
A Retargetable Micro-architecture Simulator

Wai Sum Mong, Jianwen Zhu
Electrical and Computer Engineering

University of Toronto, Ontario M5S 3G4, Canada
{mong, jzhu}@eecg.toronto.edu

ABSTRACT
The capability of performing architectural exploration has become
essential for embedded microprocessor design in System-On-Chip.
While many retargetable instruction set (ISA) simulators have been
reported, the more relevant micro-architecture simulators, which
are capable of modeling the detailed machine features such as cache
organization, branch prediction and out-of-order scheduler, have
not be equipped with retargetability. In this paper, we propose a
new methodology that can generate completed micro-architecture
simulators from the abstract ISA and the application binary inter-
face (ABI) specification. We demonstrate our methodology by the
development of a tool that can automatically port the SimpleScalar
toolset, the de facto standard for micro-architecture simulation , to
any processor.

Categories and Subject Descriptors
I.6.7 [Simulation Support Systems]: Environments; C.0 [General]:
Modeling of computer architecture

General Terms
Design, Languages

1. INTRODUCTION
Due to the rapid development of the embedded system in the

recent decades, many new application-specific processor architec-
tures are developed to meet the required performance and power
consumption constraints. To reduce both the design time and the
development cost, simulation has been widely used as a means
to validate and evaluate the architecture without physically imple-
menting the design at cost and risk.

Instruction set simulation mimics the behavior of each instruc-
tion and models the effect on the target processor state at each step.
With the instruction set simulator, a new processor architecture de-
sign can be functionally verified against any real program. Micro-
architectural simulation, in contrast, mimics the effect of a micro-
architectural design to the instruction execution process. Towards
the growing complexity of micro-architectural designs, modeling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, CA, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

a detailed micro-architectural design in simulation becomes more
challenging. Due to its micro-architectural modeling capability and
extensibility, the SimpleScalar toolset [1] developed at University
of Wisconsin emerged as the de facto standard of modern micro-
architecture simulators. With the rich set of micro-architecture
components, such as memory, cache, branch predictor and sched-
uler, the SimpleScalar toolset can model architectures with vary-
ing detail, ranging from the simplest unpipelined processors to the
out-of-order superscalar architectures. According to the statistics,
more than one half of the papers published in the last Annual Inter-
national Symposium on Computer Architecture (ISCA 2002) have
used SimpleScalar tools to evaluate their designs [1].

Being processor-dependent, simulators are traditionally devel-
oped manually to support different processor architectures. This
approach is no longer efficient enough for modern embedded pro-
cessors used in the system-on-chips area. Often times, the instruc-
tion set architecture (ISA) and the micro-architecture must be de-
signed to adapt to a specific or a family of applications. To find
the best solution from the design space, the system architects must
perform the so-called architecture exploration, where the software
development tools, among which simulators are the most impor-
tant, have to be developed for each architecture configuration. This
necessitates the notion of retargetable simulators, which can be
automatically generated from an architecture configuration speci-
fication. While retargetable instruction set simulators have been
reported extensively in the literature, no retargetable tool have be
reported with capability as comprehensive as SimpleScalar. This
is becoming a problem for future high-end embedded processors
where the abundance of instruction-level parallelism will make the
accuracy of instruction set simulation intolerable.

In this paper, we propose techniques that lead to automatic port-
ing the SimpleScalar toolset, which includes a rich, extensible li-
brary of micro-architectural modeling components. We make the
following contributions. First, we propose an architectural descrip-
tion language (ADL), called Babel, to capture not only the ISA
information of the processor, but also the ABI information. Note
that while ABI is essential, it has not been captured comprehen-
sively by previous ADLs. Second, we enhance the SimpleScalar
simulators with additional features such as delayed branches and
registered windows. Third, we provided the added value to the
popular SimpleScalar toolset with an automatic porting tool. From
our own experience, manually porting the tool takes one month of
study time of the open-source SimpleScalar infrastructure, which
has 30K lines of C code, and one additional month of development
time. With our tool and an reusable architectural specification, a
retargeted simulator is close to one click away.

The remainder of this paper is organized as follows. In Section 2,
we provide an anatomy of the latest SimpleScalar tool set. Sec-

752

45.1

tion 3 presents the detail of our methodology to automatically port-
ing the SimpleScalar for a new processor architecture. We describe
the implementation of the automated porting tool in Section 4 and
demonstrate experimental results on the SPARC and the PISA ar-
chitectures. We provide a brief overview of the related works in
Section 5.

2. THE SIMPLESCALAR TOOL SET
The SimpleScalar tool [1] set is an infrastructure developed for

micro-architectural modeling and simulation. The current release
(version 3.0) contains seven simulators at different level of micro-
architectural detail as summarized in Figure 1.

Simulator Descirption #line
sim-fast Simple functional simulator 402
sim-safe Speed-optimized functional simulator 307
sim-profile Functional simulator with profiling 812
sim-cache Hierarchical memory simulator 782
sim-cheetah Single-pass multi-configuration cache simulator 479
sim-bpred Customizable branch prediction simulator 513
sim-outorder Detailed micro-architectural simulator with dynamic

instruction scheduler and multi-memory hierarchy
4555M

ic
ro

-a
rc

hi
te

ct
ur

al
de

ta
il

Figure 1: SimpleScalar Simulators.

2.1 Infrastructure

ISA µ-architecture

ToolsSimulators sim-fast sim-profile

sim-cache sim-cheetah sim-bpred sim-outorder

sim-safe

OS System calls

B - predictor

Cache

Sc
he

du
le

r

Statistical
Package

Instructions

ABI

Loader

Register

Mem

Resources

Debugger

Tracer

Figure 2: SimpleScalar Infrastructure.

Figure 2 shows the SimpleScalar infrastructure. The behaviors
of the simulators are highly dependent on three aspects of the target
processor model - ISA, ABI and micro-architecture.

Consisting of the instruction definitions and the register organi-
zation, the ISA is the fundamental required knowledge to make a
simulator working properly. In SimpleScalar, register files can be
modeled with the provided API. The instruction set definition has a
pre-defined (or recommended) format; each of which contains the
assembly format, binary opcode, execution unit component, regis-
ter dependency information, instruction class and an enum opcode
assigned by the infrastructure. To mimics the instruction effect on
the target processor state, each instruction is also associated with
a semantic action statement. Trap instructions are however excep-
tionally handled by the system call simulation package at the un-
derneath OS support.

The SimpleScalar also simulates a program loader, which copies
the instructions reading from the input executables into the simu-
lated memory. The instruction loading task is dependent on the bi-
nary file format of the machine code. Generally, the SimpleScalar
users use the provided COFF file loader although there exists an-
other choice of using the GNU’s binary file descriptor (BFD) li-
brary. Note that dynamic linking is not supported by SimpleScalar,

so the instructions must have been linked and relocated statically
before loading.

Micro-architectural components can be modeled through the APIs
in SimpleScalar. Until recently, the tool set allows modeling of
cache, memory, functional unit resource, scheduler and branch pre-
dictor. With its simple design, it is believed that more components
can be added to extend the micro-architectural modeling ability of
SimpleScalar, and hence serves it playing a better role of a micro-
architectural simulator.

2.2 The Simulation Flow

Target
Processor

Executable
File

Simulation
memory

0
1
2
.
.
.
.
.
n

FETCH

DECODE

EXECUTE

1

2
3

4

Figure 3: The Simple Simulation Process

The SimpleScalar provides an environment to implement inter-
pretive simulation. We illustrate the simulation flow with the sim-
plest unpipelined functional simulation in Figure 3. (1) Before the
simulation starts, the instruction and data are loaded to the simu-
lated memory by either the provided COFF loader or the GNU BFD
loader. The program counter (PC) holding at a simulated register is
initialized with the program entry point address after loading. The
simulator then loops through the fetch-decode-execute process at
each instruction simulation. (2) At fetch, the instruction addressed
by the PC register is copied from the simulated memory to the sim-
ulated instruction register (IR). (3) The fetched instruction is then
decoded and it comes up with the SimpleScalar-specific enum op-
code of the corresponding instruction type in ISA. (4) By using
the enum opcode obtained from the decoding process, the correct
instruction semantic definition is selected and executed.

2.3 Supported Architectures
Only two target processor architectures are supported in the ver-

sion 3.0, they are the Portable Instruction Set Architecture (PISA)
and the Alpha instruction set architecture.

Designed by the SimpleScalar’s authors, PISA is a derivative of
the MIPS architecture. In fact, PISA and MIPS only have a little
difference in term of their ISAs. Most of the MIPS compilation
tools, especially the linker, are reusable by PISA.

Supporting only one real processor architecture (Alpha) until the
recent release, the SimpleScalar team has been spending a lot of
efforts to manually porting the SimpleScalar infrastructure to many
other processor architectures.

3. RETARGETING SIMPLESCALAR
To enhance the ability of SimpleScalar to support modern micro-

architectural design under more different ISA and ABI environ-
ment, we present an automatic porting system to relieve developers
from the complex and timing-consuming porting process.

3.1 System Overview
Figure 4 is the complete design of our SimpleScalar retargeting

system. By modeling the target processor architecture with Ba-
bel, the architectural information is captured as architectural intel-
lectual property (IP) and reusable. The Babel language compiler

753

Babel
Processor

Model

Babel
Compiler

Processor-dependent
Files of SimpleScalar

SimpleScalar
Generator

BFD
Generator

Processor-dependent
Files of BFD

SimpleScalar
Tool Set

GNU BFD
Library Set

System Call
Package

Ported
GNU BFD

Ported SimpleScalar
simulators

Figure 4: Retargetable SimpleScalar System.

compiles the input IP into a form of internal abstract data. The in-
ternal data can be accessed with a set of APIs. By accessing the ar-
chitectural data captured by the internal data through the APIs, the
SimpleScalar generator produces the processor-dependent portion
of SimpleScalar. Without the simulation of dynamic linking, the
processor-dependent portion of SimpleScalar involves little ABI in-
formation but mainly consists of the ISA information of the target
architecture.

Both of the simulated loader and the instruction decoder of the
simulator have access of the binary executable files. We decided
to use GNU BFD library, the foundation library of another de facto
binary utility standard, GNU binutils. It contains all software
downstream development tools, such as assembler and link editor.

While GNU BFD and GNU binutils are extremely powerful,
they are also very complex (1 quarter million lines of code) and
therefore difficult to port. We leverage the tool we developed ear-
lier [2] to automatically port binutils from the ISA and ABI specifi-
cation. The API for accessing object code is then readily available.

The Babel processor model captures only the architectural de-
scription. In the aspect of operating system that supports the target
processor, we need a system call simulation package to simulate
the behavior of the trap instructions (as shown in the OS part of
Figure 2). This is the only component that our system fails to port
automatically, and the users will require to port this manually.

With the processor-dependent files generated for the SimpleScalar
toolset, the ported GNU BFD library generated from our retargetable
BFD tool, and also the user-provided system call simulation pack-
age, integrating them properly in the SimpleScalar infrastructure
achieves our goal of retargeting SimpleScalar.

3.2 Architectural Modeling with Babel
To capture processor architectural IPs in Babel, we defined mod-

els in the views of ISA, ABI and MICRO (micro-architecture). Our
SimpleScalar generator mainly use the information from the ISA
model while the BFD generator needs both of the ISA model and
the ABI model. Modeling micro-architectural features, our MI-
CRO model is flexible and extensible. To focus on retargeting the
ISA and the ABI, the MICRO model is not required by the current
SimpleScalar generator and nor the BFD generator tool.

Processor BEH view(#lines) ISA view(#lines) ABI view (#lines)
SPARC 196 2300 56
PISA 90 1048 45
Alpha 1144 4511 52

Table 1: Architectural IPs using Babel.

To model processor architecture myarch , the following three
files written with Babel are required:

• myarch.bbl, which captures the behavior view of the ar-
chitecture. It consists of the data types of registers and com-
plex behavioral semantics definitions on which some instruc-
tions in the myarch.isa.bbl file will depend.

• myarch.isa.bbl, which captures the ISA view of the ar-
chitecture. It includes the register file organization and the
instruction set definition.

• myarch.abi.bbl, which captures the ABI view of the
architecture. The current ABI model gives information about
the calling convention in terms of the register usage; and on
the other hand the information of linking such as relocation
and dynamic linking rules.

Table 1 shows the complexity of Babel specification of three dif-
ferent architectures - SPARC, PISA and Alpha. For each architec-
ture, we show the size of each file (as mentioned above) in terms of
the number of lines of code.

In this paper, we focus on the ISA modeling part required by the
SimpleScalar generator, and a portion of the ABI model that the
generator requires will also been briefly mentioned.

3.3 ISA Modeling with Babel
Our ISA model consists of elements of store, field, format and

instruction. The store elements give the data size and organization
of the register files, while other elements model instructions.

3.3.1 Register Files
The organization of each register file is given as an element of

store in the ISA model. As shown in Definition 1 is the store
model defined in terms of Babel. A register file is characterized
with size number of register, each of which has a bitwidth of
gran. The other parameters are optional - depth, overlap and
pointer models the windowed register organization by specify-
ing the total number of physical registers, the number of overlap-
ping registers between consecutive windows and the current win-
dow pointer respectively. At last, cells represent the registers
that belong to the register file. Example 1 gives a simple model of
a register file consisting of 8 32-bit registers.

DEFINITION 1. A store is defined as

typedef []field CellGroup; // a sequence of fields

class Store {
Store(int gran, int size); // required properties

// optional properties
int depth; //
int overlap; // overlap of windows
field pointer; // window ptr
{}CellGroup cells; // regs members
}

EXAMPLE 1. Modeling a register file with 8 32-bit registers.

754

unsigned[32] g0, g1, g2, g3, g4, g5, g6, g7;

stores = {
sGPR = new Store(32, 8) {
maps = {

gpr = [g0, g1, g2, g3, g4, g5, g6, g7]
}

}
}

3.3.2 Instructions
Each instruction of the target architecture is modeled with one

instruction element in our model. The ISA instruction model is
defined in Definition 2. An instruction is characterized by its as-
sembly format, binary encoding format, opcodes and behavior.

DEFINITION 2. An instruction is defined as

class Instrn {
string asmFormat; // assembly format
Format binFormat; // instrn format
[]int opcodes; // opcode
{}method patterns; // instrn semantics
boolean isDelayed; // delayed instrn?
}

To reduce the complexity of the model, we define the binary en-
coding format, binFormat, as an sequence of fields. A field is
the smallest unit in the instruction. Each field is characterized by
its role playing in the instruction, such as an opcode, a register or an
immediate value. Definition 3 and Definition 4 give the definitions
of the format and the field respectively.

DEFINITION 3. An instruction format is defined as

typedef []Field Format;

DEFINITION 4. A field is defined as

class Field {
/* opcode field */
Field(int size);

/* immediate field */
Field(int size, boolean isSigned, int argno);

/* register field */
Field(int size, boolean isDest, int argno,

CellGroup group);

/* relocatable field */
Field(int size, boolean isSigned, int argno,

int reloctype);
}

Figure 5 gives an example by demonstrating the modeling pro-
cess of the SPARC BNE instruction with the corresponding fields
and the binary encoding format. The opcodes of the instructions are
not defined in the fields nor the format. To increase the reusability
of the formats, the values of all opcode fields are defined in the in-
struction. The patterns gives the instruction behavior, which can be
modeled as simple as using one pre-defined opcode of Babel, or us-
ing the user-defined method behavior definition, which is specified
at myarch.bbl.

3.4 ABI Modeling with Babel
Definition 5 defines the ABI model handled by the SimpleScalar

generator. Generally speaking, it defines the register usage con-
vention as well as the stack layout. Our ABI also includes other

031 29 28 24 21

00 0 1001 010 disp22

op = new Field(2);

a = new Field(1);

cond = new Field(4);

op2 = new Field(3);

disp22 = new Field(22, true, 1, 8);

fmt = [op, a, cond, op2, disp22];

bne_instrn = new Instrn {
 asmFormat = “bne %1”;
 binFormat = fmt;
 opcodes = [0x0, 0x0, 0x9, 0x2];
 patterns = {top.OP_BNE(int22)};
 isDelayed = true;
 }

1

2

3

Figure 5: Modeling the SPARC BNE instruction.

information, including calling convention, relocation, as well as in-
formation related to dynamic linking. Since these information are
not used directly by the SimpleScalar generator, we omit the dis-
cussion in this paper. However, they are all necessities to automat-
ically port the GNU BFD library [2].

DEFINITION 5. The ABI model for retargeting SimpleScalar is
defined as

class domain.ABI {
CellGroup zero; // zero-valued reg
CellGroup itemp; // local regs
CellGroup ftemp; // local regs for float
CellGroup isave; // regs saved at dispatch
CellGroup fsave; // floating regs saved
CellGroup iarg; // input args
CellGroup farg; // input args for float
CellGroup ra; // return addr
CellGroup iret; // return value
CellGroup fret; // floating return value
CellGroup pc; // program counter
CellGroup npc; // next PC
CellGroup sp; // stack ptr
CellGroup fp; // frame ptr
CellGroup gp; // global ptr
boolean isBig; // is big endian?
int spBase; // stack base addr.
int argc; // offset of [argc] at stack
}

3.5 The SimpleScalar Generator

templates
Processor-dependent
Files of SimpleScalar

SimpleScalar
Generator

Architectural
IP

Figure 6: SimpleScalar Generator.

As shown in Figure 6, the SimpleScalar generator tool produces
the processor-dependent portion of the code from the architectural
IP with the assistance of a set of template files. The template files
are created based on the processor-dependent files in the current re-
lease of SimpleScalar. Blanking the processor-dependent part, the
template files contains only the processor-independent information.
The processor-dependent part will be filled by the generator when
the compiled architectural IP is available.

Table 2 lists the processor-dependent files of the SimpleScalar
toolset. In addition to the files in target-arch directory, the

755

File Description
target-arch/loader.c loads program into simulation memory and initial-

izes registers (e.g PC)
target-arch/symbol.c symbol manipulation used by the debugger
target-arch/arch.h definitions of register organization and MACROS

for instruction manipulation
target-arch/arch.c processor-dependent procedures (e.g. decoder)
target-arch/arch.def instruction definitions
sim-safe.c simple functional simulator
sim-fast.c speed-optimized functional simulator
sim-profile.c functional simulator with profiling
sim-cache.c cache simulator
sim-cheetah.c single-pass multi-configuration cache simulator
sim-bpred.c branch prediction simulator
sim-outorder.c cycle-accurate OOO-superscalar simulator

Table 2: Processor-dependent files.

File # lines
PISA rPISA rSPARC

target-arch/loader.c 615 283 284
target-arch/arch.h 737 505 473
target-arch/arch.c 671 1014 1624
target-arch/arch.def 2067 1863 3059
sim-safe.c 307 279 449
sim-cache.c 782 756 910
sim-bpred.c 513 490 658
sim-outorder.c 4555 4451 4634

Table 3: Manually-made vs. Generated Files.

simulator files contain definition of register access interfaces and
require porting therefore.

For example, in target-arch/arch.c, we automatically
generate the instruction decoder. In order to achieve this, we first
construct a decoding tree by scanning all instructions specified in
Babel and analyzing its binary format. Each node in the decod-
ing tree represents a value of a opcode field that can distinguish
different instructions. We then emit a tree of C switch statements
which mimic the structure of the decoding tree. Note that the gener-
ated decoder is much more powerful than the one supplied by Sim-
pleScalar which can only decode instruction with a single opcode
field. As another example, we emit C code which can simulate the
behavior of each instruction according to the instruction semantics
provided by Babel specification.

4. IMPLEMENTATION & EXPERIMENTS
Our retargetable SimpleScalar system (in Figure 4) was tested

with the PISA and the SPARC architectures. In so far, our system
supports only binary files in the ELF format. To make the input
architectural IPs, we modeled the tested architectures with Babel
and their complexities are as shown in Table 1.

Our implemented SimpleScalar generator has successfully gen-
erated correct processor-dependent files from the Babel architec-
tural models of PISA and SPARC. In this experiment, we demon-
strate the feasibility of our idea and the ability of our tool by using 4
ported simulators with different level of micro-architectural detail.
Table 3 shows the processor-dependent files generated from our
tool (rPISA and rSPARC) and compare them with the original ones
provided by SimpleScalar (PISA). To avoid confusion, we named
the ported PISA architecture as rPISA and the ported SPARC as
rSPARC. The generated files, which carry the processor-dependent
portion of SimpleScalar, will be put into the directory of target-
rPISA and the directory of target-rSPARC respectively.

The SimpleScalar simulators generated from our tool are tested

Benchmark # instructions executed
PISA SPARC

181.mcf 419,091,512 497,727,974
197.parser 46,080,766,461 61,881,001,366
164.gzip 147,714,434,639 204,889,958,252
183.equake 3,277,913,476 2,927,744,817
188.ammp 25,016,922,286 16,563,751,978
179.art 28,986,818,426 36,118,444,032

Table 4: Number of instructions executed.

with a subset of SPEC2000 testbenches, including 3 integer bench-
marks (181.mcf, 197.parser and 164.gzip) and 3 float benchmarks
(183.equake, 188.ammp and 179.art). We also compare the per-
formance of the generated simulators with the manually-generated
simulators provided from SimpleScalar. All experiments are per-
formed on a 750MHz SunBlade 1000 workstation.

There are several things required to be done manually before we
can activate our simulators. First, the current SimpleScalar toolset
has no support of windowed register and delayed branches in the
register library and the branch predictor library respectively. To
support SPARC architecture, we manually correct the correspond-
ing libraries to adapt. Second, there is no compilation tools exist to
make ELF-formatted executables for PISA. To make the compila-
tion tools, we ported the GNU binutils automatically with our
retargetable binutils tool, and GNU gcc and GNU glibc manu-
ally. Porting these applications provide us assemblers and linkers,
compiler and standard C library respectively. The current release
of GNU compilation tools already support SPARC in ELF format
on the other hand. At last, as previously mentioned, our system
cannot generate the system call simulation package required by the
OS part of SimpleScalar. We can re-use the system call simula-
tion package provided by SimpleScalar for rPISA. For rSPARC, we
manually made an equivalent system call package for the experi-
ments.

Our first experiment demonstrates that our tool can successfully
perform instruction set simulation. Figure 7 shows the simulation
performance in terms of simulated instructions per second for the
rPISA and rSPARC, compared against PISA. Table 4 shows the
number of instructions executed for each benchmark in terms of
different ISA. It can be observed that the performance of our gen-
erated instruction simulator is comparable to the original one pro-
vided by the SimpleScalar simulator.

We then demonstrate the performance of our retargeted simula-
tor for detailed micro-architecture simulation: Figure 8 for cache
simulation and Figure 9 for branch prediction simulation. Again,
the performance of our generated simulators are comparable to the
original ones. Figure 10 is shown to demonstrate the different sim-
ulation speed for different level of architectural detail for the same
processor.

5. RELATED WORKS
Several recent research efforts focus on the retargetability issue

of the instruction set simulation, where the goal is to generate a
simulator automatically from a machine description language. The
Insulin simulator [3], translates target machine code into a generic
assembly code, which in turn is simulated by a VHDL simulator.
In [4] and [5], interpretive and compiled simulators are generated
from nML machine description language respectively. Similarly,
the JACOB system [6], generates both interpretive and compiled
simulators from the MIMOLA HDL.

For micro-architecture simulation, FastSim is a micro-architectural
simulator optimized for out-of-order processor simulation [7]. Even

756

sim-safe

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

18
1.

m
cf

19
7.

pa
rs

er

16
4.

gz
ip

18
3.

eq
ua

ke

18
8.

am
m

p

17
9.

ar
t

in
st

rn
/s PISA

rPISA

rSPARC

Figure 7: Performance of sim-safe.

sim-cache - 2-level instruction and data caches with
unification in the 2nd level

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

18
1.

m
cf

19
7.

pa
rs

er

16
4.

gz
ip

18
3.

eq
ua

ke

18
8.

am
m

p

17
9.

ar
t

in
st

rn
/s PISA

rPISA

rSPARC

Figure 8: Performance of sim-cache.

though the architecture simulated by FastSim involves memory and
branch predictor, it is not flexible and extensible enough to model
new micro-architectural features in the future.

The SimpleScalar [1] toolset is open source distributed for aca-
demic purpose. In addition to its simple hence flexible infras-
tructure design, researchers can use SimpleScalar source code to
build new tools and extend it to model more innovative micro-
architectural features. For example, Wattch is an architecture-level
power modeling framework developed on top of the SimpleScalar
for power analysis and estimation [8]. The HydraScalar Project
at the University of Virginia extends SimpleScalar with multipath
execution capability [9]. Also, multi-threaded architecture model-
ing is achieved by enhancing the SimpleScalar infrastructure in the
SIMCA project at University of Minnesota [10].

sim-bpred - bimodal predictior with 2048 entries,
on a 4-associative BTB with 512 sets

0
200000
400000

600000
800000

1000000
1200000
1400000

18
1.

m
cf

19
7.

pa
rs

er

16
4.

gz
ip

18
3.

eq
ua

ke

18
8.

am
m

p

17
9.

ar
t

in
st

rn
/s PISA

rPISA

rSPARC

Figure 9: Performance of sim-cache.

rSPARC

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

18
1.

m
cf

19
7.

pa
rs

er

16
4.

gz
ip

18
3.

eq
ua

ke

18
8.

am
m

p

17
9.

ar
t

in
st

rn
/s sim-safe

sim-bpred

sim-cache

Figure 10: Performance of rSPARC.

6. CONCLUSION
In conclusion, we have argued that micro-architectural simula-

tors are important for embedded processor design and adding retar-
getability to the micro-architectural simulators is urgent for modern
technology. This leads to our work of automating the retargeting
process of micro-architectural simulators. For its flexibility and ex-
tensibility, we selected the SimpleScalar toolset and enhance its ca-
pability with our SimpleScalar generator. Our experimental results
prove the feasibility of this methodology.

7. REFERENCES
[1] SimpleSclar LLC, http://www.simplescalar.com.
[2] M. Abbaspour and J. Zhu, “Retargetable binary utilities,”

New Orleans, USA, June 2002.
[3] S. Sutarwala, P. Paulin, and Y. Kumar, “Insulin: An

instruction set simulation environment,” in Proceedings of
CHDL-93, Ottawa, Canada, 1993.

[4] A. Fauth, “Beyond tool-specific machine descriptions,” in
Code Generation for Embedded Processors. 1997, Kluwer
Academic Publishers.

[5] M. Hartoog, J. Rowson, P. Reddy, and et al., “Generation of
software tools from processor descriptions for
hardware/software codesign,” in Proceeding of the 34th
Design Automation Conference, 1997.

[6] R. Leupers, J. Elste, and B. Landwehr, “Generation of
interpretive and compiled instruction set simulators,” in
Proceeding of Asian-Pacific Design Automation Conference,
Hong Kong, January 1999.

[7] E. Schnarr and J. Larus, “Fast out-of-order processor
simulation using memorization,” in The Eighth International
Conference on Architectural Support for Programming
Lanuages and Operating Systems (ASPLOS-VIII), San Jose,
California, October 1998.

[8] V. Tiwari D. Brooks and M. Martonosi, “Wattch: A
framework for architectural-level power analysis and
optimizations,” in The Proceedings of the 27th International
Symposium on Computer Architecture, Vancouver, BC, June
2000.

[9] K. Skadron and P. S. Ahuja, “Hydrascalar: A
multipath-capable simulator,” in Newsletter of the IEEE
Technical Committee on Computer Architecture, Jan 2001.

[10] SIMCA, the Simulator for the Superthreaded Architecture,
http://www-mount.ee.umn.edu/˜lilja/SIMCA.

757

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

