
Accurate Estimation of Cache-Related Preemption Delay

Hemendra Singh Negi Tulika Mitra Abhik Roychoudhury

School of Computing
National University of Singapore
Republic of Singapore 117543.

[hemendra,tulika,abhik]@comp.nus.edu.sg

ABSTRACT
Multitasked real-time systems often employ caches to boost
performance. However the unpredictable dynamic behav-
ior of caches makes schedulability analysis of such systems
difficult. In particular, the effect of caches needs to be con-
sidered for estimating the inter-task interference. As the
memory blocks of different tasks can map to the same cache
blocks, preemption of a task may introduce additional cache
misses. The time penalty introduced by these misses is
called the Cache-Related Preemption Delay (CRPD).

In this paper, we provide a program path analysis tech-
nique to estimate CRPD. Our technique performs path anal-
ysis of both the preempted and the preempting tasks. Fur-
thermore, we improve the accuracy of the analysis by esti-
mating the possible states of the entire cache at each possible
preemption point rather than estimating the states of each
cache block independently. To avoid incurring high space
requirements, the cache states can be maintained symboli-
cally as a Binary Decision Diagram. Experimental results
indicate that we obtain tight CRPD estimates for realistic
benchmarks.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and Embedded
Systems

General Terms
Measurement, Performance, Reliability.

Keywords
Caches, Multitasking, Preemption, Formal Analysis.

1. INTRODUCTION
Real-time embedded systems involve tasks operating un-

der deadlines which need to be met. Consequently schedu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03,October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ..$5.00

lability analysis of such tasks has been a topic of active
research. For each task, schedulability analysis needs to
know the worst case execution time (WCET), that is, an
upper bound on the task execution time. For preemptive
task scheduling, we also need to estimate the inter-task in-
terference (the additional execution time introduced when
a high priority task preempts a low priority task). How-
ever, performance enhancing micro-architectural features of
modern processors make such estimation difficult.

Ideally, the WCET of a program should be the cost of
its longest path. However, this assumes that the execution
time of each instruction is constant. In reality, the execution
time of a memory access instruction depends on the past
instructions executed (which decides whether it is a cache
hit/miss). Thus, path analysis of the program cannot be
done at the level of assembly code; it also needs to take
into account the effect of micro-architectural features such
as caches [5, 9, 11, 14]. This explains the importance of
cache behavior modeling for WCET analysis.

Caches have a role to play in inter-task interference es-
timation as well. Consider a low priority task τ which is
preempted by a higher priority task τ ′. Let the set of cache
blocks to which the memory blocks of τ (τ ′) get mapped
be Cτ (Cτ ′). If Cτ ∩ Cτ ′ 6= ∅ then τ ′ may displace some
memory blocks of τ from the cache, resulting in additional
cache misses when τ resumes. This effect of task preemption
on cache performance is known in the literature as Cache-
Related Preemption Delay (CRPD).

CRPD estimation is important from the point of view
of schedulability analysis. In particular, [7, 8] reports how
CRPD can be used to derive accurate response times of mul-
tiple periodic tasks running on a single processor for fixed-
priority preemptive scheduling. We can avoid CRPD esti-
mation by ignoring arbitrary preemption (as in [10] which
only studies the interference at the beginning of a periodic
task’s execution). Alternatively, we can employ cache parti-
tioning [6], where each task is allowed to use only a portion
of the cache. However, this leads to severe degradation of
performance. Thus, for multitasked preemptive real-time
systems with caches, CRPD estimation is necessary.

When a task τ is preempted by a higher priority task τ ′

what are the additional cache misses introduced? To an-
swer this question, we need to consider the following fac-
tors. First, all the memory blocks of τ which are in the
cache when τ is preempted may not be re-referenced after
resumption. Secondly, all the memory blocks of τ which are
in the cache when τ is preempted may not be replaced by
τ ′. Thirdly, there are several possible cache contents when

201

τ is preempted (resulting from the different paths of τ),
and when τ resumes execution (resulting from the different
paths of τ ′.) Last but not the least, there are several pos-
sible memory reference patterns after τ resumes execution
(due to different paths of τ).

The importance of some of these factors on CRPD is men-
tioned in [4]. However, no estimation technique is given and
only simulation results are presented. The work of Lee et.
al. [7] performs set based analysis of the cache blocks used
by the preempted task τ before and after preemption. This
is extended in [8] to also consider the set of cache blocks used
by the high-priority task τ ′. Tomiyama and Dutt perform
implicit path analysis of the preempting task τ ′ but ignore
the effects of the preempted task τ [13].

In this paper, we propose methods to improve the accu-
racy of CRPD estimation. As per existing works [7, 8, 13],
we only consider the effects of the instruction cache (and not
data cache). Our technique performs path analysis of both
τ and τ ′. Furthermore, we compute the possible states of
the cache when the lower priority task τ is preempted and
when the higher priority task τ ′ is completed. This is more
accurate than existing set-based analysis techniques which
estimate the cache states by inferring the set of memory
blocks which may exist in each cache block. Suppose that
the cache has two blocks and the possible states of the cache
when τ is preempted are as follows

{〈m0,m1〉, 〈m2,m3〉}

In the above m0,m1,m2,m3 are memory blocks withm0,m2

mapping to the first cache block and m1,m3 mapping to the
second cache block. Existing path analysis techniques such
as [7, 8] will report the possible states as follows.

Content of first cache block ∈ {m0,m2}
Content of second cache block ∈ {m1,m3}

This actually denotes the four cache states

{〈m0,m1〉, 〈m0,m3〉, 〈m2,m1〉, 〈m2,m3〉}

clearly leading to an over-approximation.
Note that we represent the cache states at a program point

in a task as a set of tuples (where each tuple denotes an
assignment of memory blocks to the cache blocks). This
is more expensive than representing the possible contents
of each cache block as a set of memory blocks. To avoid
an exponential blow-up in the space consumption we can
represent the possible cache states at any program point
implicitly as a Binary Decision Diagram (BDD) [1]. A BDD
is an efficient data structure for representing a propositional
logic formula.

We now describe the core CRPD estimation technique.
Section 3 explains the technique with a concrete example.
Section 4 gives experimental results regarding accuracy of
our estimation technique as well as its time and space con-
sumption. Concluding remarks and discussions on space
reduction appear in Section 5.

2. CRPD ESTIMATION
Recall from Section 1 that when a task τ is preempted by

a higher priority task τ ′, the additional cache misses intro-
duced depend on (a) cache content when τ is preempted, (b)
cache content after τ ′ completes execution, and (c) cache ref-
erence pattern after τ resumes execution. Clearly, (a) and

(c) require analysis of τ – the low priority task that gets
preempted and (b) requires analysis of τ ′ – the high priority
preempting task. Our analysis considers both τ and τ ′.

Cache States.We use the terminology “cache state” to
denote the contents of all the cache blocks. For simplicity of
exposition, we assume a direct-mapped cache. However, the
technique can be easily generalized to set-associative caches.
For a direct mapped cache with n blocks, a cache state is
a vector of n elements c[0 . . . n − 1] where c[i] = m if cache
block i holds memory block m. Otherwise, if the ith cache
block does not hold any memory block we denote this as
c[i] =⊥. Thus, a cache state is a vector of length n where
each element of the vector belongs to M ∪{⊥} (M is the set
of all memory blocks). In an abuse of notation, we assume
that any operation � over M ∪{⊥} can be applied to cache
states (by applying the operation pointwise to its elements).
For example, if � is a binary operation over M ∪ {⊥} and
c, c′ are cache states then c�c′ = c′′ where c′′[i] = c[i]�c′[i].

Definition 1 (RCS). The Reaching Cache States at a
basic block B of a program, denoted as RCSB, is the set of
possible cache states when B is reached via any incoming
program path.

This notion helps us capture the cache content when the
low-priority task is preempted.

Definition 2 (LCS). Given a program, we define the
Live Cache States at a basic block B, denoted as LCSB, as
the possible first memory references to cache blocks via any
outgoing program path from B.

This notion helps us capture the cache reference pattern
when the low-priority task resumes after preemption.

2.1 Computing Cache States
We consider the end of any basic block as a possible pre-

emption point. [7] shows why it is sufficient to consider
only these program points as candidate preemption points
for CRPD estimation. The same reasoning can be extended
to our analysis technique as well.

We now show how RCSB and LCSB are computed for
each basic block B. This involves a modification of the work
in [7, 8] since our notion of cache states is more elaborate.
To compute RCSB , we compute the quantities RCSINB and
RCSOUTB as a least fixed point. Once the fixed point is
reached, we set RCSB = RCSOUTB . Initially,

RCSINB = ∅ RCSOUTB = genB

For a basic block B, we define genB = [m0, . . . ,mn−1] where
mi = m if m is the last memory block in B that maps
to cache block i and ⊥ if no memory block in B maps to
cache block i. Thus genB records all the memory blocks
introduced into the cache by basic block B. The iterative
equations are as follows:

RCSINB =
⋃

p∈predecessor(B)

RCSOUTp

RCSOUTB = {r � genB | r ∈ RCSINB }
The operation � is defined over memory blocks as

m�m′ =

{
m′ if m′ 6=⊥
m otherwise

202

It is extended to cache states by applying the operation to
its individual elements in the usual way.

The computation of LCSB is similar. Again we com-
pute LCSOUTB and LCSINB as a least fixed point and we
set LCSB = LCSOUTB once fixed point is reached. Initially:

LCSOUTB = ∅ LCSINB = genB

Here for a basic block B, we define genB = [m0, . . . ,mn−1]
where mi = m if m is the first memory block in B that maps
to cache block i and ⊥ if no memory block in B maps to
cache block i. The iterative equations are as follows:

LCSOUTB =
⋃

s∈successor(B)

LCSINs

LCSINB = {l � genB | l ∈ LCSOUTB }
The operation � is as defined in the computation of RCSB .

2.2 Computing Utility Vectors
Suppose the low-priority task τ is preempted at basic

block B. Then RCSB captures the possible cache states
when τ is preempted and LCSB captures the possible cache
usages when τ resumes execution. This brings us to the
notion of “useful cache blocks”. These are cache blocks con-
taining memory blocks at the point B which are referenced
after B (before being replaced from the cache). To formally
capture this notion in our representation of cache states we
define the Cache Utility Vector CUVB at basic block B.
The following section discusses why this notion is more fine-
grained than the “set of useful cache blocks” defined in [7].

CUVB = {l ≈ r | l ∈ LCSB , r ∈ RCSB}

The operator≈ is the equality predicate over memory blocks,
that is m ≈ m′ = 1 iff m = m′. It is extended to cache states
by applying ≈ pointwise to its elements. For a cache with n
blocks, CUVB is a set of boolean vectors of length n. Each
member of CUVB records the useful cache blocks for some
possible incoming and outgoing path of B.

Determining the useful cache blocks at the preemption
point of the low-priority task τ is not enough. We also need
to compute the possible cache states after the completion
of the high priority task τ ′. This will provide the usages
of the n cache blocks along the different program paths of
τ ′. To formally capture this notion, we define the Final
Usage Vector FUVτ ′ of the high-priority task τ ′. Let end
be the last basic block of task τ ′ (the one that is executed
just before completion of the task). Then

FUVτ ′ = {used(r) | r ∈ RCSend}

Note that RCSend is computed as a fixed point as described
before. The function used is defined over cache states as
used(r) = r′ where r′ is the following bit-vector:

r′[i] =

{
1 if r[i] 6=⊥
0 otherwise

2.3 Computing CRPD
Given CUVB at each basic block B of the preempted task

τ and FUVτ ′ of the preempting task τ ′, we compute the
CRPD as follows. First, we define the intersection of FUVτ ′
with CUVB of task τ at all possible preemption points.

Delay(τ, τ ′) =
⋃

B∈BasicBlks(τ)

{c∧f | c ∈ CUVB , f ∈ FUVτ ′}

m0

m1
m2
m3

m4
m5

m6

B1

B2 B3

B4

c0
c1
c2
c3

m0 m4
m1 m5
m2 m6
m3

Figure 1: An example control flow graph.

where ∧ is the AND operation applied to boolean vectors
and BasicBlks(τ) is the set of all basic blocks of τ . Thus, if
a cache block contains a useful memory block of τ and it is
used by the memory blocks of τ ′ then it causes an additional
cache miss. Finally

CRPD(τ, τ ′) = max{cnt ones(v) | v ∈ Delay(τ, τ ′)}

where cnt ones(v) returns the number of 1’s in bit vector v.
Of course, to calculate the actual delay in terms of number
of processor clock cycles CRPD(τ, τ ′) should be multiplied
by the cache miss penalty.

3. AN EXAMPLE
In this section, we illustrate our technique with a simple

control flow graph (CFG) shown in Figure 1. The CFG
consists of four basic blocks (B1 - B4) and seven memory
blocks (m0 − m6) within a loop with a single if-then-else
statement. We assume a direct mapped instruction cache
with four cache blocks (c0 − c3). The mapping of memory
blocks to cache blocks is shown in the figure.

The fixed point iterations to compute RCSB are shown
in detail in Table 1. Note that we set RCSB := RCSOUTB

after fixed point is reached. We set genB as follows.

genB1 = [m0,⊥,⊥,⊥]

genB2 = [⊥,m1,m2,m3]

genB3 = [m4,m5,⊥,⊥]

genB4 = [⊥,⊥,m6,⊥]

We should also mention that if there are two cache states c
and c′ in a set of cache states C such that c′ is subsumed by
c, then c′ is removed from C. A cache state c′ is subsumed
by another cache state c if ∀i c′[i] = c[i] or c′[i] =⊥. Thus,
in iteration 4 for basic block B3,

RCSINB3 = {[m0,m1,m6,m3], [m0,m5,m6,⊥]}

and genB3 = [m4,m5,⊥,⊥]. Therefore,

RCSOUTB3 = {[m4,m5,m6,m3], [m4,m5,m6,⊥]}

However, [m4,m5,m6,⊥] is subsumed by [m4,m5,m6,m3]
and hence RCSOUTB3 = {[m4,m5,m6,m3]}.

203

Iteration Basic Block RCSIN RCSOUT

1 B1 ∅ [m0,⊥,⊥,⊥]
B2 ∅ [⊥,m1,m2,m3]
B3 ∅ [m4,m5,⊥,⊥]
B4 ∅ [⊥,⊥,m6,⊥]

2 B1 [⊥,⊥,m6,⊥] [m0,⊥,m6,⊥]
B2 [m0,⊥,⊥,⊥] [m0,m1,m2,m3]
B3 [m0,⊥,⊥,⊥] [m4,m5,⊥,⊥]
B4 [⊥,m1,m2,m3], [m4,m5,⊥,⊥] [⊥,m1,m6,m3], [m4,m5,m6,⊥]

3 B1 [⊥,m1,m6,m3], [m4,m5,m6,⊥] [m0,m1,m6,m3], [m0,m5,m6,⊥]
B2 [m0,⊥,m6,⊥] [m0,m1,m2,m3]
B3 [m0,⊥,m6,⊥] [m4,m5,m6,⊥]
B4 [m0,m1,m2,m3], [m4,m5,⊥,⊥] [m0,m1,m6,m3], [m4,m5,m6,⊥]

4 B1 [m0,m1,m6,m3], [m4,m5,m6,⊥] [m0,m1,m6,m3], [m0,m5,m6,⊥]
B2 [m0,m1,m6,m3], [m0,m5,m6,⊥] [m0,m1,m2,m3]
B3 [m0,m1,m6,m3], [m0,m5,m6,⊥] [m4,m5,m6,m3]
B4 [m0,m1,m2,m3], [m4,m5,m6,⊥] [m0,m1,m6,m3], [m4,m5,m6,⊥]

7 B1 [m0,m1,m6,m3], [m4,m5,m6,m3] [m0,m1,m6,m3], [m0,m5,m6,m3]
B2 [m0,m1,m6,m3], [m0,m5,m6,m3] [m0,m1,m2,m3]
B3 [m0,m1,m6,m3], [m0,m5,m6,m3] [m4,m5,m6,m3]
B4 [m0,m1,m2,m3], [m4,m5,m6,m3] [m0,m1,m6,m3], [m4,m5,m6,m3]

Table 1: Computation of RCSB for the CFG in Figure 1. Iteration steps 5 and 6 are not shown.

We can also compute LCSB in a similar fashion

LCSB1 = {[m0,m1,m2,m3], [m4,m5,m6,m3]}
LCSB2 = {[m0,m1,m6,m3], [m0,m5,m6,m3]}
LCSB3 = {[m0,m1,m6,m3], [m0,m5,m6,m3]}
LCSB4 = {[m0,m1,m2,m3], [m0,m5,m6,m3]}

Given LCS and RCS for each basic block, we can compute

CUVB1 = {[1, 1, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 0, 1]}
CUVB2 = {[1, 1, 0, 1], [1, 0, 0, 1]}
CUVB3 = {[0, 1, 1, 1], [0, 0, 1, 1]}
CUVB4 = {[1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]}

There are at most 3 useful cache blocks for B1 and B4.
Now let us illustrate the advantage of our technique over

separate analysis of each cache block [7, 8]. In that case,
RCSB and LCSB have a set of reaching memory blocks for
each cache block as shown in the following.

RCSB1 = [{m0}, {m1,m5}, {m6}, {m3}]
RCSB2 = [{m0}, {m1}, {m2}, {m3}]
RCSB3 = [{m4}, {m5}, {m6}, {m3}]
RCSB4 = [{m0,m4}, {m1,m5}, {m6}, {m3}]

LCSB1 = [{m0,m4}, {m1,m5}, {m2,m6}, {m3}]
LCSB2 = [{m0}, {m1,m5}, {m6}, {m3}]
LCSB3 = [{m0}, {m1,m5}, {m6}, {m3}]
LCSB4 = [{m0}, {m1,m5}, {m2,m6}, {m3}]

Let us consider RCSB4. From separate analysis of cache
blocks, we infer that RCSB4 has four possible cache states:
[m0,m1,m6,m3], [m0,m5,m6,m3], [m4,m1,m6,m3], and
[m4,m5,m6,m3]. However, our combined analysis of cache
blocks infers that only two of these cache states are feasible.
The identification of these infeasible cache states leads to
decrease in the number of useful cache blocks (computed
via intersection of RCSB and LCSB) at each program point.
For example, our analysis infers at most 3 useful cache blocks
for both B1 and B4 (Even though each of the cache blocks
is useful along some path, all 4 of them are not useful along

Program Description
matsum Summation of two 100× 100 matrices
qsort Non-recursive quick sort algorithm
crc Cyclic redundancy check program
sqrt Square root calculation
eqntott Drawn from SPEC’92 integer benchmarks
des Data Encryption Standard
whet Whetstone benchmark
ssearch Pratt-Boyer-Moore string search
math Basic math within nested loop

Table 2: Description of benchmark programs.

any path). Whereas, with separate analysis of cache blocks,
we get 4 useful cache blocks for B1 and B4.

Note that we also maintain the Final Usage Vector (FUV)
of the high priority task as a set of boolean vectors. This
leads to further accuracy in CRPD analysis. For example,
suppose we compute FUV = {[1, 0, 1, 0], [1, 1, 0, 0]}. This
will allow our analysis to estimate the number of useful cache
blocks to be 2 leading to even tighter CRPD estimation. In
case of separate analysis of each cache block, the above FUV
will be approximated as FUV = [1, 1, 1, 0]. This only allows
the separated analysis to tighten the CRPD estimate to 3
cache misses (as compared to the 4 cache misses estimated
earlier based on the low-priority task).

4. EXPERIMENTAL RESULTS
In this section, we present the accuracy and performance

of our CRPD estimation technique.

4.1 Methodology
We select nine different benchmarks for our experiments

(refer Table 2). Most of these benchmarks are from [12]
and [11]. We use the Simplescalar architectural simulation
platform [2] in the experiments. All the benchmarks are
compiled to Simplescalar assembly language with modified
gcc. A prototype analyzer written by us accepts assembly
language code, disassembles it, identifies the basic blocks
and constructs the control flow graph (CFG). Given the
CFG of the low-priority and the high-priority task as well as
the instruction cache configuration, our analyzer computes

204

LP Task HP Task
matsum eqntott sqrt

A C S A C S A C S

qsort 19 20 24 16 22 28 18 19 26
crc 17 17 18 17 21 22 18 19 20
ssearch 19 22 23 19 25 27 21 22 25
des 22 23 24 21 24 26 22 22 25
whet 20 21 22 20 25 25 23 23 24
math 18 22 23 20 25 27 20 22 25

Table 3: Accuracy of CRPD analysis for a 32-block
cache. A stands for actual number of misses in
CRPD (found by exhaustive simulation), C stands
for our combined analysis of all cache blocks and S
stands for separate analysis of each cache block.

Task Combined Separate
matsum 23 24
eqntott 26 28
sqrt 23 26

Table 4: Maximum number of cache blocks used by
high priority task for a 32-block cache.

the CRPD of the tasks. Our analyzer is parameterizable
with respect to cache block size and number of cache blocks.

4.2 Accuracy
First we present the accuracy of our analysis method in

computing CRPD. We choose matsum, eqntott, and sqrt

as high priority tasks and others as low priority tasks. For
each pair of low-priority and high-priority tasks, Table 3
presents CPRD in terms of number of useful cache blocks
that may get replaced by the high-priority task. We assume
a direct mapped instruction cache with 32 cache blocks and
block size of 8 bytes. The results show that our analysis
yields estimates which is are very close to the actual CRPD.
Furthermore, as compared to the separated analysis of [8],
our analysis obtains much tighter bound on CRPD with
improvements as high as 37% for some benchmarks. Let us
now analyze the factors working behind this improvement.

Table 4 shows the maximum number of cache blocks used
by the high-priority task for a direct mapped cache with 32
blocks. For combined analysis, this is max{cnt ones(v) |
v ∈ FUVτ ′} where τ ′ is the high-priority task; cnt ones(v)
returns the number of 1s in the bit vector v. Separate anal-
ysis per cache block results in higher value as it marks a
cache block as useful if that block is used along any path
in the task. However, cache block c and c′ may never be
used together along any program path, even though they
may be used in different program paths. Our method cap-
tures that scenario and therefore results in lesser cache block
usage by high priority task. Note that [13] also made the
above observation. However, their analysis is based on in-
teger linear programming (ILP) and is limited to only the
high-priority task. Similarly, Table 5 shows the maximum
number of useful cache blocks of the low-priority task at
any program point. For combined analysis, this is equal to
max{cnt ones(v) | v ∈ CUVB , B ∈ BasicBlks(τ)} where τ
is the low-priority task. Again separate analysis per cache
block results in higher value as was explained earlier.

Table 5 shows that the maximum number of useful cache
blocks in the low-priority task are quite close in our com-
bined analysis and the separated per cache-block analysis.

Task # of Cache Blocks
8 16 32 64

C S C S C S C S

qsort 1 1 14 14 28 32 62 63
crc 2 2 12 12 26 26 48 48
ssearch 6 6 15 16 31 31 59 59
des 0 0 12 12 30 30 60 64
whet 1 2 11 14 29 29 59 59
math 4 5 14 16 30 31 63 64

Table 5: Maximum number of useful cache blocks
of the low-priority task at any program point. C
stands for combined analysis of all cache blocks and
S stands for separate analysis of each cache block.

Task # of Cache Blocks
8 16 32 64

#B D #B D #B D #B D

qsort 0 0 1 1 2 4 1 1
crc 2 1 0 0 0 0 0 0
ssearch 0 0 2 2 0 0 0 0
des 0 0 0 0 9 2 47 15
whet 7 1 11 4 0 0 0 0
math 2 1 4 5 2 3 1 1

Table 6: Comparison of combined and separate anal-
ysis for low-priority task. #B denotes the number of
basic blocks at which useful cache block count differs
and D denotes the maximum of these differences.

However, this does not indicate that the CRPD values pro-
duced by the two techniques are equally close (Table 3).
Recall that the CRPD of tasks τ, τ ′ is defined as:

max{cnt ones(c ∧ f) | c ∈ CUVB , B ∈ BasicBlks(τ),
f ∈ FUVτ ′}

Thus, apart from the effects of the high-priority task, the
CRPD depends on the estimated number of useful cache
blocks at each preemption point of τ . In other words, even
though the maximum number of useful cache blocks over all
preemption points of τ (shown in Table 5) might be the same
in both analysis techniques, the estimated number of useful
cache blocks in individual preemption points of τ may be
different. Table 6 shows the number of preemption points
(basic blocks) at which useful cache block count differs in
the two analysis as well as the maximum of these differ-
ences. Such differences in the useful cache block estimates
for individual preemption points of τ produces a difference
in CRPD when these estimates are combined with the cache
block usage estimates from τ ′.

4.3 Time and Space Overheads
Table 7 shows the time taken by our analyzer to compute

CUVB for all basic blocks in the low-priority task. The time
taken to compute FUV of high-priority task is negligible
and is not shown here. For all the benchmarks, it takes less
than 1.5 minute on a Pentium IV 1.7GHz CPU with 1GB
memory. One concern with our approach is that the number
of cache states may increase exponentially while computing
RCSB and LCSB . Assuming a task with B basic blocks, M
memory blocks and a cache with C blocks, M/C memory
blocks map to one cache block. Therefore, in the worst case,
we can have total of (M/C)C × B cache states. However,
our experimental results indicate that the number of cache
states is much smaller in practice. For example, for qsort

205

Task # of Cache Blocks
8 16 32 64

qsort 0.003 0.004 0.022 0.082
crc 0.016 0.015 0.164 65.663
ssearch 0.007 0.025 1.613 16.168
des 0.010 0.022 0.525 55.329
whet 0.005 0.023 4.189 89.858
math 0.013 0.059 1.061 8.414

Table 7: Time to compute useful cache blocks for
low-priority task in sec.

with B = 40, M = 490 and C = 8, we only get 68 cache
states for LCSB and 69 for RCSB . When we set C = 64,
number of cache states in LCSB and RCSB increase to only
425 and 600 respectively.

5. DISCUSSION
In this paper, we have studied the problem of estimat-

ing Cache-Related Preemption Delay (CRPD) in preemp-
tive multitasked real-time systems. CRPD is the delay in-
troduced in a low-priority task owing to additional cache
misses caused via preemption (by a higher priority task).
To enable accurate analysis, our approach maintains pos-
sible cache contents (1) at each preemption point of the
low-priority task and (2) at the end of high-priority task.
Our experimental results show that our approach leads to
tighter estimates than existing approaches which estimate
the possible contents of each cache block separately (for the
low-priority as well as the high-priority task). Note that in
our analysis, we have throughout assumed only two tasks.
Extending the technique to m tasks is straightforward: we
need to consider all possible preemption sequences.

One possible concern regarding our analysis technique is
a blow-up in space consumption. As observed in the previ-
ous section, none of our benchmarks suffered from an expo-
nential space blow-up due to our decision to represent cache
states (instead of the content of each cache block separately).

Furthermore, we can handle possible blow-up in the rep-
resentation of reaching/live cache states by adopting a sym-
bolic representation of LCSB and RCSB . In particular, we
can represent LCSB and RCSB (for any basic block B) as
a Binary Decision Diagram (BDD). A BDD is a compact
representation for a boolean function [1]. Consider a direct
mapped cache with n cache blocks and at most k mem-
ory blocks mapping to each cache block. The content of
any cache block in a cache state can then be captured with
dlog2(k+ 1)e boolean variables. For example if two memory
blocks m and m′ can map to a cache block, then the cache
block can have three possible contents: m, m′ and ⊥ (that
is, it does not hold any memory block). These three possibil-
ities can be captured with dlog2(3)e = 2 boolean variables.
A cache state simply denotes the content of all the n cache
blocks. Therefore, a cache state can be represented via truth
assignment of n ∗ dlog2(k + 1)e boolean variables. A set of
cache states S simply denotes a set of truth assignments of
these n ∗ dlog2(k+ 1)e boolean variables, call it VS . Thus, a
set of cache states S can be represented as a propositional
logic formula (or a BDD) fS over the n∗dlog2(k+1)e boolean
variables (s.t. fS is true for only the truth assignments in
VS). We use this BDD representation for LCSB and RCSB
(for any basic block B) since they are simply sets of cache

states. The variable ordering in the BDD representation is
obtained from a total ordering of the cache blocks. Given the
BDD representation for LCSB and RCSB , the fixed point
equations for computing these quantities (given in Section
2.1) are modified in a standard fashion.

We have used the Colorado University Decision Diagrams
(CUDD) package [3] for computing the quantities LCSB ,
RCSB as BDDs. However, none of our benchmarks suf-
fered from an exponential space blow-up in the number of
cache states appearing in LCS or RCS. Therefore, the
space gains obtained from the symbolic BDD representation
(as compared to our enumerative set based representation)
were modest in all our benchmarks. In future, we will con-
duct further experiments to evaluate the need for symbolic
representation of cache states in our analysis technique.

6. ACKNOWLEDGMENTS
This work was partially supported by NUS research grants

R252-000-088-112 and R252-000-150-112.

7. REFERENCES
[1] R.E. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Transactions on Computers, C-35(8),
1986.

[2] D. Burger, T. Austin, and S. Bennett. Evaluating Future
Microprocessors: The SimpleScalar Toolset. Technical
Report CS-TR96-1308, Univ. of Wisconsin - Madison, 1996.

[3] CUDD. Colorado University Decision Diagram Package
Version 2.3.1, 2001. Free software,
http://vlsi.colorado.edu/~fabio/CUDD/.

[4] H. Dwyer and J. Fernando. Establishing a tight bound on
task interference in embedded system instruction caches. In
International Conference on Compilers, Architecture and
Synthesis of Embedded Systems (CASES), 2001.

[5] C. Ferdinand, F. Martin, and R. Wilhelm. Applying
compiler techniques to cache behavior prediction. In ACM
Intl. Workshop on Languages, Compilers and Tools for
Real-Time Sys. (LCTRTS), 1997.

[6] D.B. Kirk. SMART (strategic memory allocation for
real-time) cache design. In IEEE Real-Time Systems
Symposium (RTSS), 1990.

[7] C-G. Lee et al. Analysis of cache-related preemption delay
in fixed-priority preemptive scheduling. IEEE Transactions
on Computers, 47(6), 1998.

[8] C-G. Lee et al. Bounding cache-related preemption delay
for real-time systems. IEEE Transactions on Software
Engineering, 27(9), 2001.

[9] X. Li, T. Mitra, and A. Roychoudhury. Accurate timing
analysis by modeling caches, speculation and their
interaction. In ACM Design Automation Conf. (DAC),
2003.

[10] Y. Li and W. Wolf. Hardware/Software Co-Synthesis with
Memory Hierarchies. IEEE Transaction on Computer-aided
Design of Integrated Circuit and Systems, 1999.

[11] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation
of embedded software with instruction cache modeling.
ACM Transactions on Design Automation of Electronic
Systems, 4(3), 1999.

[12] Seoul National University Real-Time Research Groups.
SNU real-time benchmarks.
http://archi.snu.ac.kr/realtime/benchmark/.

[13] H. Tomiyama and N. Dutt. Program path analysis to
bound cache-related preemption delay in preemptive
real-time systems. In ACM International Symposium on
Hardware Software Codesign (CODES), 2000.

[14] F. Wolf, J. Staschulat, and R. Ernst. Associative caches in
formal software timing analysis. In ACM Design
Automation Conf. (DAC), 2002.

206

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

