performance, Design, Reliability, Verification.

Keywords
Video Encoder, Multi-Standard, Low-Power, Low-Cost, ASIPs,
Hardware/Software Partitioning.

1. INTRODUCTION
Video compression [1] plays a pivotal role in enabling video
processing on mobile multimedia systems (e.g. mobile videophone).
We, in this paper, present a low-cost, low-power multi-standard
video encoder for mobile applications. The low-power and low-cost
constraints on the encoder design are met by using innovative
algorithms and efficient architectures. Further, the multi-standard

aspect (MPEG4 SP@L3, JPEG, and H.263) demonstrates the
flexibility of this encoder. Furthermore, this design is more efficient
and flexible compared to other solutions like the ones offered by
Hitachi [2] or Fujitsu [3].
Traditional implementations of encoders have always resulted in
expensive multi-chip solutions due to the presence of a large loop
memory [3,4]. The encoder presented in this paper, which is
intended to support up to VGA@30fps (3.5Mbits of loop memory),
achieves a single chip implementation by compressing the picture
stored in the loop memory. Further, in order to support VGA the use
of compressed loop memory is a must to achieve a single-chip
solution.
The hardware-software partitioning of the encoder design has been
along the traditional path of mapping compute-intensive tasks onto
hardware (minimal flexibility) and control-intensive tasks onto
software (maximal flexibility). The encoder uses an architecture
template C-HEAP (CPU-controlled Heterogeneous Embedded
Architectures for signal Processing [5]), wherein the processors with
different levels of flexibility run concurrent tasks. The
communication between these heterogeneous processors is through
the use of C-HEAP communication protocol. The encoder uses
ASIPs based on a very large instruction word (VLIW) template [12]
to accelerate compute-intensive parts of video encoding.
The paper is organized as follows. Section 2 describes the
algorithmic space of the video compression domain. In Section 3,
the hardware-software partitioning employed in the encoder design
is described apart from the design flow itself. The implementation
figures are presented in Section 4. Finally, we conclude in Section 5.

Figure 1. Video Encoders: (a) Conventional, (b) with

Embedded Compression

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES+ISSS’03, October 1-3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010…$5.00.

97

2. ALGORITHM
Compression yields a compact representation of a signal by
exploiting spatial and temporal correlation. Figure 1(a) shows a
conventional encoder. It contains the following blocks: motion
estimator (ME), motion compensator (MC), inverse motion
compensator (IMC), (inverse) discrete cosine transform ((I)DCT),
(inverse) quantizer ((I)Q), zigzag transform (ZZ), run length
encoder (RLE), variable length encoder (VLE), and a loop
memory.
The ME block determines the best match of the current macro-
block (16 by 16 pixels) in the reconstructed image stored in the
loop memory. The difference between the current macro-block
and the best match in the reconstructed image is computed (MC),
transformed (DCT), quantized (Q) and entropy encoded (ZZ,
RLE, and VLE). The quantized data is inverse quantized (IQ),
inverse transformed (IDCT), reconstructed (IMC) by adding the
prediction, and stored in the loop memory to encode the next
picture.
Implementations of this encoder have always resulted in two-chip
solutions [3,4]. This is primarily due to large size of the loop
memory (e.g. 3.5Mbits for a VGA). However, an efficient single-
chip solution is possible if the picture stored in the loop memory
can be compressed. This is achieved using the technique of
embedded compression [7], wherein the loop memory is in the
DCT domain and the DCT coefficients are stored using a scalable
bit-plane based zonal coding approach. Figure 1(b) depicts a
video encoder with embedded compression for the loop memory.
The compression factor is fixed to 2.7 in order to avoid any
quality degradation. Since the loop memory is organized in blocks
(8x8 pixels), access to a macro-block from memory at a displaced
position by the motion-estimator (ME) requires at most nine
block-reads from the memory. This translates to few scalable
decodes (DEC) and inverse-DCT (IDCT) operations. The
displacement block (DISP) computes the displaced video block in
spatial domain based on the blocks accessed from the loop
memory. Note that without embedded compression, data read
from e.g. SDRAM memories could be more than just the macro-
blocks needed, this is because the addressing mechanism of the
SDRAM which does not allow the access to single pixels but
groups of them.
The motion estimator is responsible for determining the best
match for the current macro-block with the picture stored in the
loop memory. The motion estimator, based on the modified 3-
dimensional recursive search (3DRS) algorithm [8], uses seven
candidate vectors and performs full-, half- and quarter-pixel
refinements. Since motion estimation is application dependent,
flexibility is very important. This has been achieved by
implementing the control parts in software and the compute
intensive parts in hardware.
Loop filtering is employed to reduce noise content in the video
data. This loop filter is based on a motion-compensated temporal
filtering algorithm [4], and is implemented as part of the MC
block.
The bit-rate control algorithm TMN8 [9] is used for setting the
quantizer value in order to meet the bit-rate requirements. Since
the bit-rate control algorithm is application dependent, it is
completely done in software.

The above choice of algorithms, namely embedded compression
to realize compress frame memory, 3DRS-based motion
estimation and loop filtering, provide a low cost realization of
video encoding.

Figure 2. Levels of Design Abstraction

3. ARCHITECTURE
3.1 Design Flow
One of the important premises in the design of systems-on-a-chip
(SoC) is to trade off efficiency for flexibility and time-to-market
for cost. The design flow that abides by the premise above is to
start from a high-level executable specification and converge
towards a silicon implementation in several steps and iterations.
One of the major tasks in this design flow is to ensure that
hardware and software tasks communicate with each other
correctly.
This can be accomplished by using a modular, flexible and
scalable heterogeneous multi-processor architecture template
based on distributed shared memory and an efficient and
transparent protocol for communication. The protocol
implementations have been incorporated in libraries that allow
quick traversal of the various abstraction levels, hence enabling
incremental design. Further, for ease of use, a well-defined set of
primitives is required to hide the implementation of this protocol.
The design decisions to be taken at each abstraction level are
evaluated by either (co-) simulation or prototyping.
Following are the levels of abstraction used (Figure 2):

a) Algorithmic level (single-threaded C code), which is
derived from the specification.

b) Partitioned algorithmic level (concurrent tasks).
c) Cycle-true communication level; bit- and cycle-true

models for the communication and abstract functional
models for the processing tasks.

98

d) Cycle-true embedded software level; bit- and cycle-true
models for the communication, bit- and cycle-true
functional models for software processing tasks,
behavioral models for hardware processing tasks.

e) Partially implemented cycle-true hardware level; bit- and
cycle-true models for the communication, bit- and cycle-
true functional models for software and hardware
processing tasks, combined with behavioral models for
tasks still to be implemented in hardware.

f) Bit- and cycle-true level; bit- and cycle-true models for
the communication, bit- and cycle-true functional models
for hardware/software processing tasks.

The approach used for controlling the data-flow in heterogeneous
multi-processor architectures is to have the processing devices
synchronized autonomously [10]. This implies that each
processing device should be able to initiate communication with
any other device; hence the communication protocol must have a
distributed implementation. With this approach, we can go to a
smaller grain of synchronization, which allows smaller buffer
sizes, and hence on-chip communication. For example, in a video
context, we can synchronize on a block-line or block basis.
Our application specification is based on Kahn process Networks
[6]. In this article, we refer to these processes as tasks. In this
model, when a task wants to read from a channel and no data is
available, the task will block. However, write actions are non-
blocking. In our model, FIFOs are bounded in order to achieve an
efficient implementation of the function. This means that a task
will also block when it wants to write to a channel if the
associated FIFO is full. In the remainder of this article we will
refer to this model as a process network or task graph. The
synchronization takes place on a per-token basis. While a token is
the unit of synchronization, the amount of data associated with a
token can vary. However, the size of a token is statically fixed per
channel.
The communication protocol we describe involves the realization
of the FIFO-based communication between the tasks, and does
not refer to low-level protocols, e.g. bus protocols.
Communication in our case is divided into 1) synchronization,
and 2) data transportation. For efficiency reasons, all
communication buffer memory is allocated at set-up and is reused
during operation. Therefore, we need primitives to get and put
buffer memory space. On the data producing side we want to get
emptied token buffers and put full buffers. On the consuming side
we want to get filled token buffers and put empty ones. Getting a
token buffer is blocking, i.e. when no buffer is available the task
blocks. Releasing (put) is non-blocking. The synchronization
primitives are listed in Table 1.

Table 3.1. Synchronization Primitives

Two of the synchronization primitives, the "get_data" and the
"get_space", return a pointer to the token on the input or output
channel. Two additional primitives “load_data” and “store_data”

are provided by C-HEAP to do the reading and writing from these
pointers.

DISP

intra

input

DISP

PRED

DCT

Q IQ

IDCT

IMC

ZZ/RLE/VLE

select
mode

select
vecs vector mem

rate
ctrl

loop memory

VLE pack

SAD

ctrl rnd

Packer
processor

Texture
processorMotion

estimator

Video
processor DISP

intra

input

DISP

PRED

DCT

Q IQ

IDCT

IMC

ZZ/RLE/VLE

select
mode

select
vecs vector mem

rate
ctrl

loop memory

VLE pack

SAD

ctrl rnd

Packer
processor

Texture
processorMotion

estimator

Video
processor

Figure 3. Hardware-Software Partitioning

3.2 Hardware-Software Co-Design
The first step consists of partitioning the video encoder
application into hardware and software tasks. This step translates
a single application task (task T0 in level ‘a’ of Figure 2) into
multiple parallel tasks (T1 to T4 in level ‘b’). This step can be
divided into the following actions:

• A behavioral description in the C-language for the video
encoder was used as the starting point. In order to obtain
an estimate of the computational load, the C-code was
profiled on an ARM processor. This provided the required
clock frequency for a software-only solution and a
breakdown of the computational load for different
functional modules of the encoder. The latter was used as
a starting point for determining the hardware-software
partitioning. The main strategy was to implement the
compute-intensive parts in hardware, while keeping the
encoding standard and control related parts in software.
This is illustrated in Figure 3, wherein the small rectangles
represent hardware blocks, whereas circles represent
software.

• The VLIW-based ASIPs used for implementing the
hardware parts have the benefit that they offer the
flexibility needed for the application domain (e.g. video
coding) while achieving performance, area, and power
numbers close to that of hard-wired solution. The
hardware parts were clustered into processors, thus
resulting in four processors for the video encoder: video
input processor, motion estimation processor, texture
processor and packer processor. The objective of this
clustering is twofold. First, to reduce the synchronization
overhead between hardware and software. Second, to hide
all local communication inside the processors from global
bus activity. The latter is crucial for low power. Figure 3
depicts the four hardware processors by dashed blocks.
The communication between the processors is based on
the previously described C-HEAP protocol. A behavioral
version of the protocol was implemented on top of a
multithreading package [11].

The four hardware processors perform the functions given below.
The video input processor is responsible for doing a stripe to
macro-block conversion. The motion estimation processor
evaluates candidate motion vectors, and does motion vector
refinements. The texture processor is responsible for encoding a

Primitive Description
get_space Claims empty token buffer (blocking)
put_data Releases full token buffer (non-blocking)
get_data Claims full token buffer (blocking)
put_space Releases empty token buffer (non-blocking)

99

macro-block. The packer processor interleaves the Huffman codes
of the coefficients with those of the headers, in order to generate a
compressed output video stream.
The partitioning resulted in a single software task. This
partitioning maintains the necessary flexibility. Consider the
motion estimation task as an example. The candidate motion
vector selection is done in software. The motion estimation
processor then determines the best motion vector, does a
refinement, and transmits the results back to software. Further, in
software, the encoding mode is selected, and the quantizer value
is computed. The quantizer value and the choice of encoding
mode are passed to the texture processor, which then encodes the
macro-block. Furthermore, since the bit-rate control algorithm is
application dependent, it is completely done in software.
The second step consists of mapping the communication
backbone onto hardware, which corresponds to translation from
level ‘b’ to ‘c’ in Figure 2. This is done as follows:

• The input variables of the hardware processors consist of
two parts: initialization variables (e.g. number of pixels in
horizontal and vertical direction of a picture), and run
variables (e.g. the coordinates of the current macro-block
being encoded). In the behavioral simulations, pointers to
all the variables are passed to the processors, which use
these pointers to access the variables. Once the
communication backbone is mapped onto hardware, the
processors will have to read the initialization variables for
each macro-block from a shared memory. However, it is
much more efficient to store the initialization variables
locally during initialization. Therefore, an initialization
mode was added to each processor, during which the
initialization variables are read and stored locally. Only
the run variables, which vary across macro-blocks, are
communicated. This reduces the bandwidth on the bus
considerably.

• The event-based C simulation framework (TSS simulator
– Philips Internal Tool) was used for system simulations,
wherein (bit- and cycle-true) TSS models of the AMBA
bus and the memory were used. UNIX processes modeled
the software and hardware tasks. A C-HEAP library using
UNIX sockets implements the synchronization and
communication of these processes with TSS. These
simulations were used to obtain bus utilization figures,
and to optimize the communication structure.

The third step focuses on improving the performance of the
implementation. This can be seen as moving from level ‘c’ to ‘d’
in Figure 2. The result of the previous step consists of a system
without concurrency. A software task starts a hardware task and
awaits the completion of the hardware task (and vice versa), thus
using the resources inefficiently. Concurrency can be
implemented by pipelining the software and hardware tasks.
However, some dependencies between software and hardware
have to be broken. Since the breaking of the dependencies leads to
a different behavior, extensive simulations were carried out in
order to verify that the compression ratio and SNR are comparable
to that of the original reference C description. Also the
synchronization overhead has been optimized, by choosing the
synchronization granularity as large as possible (given the
flexibility constraints). This has resulted in two hardware
processors (motion estimation and texture) synchronizing at

macro-block granularity, and two other hardware processors
(video input and packer) synchronizing at stripe granularity.
Again the TSS simulator was used for the system simulations.
TSS models for the ARM, the AMBA bus and the memory were
used. UNIX processes, as in the previous step, modeled the
hardware tasks. These simulations showed that the required
number of clock cycles for the software tasks was smaller than the
available cycle budget.
 Figure 4 shows the pipelining of hardware and software tasks.
The video input processor is one stripe ahead of motion
estimation and texture processors. The motion estimation
processor is two macro-blocks ahead of the texture processor, as
required by the OBMC option of H.263. The header generation of
a macro-block (VLE SW) is done one macro-block later than the
encoding of the same macro-block. Last but not the least, the
packer processor is one stripe delayed with respect to the texture
processor. As stated before, only a single software task is
required. Therefore, the scheduling of the hardware and software
tasks is fixed (known at compile time).
For more details on the hardware-software co-design
methodology, the reader is referred to [10].

Video Processor

Motion Estimator

Texture Processor

VLE SW

Other SW

Packer Processor

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1

init select vector/ quantizer
pack

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

select vector/ quantizer

stripe 0 stripe 5

pack

stripes 1 - 4

... 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1

init select vector/ quantizer
pack

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

select vector/ quantizer

stripe 0 stripe 5

pack

stripes 1 - 4

...

Figure 4. Pipelining of HW/SW Tasks

3.3 Hardware Processor Design
All hardware tasks are implemented as very-long- instruction-
word (VLIW) processors. A|RT Designer [12] enables design of
these VLIW processors. All application specific functional units
(ASUs) used in the VLIW processors are designed using A|RT
Builder [12], which translates a C-based functional specification
of an algorithm into an RTL VHDL description. ASUs are used
for performing dedicated compute-intensive kernels and hence are
crucial for an efficient implementation of HW tasks. The choice
and flexibility of those ASUs enable multi-standard encoder
realization.
The following sections describe the design of hardware processors
apart from the ASUs used in these designs (moving from level ‘d’
to ‘e’ and ‘f’ in Figure 2). The motion estimator and the texture
processor have been implemented in two different configurations,
namely, with and without embedded compression (EC).

3.3.1 Video Processor
The video processor is used for re-organizing the pixel format.
This processor uses standard resources apart from an ASU for re-
organizing pixels more efficiently.
The input format of pixels (namely, YYUYYV) is converted into
four luminance and two chrominance 8x8 blocks in order to
generate a macro-block output.

100

For (every macro-block)
• Fetch a block from current frame
• Determine actions to be performed
• For every action:

Æ Initialization
Æ For every vector:

� Initialization
� For every component:

• Displace DCT block
• Calculate SAD

� Update results
Æ Update and write results

For (all blocks in macro-block)
• Fetch a block from current frame
• Fetch a block from the previous reconstructed frame (if not

available in the cache)
Æ Perform displacement to get sub-pixel accurate

block
• Motion compensate current block from the block fetched from

the previous reconstructed frame
Æ Perform motion compensated loop filtering
Æ Perform overlapped block motion compensation

(OBMC)
• Perform DCT and Quantization on the motion compensated

block
• Perform IQ/IDCT/IMC and store the reconstructed block in the

loop memory (loop memory holds the reconstructed frame)
• Perform loss less coding (ZZ/RLE/VLE) and store the Huffman

encoded coefficients

3.3.2 Motion Estimator
In the motion estimation hardware task, the current macro-block is
motion estimated for all the candidate motion vectors in order to
determine the best matching motion vector. Further, optionally,
this best vector can be refined to half/quarter pixel accuracy. The
3DRS motion estimation uses sum-of-absolute-differences (SAD)
as the matching criterion. The architecture of the motion estimator
is shown in Figure 5. The granularity of the motion estimator
processing is a macro-block.

Figure 5. Motion Estimator Architecture

Table 3.2. Application Specific Units of ME

Figure 6. Pseudo Code for Motion Estimator
The VLIW architecture of the motion estimator consists of
standard resources like arithmetic-logic-units (ALUs), address
computation units (ACUs), multipliers, constant-ROM, RAM,
instruction memory, VLIW controller, apart from ASUs (refer to
Table 2).
The first step in the motion estimator process is to determine the
flow of actions, by analyzing software-controlled options.
Subsequently all actions are executed as depicted in the pseudo
code shown in Figure 6. The inner loop iterates over all luminance
components of the macro-block. Within this loop the candidate
vector block is displaced, delivered to SAD engine and SAD
calculation is done. The middle loop iterates over the number of
candidate vectors for this particular action.

Figure 7. Texture Processor Architecture

Table 3.3. Application Specific Units of TC
ASU Purpose

BW Byte/word conversions
CLIP Clip engine (pixels, coordinates, vectors)
MEMPTR Memory pointer address calculation
MC Motion compensator (predictor)
DCTI (Inverse) discrete cosine transform (EC)
DISP Displacer (cache/interpolator)
IQ (Inverse) quantizor
ZZ Zigzag transform
RLE Run length encoder
VLE Variable length encoder (Huffman table)

Figure 8. Pseudo Code for Texture Processor

3.3.3 Texture Processor
The tasks of the texture processor are to calculate the difference
between the current macro-block and the best match in the
reconstructed image (prediction), transform, quantize, and entropy
encode. The quantized data is inverse quantized, inverse
transformed, reconstructed by adding the prediction, and stored in
the loop memory to encode the next picture. The texture processor
also has macro-block granularity. The architecture of the texture
processor is shown in Figure 7. Again, the architecture contains
standard resources apart from ASUs. An overview of ASUs is
shown in Table 3 and the pseudo code is provided in Figure 8.

3.3.4 Packer Processor
The packer processor combines the Huffman coded video stream
together with header information in order to generate compressed
video stream of a given format. The packer processor uses one
ASU for packing bit streams apart from standard resources. The
ASU packs the Huffman codes into multiples of 32-bit words.

ASU Purpose
BW Byte/word conversions
CLIP Clip engine (pixels, coordinates, vectors)
DCTI (Inverse) discrete cosine transform (EC)
DEC Embedded decompression (EC)
DISP Displacer (cache/interpolator)
MEMPTR Memory pointer address calculation
RND Random number generator
SAD Sum of absolute difference engine

101

4. RESULTS
The C-based design flow and VLIW-based ASIPs used in the
encoder realization enable faster design time (36 man-months)
while addressing cost and flexibility. Table 4 presents the area and
power numbers of a video encoder implementation described in
this work with and without embedded compression. The
implementation supports up to CIF@30fps. The motion estimator,
the texture, and the packer processors where synthesized as
hardware components for typical case in 0.18µm CMOS
technology. The functionality of the video processor was
implemented in software run by the CPU. The multi-standard
video encoder was verified (bit-true and cycle-true) until the
netlist.

Table 4.1. Area/Power Numbers of Encoder
Instance Area

(mm2)
Power
(mW)

Area
with EC
(mm2)

Power
with EC

(mW)
ARM7TDMI-S 0.62 3.93 0.62 5.15
CPU memory 3.25 1.56 3.25 1.88
Loop memory off-chip off-chip 4.39 0.77
Motion estimator 1.62 6.03 2.74 8.70
Texture codec 4.24 4.30 5.39 6.21
Packer processor 0.50 0.08 0.50 0.08
Shells & busses 3.41 (*) 5.50 (*) 2.98 7.55
Total 13.64 (*) 21.40 (*) 19.86 30.34
(*) Off-chip loop memory data are not included
The CPU processor is an ARM7TDMI-S built in 0.18µm CMOS
technology, with 0.39mW/MHz of power consumption. The
frequency of the CPU clock is scaled down to just meet the
performance requirements of the application. The memory
instance includes only the CPU memory in the case without
compression and the CPU- and loop memories in the case with
embedded compression. While the loop memory has been
embedded on-chip in the second case, the size of the motion
estimation processor and texture processor have been increased
due to the extra functional units needed for compression. The
shells around the processors and busses support the
communication among the components. Table 4 presents also the
power dissipation numbers that are obtained under a typical
simulation scenario (25ºC, 1.8V) for QCIF@15fps. QCIF@15fps
has been chosen to facilitate benchmarking with existing
solutions. The hardware processors run at 100MHz and are clock-
gated when not in use.

Table 4.2. Benchmarking
Benchmark Standard Area

(mm2)
Power
(mW)

Hitachi [2] MPEG4 43 170
Our design MPEG4, H.263, JPEG 19.9 30.3
Toshiba [13] MPEG4 86 40
Fujitsu [3] MPEG4 28 9

Table 5 shows the benchmarking of our design with three
different encoder solutions [2,3,13]. The implementation in [2] is
a complete SW solution using a fused RISC/DSP CPU and hence
has higher area and power numbers. The implementation in [3] is
an ASIC solution with off-chip SDRAM for loop memory, and
the power indicated in the table does not consider the off-chip
memory consumption. Compared to the ASIC solution, our design
is more flexible and multi-standard. The implementation of [13]

addresses flexibility similarly to our design while consuming more
power for the same functionality.

5. CONCLUSIONS
In this work we presented the design of a low-cost, low-power and
multi-standard video encoder. The right choice of algorithms and
architectures had enabled an efficient solution for the video
encoder. The use of embedded compression technique for
reducing the size of the loop memory had enabled a single-chip
low-cost solution. Further, the choice of HW/SW partitioning had
contributed to the design of a low-power encoder. The power and
area estimates for the encoder in 0.18µm CMOS technology are
30mW (for QCIF@15fps) and 20mm2 respectively including the
loop memory, and it is more competitive compared to state-of-the-
art designs.

6. REFERENCES
[1] V. Bhaskaran, and K. Konstantinides. Image and Video

Compression Standards. Algorithms and Architectures. 2nd Edition.
Kluwer Academic Publishers. 1997.

[2] T. Yamada. A 133MHz, 170mW, 10µA Standby Application
Processor for 3G Cellular Phones. In: IEEE Solid-State Circuits
Conference. 2002.

[3] H. Nakayama. An MPEG-4 Video LSI with a 9mW Error-Resilient
Codec based on a Fast Motion Estimation Algorithm. In: IEEE
Solid-State Circuits Conference. 2002.

[4] A. van der Werf, et al. I.McIC: A Single-Chip MPEG-2 Video
Encoder for Storage. In: IEEE Journal of Solid-State Circuits, vol.
32, no. 11. Nov. 1997.

[5] A. Nieuwland, et al. C-HEAP: A Heterogeneous Multi-Processor
Architecture Template and Scalable and Flexible Protocol for the
Design of Embedded Signal Processing Systems. In: Kluwer Design
Automation of Embedded Systems, Oct. 2002.

[6] G. Kahn. The Semantics of a Simple Language for Parallel
Programming. In: Information Processing. J. Rosenfeld, Ed. North-
Holland Publishing Co. 1974.

[7] R. Kleihorst, et al. DCT-Domain Embedded Memory Compression
for Hybrid Video Coders. In: Journal of VLSI Signal Processing
Systems, vol. 24, pp. 31-41, 2000.

[8] G. de Haan, et al. True-Motion Estimation with 3-D Recursive
Search Block Matching. In: IEEE Transactions on Circuits and
Systems for Video Technology, vol. 3, no. 5. Oct. 1993.

[9] ITU-Telecommunication Standardization Sector. H.263 Version 2
(H.263+). Video Coding for Low Bit-Rate Communication. 1998.

[10] A. Nieuwland and P. Lippens. A Heterogeneous HW/SW
Architecture for Hand-held Multi-media Terminals. In: IEEE
Workshop on Signal Processing Systems. 1998.

[11] PAMELA. A Performance Modeling Language, ce-serv.et.tudelft.nl

[12] Adelante Technologies. A|RT Builder and A|RT Designer Manuals.
www.adelante.com

[13] H. Arakida, et al. A 160mW, 80nA Standby, MPEG-4 Audiovisual
LSI with 16Mb Embedded DRAM and a 5GOPS Adaptive Post
Filter. In: IEEE Solid-State Circuits Conference. 2003.

102

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

