Verification of Design Decisions in ForSyDe”

Tarvo Raudvere, Ingo Sander, Ashish Kumar Singh, Axel Jantsch
Royal Institute of Technology
Stockholm, Sweden

tarvo,ingo,ashish,axel@imit.kth.se

ABSTRACT

The ForSyDe methodology has been developed for system level de-
sign. Starting with a formal specification model that captures the
functionality of the system at a high abstraction level, it provides
formal design transformation methods for a transparent refinement
process of the specification model into an implementation model
that is optimized for synthesis. A transformation may be semantic
preserving or a design decision. The latter modifies the seman-
tics of the system level description and changes the meaning of the
model. The main contribution of this paper is the incorporation of
model checking to verify that refined system blocks satisfy the de-
sign specification. Weillustrate the trandation of the ForSyDe code
to the SMV language and the verification of local design decisions
with a case study of a ForSyDe equalizer model.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids—Verification; C [Computer
Systems Organization]: Systems specification methodol ogy

General Terms
Design, Verification

Keywords
System Design, Design Refinement, Verification

1. INTRODUCTION

Future applications and architectures with extreme complexity
can be implemented on a single chip since the capacity of inte-
grated circuits is continually growing. In order to develop these
applications we believe that a system design methodology has to
start at a high abstraction level, where (1) functions should be sep-
arated from architecture and (2) computation should be separated

*This research was supported by the Swedish Foundation for
Strategic Research within the INTELECT program.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

CODES+ISSS 03, October 1-3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

176

from communication. Also the methodology has to make it pos-
sible to incorporate formal methods to verify systems at different
levels of abstraction, since simulation aloneis not sufficient.

These arguments have been a basis for the development of the
ForSyDe (Formal System Design) methodology which addresses
thetransformational design of embedded systems. A seriesof trans-
formations is applied to an initial abstract formal and functional
specification model to refine the model into a final implementa-
tion model. In [14, 15] we have introduced transformations for
ForSyDe.

The objective of this paper is to verify that blocks of the sys-
tem model satisfy system specific properties after design decision
transformations. Simulation techniques can not guarantee the cor-
rect behavior for all input stimuli. For complex designs producing
a mathematical proof in order to prove the effect of design deci-
sions on the system behavior requires high level of expertise and
may be impossible in practice. An aternative approach to validate
asystemisto apply formal verification techniques to prove that the
system satisfies the specification. We intend to use model checking
in cooperation with abstraction to validate that after each design
decision the refined system block locally satisfies system specific
properties.

2. RELATED WORK

According to the tagged signal model developed by Lee and
Sangiovanni-Vincentelli [10] the ForSyDe system model can be
classified as a synchronous computational model. It is based on the
synchrony hypothesis, that also forms the base for the synchronous
languages. According to Benveniste and Berry "the synchronous
approach is based on a relatively small variety of concepts and
methods based on deep, elegant, but simple mathematical princi-
ples’ [3]. The synchronous assumption implies a total order of
events and leads to a clean separation between computation and
communication and gives a solid base for formal methods.

Two of the well known formal techniques for verification of the
design correctness are theorem proving [7, 8] and model checking
[6]. In the former case the correctness of a system is determined
through mathematical proof composed by the designer which de-
mands good knowledge and ingenuity. The latter method applies
state exploration techniques to decide over the correctness of asys-
tem. The state space of a system must be finite for this approach.
In order to have afinite state space abstraction techniques can be
applied.

A good overview about program transformation in general is
given in [12] and for transformation of functional and logical pro-
gramsin [13]. One of the most well known transformation systems
isthe CIP (computer-aided, intuition-guided programming) project
[2]. Inside CIP, program development is viewed as an evolutionary

process that usually starts with aformal problem specification and
ends with an executable program for the intended target machine.
The individual transformations are done by semantic preserving
transformation rules, which guarantees that the final version of the
program still satisfies the initial specification.

Transformational approaches have been used mostly for develop-
ment of software programs [13] but software transformational ap-
proaches do not deal with synchronous sub-domains and resource
sharing which are required in ForSyDe. There are a so anumber of
other transformational approaches targeting hardware design, e.g.
[16], but none of them explicitly develops the concept of design
decisions or addresses the refinement of a synchronous model into
multiple synchronous sub-domains.

Lava [5] is a hardware description language based on Haskell.
Theorem proving is used for the verification of Lava programs.
An abstract circuit should be constructed containing both a sys-
tem and a property for atheorem proving method. In our approach
we are performing a direct mapping of ForSyDe into a state ma-
chine description in SMV from which properties can be verified by
automatic tools. Hence, little expertise is needed for constructing
a proof and this makes it easier for transformations verification.
Esterel [4] is a synchronous language for programming reactive
systems. Both an Esterel and a ForSyDe model can be trandated
into a form of afinite state machine as an input for automata ver-
ification systems to perform behavior analysis and proofs. How-
ever the ForSyDe model may include more complex data-flow de-
scriptions compared with Esterel which is mostly control oriented.
Therefore the task of verification is more involved. Lustre [9] isa
synchronous data-flow language for programming critical real-time
systems. The advantage of the ForSyDe methodology is that a sys-
tem model may have control and data-flow behaviors at the same
time. The Lustre program includes a system description as a set of
input/output relations, assumption about the behavior of the envi-
ronment as a set of assertions and finally a set of properties which
will be checked by a verification tool. The verification will be done
similar to the symbolic model checking by using binary decision
diagrams for state space exploration. In the ForSyDe methodol ogy
we are using a step-wise transformational approach where we need
to verify each of these transformations against a design specifica-
tion.

3. THE FORSYDE METHODOLOGY

3.1 TheDesign Process

The ForSyDe design process starts with the development of a
formal, abstract, functional specification model that can be exe-
cuted using the functional language Haskell [17]. This model is
then refined inside the functional domain by a stepwise applica-
tion of well defined design transformations into an implementation
model. As the implementation model is a refined version of the
specification model, the same validation and verification methods
can be applied to both models. In the partitioning phase, the imple-
mentation model is partitioned into hardware and software blocks,
which are mapped on architectural components. Only now, in the
code generation phase, we leave the functional domain and enter
the implementation domain to produce VHDL or C/C++ for the
hardware and software parts as discussed in [11].

3.2 The Specification M odel

The specification model is based on a synchronous computa-
tional model and uses ideal data types such as real numbers and
infinite buffers. It abstracts from implementation details, such as
low-level communication mechanisms and enables the designer to

177

focus on the functional behavior of the system rather than struc-
ture and architecture. The specification model leaves awide design
space for further design exploration and design refinement, which
is supported by our transformational refinement techniques (Sec-
tion 4).

We describe our computational model in the sense of signals
and processes where processes are executed concurrently and syn-
chronous communication between them is modeled by signals. A
signal is defined as a set of events where each event g has avalue
and atag i. Aswe use the perfect synchrony hypothesis [3], al
signals have the same set of tags. In order to model the absence of
avalue at a certain tag, a data type D can be extended into a data
type D, by adding the special value L. Absent values are used
to establish atotal order of events when dealing with signals with
different or aperiodic event rates. A system can be constructed as a
network of processes and modeled as a set of equations.

We implement the synchronous computational model with the
concept of process constructors. A process constructor is a higher-
order function that takes combinational functions and values asin-
put and produces a process as output. The ForSyDe methodol ogy
obliges the designer to use process constructors for the modeling
of processes. Thisleadsto awell defined specification model with
a clean separation between synchronization (process constructors)
and computation (combinational function). In addition each pro-
cess constructor has a structural hardware and software semantics
which is used to tranglate the implementation model into a hard-
ware/software implementation [11].

The process constructor mapSY (Figure 1) takes a combinational
function f and constructs a process with one input and output sig-
nal, where f isapplied on all values of the input signal.

So) mapsy(f) |Se
mapSY(f) = P
where Ps) = ¢
fl@) = ¢

Figure 1: The Combinational Process Constructor mapSY

Figure 2 illustrates a mooreSY,, process which models a n-input
Moore state machine. The process constructor mooreSY;, takes two
combinational functions f and g as next state function and output
function and mg asinitial state. The process constructor zipWithSYy,
is similar to mapSY and applies a n-variable combinational func-
tion f to al events of the input signals. The process constructor
delaySY; models one-cycle delay and emits my as the first value of
the output signal.

mooreSYn(f,g,mo)

;g Zip\/(\'1ft>hSYn+1 - de(‘g%)s‘(l }—T{ mapSY(Q)Fi

Figure2: The mooreSY, Process Constructor

3.3 Implementation Model

The implementation model is the result of the refinement pro-
cess (Section 4). In contrast to the specification model which is a
network of concurrent synchronous processes it may also include
synchronous sub-domains with adifferent signal rate. Synchronous
sub-domains violate the synchronous assumption since not al sig-
nals share the same set of tags. Thus they are not allowed in the

specification model, but are introduced by well-defined transfor-
mations during the refinement process. Inside a synchronous sub-
domain the synchronous assumption is still valid and the same for-
mal techniques can be used as for the specification model.

4. REFINEMENT OF THESYSTEM MODEL

The initial specification model is stepwise refined through the
use of well defined design transformationsinto afinal implementa-
tion model.

There are two classes of transformation techniques:

Semantic Preserving Transformations do not change the mean-
ing and the behavior of the model, rather these are mainly
used to optimize the model for synthesis.

Design Decisions change the meaning of a model. A typical de-
sign decision is the refinement of an infinite buffer into a
fixed-size buffer with n elements. While such a design de-
cision clearly modifies the semantics, the transformed model
may still behave in the same way as the original model. For
instance, if it is possible to verify that a certain buffer will
never contain more than n elements, the ideal buffer can be
replaced by afinite one of sizen.

Thedesigner appliestransformationsto a system model by choos-
ing transformation rules from the transformation library. The trans-
formation rules are characterized by a name, the required format
and constraints of the original process network, the format of the
transformed process network and the implication for the design,
i.e. the relation between original and transformed process network
is expressed by the characteristic function. For a more elaborate
discussion see [15].

Since the system properties are preserved by semantic preserving
transformations the verification is needed only for design decisions.
Design decisions can be put into various categories, for instance a
clock domain refinement which introduces multiple clock domains
in the original synchronous model or communication refinement
which can be used to partition the system into hardware and soft-
ware parts and the communication interface between them [14].
We will take up an example of communication refinement of asyn-
chronous channel into an asynchronous protocol which is suitable
to model hardware-software interfaces (Figure 3). For this trans-
formation the channel is required to be type of V, . First an iden-
tity process is introduced, and then this process is refined into the
handshaking protocol by introducing the processes FIFO, Send and
Receive. When Send isidleit triesto read data from FIFO. If the
reading was successful then Send emitsthe message DataReady to
Receive and after receiving the message Ready, it sends the data.
After the dataiis received the Receive sends a message Ack to Send.

The timing behavior of the refined interface is different from the
original interface since the handshake protocol implies a delay of
several cyclesfor each event, as Send and Receive are synchronous
processes. Also the sub-system in the Receive side of the channel
will not process exactly the same combination of values in each
event cycle asin the specification model. These consequences have
to be taken into account, when interfaces are refined. In order to
validate that the refined system block satisfies the design specifi-
cation for given assumptions about the input characteristics of the
channel and size of the FIFO buffer, we need to incorporate verifi-
cation.

178

\'1

Step 1 : Introduction of identity process

() (i) (P
Step 2 : Design Transformation Channel ToHandshake

i Interface

data

|
data DataReady WV
Receive)
Read !
ReadFIFO : !

FIFO

Figure 3: Refinement into a Handshake Protocol

5. VERIFICATION IN FORSYDE

The design flow starting from the development of a specifica-
tion model Mg to an implementation model My, through transfor-
mations T; is shown in Figure 4. A transformation T(M,R,PN) —
M[R(PN)/PN] refines the process network PN, which is a part of
the entire process network inside the model M, according to the
transformation rule R. The result of the transformation is an in-
termediate system model M’ where in contrast to the model M the
process network PN is replaced with R(PN). In order to verify the
correctness of system blocks after design decisions we incorporate
model checking techniques.

Mo Mn
o0 [(m :el PNy) M1 (m E PN2) it
ion Ry, ,Ro, imentetiol
model o el model
Process- Process- Process-
CTL CTL CTL
network network network
templater | | Ri(PNy) | [tOTPIA@ | | Ry(PN) | | 'mPIEE] | Ry(PNn)
Property . Property) Property)
[oomposej gbstra:ﬂoﬂ [oompose Abstractio compose Abstractiol
Abstract
process-
network

Ri(PNa1)

SMV program SMV program

model
checker,

Figure 4: Verification of Design Transformations

For every design transformation we have a set of predefined spec-
ification templates which helps the designer to construct a CTL
specification. For example a decision may be taken based on as-
sumptions about system environment. We can assume some certain
data rate in the input of a FIFO buffer and according to the rate to
set the size of the buffer. To verify that the size of the FIFO buffer
will not be exceeded we offer aconfigurable input pattern generator
and atemplate for a CTL specification.

In contrast to theorem proving techniques model checking can be
applied only to systems with afinite state space. Since a ForSyDe
specification model is allowed to describe a system with an infi-

nite state space the designer has to determine the finite state space
through abstraction. The design flow continues with the transa-
tion of the refined part of the system model with the abstract state
space into the input language of a model checking tool. We use
the Cadence version of SMV (Symbolic Model Verifier) since the
tool has been used successfully for model checking and there is a
straightforward mapping from the ForSyDe language to the SMV
language as described in Section 5.2.

The trandation from ForSyDe into SMV can be fully automated
and we give the guideline of properties which should to be verified.
Based on the latter we estimate that the verification flow without
abstraction takes much less time than the designer needs for select-
ing proper design decisions.

51 TheSMV Tool

SMV [1] is atool for the formal verification of finite state sys-
tems. The tool is based on a technique called symbolic model
checking and can be used to check whether a system satisfies a
specification given in the temporal logic CTL. CTL makesit possi-
ble to define various properties composing liveness, fairness, safety
and deadlock freedom which can describe very complex relations
of signals in terms of timing and values. If the system does not
satisfy the given specification then the tool gives a counter exam-
ple. The counter example is atrace from the system initial state to
a state where the verified property does not hold. Systems can be
expressed in the SMV language which offers modular hierarchical
descriptions and reusable components of a system.

5.2 Trandation from For SyDeto SMV

The system mapping from ForSyDeto SMV entails datatype def-
initions, trandlation of function and process definitions, and spec-
ification of connections between processes. Each of these stepsis
described in further detail in the following subsections.

The trandation is illustrated with a receiver which is a part of
the refined equalizer model (Section 6). The equalizer specific
ForSyDe code of a part of the receiver is given in Figure 5. The
state of the receiver is modeled as atuple of two elements, the first
element tells if the receiver is waiting for data or has received the
data and the second element is used to keep the values of eventsre-
ceived from the sender. The first component of the state may have
values WaitDataReady, WaitData or OutputData which are defined
through the scalar datatype RecSate. The receiver is constructed
with the process constructor moore2SY which hasthe state function
recSate, the output function recOutput and the initia state value
(WaitDataReady, 0) asarguments. The state transition function and
the output function are defined using pattern matching. The last
three lines in Figure 5 defines the output function recOutput. |f
thefirst element of the current state is WaitDataReady then the first
output has value Prst Ack and the second has value Abst.

data RecState = WaitDataReady | WaitData | CQutputData

recei ver = noore2SY recState recCQutput (Wit DataReady, 0)

recQut put (WaitDataReady,_) = (Prst Ack , Abst)
recQut put (WaitData ,_) = (Prst Ready , Abst)
recQut put (CQutputData ,V) = (Abst , Prst v)

Figure5: Receiver in For SyDe

179

5.3 Datatypes

The datatypes offered by the SMV language are Boolean, Scalar,
Struct and Array. Thisis a proper base to construct datatype defi-
nitions for all the ForSyDe datatypes with some minor restriction.

e Integers are defined as Scalars which demands the user to
specify the range of all reachable values. The SMV tool
treats them as Integers and provides arithmetic and logic op-
eration on them. In the following we give an example of
datatype definition of Int_0_7 which covers Integers values
fromOto 7:

typedef Int_0_7 0..7;

e A definition of a Scalar datatype contains the name of the
new datatype and a set of al possible values. An example of
the RecState type definition is the following:

typedef RecState = {Wait Dat aReady ,
Wi tData , CQutputData};

e Constructor based datatypes will be trandated to structural
datatypes. For example an absent extended Integer with pos-
sible values Abst and Prst Int_0_7 has the following defini-
tion:

typedef AbstExt {Prst, Abst};
typedef Abst_Int_0_7 struct {
Con : AbstExt ; Val : Int_0_7};

e A listis defined as a pair of an Array and an Integer value
where the Integer value is employed to store the count of
elements in the list. We assume that lists have a finite size
defined by the user.

e Each element of a tuple will be defined as an independent
variable with its own datatype.

5.4 Functions

Functions which are arguments for process constructors in
ForSyDewill be expressed as modulesin SMV. In ForSyDe afunc-
tion has the following shape:

function_nane: :inputl_type->...->i nputN_type->output_type
function_nane conditionl = expressionl

function_nane conditionM = expressi onM

The first line of a function definition express input and output
datatypes. Each of the following lines consists of one condition and
one expression. If the condition is satisfied then the corresponding
expression evaluates the function output. The SMV module gener-
ated according to the upper function has the following style:

MODULE function_nane(inputl,...,
out : datatype;
out := case {
conditionl :

i nput N) {

expressi onl;
;:.oﬁdi tionM: expressionM}}
Thelineout : datatype; defines a new variable out and the next

line assigns a value to the variable through a conditional case ex-
pression. To addressthe variable one hasto write function_name.out.

5.5 Processes

Process constructorsin the ForSyDelibrary are classified as con-
structors for predefined processes and constructors for user defined
processes. For the former we have predefined SMV modules since
their functionality is fixed for example memories. The latter pro-
cess constructors are higher order functions which take a set of user
defined functions as arguments. The definition of a process Pwhich
has behavior of a Moore state machine is P = mooreSY; (f, g, m0)
where f is a next state function, g is an output function and m0
is an initial state value of the state machine. The process has the
following trandation into SMV:

MODULE Proore(inpl, ..., i npN) {
state : dat at ype;
out put : dat at ype;
st at eFunc . f(state,inpl,..., i npN) ;
output Func : g(state);
init(state) := nD;
next (state) := stateFunc. out;
out put = out put Func. out ; }

In the SMV language init denotes the initial value of a variable
and next denotes its value in the next state.

5.6 Netlists

A system ismodeled asanetwork of processesin ForSyDewhere
signals are used to connect processes with each other. The network
is expressed as a netlist. In SMV we construct a similar netlist in
the main module. For example the process network in Figure 6 is
expressed in ForSyDe as the following:

systemsl = s5
wher e
(s2,s3) = P1 sl
s4 = P3 s3
s5 = P2 s2 s4

i S

Py

=

P

/4

P3

Figure6: A Network of Processes

and the corresponding definition in SMV is the following:

s23 : P1(sl);
s4 : P3(s23.o0ut2);
s5 : P2(s23.o0utl,s4.out);

In the SMV code the signals s23.out1 and s23.out2 correspond to
the ForSyDe signals s2 and s3 respectively.

6. VERIFICATIONOFDESIGNTRANSFOR-

MATIONS

We illustrate refinement and verification in ForSyDe by means
of the system model of an equalizer (Figure 7). The main task of
the equalizer is to adjust the audio signal according to the Button
Control.

The Button Control subsystem monitors the button inputs and
the override signal from the subsystem Distortion Control and ad-
justs the current bass and treble levels. Since the aperiodic data
rate of the Button Control and the Distortion Control subsystem is
much lower than the data rate of the Audio Filter and Audio Ana-
lyzer, the Button Control and Distribution Control are implemented
in software and the Audio Filter and Audio Analyzer in hardware.
We use the design transformation Channel ToHandshake (Figure 3)

180

Buttons
\
Button Control \b

Hold LevelH
Communication

Refinement Lt

Distortion | Pist p—
ecl
Control Low Freq.

Level | [Distortion
Control [T | Control

Levels

Audioln | I Group

| Samples

Audio
Analyzer

Band
Pass

HAmplmer}% Sum }

Treble
Audio
Filter

AudioOut

Figure 7: Subsystems of the Equalizer

[15] to refine the communication between the Button Control and
the Audio Filter in Figure 7.

We translated the refined handshake protocol into SMV. In order
to verify the correctness of the refined system block and to estimate
the size of the FIFO buffer we checked the following properties:

Property 1 Theimplementation of the handshake protocol includes
a finite size FIFO buffer. It is obvious that any higher data
rate of input values than the buffer size was dimensioned for,
will cause buffer overflow and the loss of data. We can ver-
ify that any data entering the channel when there was at least
one empty slot in the FIFO buffer will be transmitted into the
channel output. If this property holds we can say that thereis
no data lost other than caused by overflow. The specification
of this property expressed in CTL isthe following:

SPEC AG ((input_stream Con=Prst &
input_streamVal =0 &
fifoQutput.st2 < SIZE-1) ->
AF (recQutput.out2.Con = Prst

& recQutput.out2.Val = 0));

The signal input_stream is the input of the channel and may

have any value type of AbstExt_Int_0_7. The state variable
fifoOutput.st2 represents the current number of elements in

the FIFO buffer. The constant SIZE is defined as maximum

number of elementsthe FIFO buffer can store. recOutput.out2
is the output signal of the channel. The given specification

defines the following property: Always if the FIFO buffer

has at least one empty slot and the channel input holds an

event Prst 0 then the channel always in the future emitsvalue
Prst 0. In asimilar way we can verify the property for any

other value instead of 0.

Property 2 We specified the handshake protocol so that it takes
seven clock cycles to transport a data from the channel input
to the output if the sender processisin theinitia state when
the data enters into the channel. The CTL specification of
this property isthe following:

SPEC AG ((input_stream Con = Prst &
fifoQutput.st_2 =0 &
sender.stl = ReadFifo) ->
(AX AX AX AX AX AX AX
recQut put.out2. Con = Prst));

Thevariable sender .st1 represents the state of the sender pro-
cess and initial value of the sender according to the system
model is ReadFifo.

Property 3 Based on the last property which says that it takes
seven clock events to transport data through the channel we
expected that if an input stream is composed of sub-streams
length of eight and containing at most one present value in
every sub-stream then the buffer size staysfinite. In order to
verify this property we defined in SMV a non-deterministic
FSM which generates these sub-streams and we checked the
following property:

SPEC AG (fifoQutput.st2 < SIZE);

The SMV tool reported that the given specification is incor-
rect and gave atrace which lead to the state where the prop-
erty was not satisfied. Later we increased the length of sub-
streamsfrom eight to nine and the proposed specification was
true. Thefirst specification did not hold because it takes two
event cycles for the receiver to ask for the next data after it
has delivered the |last data.

Thedesigner can inasimilar way estimate the required buffer
size according to any other input stream by defining a corre-
sponding FSM to generate input sub-streams.

The wrong presumption about the safe input data rate is a
typical mistake which shows that in order to validate a sys-
tem we need to incorporate formal techniques instead of us-
ing only the designer intuition or simulation techniques.

Property 4 Finally we checked that present values in the output
preserves the same order they have in the input.

The CPU timeof aSun Ultra5 (192 MB RAM) required to verify
the properties and the number of BDD nodes created by the SMV
tool aregiven in Table 1.

[Property [CPU time(sec.) | BDD nodes |

Property 1 254 61961
Property 2 0.28 0
Property 3 0.44 3739
Property 4 9.05 127040

Table 1: Verification Time and Number of BDD Nodes

We have shown that the design transformation Channel ToHand-
shake can be used for the communication refinement from a syn-
chronous channel into an asynchronous protocol.

7. CONCLUSION

In the ForSyDe methodology the design flow starts from the de-
velopment of a specification model to an implementation model
through design transformations. The contribution of this paper is
the integration of a model checker for verification of refined sys-
tem blocks by introduction of mapping rules from ForSyDeto state
machine descriptions in SMV. For the transformations presented in
the transformation library we offer a set of specification templates
that helps the designer to construct a CTL specification.

At present we have not incorporated a methodology to reduce
the state space of SMV specifications and thus the abstraction has
to be done by the user. Therefore we plan to incorporate state space
abstraction techniques in order to elaborate a methodology which
helps the user to create an abstract system model with finite and
reduced number of states.

181

8. REFERENCES

[1] The SMV model checker.
http://www-cad.eecs.berkel ey.edu/~kenmemil/smv/.
Friedrich Ludwig Bauer, Bernhrad Moller, Helmut Partsch,
and Peter Pepper. Formal program construction by
transformations — computer-aided, intuition guided
programming. | EEE Transactions on Software Engineering,
15(2), February 1989.
Albert Benveniste and Gérard Berry. The synchronous
approach to reactive and real-time systems. Proceedings of
the |EEE, 79(9):1270-1282, September 1991.
Gerard Berry and Georges Gonthier. The esterel synchronous
programming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87-152, 1992.
Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam
Singh. Lava: Hardware design in Haskell. In International
Conference on Functional Programming, 1998.
Edmund M. Clarke, Orna Grumberg, and David E. Long.
Model checking and abstraction. In Proceedings of the 19th
ACM SIGPLAN-S GACT symposium on Principles of
programming languages, pages 343 —354. ACM Press, 1992.
David Cyrluk, S. Rajan, Natargjan Shankar, and
Mandayam K. Srivas. Effective theorem proving for
hardware verification. In Theorem Proversin Circuit Design
(TPCD ' 94), volume 901 of Lecture Notesin Computer
Science, pages 203-222, Bad Herrenalb, Germany,
September 1994. Springer-Verlag.
Michael J.C. Gordon and Tom F. Melham. Introduction to
HOL: A Theorem Proving Environment for Higher-Order
Logic. Cambridge University Press, 1993.
Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel.
Programming and verifying real-time systems by means of
the synchronous data-flow language LUSTRE. Software
Engineering, 18(9):785-793, 1992.
Edward A. Lee and Alberto Sangiovanni-Vincentelli. A
framework for comparing models of computation. |IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(12):1217-1229, December 1998.
Zhonghai Lu, Ingo Sander, and Axel Jantsch. A case study of
hardware and software synthesisin ForSyDe. In Proceedings
of the 15th International Symposium on System Synthesis,
Kyoto, Japan, October 2002.
Helmut A. Partsch. Specification and Transformation of
Programs. Springer-Verlag, 1990.
Alberto Pettorossi and Maurizio Proietti. Rules and strategies
for transforming functional and logic programs. ACM
Computing Surveys, 28(2):361-414, June 1996.
Ingo Sander and Axel Jantsch. Transformation based
communication and clock domain refinement for system
design. In 39th Design Automation Conference (DAC 2002),
New Orleans, USA, June 2002.
Ingo Sander, Axel Jantsch, and Zhonghai Lu. Development
and application of design transformations in ForSyDe. In
Design, Automation and Test in Europe Conference (DATE
2003), Munich, Germany, March 2003.
[16] Tiberiu Seceleanu. Systematic Design of Synchronous Digital
Circuits. PhD thesis, University of Turku, Finland, 2001.
[17] Simon Thompson. Haskell The Craft of Functional
Programming Second Edition. Addison-Wesley, 1999.

(2]

(3]

(4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

