
Improving the EÆciency of Memory Partitioning

by Address Clustering

Alberto Macii z Enrico Macii z Massimo Poncino �

z Politecnico di Torino
Torino, ITALY 10129

� Universit�a di Verona
Verona, ITALY 37134

Abstract

Memory partitioning is an e�ective approach to memory

energy optimization in embedded systems. Spatial local-

ity of the memory address pro�le is the key property that

partitioning exploits to determine an eÆcient multi-bank

memory architecture.

This paper presents an approach, called address clustering,

for increasing the locality of a given memory access pro�le,

and thus improving the eÆciency of partitioning.

Results obtained on several embedded applications running

on an ARM7 core show average energy reductions of 25%

(maximum 57%) w.r.t. a partitioned memory architecture

synthesized without resorting to address clustering.

1 Introduction
Modern SoC platforms usually contain one or more proces-

sors; because of the increasing gap between processor and
memory speed, providing suÆcient memory bandwidth to
sustain fast program execution is thus becoming more and

more challenging. As a response, SoC architectures and
technologies have evolved in an e�ort to enable the in-
stantiation of various types of on-chip embedded memories

providing shorter latencies and wider interfaces, in order
to partially �ll this gap.
Ubiquity of embedded memories makes them the largest

contributor to the overall energy budget of a chip. This fact
motivates the recent attention of the research community
to energy-eÆcient memory design solutions (see [1, 2, 3, 4]

for a comprehensive survey of the topic).
Factors that a�ect memory consumption are summarized
by the following model: Emem =

P
N

i=1
Cost(i), where N

is the number of accesses during the computation, and
Cost(i) lumps the e�ective cost of an access due to the
memory organization and the cost of the physical access

given by the technology. The model exposes the two quan-
tities that can be independently tackled to reduce energy
consumption. We can thus classify memory energy opti-

mization techniques into three broad classes:

� Techniques aiming at reducing Cost(i): Approaches

in this class build low-energy memory architectures.

� Techniques aiming at reducing N : Approaches in

this class modify the memory access pattern, typi-
cally through software optimizations.

� Techniques that concurrently reduce Cost(i) and N .

Techniques based on concurrent optimization of memory
architecture and access patterns are the most powerful,
but also the most diÆcult to realize. This fact is witnessed

by the few solutions proposed in the literature, the most
popular being the DTSE exploration framework [1, 5]. One
of the biggest diÆculties in concurrent optimization lies
in the fact that the two dimensions of the problem are

regarded as orthogonal: Architectural optimizations are
viewed as a hardware task, while the optimization of the
access patterns is viewed as a software task.

In this work, we relax this dichotomy, and revisit the prob-
lem from an architectural perspective: The design of an
application-speci�c memory architecture is carried out con-

currently with the optimization of the access patterns by
introducing some speci�c hardware. In practice, the access
patterns are modi�ed on the y, without any intervention

on the software application running on the processor.
The basic architectural optimization relies on the mem-
ory partitioning technique proposed in [6], where a mem-

ory block (hosting the data or the code of the application
running on the system) is partitioned into multiple, non-
overlapping sub-banks that can be independently accessed.

Energy eÆciency is achieved by exploiting the non unifor-
mity of the memory access pro�le.
The contribution of this work is a technique called address

clustering, which consists of reorganizing (through extra
hardware) the address trace fed to a memory block, in
such a way that the potential for the memory partitioning

engine is maximized. This is equivalent to modifying the
memory access pro�le, yet in a totally transparent fashion
to the programmer.

Experimental results show that address clustering allows
to reduce the energy consumption of a partitioned mem-
ory architecture by 25% on average (maximum 57%) with

respect to plain partitioning, on a set of typical embedded
applications running on an ARM-based system.

2 Low-Power Memory Partitioning
This section briey describes how an on-chip memory can

be partitioned into disjoint sub-banks with the objective
of reducing its energy consumption [6].
The conceptual operation of a partitioning scheme is shown

in Figure 1. Conventionally, the whole address space of the
application is mapped to a single SRAMmemory array, the
smallest one in the memory library which is large enough

to contain the speci�ed range (Figure 1-(a)).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/03 $17.00  2003 IEEE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/03 $17.00  2003 IEEE 



���� ��� ����

���	

	


����

����

����

����

����

����

��

����

�����

�����

���������
����

����

��

��

��

��� ��� ���

Figure 1: Memory Partitioning Example.

If we assume a dynamic access pro�le as in Figure 1-(b),
where a small subset of the addresses in the range is very
\hot" (i.e., accessed very frequently), the partitioned mem-

ory shown in Figure 1-(c) is clearly advantageous from the
energy dissipation point of view. It consists of three mem-
ories and a memory selection block. Two relatively large

cuts contain the top and bottom parts of the range, while
the hot addresses are stored into a small memory.
Based on the fact that smaller memories have lower (area,

delay, and energy) cost, the partitioned scheme allows most
of the addresses to �t into a smaller block; thus, the average
power in accessing the memory hierarchy is decreased, be-

cause a large fraction of accesses is concentrated to a small,
power-eÆcient memory. Obviously, this is made possible
by selectively disabling (through the chip-enable signal)
the inactive memory blocks.

Notice that we need to account for the power consumed
in the entire partitioned memory system, i.e., the address
and data buses, the decoder and the control signals. These

components introduce an overhead on power consumption
that must be o�set by the savings given by bank partition-
ing.

3 Address Clustering
3.1 Motivating Example

As a motivating example for the bene�ts of address cluster-

ing, let us consider the address pro�le of a MPEG decoding
application, obtained for an ARM7 core. The pro�le refers
to the instruction stream, therefore only read accesses are

traced.
Figure 2 shows the occurrence frequency of each address
in the trace, which consists of 31233 addresses (from 0 to

124892) �tting into a memory cut having 1952 rows � 512
columns. The plot highlights the well-known irregularity
of the pro�le, with very few \hot" addresses. This mem-

ory, when exercised with this trace (44.4 million total read
accesses), consumes 170 mJ.
The application of the memory partitioning algorithm de-

scribed in [6] to this trace yields a multi-bank memory con-
�guration consisting of three memory blocks of sizes 736
� 256, 696 � 512, and 892 � 512, consuming a total of 96

mJ (inclusive of the overhead), a 43.5% energy reduction
w.r.t. the monolithic memory architecture. In particular,
the middle memory cut (696 rows � 512 columns), which

is also the smallest one, keeps the majority (82%) of the
memory accesses (36 million out of 44.4).

�

������

������

������

������

������

������

� ����� ����� ����� ����� ������ ������ ������

Figure 2: Address Pro�le of a MPEG Decoder.

Consider now the situation depicted in Figure 3, where the
addresses of the MPEG trace are now clustered towards the
low-end of the pro�le. Intuitively, this improves the spatial

locality of the pro�le by keeping the most visited addresses
as close as possible.

�

������

������

������

������

������

������

� ����� ����� ����� ����� ������ ������ ������

Figure 3: Clustered Address Pro�le of a MPEG Decoder.

The application of the memory partitioning algorithm to
this trace yields now a partitioned memory consisting of

two blocks of sizes 212 � 128 and 1900 � 512, consuming
a total of 42 mJ, with an additional 56% of energy saved
(75% over the non-partitioned case). The smallest memory

block contains now 99% of the accesses (43.99 million out
of 44.4 million), whereas the second, largest block is active
only for a very small fraction (1%) of the time.

Clearly, dealing with the second trace is preferable. How-
ever, unless there exists a compiler that is able to explicitly
enforce locality, obtaining the trace of Figure 3 implies re-

locating all the addresses of the trace. This has clearly a
cost: It requires an address decoding function with unac-
ceptable complexity, that would o�set the energy savings

achieved by increasing the locality of the pro�le. As a
matter of fact, such encoder would be a 32-input, fully-
speci�ed function that builds the correspondence between

original and clustered address.
On the other hand, intermediate solutions are possible,
where only a (small) subset of the addresses is clustered,

yet maximizing the increase in locality. In other terms,
we face the usual trade-o� between the achievable energy
savings and the complexity of the encoder. The next two
sections describe the formulation and a solution of the ad-

dress clustering problem, respectively.



3.2 Problem Formulation

The address clustering problem consists of �nding a reloca-

tion of a proper subset of the address space that maximizes
the locality of the dynamic trace, and with the ultimate ob-
jective of minimizing the energy consumption of the mem-

ory architecture for the given trace, possibly under area
and cycle time constraints.
The actual energy consumption of a partitioned memory

architecture is determined by the outcome of the mem-
ory partitioning algorithm of [6]. However, running the
memory partitioning engine for each candidate clustering

solution may become quite computationally expensive. We
thus need to devise a high-level cost function that can be
used into an exploration framework to evaluate the suit-

ability of a clustering solution.
Following the observation that the potential of the memory
partitioning engine is related to the locality of the trace,

the cost metric to be chosen should be related to the local-
ity of the address pro�le.

3.3 Cost Metrics

The dynamic access pro�le C for the target application is
given as an array C = [c0; c1; : : : ; cN�1], where ci is the

total number of accesses to address i, and N is the total
number of addresses. Although read and write accesses
have di�erent energy costs, at this level of abstraction we
do not distinguish between them, and just consider the

total number of accesses.
We want to infer, from a given trace, a single-value quan-
tity that expresses its degree of (spatial) locality. Although

a trace sorted in non-decreasing or non-increasing order has
clearly maximum locality, it only represents a special case
of a maximum-locality trace. Locality is a�ected by the

fact that highly visited addresses are close in space, rather
than the fact of being sorted.
In other words, any metric related to the \distance" of

a pro�le from a perfectly sorted one would not be very
precise, because we need a quantity that also measures the
magnitude of the out-of-sequence elements. Furthermore,

evaluating the shape of a pro�le against a sorted one would
imply forcing the pro�le to exhibit a locality that is skewed
towards the upper or lower end of the pro�le, which is

clearly a limitation.
A second requirement is related to the basic operation real-
ized by address clustering, that is, moving only a relatively

small subset of the addresses. Therefore, the metric should
also provide an indication of how many addresses are cov-
ered by a given subset of addresses W . In other terms,

it should be parameterized with respect to a value that
represents a set of addresses.
We de�ne the metric that incorporates both requirements

as the density of a pro�le. Given a pro�le C, its density is
the maximum value of the cumulative number of accesses

for a sliding window of size W over the trace. In formula:

D(C;W ) = max
i

(Si) i = 0; : : : ; N �W (1)

where Si is de�ned as Si =
P

W�1

j=0
ci+j .

Density, as de�ned in Equation 1, is an absolute quan-
tity. For a more e�ective use of density as a cost function

across di�erent traces, we normalize the value of D(C;W )
to the total number of memory accesses in the trace Tot =P

N�1

i=0
ci, to make it a number between 0 and 1. We denote

the normalized density with d:

d(C;W ) =
D(C;W )

Tot
(2)

Density measures the degree of spatial locality of a trace,

in terms of how highly visited addresses are kept close. In
practice, D(C;W ) measures the maximum number of total
accesses of C covered by a window of size W .

Density is a suitable measure to compare two di�erent ad-
dress traces, for the same value of W , as shown in the
following example.

Example 1

Consider the pro�le of Figure 2. Figure 4 shows the values

of d(C;W ) for W = 32; 64; 128; 256 and 512. The solid

line refers to the original pro�le, whereas the dashed one

refers to the pro�le obtained by relocating the M = 256
most visited addresses.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 100 1000 10000

Mpeg-original
Mpeg-clustered

Figure 4: Density of the Original and of a Clustered Trace.

The superiority in terms of locality of the clustered trace is

evident from the plot: A window ofW = 256 addresses cov-
ers more than 80% of the total accesses, whereas it roughly

covers a 20% in the original case.

The choice of the number M of addresses to be clustered
is in strict relation with the value W used for computing

the density of trace C. In other words, for a given value of
W , the density of trace C is maximal if M �W . Also, the
larger the value of W , the larger the density of the trace.

The problem to be solved is then that of �nding a good
value of W (and thus of M = W ) such that the density
of the clustered trace C' (i.e., d(C0;W )) is large and W is

small. The latter objective corresponds to minimizing the
number of addresses that need to be moved, and thus helps
in keeping under control the HW encoder that actuates

address clustering.



4 Clustering Algorithm
The optimization procedure consists of a main exploration

loop, that is used to �nd a good value for W (and thus of
M). This value is then fed to the core optimization routine
that generates the encoder and the clustered trace.

Figure 5 shows the high-level pseudo-code of the explo-
ration loop. Procedure Explore receives, as input, an ad-
dress pro�le C, and a threshold T used by the algorithm

to check the convergence and thus control termination of
the execution.

1 Explore (C,T ) f
2 Csort = Sort(C);
3 for (W = 1 to N) f

4 Dens = d(Csort;W );
5 if (EvalSlope (Csort,T ,Dens)) f
6 return W ;

g

7 W+ = step;
g

Figure 5: Exploration Algorithm.

The exploration is based on a simple convergence test on
the values of locality. In particular, W is chosen such that

the marginal increase in locality (with respect to the pre-
vious iteration) falls below T .
The initial trace C is �rst sorted in decreasing order of

accesses (Line 2). Then, a loop iterates on the size of
the sliding window W (Line 3). For each W , locality of
d(Csort;W ) is computed (Line 4). Procedure EvalSlope,

based on the analysis of a history of locality values and
the current one, decides whether convergence is reached
(Line 5). If this is the case, it returns the current value of

W (Line 6), that will be used by the clustering procedure;
otherwise, the analysis is repeated with a new value of W
(Line 7).

The high-level pseudo-code of the address clustering algo-
rithm is shown in Figure 6. Procedure Cluster receives,
as input, the original memory address trace, the number of

addresses M to be clustered and the \golden" trace Gold-
enTrc (i.e., the trace in which all the addresses are sorted
in non-increasing order of frequency count).

The procedure is invoked with OrigTrc = C, M = W and
GoldenTrc = Csort.
The algorithm works in two phases: In the �rst one (Lines

2{8), each of the �rst M addresses of the original trace is
checked to see if it is contained in the �rstM of the golden
trace (i.e., the most visited ones) { Line 4. If so, it is left

untouched and its position, both in the original and the
golden traces, is marked as \used" (Line 6 and Line 8).
In the second phase (Lines 9{18), the �rst M addresses

in the golden trace that are left unused (Line 10) replace
the \unused" addresses of the original trace (Line 14). This
replacement implies the update of the original trace in such
a way that the original behavior is preserved (Lines 15{18).

Procedure Cluster returns a modi�ed trace whose �rst M
locations contain the M most visited addresses.

1 Cluster (OrigTrc,M,GoldenTrc) f
2 for (i = 0 to M) f
3 for (j = 0 to M) f

4 if (OrigTrc[j] == GoldenTrc[i]) f
5 Leave the address in the original place;
6 Mark OrigTrc[j] as used;
7 Mark GoldenTrc[i] as used;

8 break;
g

g

g

9 for (i = 0 to M) f
10 if (GoldenTrc[i] is not used) f

11 for (j = 0 to M) f
12 if (OrigTrc[j] is not used) f
13 temp = OrigTrc[j];

14 OrigTrc[j] = GoldenTrc[i];
15 for (k = 0 to end of OrigTrc) f
16 if ((OrigTrc[k] == temp) &&

OrigTrc[k] is not used) f
17 OrigTrc[k] = temp;
18 break;

g

g

g

g

g

g

g

Figure 6: Clustering Algorithm.

5 Experimental Results
5.1 Energy Optimization

The address clustering technique has been implemented

around the memory partitioning tool of [6], and validated
on a set of C programs that represent typical embedded
applications. Some of the benchmarks are taken from the

Ptolemy distribution [7], others come from theMediaBench

suite [8].
We have used the ARM software development kit as target

platform for the execution of the benchmarks. In particu-
lar, the memory access traces have been obtained through
the pro�ling features provided by ARMulator [9], the in-

struction set simulator of the ARM tool-chain.
Table 1 shows the address clustering results. It is split into
two parts: The top half concerns data accesses, whereas the

bottom half refers to instruction accesses.
Column#Addr gives the total number of distinct addresses
in the trace. Column Emono gives the energy of the mono-

lithic memory that contains all the data/instructions, while
columns Epartitioned show the total memory energy of a
partitioned memory architecture. In particular, column

Original refers to the application of the plain memory par-
titioning algorithm of [6], while columns M = 256, M =
512, and M = 1024 give results for memory partitioning

combined with address clustering.



Benchmark #Addr Emono Epartitioned

[nJ] Original M = 256 M = 512 M = 1024

E [nJ] � [%] E [nJ] � [%] E [nJ] � [%] E [nJ] � [%]

Chaos 9108 1.56e5 8.11e4 48.0 7.45e4 52.2 7.45e4 52.2 7.45e4 52.2

FilterBank 16659 1.04e5 5.08e4 51.1 3.94e4 62.1 3.91e4 62.4 3.91e4 62.4

iirDemo 9417 4.06e5 1.72e5 52.2 1.72e5 57.6 1.72e5 57.6 1.72e5 57.6

integrator 5253 4.48e4 2.66e4 40.6 2.53e4 43.5 2.53e4 43.5 2.53e4 43.5

scramble 2537 5.19e5 4.05e5 22.0 3.73e5 28.1 3.73e5 28.1 3.73e5 28.1

DTMFCodec 3520 2.62e7 1.77e7 32.4 1.67e7 36.3 1.67e7 36.3 1.67e7 36.3

MpegDec 184320 1.51e9 4.60e8 69.5 3.54e8 76.5 3.34e8 77.8 2.34e8 84.5

EPIC 216064 1.04e9 1.19e8 88.6 1.15e8 89.0 1.15e8 89.0 1.15e8 89.0

unEPIC 216064 6.28e7 1.74e7 72.3 1.67e7 73.4 1.67e7 73.4 1.67e7 73.4

MpegEnc 31224 3.52e10 1.65e10 53.1 1.82e10 48.3 1.24e10 64.8 1.06e10 69.9

MpegDec 31224 2.05e9 1.17e9 42.9 7.47e8 63.6 5.21e8 74.6 5.01e8 75.6

DTMFCodec 19982 3.23e8 1.32e8 59.1 1.48e8 54.2 1.16e8 64.1 1.06e8 67.2

EPIC 56460 2.73e9 9.23e8 66.1 6.89e8 74.7 5.12e8 78.2 5.13e8 81.2

unEPIC 52388 1.99e8 6.41e7 67.8 6.89e7 65.4 4.77e7 76.0 3.87e7 80.6

RawEnc 10610 2.22e7 1.21e7 45.6 9.73e6 56.2 9.84e6 55.8 9.84e6 55.8

RawDec 10610 3.18e7 1.85e7 41.9 1.38e7 56.6 1.45e7 54.5 1.45e7 54.5

Average 53.3 58.6 61.9 63.4

Table 1: Comparison of Energy Savings: Before and After Clustering.

All the memory data are provided by the memory parti-

tioning tool, which uses memory models derived from a
commercial memory generator by STMicroelectronics. In
particular, the data refer to a library of static SRAM mem-

ory cuts.
We �rst observe that, in order to give the reader the feeling
about how clustering impacts energy savings, in the table
we have reported data for di�erent values of M , namely

M = 256, M = 512 and M = 1024, instead of simply
providing the results obtained for the best value of M , as
determined by the exploration procedure.

The interesting information we can extract from the data
is that, for several examples, energy savings (which are re-
calculated in Table 2 by taking plain memory as the term

of comparison for the sake of readability) are not mono-
tonically increasing with the value of M . In these cases, a
small value of M is suÆcient, as further increasing it does

not provide further advantages while complicating unnec-
essarily the implementation of the decoder. This is due to
the fact that memory traces have very irregular locality and

this clearly justi�es the need of using a threshold-controlled
exploration loop.
We notice also that all the energy �gures are inclusive of

the hardware overhead caused by partitioning, as discussed
in Section 2.

5.2 Encoder Overhead Analysis

The clustering of the addresses is implemented through a
hardware encoder, which translates the original addresses

into their modi�ed values. Since the clustering is based on
the swap of address pairs, there are actually 2M clustered
addresses.

Figure 7 shows a conceptual block diagram of the encoder.
X denotes the original address as issued by the core, and
X 0 the clustered address. The encoder has the typical

structure of a conditional encoder. f(X) represents a func-
tion that evaluates to 1 if the address X belongs to the set
of the 2M clustered addresses; in that case, the output

consists of the clustered address X 0 = R(X), where R is
the function that maps the clustered addresses to actual
ones. When f(X) = 0, X 0

� X.

Benchmark Saving [%]

M = 256 M = 512 M = 1024

Chaos 8.1 8.1 8.1

FilterBank 22.4 23.0 23.0

iirDemo 11.3 11.3 11.3

integrator 4.9 4.9 4.9

scramble 7.9 7.9 6.2

DTMFCodec 5.6 5.6 5.6

MpegDec 23.1 27.3 49.1

EPIC 3.5 3.5 3.5

unEPIC 4.0 4.0 4.0

MpegEnc -10.3 24.8 35.8

MpegDec 36.2 55.5 57.2

DTMFCodec -12.1 12.1 19.7

EPIC 25.4 35.6 44.4

unEPIC -7.5 25.6 39.6

RawEnc 19.6 19.6 19.6

RawDec 25.3 25.3 25.3

Average 10.5 18.4 22.5

Table 2: Energy Savings w.r.t Non-Clustered Traces.

����

����

�

��
�

�

Figure 7: Conceptual Architecture of the Address Encoder.

The encoder is implemented as a fully combinational net-
work that performs the mapping from X to X 0. Given the
relatively small values of M (compared to the total num-

ber of addresses), the complexity of such mapping network
is acceptable. In fact, it corresponds to a Boolean func-
tion consisting of 2M 32-input minterms. Since the whole

input space of 232 minterms largely exceeds the on-set of
this function, the huge don't care set results in quite small
and energy-eÆcient encoders.

Figure 8 shows the energy consumption of the encoder
versus some typical values of M . The values represent
the average energy over all the benchmarks of Table 1.



The various encoders have been synthesized with Synopsys

DesignCompiler on a 0:25�m technology by STMicroelec-

tronics, under delay constraints. Performance is in fact
more critical than power, as discussed later. Power �gures
are obtained with Synopsys PowerCompiler, under appli-

cation of the corresponding address traces at a frequency
of 150MHz.

����

����

����

	���

��	



�



��



��



��



��



	�



��



��



��



�� ��� �	� 	�� �
��
�

�
�
�
�
��
��
	



Figure 8: Encoder Energy Overhead vs. M .

The plot shows that energy increases sub-linearly with re-
spect to M ; furthermore, power �gures are negligible with
respect to the contribution of the memory block. For

instance, the encoder consumes approximately 7mW for
M = 1024, a marginal (about 2%) overhead compared to
a 16K memory, which dissipates about 375mW .

The variance of the energy �gures over the various appli-
cations is relatively small, because (i) the complexity of
the decoder is basically independent of the set of addresses

that are clustered, and (ii) the switching activity of the
address lines is very similar for all benchmarks (because of
the well-known spatial locality of address traces).

Delay overhead is also important, as address translation af-
fects the timing of a memory access. However, as discussed
in [6], in the ARM-based architectural model assumed in

this paper, the protocol requires a delay of one clock cycle
between the issuing of the address and the reading of the
data-bus [10]. It is thus suÆcient that the time needed for

the memory to retrieve the information, plus the additional
delays in the wiring and the encoder, remains smaller than
the clock cycle, in the worst case, to ensure a correct behav-

ior with no performance degradation. We have assumed an
operating frequency of 150 MHz (towards the high end of
the ARM low-power core performance), corresponding to

a 6.66ns cycle time. To allow a reasonable safety margin,
we have imposed a 5ns delay constraint in the synthesis of
the decoder.

The energy, delay, and area overheads caused by the pres-
ence of this encoder are automatically taken into account
by the memory partitioning engine, in the form of pre-

characterized penalty factors used to prevent arbitrary �ne
partitioning. Such overheads are pre-characterized using
layout-related technological information captured with the

ow described in [6]. With respect to the conventional
partitioning, these overheads have been properly modi�ed
according to the analysis carried out in this section.

6 Conclusions
The energy reduction achievable by memory partitioning

techniques can be improved sensibly by increasing the lo-
cality of the trace. Rather than realizing it on the appli-
cation at the software level, we proposed an architectural

solution, called address clustering, which consists of the
relocation of a small subset of the address space that max-
imizes the potential energy savings, by keeping the hard-

ware overhead at a minimum.
Experimental results on a set of typical embedded applica-
tions running on an ARM-based system show that address

clustering is able to reduce the energy consumption of a
partitioned memory architecture by 25% on average (max-
imum 57%) with respect to the partitioning driven by the

original trace.

References

[1] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.

Nachtergaele, A. Vandecappelle, Custom Memory Manage-

ment Methodology Exploration for Memory Optimization for

Embedded Multimedia System Design, Kluwer, 1998.

[2] P. Panda, N. Dutt, Memory Issues in Embedded Systems-on-

Chip Optimization and Exploration, Kluwer, 1999.

[3] L. Benini, G. De Micheli, \System-Level Power Optimization:

Techniques and Tools," ACM Transactions on Design Au-

tomation of Electronic Systems, Vol. 5, No. 2, pp. 115-192,

April 2000.

[4] A. Macii, L. Benini, M. Poncino, Memory Design Techniques

for Low-Energy Embedded Systems, Kluwer, 2002.

[5] S. Wuytack, J. Diguet, F. Catthoor, H. De Man, \Formalized

Methodology for Data Reuse: Exploration for Low-Power Hi-

erarchical Memory Mappings," IEEE Transactions on VLSI

Systems, Vol. 6, No. 4, pp. 529-537, December 1998.

[6] L. Macchiarulo, A. Macii, L. Benini, M. Poncino, \Layout-

Driven Memory Synthesis for Embedded Systems-on-Chip,"

IEEE Transactions on Very Large Scale Integration (VLSI),

Vol. 10, No. 2, pp. 96-105, April 2002.

[7] J. Davis II et al., \Overview of the Ptolemy Project," ERL

Technical Report UCB/ERL No. M99/37, Dept. EECS, Uni-

versity of California, Berkeley, July 1999.

[8] C. Lee, M. Potkonjak, W. H. Mangione-Smith, \MediaBench:

a Tool for Evaluating and Synthesizing Multimedia and Com-

munications Systems," 30th IEEE/ACM International Sym-

posium on Microarchitecture, pp. 330-335, Research Triangle

Park, NC, December, 1997.

[9] ARM Corporation, ARM Software Development Toolkit, Ver-

sion 2.50, Reference Guide, ARM DUI 0041C, Chapter 12,

November 1998.

[10] S. Segars, \The ARM9 Family - High Performance Micro-

processors for Embedded Applications," ICCD-98: IEEE In-

ternational Conference on Computer Design, pp. 230-235,

Austin, TX, October 1998.


	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index




