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ABSTRACT 
Video encoders are an important IP block in mobile multimedia 
systems. In this paper, we describe a low-cost low-power multi-
standard (MPEG4, JPEG, and H.263) video/image encoder. The 
low-cost and low-power aspects are achieved by the right choice of 
algorithms and architectures. In the algorithm front, an embedded 
compression technique for reducing the size of loop memory has 
enabled a single-chip low-cost realization of the encoder. In the 
architectural front, an efficient hardware-software partitioning has 
contributed to the design of a low-power encoder. Further, the 
hardware components that accelerate the kernels of encoding are 
implemented as application specific instruction-set processors 
(ASIPs) thereby providing flexibility to address multi-standard 
encoding. The power and area estimates for the encoder for 
QCIF@15fps in 0.18µm CMOS technology are 30mW and 20mm2 
respectively including the loop memory.   

Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: Special-Purpose and 
Application-based Systems – real-time and embedded systems, 
signal processing systems. 

General Terms 
Algorithms, Performance, Design, Reliability, Verification. 

Keywords 
Video Encoder, Multi-Standard, Low-Power, Low-Cost, ASIPs, 
Hardware/Software Partitioning. 

1. INTRODUCTION 
Video compression [1] plays a pivotal role in enabling video 
processing on mobile multimedia systems (e.g. mobile videophone). 
We, in this paper, present a low-cost, low-power multi-standard 
video encoder for mobile applications. The low-power and low-cost 
constraints on the encoder design are met by using innovative 
algorithms and efficient architectures. Further, the multi-standard 

aspect (MPEG4 SP@L3, JPEG, and H.263) demonstrates the 
flexibility of this encoder. Furthermore, this design is more efficient 
and flexible compared to other solutions like the ones offered by 
Hitachi [2] or Fujitsu [3]. 
Traditional implementations of encoders have always resulted in 
expensive multi-chip solutions due to the presence of a large loop 
memory [3,4]. The encoder presented in this paper, which is 
intended to support up to VGA@30fps (3.5Mbits of loop memory), 
achieves a single chip implementation by compressing the picture 
stored in the loop memory. Further, in order to support VGA the use 
of compressed loop memory is a must to achieve a single-chip 
solution.  
The hardware-software partitioning of the encoder design has been 
along the traditional path of mapping compute-intensive tasks onto 
hardware (minimal flexibility) and control-intensive tasks onto 
software (maximal flexibility). The encoder uses an architecture 
template C-HEAP (CPU-controlled Heterogeneous Embedded 
Architectures for signal Processing [5]), wherein the processors with 
different levels of flexibility run concurrent tasks. The 
communication between these heterogeneous processors is through 
the use of C-HEAP communication protocol. The encoder uses 
ASIPs based on a very large instruction word (VLIW) template [12] 
to accelerate compute-intensive parts of video encoding. 
The paper is organized as follows. Section 2 describes the 
algorithmic space of the video compression domain. In Section 3, 
the hardware-software partitioning employed in the encoder design 
is described apart from the design flow itself. The implementation 
figures are presented in Section 4. Finally, we conclude in Section 5. 

 
Figure 1. Video Encoders: (a) Conventional, (b) with 

Embedded Compression 
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2. ALGORITHM 
Compression yields a compact representation of a signal by 
exploiting spatial and temporal correlation. Figure 1(a) shows a 
conventional encoder. It contains the following blocks: motion 
estimator (ME), motion compensator (MC), inverse motion 
compensator (IMC), (inverse) discrete cosine transform ((I)DCT), 
(inverse) quantizer ((I)Q), zigzag transform (ZZ), run length 
encoder (RLE), variable length encoder (VLE), and a loop 
memory. 
The ME block determines the best match of the current macro-
block (16 by 16 pixels) in the reconstructed image stored in the 
loop memory. The difference between the current macro-block 
and the best match in the reconstructed image is computed (MC), 
transformed (DCT), quantized (Q) and entropy encoded (ZZ, 
RLE, and VLE). The quantized data is inverse quantized (IQ), 
inverse transformed (IDCT), reconstructed (IMC) by adding the 
prediction, and stored in the loop memory to encode the next 
picture.  
Implementations of this encoder have always resulted in two-chip 
solutions [3,4]. This is primarily due to large size of the loop 
memory (e.g. 3.5Mbits for a VGA). However, an efficient single-
chip solution is possible if the picture stored in the loop memory 
can be compressed. This is achieved using the technique of 
embedded compression [7], wherein the loop memory is in the 
DCT domain and the DCT coefficients are stored using a scalable 
bit-plane based zonal coding approach. Figure 1(b) depicts a 
video encoder with embedded compression for the loop memory. 
The compression factor is fixed to 2.7 in order to avoid any 
quality degradation. Since the loop memory is organized in blocks 
(8x8 pixels), access to a macro-block from memory at a displaced 
position by the motion-estimator (ME) requires at most nine 
block-reads from the memory. This translates to few scalable 
decodes (DEC) and inverse-DCT (IDCT) operations. The 
displacement block (DISP) computes the displaced video block in 
spatial domain based on the blocks accessed from the loop 
memory. Note that without embedded compression, data read 
from e.g. SDRAM memories could be more than just the macro-
blocks needed, this is because the addressing mechanism of the 
SDRAM which does not allow the access to single pixels but 
groups of them. 
The motion estimator is responsible for determining the best 
match for the current macro-block with the picture stored in the 
loop memory. The motion estimator, based on the modified 3-
dimensional recursive search (3DRS) algorithm [8], uses seven 
candidate vectors and performs full-, half- and quarter-pixel 
refinements. Since motion estimation is application dependent, 
flexibility is very important. This has been achieved by 
implementing the control parts in software and the compute 
intensive parts in hardware.  
Loop filtering is employed to reduce noise content in the video 
data. This loop filter is based on a motion-compensated temporal 
filtering algorithm [4], and is implemented as part of the MC 
block.  
The bit-rate control algorithm TMN8 [9] is used for setting the 
quantizer value in order to meet the bit-rate requirements. Since 
the bit-rate control algorithm is application dependent, it is 
completely done in software. 

The above choice of algorithms, namely embedded compression 
to realize compress frame memory, 3DRS-based motion 
estimation and loop filtering, provide a low cost realization of 
video encoding. 

 
Figure 2. Levels of Design Abstraction 

3. ARCHITECTURE 
3.1 Design Flow 
One of the important premises in the design of systems-on-a-chip 
(SoC) is to trade off efficiency for flexibility and time-to-market 
for cost. The design flow that abides by the premise above is to 
start from a high-level executable specification and converge 
towards a silicon implementation in several steps and iterations. 
One of the major tasks in this design flow is to ensure that 
hardware and software tasks communicate with each other 
correctly.  
This can be accomplished by using a modular, flexible and 
scalable heterogeneous multi-processor architecture template 
based on distributed shared memory and an efficient and 
transparent protocol for communication. The protocol 
implementations have been incorporated in libraries that allow 
quick traversal of the various abstraction levels, hence enabling 
incremental design. Further, for ease of use, a well-defined set of 
primitives is required to hide the implementation of this protocol. 
The design decisions to be taken at each abstraction level are 
evaluated by either (co-) simulation or prototyping. 
Following are the levels of abstraction used (Figure 2): 

a) Algorithmic level (single-threaded C code), which is 
derived from the specification. 

b) Partitioned algorithmic level (concurrent tasks). 
c) Cycle-true communication level; bit- and cycle-true 

models for the communication and abstract functional 
models for the processing tasks. 
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d) Cycle-true embedded software level; bit- and cycle-true 
models for the communication, bit- and cycle-true 
functional models for software processing tasks, 
behavioral models for hardware processing tasks. 

e) Partially implemented cycle-true hardware level; bit- and 
cycle-true models for the communication, bit- and cycle-
true functional models for software and hardware 
processing tasks, combined with behavioral models for 
tasks still to be implemented in hardware. 

f) Bit- and cycle-true level; bit- and cycle-true models for 
the communication, bit- and cycle-true functional models 
for hardware/software processing tasks. 

The approach used for controlling the data-flow in heterogeneous 
multi-processor architectures is to have the processing devices 
synchronized autonomously [10]. This implies that each 
processing device should be able to initiate communication with 
any other device; hence the communication protocol must have a 
distributed implementation. With this approach, we can go to a 
smaller grain of synchronization, which allows smaller buffer 
sizes, and hence on-chip communication. For example, in a video 
context, we can synchronize on a block-line or block basis.  
Our application specification is based on Kahn process Networks 
[6]. In this article, we refer to these processes as tasks. In this 
model, when a task wants to read from a channel and no data is 
available, the task will block. However, write actions are non-
blocking.  In our model, FIFOs are bounded in order to achieve an 
efficient implementation of the function. This means that a task 
will also block when it wants to write to a channel if the 
associated FIFO is full. In the remainder of this article we will 
refer to this model as a process network or task graph. The 
synchronization takes place on a per-token basis.  While a token is 
the unit of synchronization, the amount of data associated with a 
token can vary. However, the size of a token is statically fixed per 
channel. 
The communication protocol we describe involves the realization 
of the FIFO-based communication between the tasks, and does 
not refer to low-level protocols, e.g. bus protocols.  
Communication in our case is divided into 1) synchronization, 
and 2) data transportation. For efficiency reasons, all 
communication buffer memory is allocated at set-up and is reused 
during operation. Therefore, we need primitives to get and put 
buffer memory space.  On the data producing side we want to get 
emptied token buffers and put full buffers. On the consuming side 
we want to get filled token buffers and put empty ones.  Getting a 
token buffer is blocking, i.e. when no buffer is available the task 
blocks. Releasing (put) is non-blocking. The synchronization 
primitives are listed in Table 1. 

Table 3.1. Synchronization Primitives 

 
Two of the synchronization primitives, the "get_data" and the 
"get_space", return a pointer to the token on the input or output 
channel. Two additional primitives “load_data” and “store_data” 

are provided by C-HEAP to do the reading and writing from these 
pointers. 
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Figure 3. Hardware-Software Partitioning 

3.2 Hardware-Software Co-Design 
The first step consists of partitioning the video encoder 
application into hardware and software tasks. This step translates 
a single application task (task T0 in level ‘a’ of Figure 2) into 
multiple parallel tasks (T1 to T4 in level ‘b’). This step can be 
divided into the following actions:  

• A behavioral description in the C-language for the video 
encoder was used as the starting point. In order to obtain 
an estimate of the computational load, the C-code was 
profiled on an ARM processor. This provided the required 
clock frequency for a software-only solution and a 
breakdown of the computational load for different 
functional modules of the encoder. The latter was used as 
a starting point for determining the hardware-software 
partitioning. The main strategy was to implement the 
compute-intensive parts in hardware, while keeping the 
encoding standard and control related parts in software. 
This is illustrated in Figure 3, wherein the small rectangles 
represent hardware blocks, whereas circles represent 
software. 

• The VLIW-based ASIPs used for implementing the 
hardware parts have the benefit that they offer the 
flexibility needed for the application domain (e.g. video 
coding) while achieving performance, area, and power 
numbers close to that of hard-wired solution. The 
hardware parts were clustered into processors, thus 
resulting in four processors for the video encoder: video 
input processor, motion estimation processor, texture 
processor and packer processor. The objective of this 
clustering is twofold. First, to reduce the synchronization 
overhead between hardware and software. Second, to hide 
all local communication inside the processors from global 
bus activity. The latter is crucial for low power. Figure 3 
depicts the four hardware processors by dashed blocks. 
The communication between the processors is based on 
the previously described C-HEAP protocol. A behavioral 
version of the protocol was implemented on top of a 
multithreading package [11]. 

The four hardware processors perform the functions given below. 
The video input processor is responsible for doing a stripe to 
macro-block conversion. The motion estimation processor 
evaluates candidate motion vectors, and does motion vector 
refinements. The texture processor is responsible for encoding a 

Primitive Description 
get_space Claims empty token buffer (blocking) 
put_data Releases full token buffer (non-blocking) 
get_data Claims full token buffer (blocking) 
put_space Releases empty token buffer (non-blocking) 
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macro-block. The packer processor interleaves the Huffman codes 
of the coefficients with those of the headers, in order to generate a 
compressed output video stream. 
The partitioning resulted in a single software task. This 
partitioning maintains the necessary flexibility. Consider the 
motion estimation task as an example. The candidate motion 
vector selection is done in software. The motion estimation 
processor then determines the best motion vector, does a 
refinement, and transmits the results back to software. Further, in 
software, the encoding mode is selected, and the quantizer value 
is computed. The quantizer value and the choice of encoding 
mode are passed to the texture processor, which then encodes the 
macro-block. Furthermore, since the bit-rate control algorithm is 
application dependent, it is completely done in software.  
The second step consists of mapping the communication 
backbone onto hardware, which corresponds to translation from 
level ‘b’ to ‘c’ in Figure 2. This is done as follows: 

• The input variables of the hardware processors consist of 
two parts: initialization variables (e.g. number of pixels in 
horizontal and vertical direction of a picture), and run 
variables (e.g. the coordinates of the current macro-block 
being encoded). In the behavioral simulations, pointers to 
all the variables are passed to the processors, which use 
these pointers to access the variables. Once the 
communication backbone is mapped onto hardware, the 
processors will have to read the initialization variables for 
each macro-block from a shared memory. However, it is 
much more efficient to store the initialization variables 
locally during initialization. Therefore, an initialization 
mode was added to each processor, during which the 
initialization variables are read and stored locally. Only 
the run variables, which vary across macro-blocks, are 
communicated. This reduces the bandwidth on the bus 
considerably.  

• The event-based C simulation framework (TSS simulator 
– Philips Internal Tool) was used for system simulations, 
wherein (bit- and cycle-true) TSS models of the AMBA 
bus and the memory were used. UNIX processes modeled 
the software and hardware tasks. A C-HEAP library using 
UNIX sockets implements the synchronization and 
communication of these processes with TSS. These 
simulations were used to obtain bus utilization figures, 
and to optimize the communication structure.  

The third step focuses on improving the performance of the 
implementation. This can be seen as moving from level ‘c’ to ‘d’ 
in Figure 2. The result of the previous step consists of a system 
without concurrency. A software task starts a hardware task and 
awaits the completion of the hardware task (and vice versa), thus 
using the resources inefficiently. Concurrency can be 
implemented by pipelining the software and hardware tasks. 
However, some dependencies between software and hardware 
have to be broken. Since the breaking of the dependencies leads to 
a different behavior, extensive simulations were carried out in 
order to verify that the compression ratio and SNR are comparable 
to that of the original reference C description. Also the 
synchronization overhead has been optimized, by choosing the 
synchronization granularity as large as possible (given the 
flexibility constraints). This has resulted in two hardware 
processors (motion estimation and texture) synchronizing at 

macro-block granularity, and two other hardware processors 
(video input and packer) synchronizing at stripe granularity. 
Again the TSS simulator was used for the system simulations. 
TSS models for the ARM, the AMBA bus and the memory were 
used. UNIX processes, as in the previous step, modeled the 
hardware tasks. These simulations showed that the required 
number of clock cycles for the software tasks was smaller than the 
available cycle budget.  
 Figure 4 shows the pipelining of hardware and software tasks. 
The video input processor is one stripe ahead of motion 
estimation and texture processors. The motion estimation 
processor is two macro-blocks ahead of the texture processor, as 
required by the OBMC option of H.263. The header generation of 
a macro-block (VLE SW) is done one macro-block later than the 
encoding of the same macro-block. Last but not the least, the 
packer processor is one stripe delayed with respect to the texture 
processor. As stated before, only a single software task is 
required. Therefore, the scheduling of the hardware and software 
tasks is fixed (known at compile time). 
For more details on the hardware-software co-design 
methodology, the reader is referred to [10]. 
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Figure 4. Pipelining of HW/SW Tasks 

3.3 Hardware Processor Design 
All hardware tasks are implemented as very-long- instruction-
word (VLIW) processors. A|RT Designer [12] enables design of 
these VLIW processors. All application specific functional units 
(ASUs) used in the VLIW processors are designed using A|RT 
Builder [12], which translates a C-based functional specification 
of an algorithm into an RTL VHDL description. ASUs are used 
for performing dedicated compute-intensive kernels and hence are 
crucial for an efficient implementation of HW tasks. The choice 
and flexibility of those ASUs enable multi-standard encoder 
realization. 
The following sections describe the design of hardware processors 
apart from the ASUs used in these designs (moving from level ‘d’ 
to ‘e’ and ‘f’ in Figure 2). The motion estimator and the texture 
processor have been implemented in two different configurations, 
namely, with and without embedded compression (EC). 

3.3.1 Video Processor 
The video processor is used for re-organizing the pixel format. 
This processor uses standard resources apart from an ASU for re-
organizing pixels more efficiently. 
The input format of pixels (namely, YYUYYV) is converted into 
four luminance and two chrominance 8x8 blocks in order to 
generate a macro-block output. 
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For (every macro-block) 
• Fetch a block from current frame 
• Determine actions to be performed 
• For every action: 

Æ Initialization 
Æ For every vector: 

� Initialization 
� For every component: 

• Displace DCT block 
• Calculate SAD 

� Update results 
Æ Update and write results 

For (all blocks in macro-block) 
• Fetch a block from current frame 
• Fetch a block from the previous reconstructed frame (if not 

available in the cache) 
Æ Perform displacement to get sub-pixel accurate 

block  
• Motion compensate current block from the block fetched from 

the previous reconstructed frame 
Æ Perform motion compensated loop filtering 
Æ Perform overlapped block motion compensation 

(OBMC)  
• Perform DCT and Quantization on the motion compensated 

block 
• Perform IQ/IDCT/IMC and store the reconstructed block in the 

loop memory (loop memory holds the reconstructed frame) 
• Perform loss less coding (ZZ/RLE/VLE) and store the Huffman 

encoded coefficients 

3.3.2 Motion Estimator 
In the motion estimation hardware task, the current macro-block is 
motion estimated for all the candidate motion vectors in order to 
determine the best matching motion vector. Further, optionally, 
this best vector can be refined to half/quarter pixel accuracy. The 
3DRS motion estimation uses sum-of-absolute-differences (SAD) 
as the matching criterion. The architecture of the motion estimator 
is shown in Figure 5. The granularity of the motion estimator 
processing is a macro-block. 

 

 
Figure 5. Motion Estimator Architecture 

Table 3.2. Application Specific Units of ME 

Figure 6. Pseudo Code for Motion Estimator 
The VLIW architecture of the motion estimator consists of 
standard resources like arithmetic-logic-units (ALUs), address 
computation units (ACUs), multipliers, constant-ROM, RAM, 
instruction memory, VLIW controller, apart from ASUs (refer to 
Table 2). 
The first step in the motion estimator process is to determine the 
flow of actions, by analyzing software-controlled options. 
Subsequently all actions are executed as depicted in the pseudo 
code shown in Figure 6. The inner loop iterates over all luminance 
components of the macro-block. Within this loop the candidate 
vector block is displaced, delivered to SAD engine and SAD 
calculation is done. The middle loop iterates over the number of 
candidate vectors for this particular action. 

 
Figure 7. Texture Processor Architecture 

Table 3.3. Application Specific Units of TC 
ASU Purpose 

BW Byte/word conversions 
CLIP Clip engine (pixels, coordinates, vectors) 
MEMPTR Memory pointer address calculation 
MC Motion compensator (predictor) 
DCTI (Inverse) discrete cosine transform (EC) 
DISP Displacer (cache/interpolator) 
IQ (Inverse) quantizor 
ZZ Zigzag transform 
RLE Run length encoder 
VLE Variable length encoder (Huffman table) 

Figure 8. Pseudo Code for Texture Processor 

3.3.3 Texture Processor 
The tasks of the texture processor are to calculate the difference 
between the current macro-block and the best match in the 
reconstructed image (prediction), transform, quantize, and entropy 
encode. The quantized data is inverse quantized, inverse 
transformed, reconstructed by adding the prediction, and stored in 
the loop memory to encode the next picture. The texture processor 
also has macro-block granularity. The architecture of the texture 
processor is shown in Figure 7. Again, the architecture contains 
standard resources apart from ASUs. An overview of ASUs is 
shown in Table 3 and the pseudo code is provided in Figure 8. 

3.3.4 Packer Processor 
The packer processor combines the Huffman coded video stream 
together with header information in order to generate compressed 
video stream of a given format. The packer processor uses one 
ASU for packing bit streams apart from standard resources. The 
ASU packs the Huffman codes into multiples of 32-bit words. 

ASU Purpose 
BW Byte/word conversions 
CLIP Clip engine (pixels, coordinates, vectors) 
DCTI (Inverse) discrete cosine transform (EC) 
DEC Embedded decompression (EC) 
DISP Displacer (cache/interpolator) 
MEMPTR Memory pointer address calculation 
RND Random number generator 
SAD Sum of absolute difference engine 
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4. RESULTS 
The C-based design flow and VLIW-based ASIPs used in the 
encoder realization enable faster design time (36 man-months) 
while addressing cost and flexibility. Table 4 presents the area and 
power numbers of a video encoder implementation described in 
this work with and without embedded compression. The 
implementation supports up to CIF@30fps. The motion estimator, 
the texture, and the packer processors where synthesized as 
hardware components for typical case in 0.18µm CMOS 
technology. The functionality of the video processor was 
implemented in software run by the CPU. The multi-standard 
video encoder was verified (bit-true and cycle-true) until the 
netlist. 

Table 4.1. Area/Power Numbers of Encoder 
Instance Area  

(mm2) 
Power 
(mW) 

Area 
with EC 
(mm2) 

Power 
with EC 

(mW) 
ARM7TDMI-S 0.62 3.93 0.62 5.15 
CPU memory 3.25 1.56 3.25 1.88 
Loop memory off-chip off-chip 4.39 0.77 
Motion estimator 1.62 6.03 2.74 8.70 
Texture codec 4.24 4.30 5.39 6.21 
Packer processor 0.50 0.08 0.50 0.08 
Shells & busses 3.41 (*) 5.50 (*) 2.98 7.55 
Total 13.64 (*) 21.40 (*) 19.86 30.34 
(*) Off-chip loop memory data are not included 
The CPU processor is an ARM7TDMI-S built in 0.18µm CMOS 
technology, with 0.39mW/MHz of power consumption. The 
frequency of the CPU clock is scaled down to just meet the 
performance requirements of the application. The memory 
instance includes only the CPU memory in the case without 
compression and the CPU- and loop memories in the case with 
embedded compression. While the loop memory has been 
embedded on-chip in the second case, the size of the motion 
estimation processor and texture processor have been increased 
due to the extra functional units needed for compression. The 
shells around the processors and busses support the 
communication among the components. Table 4 presents also the 
power dissipation numbers that are obtained under a typical 
simulation scenario (25ºC, 1.8V) for QCIF@15fps. QCIF@15fps 
has been chosen to facilitate benchmarking with existing 
solutions. The hardware processors run at 100MHz and are clock-
gated when not in use. 

Table 4.2. Benchmarking 
Benchmark Standard Area 

(mm2) 
Power 
(mW) 

Hitachi [2] MPEG4 43 170 
Our design MPEG4, H.263, JPEG 19.9 30.3 
Toshiba [13] MPEG4 86 40 
Fujitsu [3] MPEG4 28 9 
 
Table 5 shows the benchmarking of our design with three 
different encoder solutions [2,3,13]. The implementation in [2] is 
a complete SW solution using a fused RISC/DSP CPU and hence 
has higher area and power numbers. The implementation in [3] is 
an ASIC solution with off-chip SDRAM for loop memory, and 
the power indicated in the table does not consider the off-chip 
memory consumption. Compared to the ASIC solution, our design 
is more flexible and multi-standard. The implementation of [13] 

addresses flexibility similarly to our design while consuming more 
power for the same functionality. 

5. CONCLUSIONS 
In this work we presented the design of a low-cost, low-power and 
multi-standard video encoder. The right choice of algorithms and 
architectures had enabled an efficient solution for the video 
encoder. The use of embedded compression technique for 
reducing the size of the loop memory had enabled a single-chip 
low-cost solution. Further, the choice of HW/SW partitioning had 
contributed to the design of a low-power encoder. The power and 
area estimates for the encoder in 0.18µm CMOS technology are 
30mW (for QCIF@15fps) and 20mm2 respectively including the 
loop memory, and it is more competitive compared to state-of-the-
art designs. 
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