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ABSTRACT
We present a novel, general approach towards model-order reduc-
tion (MOR) of nonlinear systems that combines good global and lo-
cal approximation properties. The nonlinear system is first approx-
imated as piecewise polynomials over a number of regions, follow-
ing which each region is reduced via polynomial model-reduction
methods. Our approach, dubbed PWP, generalizes recent piece-
wise linear approaches and ties them with polynomial-based MOR,
thereby combining their advantages. In particular, reduced models
obtained by our approach reproduce small-signal distortion and in-
termodulation properties well, while at the same time retaining fi-
delity in large-swing and large-signal analyses, e.g., transient sim-
ulations. Thus our reduced models can be used as drop-in replace-
ments for time-domain as well as frequency-domain simulations,
with small or large excitations. By exploiting sparsity in system
polynomial coefficients, we are able to make the polynomial reduc-
tion procedure linear in the size of the original system. We provide
implementation details and illustrate PWP with an example.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—simulation

General Terms
Algorithms

1. INTRODUCTION
Model-order reduction (MOR) refers to the automatic generation

of (small) macromodels from a (large) system description, while
maintaining acceptable input-output fidelity between the two. It is
becoming widely accepted that effective MOR techniques will be
critical for fast and reliable verification of the increasingly large
and complex deep-submicron mixed-signal designs that are emerg-
ing today. The algorithms used for model reduction of a particu-
lar circuit or system must necessarily capture essential character-
istics of interest, for example, dynamical response over a range of
frequencies, frequency-shifting properties, distortion, etc.. To this
end, a number of MOR techniques have been developed for sev-
eral classes of systems: linear-time-invariant (LTI, e.g., [4,12,15]),
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linear-time-varying (LTV, e.g., [13, 17]), as well as for some kinds
of nonlinear systems (e.g., [1, 2, 14, 16, 17]).

Of these classes, nonlinear systems are by far the most difficult to
reduce1; yet nonlinear effects (such as distortion, intermodulation,
clipping, slewing, etc.) are critical in mixed-signal and digital ap-
plications. Despite considerable progress in MOR techniques over
the last decade, robust general procedures for nonlinear model re-
duction have not become available yet. Existing techniques such
as polynomial-based reduction schemes (e.g., [1, 2, 14, 17]) are not
suitable for large signal excursions, while recently proposed piece-
wise linear (PWL) methods (e.g., [16]) have limited small-signal
distortion and intermodulation fidelity2.

In this paper, we present a nonlinear model reduction approach
based on PieceWise Polynomial representations (dubbed PWP)
that combines the piecewise idea of [16] with polynomial reduc-
tion methods. The piecewise nature of the reduced model results in
good global fidelity properties, useful for, e.g., large-signal swings,
while polynomial approximations within each region ensure good
local fidelity, essential for, e.g., small-signal distortion applications.
Thus our approach leads to more generally-applicable reduced mod-
els than previously possible. It is interesting to note that this ap-
proach has philosophical similarities to black-box curve-fitting ap-
proaches (e.g., [10]) towards macromodelling. However, because
our approach implicitly makes use of system structure (from SPICE-
level descriptions), it brings to bear the advantages of Krylov sub-
space or TBR-based (e.g., [11]) MOR techniques.

In our approach, the nonlinear system’s state-space is divided
into polytopes via a procedure roughly similar to that proposed
in [16]. Within each polytope, the system is approximated by a
low-order polynomial model. Each polynomial model is reduced
by Krylov-subspace projection techniques [14, 17] to a polynomial
model of much smaller size than the original3. The reduced-order
nonlinear models in each polytope are finally stitched together to
form a single smooth system, by combining them with a weight
function [16].

Numerical tests show that, as expected, PWP obtains accurate
distortion results, while also representing sharp global nonlineari-
ties well. Polynomial model reduction and evaluation is, however,
more computationally expensive than corresponding linear opera-
tions. To alleviate this complexity and obtain reduced models with
greater accuracy at lower cost, we use projection bases tailored to

1The difficulty for nonlinear systems stems largely from their in-
herently greater complexity compared to linear systems, and the
lack of general nonlinear system theories with the same power and
applicability as theories for linear systems.
2A PWL system captures nonlinearities only when crossing region
boundaries; within each region (as for small-signal excursions) the
model is linear and cannot capture nonlinear effects such as distor-
tion.
3Other techniques, such as TBR can also be used.
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each region, and also exploit sparsity in system polynomial coeffi-
cients.

The remainder of the paper is organized as follows. In Section
2, we review existing model-reduction techniques briefly in order
to help develop the PWP technique, which is presented in Section
3. We present implementation details of PWP in Section 4, and
illustrate the new technique with an example in Section 5.

2. RELEVANT PREVIOUS WORK

2.1 LTI systems
We first review Krylov-subspace projection methods for LTI sys-

tems. Consider the LTI system

E
dx
dt

� Ax�Bu� y �Cx� (1)

E�A � Rn�n, x�t� � Rn is the internal state, B � Rn�m, u�t� � Rm

is the input, C � Rp�n, and y�t� � Rp is the output. n is the sys-
tem size. m and p are the numbers of inputs and outputs, respec-
tively. For simplicity, we restrict our discussion to single-input-
single-output (SISO) systems in this paper, i.e. m � p � 1. The
extension to the MIMO case is straightforward (e.g., [5]).

The transfer function of (1) is given by

H�s� �C�sE�A��1B� (2)

Krylov-subspace techniques provide a matrix V � Rn�q�q �� n,
whose columns span a special subspace such that the large state-
space x � Rn can be mapped into this small subspace via x � V z
(e.g., [6, 7]). Thus the state-space representation of (1) can be re-
duced to

Ê
dz
dt

� Âz� B̂u� y � Ĉz� (3)

where Ê �V T EV �Rq�q, Â�V T AV �Rq�q, B̂�V T B�Rq, and
Ĉ �CV �R1�q. The reduced transfer function is

Ĥ�s� � Ĉ�sÊ� Â��1B̂� (4)

The projection basis V can be calculated via, e.g., the Lanczos or
Arnoldi methods [4, 5]. Its columns span the Krylov subspace, de-
fined as

Kq�A�1E�B� � span�B�A�1EB� � � � ��A�1E�q�1B�� (5)

The reduced transfer function (4) matches the first q moments of
(2) [5].

2.2 Polynomial Model Reduction
A nonlinear circuit or system can be modeled by vector differential-

algebraic equations (DAEs) as

q̇�x� � f̂ �x��b�t�� (6)

All variables (except the time t) are vector-valued. x�t� are the un-
known states (node voltages and branch currents in circuits); q de-
notes the charge terms and f the resistive terms; b�t� is the vector
of excitations to the circuit or system. Without loss of generality,
(6) can be expressed as (e.g., [17])

E
dx
dt

� f �x��Bu� y �Cx� (7)

where x � Rn is the unknown state vector and f �x� is a nonlinear
vector function. E�B and C are similar to the definition in (1).

A general polynomial-based approach for nonlinear model re-
duction is first proposed in [17], which expands the system into
polynomials, and reduces them with a series of projections. Fol-
lowing that, a simplified quadratic model reduction is proposed

in [2]. The idea of polynomial model reduction can be easily illus-
trated with quadratic model reduction. First we expand a nonlinear
function f around the origin, which yields a quadratic model

E
dx
dt

� A1x�1��A2x�2��Bu� y �Cx� (8)

where A1 � Rn�n is the Jacobian matrix of f evaluated at the ori-
gin, x�1� � x, A2 � Rn�n2

, and x�2� � x� x � Rn2
. Here � is the

Kronecker product.
The projection basis V �Rn�q is chosen as (5). By the approxi-

mation x �V z, we can generate a reduced-order quadratic model

Ê
dz
dt

� Â1z�1�� Â2z�2�� B̂u� y � Ĉz� (9)

where Ê� B̂�Ĉ are as before. Â1 � V T A1V � Rq�q, z�1� � z � Rq,
Â2 � V T A2�V �V � � Rq�q2

, and z�2� � z� z � Rq2
. This method

approximates the original system well only around the initial state.
Once far from the expansion point, the error may increase dramat-
ically.

Note that quadratic model reduction uses the same projection
bases as the linear model, which only contains linear information
around the expansion point. To acquire an exact reduced-order
quadratic model, the projection bases should also include the in-
formation of second-order term, i.e. A2 in (8). To this end, bilin-
earization approaches have been proposed (e.g., [1, 14, 18]), which
are intended to explicitly incorporate higher-order nonlinear terms
into the construction of projection bases. However, the computa-
tional cost of bilinearization increases exponentially as the system
size goes up.

2.3 Trajectory Piecewise Linear Method
Recently, a trajectory-based piecewise linear (TPWL) approach

for nonlinear model reduction was proposed in [16]. The idea is
to represent a nonlinear system as a collage of linear models in
adjoining polytopes, centered around expansion points, in the state-
space. The essence of the method is outlined below.

1. Given a nonlinear system (7), linearize it at various expan-
sion points as �xi�

E
d
dt

x � f �xi��Ai�x� xi��Bu� y �Cx� (10)

2. Generate projection bases Vi for each expansion point and
approximate the union Vunion � �V1V2 � � �Vs� by a low rank
bases V �Vunion, via Singular Value Decomposition (SVD).
(This step can be computationally expensive.)

3. As before, each linearized model is reduced to

Ê
d
dt

z � f �zi�� Âi�z� zi�� B̂u� y � Ĉz� (11)

4. The final reduced model is the weighted combination of all
the reduced linearized models:

Ê
d
dt

z �
s

∑
i�1

wi�z�� f �zi�� Âi�z� zi��� B̂u� y � Ĉz (12)

weight functions: 0� wi�z�� 1, and ∑wi � 1.

TPWL has excellent global approximation properties due to its piece-
wise nature, but its local approximation accuracy for small signals
is limited. Intuitively, no distortion is generated if the excitation is
small enough that the state stays within only one expansion region.
Only when the state crosses polytope boundaries is any distortion
generated. This effect is clearly illustrated in Section 5.2.
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3. THE PIECEWISE POLYNOMIAL (PWP)
APPROACH

In this section, we discuss piecewise polynomials and present
the essential steps of PWP. Implementation details are discussed in
Section 4.

3.1 Piecewise Polynomials
The idea of piecewise representations is not new (e.g., [9]) and

has been used in circuit simulation for more than four decades.
Global polynomial approximations have also been well studied (e.g.,
[3]), and it is well known that polynomial approximations over
large domains can be extremely inaccurate. This inaccuracy is il-
lustrated below.

Consider the function y � sin�5πx�� x
5 , which is evaluated at 41

points of x ��10 : 0�5 : 10, of which 23 points x ��5 : 0�5 : 5 are
used in polynomial fits. The result is shown in Fig. 1.

−10 −5 0 5 10
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−2

−1

0

1

2

3

Original Data
Order=1
Order=3
Order=6

Fitting Region 

Figure 1: Polynomial fits of different orders for y � sin�5πx�� x
5

One can observe that low order polynomial fits (e.g., order=3,6)
are good approximations within the curve fitting region but devi-
ate considerably outside the fitting region. Once outside, the poly-
nomial function value can change dramatically and become com-
pletely inaccurate.

Combining piecewise representations with local polynomial ap-
proximations is, however, a robust means of approximating nonlin-
ear functions over a large domain. (This is the essential idea be-
hind splines [8].) Within each region, local polynomials accurately
capture the functions as well as its first few derivatives. Moving
from one region to another prevents the polynomial blow-up illus-
trated in Fig. 1. This combination is the key feature that makes
PWP accurate for both large and small excursions in the state space.
Note that accurate higher-order derivative information is critical for
small-signal distortion analysis.

When extending polynomial-fitting to n-dimensional space, a
piecewise polynomial model can be treated as a n-dim hyper-tube
(as illustrated in Fig. 2) corresponding to one specific system tra-
jectory. Different trajectories will generate different hyper-tubes,
whose union can cover a large enough portion of the state-space to
ensure validity for a broad range of inputs.

3.2 Piecewise Polynomial Representation
Suppose we have chosen s expansion points �x1�x2� � � � �xs� from

the state-space of (7) under one training input (Section 4.1). For
each point xi, we have a polynomial expansion

E
d
dt

x � f �xi��A�1�i x�1��A�2�i x�2��Bu� y �Cx� (13)

Here x�1� � x� xi, x�2� � �x� xi�� �x� xi�. To simplify our dis-

Figure 2: Example of 3D tube

cussion, we use only up to the quadratic term (extension to higher
order terms is straightforward).

Next, we generate projection bases Vi for each state xi, and re-
duce the corresponding polynomial model to

Ê
d
dt

z � f �zi�� Â�1�i z�1�� Â�2�i z�2�� B̂iu� y � Ĉiz� (14)

The final reduced-order PWP model is obtained by a weighted
combination of these regions. Suppose m regions are selected,
m � s, the PWP model is

Ê
dz
dt

�
m

∑
i�1

wi�z�� f �zi�� Â�1�i z�1�� Â�2�i z�2�� B̂iu� (15)

y � �
m

∑
i�1

wi�z�Ĉi�z (16)

PWP improves accuracy but requires more storage space and more
computational cost. These greater requirements are acceptable when
small-signal distortion accuracy is required.

4. IMPLEMENTATION DETAILS

4.1 Training Input
In order to choose expansion points, we have to explore the state-

space. Simulation of the full nonlinear system is critical to acquir-
ing accurate state-space information to construct accurate macro-
models.

A good training input should be strong enough to drive the sys-
tem to reach upper bounds of the state space. It should also vary
fast enough to exercise dynamic nonlinearities well. “Extreme val-
ues” of inputs are usually well known in any given application. For
example, Fig. 3 represents an extreme input for a “linear” ampli-
fier. Such an input should exercise its dynamics over normal and
saturation regions.

4.2 Expansion Points
An adaptive heuristic strategy to choose expansion points in our

PWP method is summarized as follows.

1. Simulate the full system with training input proposed in Sec-
tion 4.1.

2. Start from an initial state xi, construct a linearized model
such that

f �x�� flinear � f �xi��A0�x� xi� (17)

where A0 is the Jacobian matrix evaluated at xi.

3. Traverse the full system trajectory, ensure that the relative er-

ror err � � f �x�� flinear�x��
� flinear�x��

� α. α is the relative error tolerance.

4. If the relative error err � α, add the current state x into the
expansion point set. Start from this state and repeat step 2.
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Figure 3: Example of training input

Here α is a user-defined constant. A small α could lead to small
errors but also a large number of regions, which require storage
space. The tradeoff is discussed in Section 5.3. Typically α �
0�01 � 0�05.

4.3 Projection Bases
For each expansion region, we can construct an orthogonal base

Vi in the qth order Krylov-subspace defined as

Kq�A
�1
i E�B� � span�B�A�1

i EB� � � � ��A�1
i E�q�1B�� (18)

Vi can be generated by running a q-step Arnoldi method [19] or
block Arnoldi method in the MIMO case [5]. Although these pro-
jection bases only involve the Jacobian matrices Ai (the same as for
quadratic model reduction in Section 2.2), it is helpful to reduce
computational cost by exploring sparsity, as outlined later.

4.4 Weight Function
Following [16], we use weighted polynomial models to ensure

fast and smooth switching from one region to another. The value
of the weight function wi should be close to 1 when the state vec-
tor z approaches the expansion point zi � V T

i xi, and should atten-
uate to zero rapidly as z leaves zi. There is considerable choice in
functions satisfying this requirement. Similar to [16], we choose

a Gaussian function wi�z� � e
�d2

i
σ , where di � ��z� zi�� and σ is a

pre-defined constant (e.g., σ � 0�01). Two normalized weight func-
tions, centered at 1 and 2 respectively, are shown in Fig. 4. Note

0 1 2 3

0

0.5

1

Figure 4: Weight functions in adjacent regions

that the nonlinear transformation in the boundary is the only source
of small signal distortion in the TPWL approach [16].

4.5 Heuristic Trimming of Regions
A heuristic that avoids evaluating regions with low weights can

be applied to reduce the computational cost of the macromodel:

1. Compute distance di � ��z� zi�� for current state z.

2. Choose m nearest neighbors, compute
w�z� � �w1�z��w2�z�� � � � �wm�z�� and normalize it.

3. Compute reduced model according to (15).

Since states do not usually change abruptly during transient sim-
ulations, we cache neighbouring regions and can pre-fetch these
models into memory to improve runtime efficiency.

4.6 Exploring Sparsity
When calculating the reduced quadratic model, we need to cal-

culate Â�2�2 �V T A�2�2 �V �V �. Since V �Rn�q is dense, computing

�V �V � �Rn2�q2
is potentially expensive. Direct computation can

become impractical as the system size n goes up.
By exploiting system sparsity, this computational cost can be re-

duced considerably. In a real circuit, each nonlinear device usually
has at most 4 terminals. The corresponding nonlinear function thus
has at most 4 variables. This leads to the fact that not only is the
Jacobian matrix A1 sparse, but most columns of A2 are completely

zero. When calculating A�2�2 �V �V �, we need only calculate the

product of nonzero columns of A�2�2 and the corresponding rows of

V �V . Denoting by Nc the number of nonzero columns of A�2�2 , in
our specific example in Section 5 (n � 100, q � 10), Nc � 396. The
reduced matrix �V �V � is about 2 orders of magnitude smaller than
the original.

Since each nonlinear function usually has up to 4 variables, the
computational complexity of the PWP reduction procedure is O�4pn�,
which is linear in the size of the original system. Here p is the
polynomial order and n is the original system size. The runtime
complexity of a PWP-reduced macromodel is O�sqp�1�, where s is
the number of linearization points and q is the reduced system size.

5. AN ILLUSTRATIVE EXAMPLE
We use the simplified nonlinear transmission line example from

[16] (Fig. 5) to illustrate PWP and compare its features with PWL4.
All resistors and capacitors have unit value (R � 1�C � 1). All
diodes have the I-V relationship ID�v� � e40v�1. The single input
is the current source entering node 1, u�t� � I�t�; the single output
is the voltage of node 1, y�t� � v1�t�.

…..

…..

…..

Id(v) Id(v) Id(v) Id(v)

R R R R

C C C C CR

Id(v)

I(t)

1 2 3 N

Figure 5: Nonlinear Transmission Line from [16]

In the following, we denote piecewise quadratic and cubic5 re-
duced models as PWP-2 and PWP-3, respectively. Large-signal
transient analysis and small-signal distortion analysis results are

4We are in the process of developing open-source infrastructure for
applying PWP to other, larger, circuits.
5Cubic includes quadratic terms.
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presented. For distortion analysis, only the 2nd harmonic (obtained
from the last cycle of a long transient analysis, followed by Fourier
analysis) is presented in this paper, since 3rd harmonic components
are below the numerical noise level of transient analysis.

5.1 Transient Analysis
The training input is exactly the same as Fig. 3. The original

system size is n � 100. The reduced system after PWP is of size
q � 10 (in each polytope region). The polytope center points are
chosen with α � 0�01, and two nearest neighbor models are se-
lected to construct the reduced-order model. The results of step-
input transient simulation are shown in Fig. 6; it can be seen that
the reduced models using PWL and PWP-2 match the original sys-
tem well. The generated reduced PWP model (size q � 10) are
tested in the following transient analysis.
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Figure 6: System response of training input

A second transient simulation was performed with input u�t� �
1�0�1sin�2πt�; the results are shown in Fig. 7. With the DC bias,
more diodes conduct, and more nonlinearities are activated. Again,
only two nearest polynomial models are used. It can be seen that
the approximation improves considerably from PWL to PWP-2 and
PWP-3, as expected.
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Figure 7: system response and enlarged squared region for
u�t� � 1�0�1sin�2πt�

A third transient test is a large swing example shown in Fig. 8,
with u�t� � 1� sin�2πt�� sin�10πt�. When t � 1

4 , the input mag-
nitude is 3, which is larger than our training input (see Fig. 3).

5.2 Distortion Analysis
In this test, we use a single sine input u�t� � Asin�2πt� and vary

its magnitude. One cycle of the simulation is analyzed using an
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Figure 8: system response and enlarged squared region for
u�t� � 1� sin�2πt�� sin�10πt�

FFT, after initial transients have died down, to obtain an approx-
imate steady-state response. 2nd-harmonic distortion results are
shown in Fig. 9.

Not surprisingly, the 2nd harmonic component from PWL sim-
ulations is 3 orders of magnitude less than that of the full system
when the input is small. This is due to the linearity of the sys-
tem when polytope boundaries are not traversed, as is the case un-
der small inputs. When the input magnitude increases, polytope
boundaries are crossed and PWL-predicted distortion increases sig-
nificantly; however, it is still inaccurate. In contrast, distortion pre-
dicted by PWP is within a factor of 2 of the original system over
all input magnitudes. It is this feature that makes PWP attractive as
a general purpose nonlinear model reduction technique. Note that
the slope of the second-harmonic distortion increase is 2 decades
per decade, in keeping with Volterra series theories for small dis-
tortion [18].

5.3 Storage and Accuracy Tradeoffs
Recall that α is the tolerance error when choosing expansion

points or polytopes (Section 4.2). One way of exploring storage
vs accuracy tradeoffs is to vary α. A transient analysis with input
u�t� � sin�2πt��2sin�10πt� is explored, by varying α and generat-
ing different numbers of polytope regions. The absolute errors and
region numbers are shown in Fig. 10.

6. CONCLUSION
We have presented a piecewise polynomial (PWP) approach for

nonlinear model reduction. The method combines good global and
local accuracy properties, thereby making its reduced models suit-
able for both large-signal transient analysis as well as small- or
large-signal distortion analysis. Numerical results confirm these
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Figure 9: 2nd harmonic with different input magnitude

Figure 10: Absolute error, the number of polynomial model
and α

expectations quantitatively. Exploitation of the great sparsity of
higher-order system derivatives makes the reduction procedure lin-
ear in the size of the original system. PWP has considerable poten-
tial as an accelerator for system-level simulations with large indi-
vidual blocks. Current directions being explored to further develop
PWP include finding better adjacent-region search strategies and
refining the algorithm by application to a comprehensive suite of
examples.
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