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ABSTRACT
Speculatively issued instructions may be particularly sensitive

to increases in pipeline depth. Our results indicate that as pipeline
depth increases, speculation increases the percentage of issue queue
instructions that are waiting to be potentially re-issued in case
of a mis-speculation. To compensate, issue queues are larger and
thus more power hungry. We propose an alternative design called
the Dual Issue Queue, that retains pre- and post-issue instruc-
tions in separate, smaller queues, saving 18% of issue queue power
dissipation without degrading performance.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—
Pipeline processors, Adaptable architectures

General Terms
Design

Keywords
Low power design, microarchitecture, speculation

1. INTRODUCTION
Current modern superscalar processors rely on execut-

ing instructions out of program order to enable more in-
struction level parallelism and higher performance. In or-
der to execute more instructions per cycle, it is necessary
to minimize false dependencies among instructions, hide in-
struction latencies, and speculate across true dependencies.
Among the techniques implemented are branch prediction,
value and address prediction [4], memory dependence pre-
diction [16], [4], [5], and latency prediction [16], [12].

To facilitate these speculation techniques, some means of
recovering from a misprediction must also be employed. In
the case of branch misprediction, the correct path instruc-
tions must be fetched from the instruction cache. For other
types of speculation, the same instructions need to be re-
executed (this time with correct data). Although these mis-
predictions may be handled in a similar manner as branch
mispredictions, this can be costly in terms of performance.
Instead, another way of enabling re-execution is to keep all
“post-issue” instructions in the issue queue (a.k.a. instruc-
tion window) until the prediction is verified. While this
approach may lead to some inefficiencies in the design of
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the issue queue, it provides for a quick means of accessing
instructions that need to re-execute.

Current trends in microprocessor designs show increasing
pipeline depth in order to keep up with higher clock frequen-
cies and increased architectural complexity. By employing
speculation techniques, deeper pipelines will increase the
number of cycles between the speculation and verification
stages. In addition, as pipelines get deeper, a larger per-
centage of the issue queue will be needed to hold post-issue
instructions—most of which will never be needed, assuming
low misprediction rates. This limits the queue’s effectiveness
in exposing available instruction level parallelism (ILP).

In this paper we focus on load hit speculation as an ex-
ample of a prediction technique that uses the issue queue to
hold post-issue instructions for misprediction recovery. Load
hit speculation predicts the latency of a load instruction’s
access to memory. In general, there is a non-zero delay be-
tween the point an instruction is issued to the time it can
begin execution. This delay is due to register file access and
moving of data across buses. For instance, in the Pentium4
processor it takes 2 cycles to move data across buses and 4
cycles to access the register file. Because of this non-zero
delay, if load data is to be used immediately after it is avail-
able, an instruction dependent on the load must issue before

it is known whether the load actually hit in the first level
cache. The load resolution loop is the delay between the
issue of a load instruction until its hit/miss information is
passed back to the load’s dependent instructions. This loop
delay increases as the delay between instruction issue and
execute increases (i.e., as pipeline depth increases).

Since in practice most load instructions do hit in the first
level cache, it is reasonable to schedule all instructions de-
pendent on the load assuming that the load hits in the cache,
and therefore has minimal latency. This approach requires
that post-issue instructions remain in the issue queue until
a load hit is verified. If the load misses, all post-issue in-
structions dependent on the load (i.e. those issued in the
speculative window of the load) must be re-issued, or re-

played from the queue. The Alpha 21264 [6], as well as
the Pentium4 [10], use load hit speculation. They allow in-
structions dependent on a load to be issued assuming the
load instruction hit in the first level cache, and therefore
has minimal latency. If the load hits, then its dependent in-
structions benefit from the possibility of issuing early. If the
load misses, the dependent instructions need to be re-issued.

Although keeping instructions in the issue queue allows
for a fast recovery path, it requires that the issue queue be
designed with enough entries to hold post-issue instructions
while at the same time expose a large amount of instruction-
level parallelism. In fact, we found that the portion of the

36.3

634



issue queue holding post-issue instructions grows from less
than 5% to over 55% with the employment of load hit spec-
ulation. In addition, the issue queue is on the critical path,
thus requiring it to be implemented using high-speed cir-
cuitry. This combination makes the issue queue structure
very power hungry. For example, Wilcox et al. showed that
the issue logic could account for 46% of the total power dis-
sipation in future out-of-order processors that support spec-
ulation [15]. Similarly we estimate that half of this power
dissipation comes from the issue queue itself [15].

From the previous discussion we see that there are two in-
efficiencies with issue queue designs. First, the queue has to
have enough entries to hold both pre- and post-issue instruc-
tions and meet the tight timing constraints for a single-cycle
bid/grant loop when on average less than half are likely to
ever bid. This wastes power and aggravates critical paths.
Second, the post-issue instructions may be limiting the ex-
posure of available ILP. In this paper we address both ineffi-
ciencies. Specifically, we propose a more cost-effective Dual

Issue Queue structure that separates the post-issue instruc-
tions from the rest of the pending pre-issued instructions in
the queue. Using this design, we estimate 18% of the issue
queue power can be saved without degrading performance.

2. RELATED WORK
Several works have addressed reducing the complexity and

power of the issue queue structure [13], [1], [7], [14]. Of the
more relevant works, in [1], Bahar et al. propose a scheme
to dynamically adjust the processor’s issue width in order to
save power without losing performance. Folegnani et al. [7]
proposed to dynamically resize the instruction queue accord-
ing to performance requirements in order to save power. A
static scheme to save power was proposed in [14], that di-
vided instructions among a pair of in-order and out-of-order
issue queues according to instruction criticality. We propose
a reduced complexity, power aware issue queue structure;
however, unlike the above mentioned works, we also evalu-
ate the specific effect of speculation and deeper pipelines on
the issue queue structure.

Lebeck et al. [11] proposed an alternative scheme for deal-
ing with instructions dependent on loads that miss. Follow-
ing a load miss, the chain of its dependent instructions is
moved from the issue window to a waiting instruction buffer

(WIB). Once the load completes, its dependent instructions
are moved back to the issue window. The WIB structure
requires a larger number of entries and a separate mecha-
nism for detecting dependencies between instructions. In
addition, instructions need to be moved back and forth to
and from the two structures. In construct, our proposed
scheme does not have these limitations. Morancho et al. [12]
proposed a structure called the recovery buffer which stores
issued instructions dependent on mispredicted loads. This
scheme assumes the verification delay is known at the time
of issue. Although issue logic in the recovery buffer is sim-
plified, it does not scale well with longer delays, and the
authors do not include any evaluation of power.

3. LOAD HIT SPECULATION MODEL
The simulator used in this study is a modified version

of the SimpleScalar [3] tool suite. The configuration of
the processor models a future generation out-of-order micro-
architecture with an 8 instruction wide pipeline. In addition,

Table 1: Baseline processor configuration.
Parameter Configuration

Inst. Window 64-entry LSQ, 256-entry ROB
64-entry ISQ

Machine Width 8-wide fetch,issue, commit
Fetch Queue 16-entry
Number of FUs 8 Int add (1), 2 Int mult/div (3/20)

Latency in ( ) 4 Load/Store (3), 8 FP add (2)
2 FP mult/div/sqrt (4/12/24)

L1 Icache 16KB 2-way; 32B line; 1 cycle
L1 Dcache 64KB 2-way; 32B line; 3 cycle
L2 Cache 128KB 4-way; 64B line; 12 cycle
Memory 100-cycle latency; 16 bit-wide
Branch Pred. 4k 2lev + 4k bimodal + 4k meta

6 cycle mispred. penalty
BTB 1K entry 4-way set assoc.
RAS 32 entry queue
ITLB 64 entry fully assoc.
DTLB 64 entry fully assoc.
issue→exec. latency variable from 1 to 9 cycles
feedback delay variable from 1 to 9 cycles

we implemented a separate reorder buffer (ROB) and issue
queue (ISQ), which is common in today’s microprocessor
designs. Our simulator models a single unified queue for
integer and floating point instructions, and we assume that
issued instructions are kept in the issue queue until it is
known that they will not need to be re-issued. Table 1 shows
the complete configuration of the processor.

Modifications to SimpleScalar also include a variable,
1–9 cycle delay between the issue and added execute stage,
in order to increase the pipeline depth specifically between
the issue and writeback stages. Also, a variable wire latency
was added for the feedback of hit/miss information from the
cache to the consuming, post-issue instructions. Consuming
instructions may be issued such that the producers’ results
will be ready by the time execution begins. Load instruc-
tions are speculated to be ready after the time it takes to
access the level 1 data cache. Once it is discovered that a
load missed in the cache, instructions that were issued in a
mispredicted load’s speculative window and are dependent,
directly or indirectly, on the load are replayed.1 Therefore,
issue queue entries are released only when instructions reach
writeback, for all instructions.

Simulations are executed on a subset of the SPEC95 and
SPEC2000 integer and floating point benchmarks [8], [9]
(a total of 32 benchmarks). DL1 miss rates for these bench-
marks varied from 0–23%.

4. DUAL ISSUE QUEUE SCHEME
In order to reduce the power dissipation of the issue queue,

we could try to decrease its size. However, we found that
reducing the size of the issue queue by as little as 25%, to a
48-entry issue queue decreased performance up to 20% for
some benchmarks. A 48-entry issue queue is not sufficient,
because the smaller issue queue becomes cluttered with post-
issue instructions, not allowing new instructions to enter. If
post-issue instructions were removed from the issue queue
(and placed elsewhere), we could potentially reduce the size
of the issue queue, saving power in the queue while at the
same time increasing available ILP and thereby retaining
performance. We now investigate this approach.

1Without load hit speculation, instructions can be removed
from the issue queue as soon as they issue and resolve their
dependencies. With load hit speculation instructions cannot
be removed until they are guaranteed to not be replayed.
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Figure 1: Proposed Dual Issue Queue Scheme.
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Our new issue queue design consists of two parts: the
main issue queue (MIQ), and the replay issue queue (RIQ).
The RIQ is effectively a temporary place holder for issued
instructions that may need to be replayed. The MIQ and
RIQ are similar in structure. The main difference is that
since the RIQ needs to be searched for ready instructions
only after a load hit misprediction, it is not on the criti-
cal path of the processor pipeline. This allows us to make
the RIQ’s bid/grant loop slower, with a 2 cycle latency. The
pipeline for our new issue queue scheme is shown in Figure 1.
The added logic is shown in gray. Initially, dispatched in-
structions are placed in the MIQ. The MIQ is searched for
ready instructions, and these are given a chance to bid for
an issue slot. This part of the issue queue is similar to a
standard out-of-order issue queue. Instructions that have
already issued and updated the ready status of their depen-
dent instructions are then moved from the MIQ to the RIQ if
there are empty slots available. If the RIQ is full, the issued
instructions can remain in the MIQ. After instructions are
issued, chances are that they will not be dealt with again,
since most load instructions hit in the cache, and their de-
pendent instructions will not be re-issued.

During the issue stage, instructions may be selected for
issue either from the RIQ or the MIQ, but not both. To
facilitate this, instructions from both queues are allowed to
update their ready status every cycle, but only one queue is
allowed to bid for issue resources at a time. In our simulation
model, the processor gives priority in selecting instructions
to be issued to the RIQ; however, the only time instructions
in the RIQ can bid and be granted an issue slot is after a load
hit misprediction. The RIQ holds ready instructions only
after a missed load reaches the writeback stage. Therefore,
we do not need to check the RIQ for ready instructions every
cycle.

Once an instruction is granted an issue slot, the ready
status of its dependent instructions need to be updated. If
the issued instruction comes from the RIQ, its dependent
instructions may reside in either the RIQ or MIQ. The de-
pendent instructions may be in the MIQ due to lack of space
in the RIQ or simply because they are pre-issue instructions.
If the issued instruction resides in the MIQ, its dependent in-
structions will most likely reside in the MIQ as well. These
updates are part of the bid/grant critical path loop and
will not be delayed an extra cycle. However, if dependent
instructions from a load miss reside in both the RIQ and
MIQ (due to space limitations in the RIQ) then, since the
bid/grant loop of the RIQ is slower, broadcasting the grant
signals from the MIQ to the RIQ will incur a longer latency.

Figure 2: The bid/grant critical path, modified to
support the Dual Issue Queue.
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4.1 Power and Complexity
The complexity of designing and implementing any out-of-

order issue queue is a function of the issue width of the pro-
cessor and the number of entries in the issue queue [1], [13].
As illustrated in Figure 1, updating dependent instructions
in the MIQ requires adding a multiplexor along the bid/grant
loop since the issued instruction can come from either the
MIQ or RIQ. Although this multiplexor does not come for
free, the delay and power impact may be minimized by in-
corporating the MUX function into the latch used to control
the driving of the result tags, as shown in Figure 2. Further-
more, the select lines for the MUX are not on the critical
path since they are set according to the actions occurring
in the previous cycle. The extra MUX added to the source
tag output bus path also adds some delay and power; how-
ever, combining it with a pipeline latch will make this extra
logic unlikely to have a significant effect on power or the
issue to execute latency. In any case, this dual issue queue
scheme allows us to use an RIQ and MIQ each with fewer
entries compared to a unified issue queue design. Fewer en-
tries means reduced capacitive load on the bid/grant lines as
well as a simplified arbiter. Also, since a single issue queue
entry is comprised of 2 × W tag comparators, where W is
the issue width of the machine, the saving from eliminating
these comparators can more than compensate for the added
power dissipation of the MUXes.

After simulating the dual issue queue configuration with
different sized queues, we found that a 48-entry MIQ and
a 24-entry RIQ is sufficient in terms of performance. To
estimate the power savings of using this dual issue queue
scheme over a standard 64-entry issue queue, we extrapo-
lated from available Alpha 21264 power estimates [15], as
well as previous work [1], [13], [14]. It was shown in [15]
that the 8-way issue Alpha 21464 was expected to have 23%
of its power dissipation resulting from the issue queue logic.
We also assume that the issue queue logic consists of the
register scoreboard (consuming 25% of this power), the re-
quest logic (15%), and arbiters (60%) [1]. Our dual issue
queue scheme saves power by using smaller queues, one of
them slower and inactive for the major part of the execu-
tion.2 The MIQ and RIQ consume 48

64
and 24

64
of the power

of a standard queue respectively (this is approximated for
the arbitration logic [13]). The slower RIQ may be designed
using slower circuit styles, higher threshold transistors, and
reduced transistors sizes[2]. We assume that it will reduce
dynamic power dissipation by 20% and leakage power by
50% [14]. Assuming dynamic power accounts for 90% of to-
tal power and leakage 10%, the slower RIQ dissipates 77%
of the power of a standard queue of the same size. The inac-

2The RIQ is active only 0–4% of the time.
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Table 2: Fraction of the power consumption of a
standard issue queue.

reg scoreboard req logic arbitration total
(25%) (15%) (60%)

inactive RIQ
(24-entry)

(0.77)( 24

64
) 0 0 0.07

active MIQ
(48-entry)

48

64

48

64

48

64
0.75

tive RIQ has its arbiters and request logic disabled, but still
updates its scoreboard. Table 2 summarizes the analysis.
Summing up, our scheme dissipates only 82% of the power
of a standard issue queue.

4.2 Performance Results
The performance impact of our scheme compared to a

unified single cycle 64-entry issue queue was measured in
terms of instructions per cycle (IPC). In Figure 3 we show
overall averages for floating point and integer benchmarks
in lines IPC Int and IPC FP respectively. Performance
does not suffer despite the fact that the main issue queue is
smaller. For the deepest pipeline simulated (Exe9), average
performance degradation was close to 0%, with a range of
−5% to +3.5% change in performance. These performance
results do not take into account the fact that the clock rate
may be increased since the issue queue is smaller (assuming
its speed determines the global clock rate). The largest per-
formance degradation is seen for simulations with a 1 cycle
issue to execute latency (Exe1), but since our scheme tar-
gets deeper pipelines, this is not so much a concern for us.
For shallow pipelines the number of post-issue instructions is
smaller than for deeper pipelines. The additional RIQ struc-
ture is thus less utilized, and the performance suffers from
the smaller MIQ. Lines Pre-Issue Int and Pre-Issue FP
show the percentage increase of pre-issued instructions in
the issue queue with the dual issue queue scheme, with re-
spect to the standard 64-entry issue queue. As can be seen,
the dual issue queue scheme allows the number of pre-issued
instructions to increase with pipeline depth, and as a result
so does the exposure of available ILP.

We found that largest performance improvements for the
dual issue queue scheme came from swim (2.3%) and wup-

wise (3.5%) under the deepest pipeline. The better per-
forming benchmarks are floating point benchmarks, char-
acterized by having more parallel streams of dependent in-
structions. They also tend to benefit the most from having a
larger issue queue. These benchmarks have a relatively large
increase in the number of pre-issued instructions in the is-
sue queue, and benefit from their ability to expose more

Figure 3: Performance of the dual issue queue.
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ILP with the dual issue queue scheme. This boost in perfor-
mance comes on top of the 18% savings in power dissipation
of the issue queue.

5. CONCLUSION
Speculation is an important method for increasing perfor-

mance by enabling more instruction-level parallelism. How-
ever, speculation increases the percentage of post-issue in-
structions in the issue queue, causing designers to use larger
queues to compensate. These queues are power hungry and
put additional pressure on the critical path. We propose a
new issue queue scheme that addresses the utilization con-
cerns while saving 18% of the issue queue power dissipation
and without compromising performance. Future work will
examine the impact on the issue queue when multiple forms
of speculation such as load address, value or memory depen-
dence prediction are also employed.
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