
Toward Efficient Static Analysis of Finite-Precision Effects
in DSP Applications via Affine Arithmetic Modeling

Claire Fang Fang, Rob A. Rutenbar, Markus Püschel, Tsuhan Chen
{ffang, rutenbar, pueschel, tsuhan}@ece.cmu.edu

Electrical and Computer Engineering
Carnegie Mellon University

ABSTRACT
We introduce a static error analysis technique, based on
smart interval methods from affine arithmetic, to help de-
signers translate DSP codes from full-precision floating-point
to smaller finite-precision formats. The technique gives re-
sults for numerical error estimation comparable to detailed
simulation, but achieves speedups of three orders of mag-
nitude by avoiding actual bit-level simulation. We show
results for experiments mapping common DSP transform
algorithms to implementations using small custom floating
point formats.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Signal Processing Systems; J.6 [Computer-Aided Engi-
neering]: Computer-Aided Design

General Terms
Algorithms, Design, Performance

Keywords
Static error analysis, affine arithmetic, probabilistic error
bound, embedded hardware, custom floating-point

1. INTRODUCTION
Modern digital signal processing DSP applications are

typically prototyped using floating-point arithmetic, which
offers both large dynamic range and high precision for each
numerical computation. However, for hardware implemen-
tations, the final form rarely uses a full-precision floating-
point unit, given issues of silicon area, power, and speed.
This creates the common—and still awkward—problem of
transforming the application from its initial, for all practi-
cal purposes “infinite” precision form, into some final, finite-
precision hardware format.

These final finite-precision formats can be either custom
fixed-point or reduced-precision (so-called “lightweight” [3])

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

custom floating-point. The two-part problem for any com-
plex DSP task is how to choose the smallest bit-level number
formats, and then how to validate that the format choices
maintain the necessary level of numerical precision. Several
techniques have been proposed [2, 3]. Roughly speaking,
these all share three common characteristics: (a) they are
based on detailed simulation to capture the necessary nu-
merical ranges and the maximum error; (b) they first strive
to determine the dynamic range of each operand, to avoid
catastrophic overflows; and (c) they next strive to choose the
right precision to assure acceptable quality in the output.

The essential problem in all these techniques is the need
to rely on detailed simulations to find the optimal range
and precision of each operand. If we choose a sequence of
input patterns that are too few or incorrectly distributed,
we may fail to find all the extreme values that real-life use
will encounter. If we employ instead a more rigorous de-
tailed simulation strategy, the format optimization process
becomes unduly expensive.

A more attractive solution is some form of static analysis,
which guarantees that we will find the extreme values and
the maximum error of each operand, but does not require us
to consider a potentially unbounded set of input patterns.
We use the term “static” here in the same sense as that from
static timing analysis for gate-level logic netlists. A single
evaluation pass on the network, which computes more than
just the delay through each gate, derives useful bounds on
each path in the network. These delays are pessimistic—
they are upper bounds, but tight enough for timing signoff.
For finite-precision format optimization, we seek exactly the
same sort of attack: a more pattern-independent evaluation
that can create usefully tight bounds on the range/error of
each operand in the application.

The obvious approach for such a static analysis draws on
techniques from interval arithmetic [8], which replaces each
scalar value with a bounded interval on the real number
line. An algebra of intervals lets us “simulate” the code by
performing each operation on the intervals. Unfortunately,
conventional interval arithmetic suffers from the problem of
range explosion: as more computations are evaluated, the
intervals tend to grow without bound. The problem is that
correlations among variables are not captured.

A recent solution to this problem is a more sophisticated
interval model called affine arithmetic, introduced in [1].
The approach explicitly captures some of the correlations
among operands, and dramatically reduces the level of pes-
simism in the final intervals. It has been successfully used in
analog circuit sizing [6]. We apply the idea to the novel prob-

30.1

496

 1bit
8bi
t

sign
(s)

exponent
(e)

mantissa
(m)

23bit 8bit

mbiases .12)1(⋅⋅− −

Figure 1: Standard single precision floating-point
format

lem of finite-precision error estimation for reduced-precision
custom floating point formats: we seek to efficiently esti-
mate, for each operand, the maximum difference (the er-
ror) between a finite-precision implementation and a ref-
erence “ideal” version using standard floating point. We
show how to build an explicit numerical model of the error
and estimate it quickly using affine arithmetic. We derive
a model that estimates a hard upper bound for the error.
This bound, however, becomes less accurate as more com-
putations are evaluated. We solve this problem by using
probabilistic methods to compute a ‘soft” bound that is sat-
isfied with a user-specified probability.

The remainder of the paper is organized as follows. Sec-
tion 2 gives relevant background on floating point error and
affine arithmetic. Section 3 formulates our error analysis
model and offers a refinement based on probabilistic bounds.
Section 4 present some results for several DSP benchmarks
showing the viability of the approach. Application examples
on two practical design problems are given. Finally, Section
5 offers concluding remarks.

2. BACKGROUND

2.1 Floating-Point Error
In this section we give a brief overview of the floating-

point format and its associated error model, followed by an
overview of related work on error analysis, to distinguish our
approach.

The floating-point format commonly used in general-purpose
processors is the IEEE-standard double-precision or single-
precision format, which consists of three fields: sign, ex-
ponent and mantissa. Figure 1 shows the single-precision
floating-point format, represented by 2e−bias1.m, where e ∈
[0, 256], bias = 127, m ∈ [0, 1], and the leading ‘1’ is implic-
itly specified. The precision of the floating-point format is
determined by the mantissa bit-width, and usually 23 bit is
sufficient for most applications. This is the standard man-
tissa bit-width for single-precision format.

However, in application specific floating-point units, more
flexible custom formats can be adopted to reduce the hard-
ware cost and the power consumption. In this case, the
precision becomes a “tuning” parameter, which can be opti-
mized to minimize the hardware cost while guaranteeing the
algorithm’s required numerical performance. One important
property of floating-point arithmetic is that the rounding er-
ror depends not only on the mantissa bit-width, but also on
the magnitude of the operands. A conventional error model
is given by

xf = x + x · 2−(t+1) · ε,
xf◦yf = (xf•yf) + (xf •yf) · 2−(t+1) · ε,

(1)

where xf is the floating-point representation of a real num-
ber x, ◦ is the floating-point approximation of an arithmetic
operation •, ε ∈ [−1, 1] is an error term, and t is the man-
tissa bit-width [11]. The error model (1) makes static error

analysis impossible since the magnitude information of x or
xf•yf is only available at run time.

To quantify the error of an application implemented in
custom floating-point format, two approaches can be taken:

• Simulation estimates the error as the maximal differ-
ence between two implementations over a large number
of runs: one using a custom floating-point format and
the other using the IEEE-standard double-precision for-
mat, which is assumed to have virtually infinite precision
[2, 3]. Although this approach is application independent
and provides good accuracy, it may be prohibitive for fast
design decision making because of the high computational
effort.

• Static analysis estimates an error bound at compile time.
Methods in this category are mostly application depen-
dent [10, 5, 7, 12, 13]: a linear transfer function is re-
quired between the inputs and the outputs, and a closed
form of the output error variance is developed based on
the floating-point error model (1). One application inde-
pendent approach was introduced in [4], which developed
error bound models for common operators based on in-
terval arithmetic (IA). However, it is very likely to lead to
unacceptable overestimation since IA does not take into
account correlations between intervals.

In this paper, we suggest an alternative approach to appli-
cation independent static error analysis that combines high
accuracy with fast evaluation time.

2.2 Affine Arithmetic
The modeling tool in this paper is affine arithmetic, which

is an efficient and recent variant of range arithmetic. In this
section, we begin with introducing its predecessor, inter-
val arithmetic, and then emphasize the advantage of affine
arithmetic.

Interval arithmetic (IA), also known as interval analysis,
was invented in the 1960s by Moore [8] to solve range prob-
lems. The uncertainty in a variable x is represented by the
interval x = [x.lo, x.hi], meaning that the true value of x

is known to satisfy x.lo 6 x 6 x.hi. For each operation
f : Rm → R, there is a corresponding range extension
f : R

m → R. Taking addition as an example, the corre-
sponding IA operation is obtained as

z = x + y = x.lo + y.lo, x.hi + y.hi. (2)

Analogous formulas can be derived for multiplication, di-
vision, square root, and other common mathematical func-
tions [1]. A floating-point error model based on IA was in-
troduced in [4]. The main problem of IA is overestimation,
especially for correlated variables. To illustrate this prob-
lem, suppose that in (2) x = [−1, 1], y = [−1, 1], and that
x and y have the relation y = −x. Using (2), z = [−2, 2],
while z = x + y = 0. The effect of overestimation accu-
mulates along the computation chain, and may result in an
exponential range explosion.

Affine arithmetic (AA), or affine analysis, is a recent re-
finement in range arithmetic to alleviate the problem of over-
estimation in IA [1]. It has been used in areas such as com-
puter graphics and analog circuit sizing [1, 6]. In contrast
to IA, AA preserves correlations among intervals. In affine
arithmetic, the uncertainty of a variable x is represented as
a range in an affine form bx given by

bx = x0 +x1ε1 +x1ε1 + · · ·+xnεn, with− 1 6 εi 6 1. (3)

497

Final
error
range

a) AA-based error range

x

Error
range of x

Error ranges of the operations

Final
error
range

b) IA-based error range

2 + x
x

Error
range of x

2 - x 2 + x 2 - x

Figure 2: Comparison of AA and IA

Each symbol εi stands for an independent component of
the total uncertainty of the variable x; the corresponding
coefficient xi gives the magnitude of that component. For
the affine operations bx± by, a±bx, and abx, the resulting affine
forms are easily obtained using (3). For other operations
(e.g., multiplication), the result, as a function f(ε1, . . . , εn)
of the εi’s, is no longer affine. Thus, to obtain the affine
form for the result, first a linear function f∗(ε1, . . . , εn) is
selected as an approximation of f(ε1, . . . , εn), and a new
noise term indicating the approximation error is estimated
and added to the final affine form [1].

The key feature of AA is that one noise symbol may con-
tribute to the uncertainties of two or more variables, indi-
cating correlations among them. When these variables are
combined, error terms may cancel out. This advantage is
especially noticeable in computations that are highly cor-
related or of great computational depth. Returning to our
previous simple example, suppose that x and y have affine
forms bx = 0 + 1ε and by = −bx = 0 − 1ε. In this case, the
affine form of the sum bz = bx+by = 0 perfectly coincides with
the actual range of the variable z.

3. ERROR ANALYSIS VIA AFFINE
MODELING

Range arithmetic provides a tool for problems in which
precise information is unavailable and an estimation of range
offers a good approximation of the solution. We apply range
arithmetic to floating-point error analysis. In this section,
we first introduce the AA-based floating-point error model
and use it to derive “hard” error bounds. Then we use
probabilistic methods to refine the model to obtain “soft”
probabilistic error bounds.

3.1 AA-based Floating-Point Error Model
As explained in the previous section, AA provides the op-

portunity for range cancellation. If we think of the floating-
point error as a range, we can model the floating-point num-
ber representation and computations using AA. Figure 2
is an intuitive example illustrating the difference between
AA and IA in the context of floating-point error propaga-
tion. The AA-based error ranges carry information about

the error sources, which enables error cancellation, while the
IA-based error ranges always accumulate, which inevitably
leads to overestimation.

Next, we formally derive a floating-point error model based
on AA. Our goal is to find a simple form, independent of
the exact magnitude information, to represent floating-point
numbers and computations. we develop the model in three
steps.

AA model for floating-point numbers. According to
(1), a floating-point number xf can be written as

xf = x + x · 2−(t+1) · ε, with ε ∈ [−1, 1]. (4)

Note that the floating-point model (4) is in an affine form.

The uncertainty term xf ·2−(t+1) ·ε is caused by the floating-
point approximation, or rounding.

AA model for floating-point number ranges. To
apply range arithmetic, in particular AA, to error analysis,
we develop now a floating-point model for ranges. Suppose
a variable x is in the range bx = [x0 − x1, x0 + x1]. Then bx
can be written as

bx = x0 + x1εr,

and, using (4), its floating-point representation is

bxf = x0 + x1εr + (x0 + x1εr) · 2−(t+1) · εx. (5)

To reduce (5) to an affine form, we introduce the bounding

operator B:

B(x0 +
NX

i=1

xiεi) =
NX

i=0

|xi|,

which computes a hard upper bound of its argument. Then
we apply B to (5) to obtain an upper bound of bxf in affine
form with associated error E(bxf):

bxf 6 x0 + x1εr + (|x0| + |x1|) · 2−(t+1) · εx, (6)

E(bxf) = bxf − bx 6 (|x0| + |x1|) · 2−(t+1) · εx. (7)

The sign ‘6’ here means that the range on the left is included
in the range on the right. In (7), the error is related to both
the insufficient knowledge of the exact magnitude of x, and
the floating-point rounding error.

AA models for floating-point range computations.
Using (6), we now derive error models for the addition and
the multiplication of floating-point ranges.

Floating-point addition : bzf = bxf ⊕ byf

bzf 6 (bxf + byf) + B(bxf + byf)2−(t+1)
εz

6 bx + B(bx)2−(t+1)
εx + by + B(by)2−(t+1)

εy

+ B(bxf + byf)2−(t+1)
εz

E(bzf) = (bxf ⊕ byf) − (bx + by)

6 B(bx)2−(t+1)
εx + B(by)2−(t+1)

εy (8)

+ B(bxf + byf)2−(t+1)
εz

Floating-point multiplication : bzf = bxf ⊗ byf

498

Benchmarks # of AA error max ratio
adds bound error

WHT4 4 0.0029 0.0027 1.08
WHT64 64 0.1094 0.0334 3.27

Table 1: Estimation accuracy vs. algorithm com-
plexity

bzf 6 (bxf · byf) + B(bxf · byf) · 2−(t+1) · εz

6 (bx + B(bx)2−(t+1)
εx)(by + B(by)2−(t+1)

εy)

+ B(bxf · byf)2−(t+1)
εz

≈ bx · by + byB(bx)2−(t+1)
εx + bxB(by)2−(t+1)

εy

+ B(bxf · byf)2−(t+1)
εz

E(bzf) = bxf ⊗ byf − (bx · by) (9)

6 B(bx)B(by)2−(t+1)(εx + εy) + B(bxf · byf)2−(t+1)
εz

Note that we ignore the second order term εxεy in the multi-
plication model. From (7)–(9), we see that the floating-point
error of any range is in an affine form. We can generalize this
form and rewrite it as C0 +

P
Ciεi, where the εi’s, called

error symbols, are in the range [-1, 1]. The corresponding
error bound is given by

error bound = B(C0 +
NX

i=1

Ciεi) =
NX

i=0

|Ci|. (10)

The sharing of error symbols among two or more vari-
ables indicates their correlations and offers the opportunity
for error cancellation. It is this numerical formulation of the
rounding error—the difference between a specific finite pre-
cision format and the “ideal” real value—that is the basis
for our static evaluation strategy. In section 4, we show the
effectiveness of this method compared to the conventional
floating-point error model based on IA.

3.2 Probabilistic Bounding
The AA-based error analysis estimates a reasonable bound

for the floating-point error, but one drawback is that the es-
timation accuracy drops with the increasing computational
complexity of the target floating-point program. This be-
havior is shown in Table 1 by comparing a Walsh-Hadamard
transform (WHT) of size 4 and of size 64, with 8 and 384
operations, respectively. To obtain the error bounds, we as-
sume a 16-bit mantissa. The AA based error is obtained us-
ing the above method; the maximum error (fourth column)
is obtained by a simulation over one million random input
vectors. In both cases, the largest error of any output is cho-
sen. The fifth column display the ratio between these error
bounds. For size 4, the AA-based method is very accurate,
for size 64, it is a factor of 3.27 worse than the simulated er-
ror. Clearly, for a floating-point program with thousands of
arithmetic operations, the AA-based hard error bound may
become useless.

The main reason for the decreasing accuracy in the AA
based analysis compared to simulation is the increasing un-
likeliness that all errors εi in (10) are simultaneously close
to being maximal. To formalize this behavior, we assume
that the error symbols εi in (10) are independent random
variables uniformly distributed in [-1, 1]. We set SN =PN

i=1 Ciεi and denote with N (0, 1) a standard normally dis-
tributed random variable. Then, by the central limit theo-

rem,

SN√
N

p
V ariance(SN)

→ N (0, 1).

We use this interpretation to develop a refinement of the AA-
based error analysis, which is based on probabilistic bounds.
To achieve this, we modify the bounding operator B such
that it returns a confidence interval that bounds the error
with a specified high probability λ. We denote this new
operator Bλ and define it by

Bλ(C0 +

NX

i=1

Ciεi) = C0 + Fλ(SN), (11)

where Fλ(SN) is the probabilistic bound for SN

prob(error 6 Fλ(SN)) > λ.

To calculate Fλ(SN) for a given λ, we use the inverse CDF
(Cumulative Density Function) of SN for N = 1, 2, 3, and
Gaussian approximation for N > 3. If c is the number of
operations in the given program, then the final maximum
estimated error K over all outputs satisfies

prob(error 6 K) > λ
c
.

4. EXPERIMENTAL RESULTS

4.1 Methodology
Recall our original goal: estimate quickly the numerical

errors that accrue given a candidate reduced-precision cus-
tom floating-point format. The actual “error” we seek is the
maximum difference between the floating-point value com-
puted in this format, and the “ideal” real value, which we
take to be the IEEE double-precision version of the compu-
tation. With bit-level simulation over a suitably large set of
inputs, we can calculate this error. In all the experiments in
this section, we compare our estimated error bound against
this simulated maximum error.

Two C++ libraries are built to assist the AA-based error
analysis and the evaluation. One is a custom floating-point
library, called CMUfloat [3]. Arbitrary mantissa and expo-
nent width can be specified in the variable declaration. The
maximal error is obtained by comparing the output of the
CMUfloat and double-precision versions of the code simu-
lated with 106 randomly generated independent uniformly
distributed inputs. We assume a 16-bit mantissa and an
8-bit exponent in all the experiments. The other library is
an AA-based floating-point computation library that over-
loads the C++ arithmetic operators and computes the affine
form for each operation in the code, and the relevant bound.
This strategy allows us to analyze the program with minimal
modification to the source code.

4.2 AA vs. IA
To verify that range cancellation enabled by noise symbol

sharing in the AA modeling helps improving the estimation
accuracy, we compare the AA-based error bound according
to (7)–(9) with the conventional IA-based error bound in a
DSP application—the 8-input IDCT (Inverse Discrete Co-
sine Transform), which is widely used in image and video
processing. The inputs are assumed to lie in the range [-
128, 128]. As shown in Table 2, the AA-based approach
provides a much tighter error bound than the IA-based ap-
proach. IA overestimates because it fails to consider the

499

AA error bound IA error bound Max error

0.0431 0.0964 0.0203

Table 2: Error analysis results on IDCT

x7
x5
x3
x1
x6
x4
x2
x0

y5
y2
y4
y3
y6
y1
y7
y0

C7

C5

C3
C1

C4

1/C4
C4

C6/C4
C2/C4
C6/C4
C2/C4

16 cos 2
1

π i Ci =
x y

y - x y+x
x C C*x x y

y+x y
Butterfly

Both are dependent on x1

Figure 3: Dataflow of the IDCT algorithm

correlations among variables. We highlight an example of
such correlations in the IDCT diagram in Figure 3.

Since correlations in the data path are very common in
DSP applications, our AA-based error model significantly
improves accuracy compared to the IA-based model, while
incurring virtually the same computational cost.

4.3 Benchmark Results
We test the applicability and accuracy of the proposed

error model and the probabilistic bounding method on a va-
riety of common signal processing kernels, including WHT,
FIR filter, and IDCT. Table 3 displays hard bounds and
probabilistic bounds (for λ = 0.9999) with confidences. Ta-
ble 4 shows the CPU times needed to compute the estimated
bounds and the simulated maximum error. Note that the
CPU time required to compute the probabilistic bound is
independent of λ. We conclude that our error estimation
produces useful estimates significantly faster than simula-
tion.

Hard Probabilistic Confidence Max
bound bound λc error

WHT4 0.0029 0.0029 0.9992 0.0027
WHT64 0.1094 0.0325 0.962 0.0334
FIR4 0.0028 0.0023 0.9996 0.0020
FIR25 0.0132 0.0057 0.998 0.0062
IDCT8 0.0431 0.0197 0.9962 0.0203

Table 3: Improvement on accuracy (λ = 0.9999)

Figure 4 shows the behavior of the probabilistic bound
with varying λ (abscissa) for WHT64 with c = 384. The
confidences λc for the bounds are displayed above the bars.
Note that there is also a confidence value associated with
the simulation result, because the maximum error seen in
106 simulations only guarantees that

prob(error > maximum error) 6
1

106
,

if we assume uniform error distribution. Therefore the cor-
responding confidence of the simulated maximum error is
0.999999. The results show that our method generates highly
accurate probabilistic bounds that substantially improve the
hard bound (λ = 1) with slight sacrifice in confidence.

CPU time for CPU time for
probabilistic bound max error

WHT4 0.002 31.40
WHT64 0.173 2854
FIR4 0.005 54.33
FIR25 0.018 331
IDCT8 0.010 282.2

Table 4: Comparison of CPU time (sec)

� � � � � � � � �
� � � � � � � � �

0

0.05

0.1

0.15

99
.9

%

99
.9

99%

99
.9

999
9%

99
.9

999
99

76
6%

10
0%

M
ax

 e
rro

r

0.999999

Hard boundProb. bound M ax error
� � � � �

0.999999

1

0.999620.9962
0.681

�

Figure 4: Probabilistic bounds for WHT

4.4 Application Example 1: Exploring the De-
sign Space

We illustrate here how our error analysis tool assists with
fast design space exploration in the dimension of numerical
precision.

For a given algorithm, various implementations will lead
to differing numerical precisions due to different data paths,
even with the same floating-point format. In this example,
we consider a much more complicated kernel, a DCT type IV
of size 64, which requires about 830 arithmetic operations on
the data path. We generate four different implementations,
based on algebraically different algorithms, using the DSP
transform code generator SPIRAL [9], and compare the ob-
tained error bounds. In this experiment, we specify λ to be
0.9999, which offers a confidence of λc = 0.92. The choice
of λ does not affect the relative order of the error bounds
for the four different algorithms.

In Figure 5, both the probabilistic error bound and the
maximum error yield the same order for the four algorithms
with respect to numerical accuracy: DCT4 < DCT2 < DCT3
< DCT1, while the probabilistic error bound estimation is
about 5000 times faster than running the simulation of one
million random inputs. Note that the large spread in accu-
racy makes the choice of the algorithm a mandatory task.

4.5 Application Example 2: Determining the
Minimum Mantissa Bit-width

0

0.2

0.4

0.6

DCT1 DCT2 DCT3 DCT4

Prob. error bound

Max error

�
=0.9999

 Figure 5: Comparison of four DCT algorithms

500

A common problem in designing a custom floating-point
application is to determine the mantissa bit-width that offers
enough precision at minimal hardware cost. From the basic
floating-point error model in (1), we know that the error
bound is proportional to 2−t, where t is the mantissa bit-
width. The methodology for configuring the mantissa bit-
width is shown in Figure 6. As depicted in the figure, t1
is an initial value for the mantissa bit-width. This value
can be purely random since it does not affect the final bit-
width. Then the AA-based error bound estimation is used
to estimate the minimum mantissa bit-width t2. Finally,
the program is simulated using the t2-bit mantissa with the
help of the CMUfloat library. Using the result, the mantissa
bit-width may be slightly adjusted for optimality.

Mantissa bit-width: t3

Initial guess of the mantissa bit-width: t1

Custom floating-
point application

AA-based error bound
estimation tool

Probabilistic bound
e1

Required error
bound e2

t2 = t1 + log2(e1/e2)

Mantissa bit-width t2
Simulation and local tuning

Lightweight
floating-point

package

Figure 6: Configuring mantissa bit-width

Following the experiment in the previous section, we now
determine the minimal mantissa bit-width for the best al-
gorithm DCT4 (Figure 5). Suppose the required max error
e2 is 0.01, and our initial guess of the mantissa bit-width is
20. Experimental results are shown in Table 5. By using
the static error analysis method, a new mantissa bit-width
t2 = 16 is estimated. Then after the simulation, the final
bit-width is adjusted to t3 = 15.

t1 e1 t2 e2 t3

20 4.32e-4 16 1e-2 15

Table 5: Steps in mantissa configuration

5. CONCLUSION
We proposed an efficient static error analysis method based

on affine arithmetic and probabilistic bounding, to enable
fast custom hardware design of reduced-precision DSP ap-
plications. The affine formulation of the rounding error in-
herent in a custom floating point format is one useful contri-
bution of the work; another important idea is the formula-
tion of the bound itself as a random variable, estimated via
confidence intervals. Results for experiments mapping com-
mon DSP transform kernels to implementations using small

custom floating point formats show that the static analysis
bounds with usable accuracy, but is at least three orders of
magnitude faster than direct bit-level simulation.

Our static analysis method can provide an estimation for
errors, or functions of errors, such as mean square error or
signal-to-noise ratio. For applications that rely on measure-
ments not closely related to the error, such as the conver-
gence rate in adaptive filtering, or the perceptual quality in
audio processing, our method is not directly applicable.

The modeling method can be adapted to fixed-point error
analysis. It is part of our current research work.

6. ACKNOWLEDGMENTS
This work was funded by Semiconductor Research Corpo-

ration and Pittsburgh Digital Greenhouse.

7. REFERENCES
[1] L. H. de Figueiredo and J. Stolfi. Self-validated

numerical methods and applications. Brazilian

Mathematics Colloquium monograph, IMPA, Rio de

Janeiro, Brazil, July 1997.

[2] F. Fang, T. Chen, and R. Rutenbar. Floating-point
bit-width optimization for low-power signal processing
applications. In International Conf. on Acoustic,

Speech, and Signal Processing, May 2002.

[3] F. Fang, T. Chen, and R. Rutenbar. Lightweight
floating-point arithmetic: Case study of inverse
discrete cosine transform. EURASIP J. Sig. Proc.;

Special Issue on Applied Implementation of DSP and

Communication Systems, 2002(9):879–892, Sept. 2002.

[4] W. Kramer. A prior worst case error bounds for
floating-point computations. IEEE Trans. Comp.,
47:750–756, July 1998.

[5] T. L. Laakso and L. B. Jackson. Bounds for
floating-point roundoff noise. IEEE Trans. Circ. Sys

II: Analog and Digital Signal Processing, 41:424–426,
June 1994.

[6] A. Lemke, L. Hedrich, and E. Barke. Analog circuit
sizing based on formal methods using affine
arithmetic. In International Conf. on Computer Aided

Design, Nov. 2002.

[7] B. Liu and T. Kaneko. Error analysis of digital filters
realized with floating-point arithmetic. Proc. IEEE,
57:1735–1747, Oct. 1969.

[8] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[9] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura,
J. Johnson, D. Padua, M. Veloso, and R. W. Johnson.
SPIRAL: A Generator for Platform-Adapted Libraries
of Signal Processing Algorithms. to appear in Journal

of High Performance Computing and Applications.

[10] B. D. Rao. Floating point arithmetic and digital
filters. IEEE Trans. Sig. Proc., 40:85–95, Jan. 1992.

[11] P. H. Sterbenz. Floating-Point Computation.
Prentice-Hall, 1974.

[12] C. Tsai. Floating-point roundoff noises of first- and
second-order sections in parallel form digital filters.
IEEE Trans. Circ. Sys II: Analog and Digital Signal

Processing, 44:774–779, Sept. 1997.

[13] C. Weinstein and A. V. Oppenheim. A comparison of
roundoff noise in floating point and fixed point digital
filter realizations. Proc. IEEE, 57:1181–1183, June
1969.

501

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

