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ABSTRACT
Emerging high-level hardware description and synthesis
technologies in conjunction with field-programmable gate
arrays (FPGAs) have significantly lowered the threshold for
hardware development. Opportunities exist to integrate
these technologies into a tool for exploring and evaluat-
ing microarchitectural designs. This paper presents a case
study in developing the synthesizable high-level model of a
superscalar processor and producing a working prototype
in FPGA. Using an experimental operation-centric hard-
ware description language, we have created the synthesiz-
able model of a superscalar speculative out-of-order core for
the integer subset of SimpleScalar PISA. A prototype imple-
mentation is produced by synthesizing the high-level model
for the Spyder FPGA prototyping board. In addition, we
have modified the baseline processor model to create deriva-
tive processor designs that add newly proposed experimen-
tal mechanisms. The derivative models are useful both in
testing the completeness and correctness of new mechanisms
and in assessing the mechanisms’ impact on implementation
area and cycle time.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: Processor Ar-
chitectures

General Terms
Design
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1. INTRODUCTION
High-level design tools and field-programmable gate ar-

rays (FPGAs) significantly reduce the effort, cost and risk
of hardware implementation. These technologies can be in-
corporated into a manageable and affordable prototyping
framework—a VLSI-scale “breadboard”—for exploring and
evaluating new microprocessor designs. This approach pro-
vides another middle ground between paper design and full-
scale implementation efforts where an architect can quickly
test preliminary ideas without committing undue resources.
In current practices, this evaluation step is normally car-
ried out using functional and performance “C” simulators
(e.g., SimpleScalar [3]).

For the right questions, software microarchitecture sim-
ulators can produce as convincingly an answer as actually
building hardware, but developing a prototype provides a
working proof-of-concept and directly addresses questions in
design complexity and implementability. However, in order
for prototyping to be an effective technique, the cost, risk
and effort required should not greatly exceed those needed
by simulations. By combining high-level hardware descrip-
tion technologies and FPGAs, researchers can prototype
preliminary ideas without risking a great setback if the trial
fails. The ability to quickly iterate design refinements also
allows for a more interactive design approach in finalizing a
microarchitecture. As a supplement to simulation, an FPGA
prototype is a powerful demonstration because it forces a de-
signer to produce a complete and precise description of a de-
sign; this undertaking helps to uncover many issues glossed
over by a software simulator.

In this paper, we present our experiences in developing the
synthesizable high-level models of superscalar out-of-order
processors and producing working FPGA prototype imple-
mentations. Using an operation-centric high-level hard-
ware description language, one student in significantly less
than one year has created an FPGA implementation of a
4-way superscalar speculative out-of-order core for the in-
teger subset of SimpleScalar PISA. The high-level model
of the processor is amenable to modifications that add or
change microarchitecture features. The model is also ex-
tensible with performance counters for data gathering. To
demonstrate the utility of this infrastructure, the baseline
processor model is modified to include a newly proposed
scheme for soft-error tolerance that calls for dynamic redun-
dant executions of the instruction stream [17]. We show how
a prototyped-based evaluation allows us to test the perfor-
mance and correctness of a new microarchitecture proposal



and assess its impact on implementation metrics such as
cycle time and area.

Following this introduction, the remainder of the paper
is organized as follows. Section 2 discusses two current
approaches to preliminary or exploratory microarchitecture
design study. Section 3 describes our technologies for high-
level description and FPGA prototyping. Section 4 describes
our experience in developing the prototype implementa-
tions of two processors: a baseline superscalar processor
and a derivative design with soft-error tolerance. Section 5
presents the results of the design evaluations. Section 6
summarizes the key points we learned from this work.

2. BACKGROUND AND RELATED WORK
In this section, we first discuss the use of software simu-

lators to study processor microarchitectures. Next, we de-
scribe applications of FPGAs and hardware emulators in
microprocessor development.

2.1 Software Simulators
A large number of proprietary and public simulators have

been developed to help investigate microprocessor design is-
sues. These simulators can be broadly grouped into func-
tional versus performance simulators. A functional simula-
tor provides a virtual implementation such that the outward
functionality of a design is emulated. A performance simu-
lator models the inner workings of a design, in only as much
detail as necessary, to extract the desired quantitative mea-
sures of some dynamic behavior.

In the last few years, the SimpleScalar processor simula-
tion package [3] has gained popularity in the microprocessor
research community. This software package contains sev-
eral different parameterizable performance and functional
simulators plus the supporting infrastructures for compila-
tion, execution and monitoring. Researchers can either use
a stock simulator or, as in most cases, extend the simulator
source code to model the new mechanism that the researcher
is studying. Other popular simulation environments in re-
cent years include SimOS (full system simulator) [18], RSim
(parallel architecture simulator) [15], and SimICS (full sys-
tem simulator) [4]. Together, these simulators have investi-
gated topics ranging from high-level issues such as memory
consistency model [8] to low-level issues such as power and
energy [1].

The dramatic savings in time, effort and expense offered
by simulations have enabled many more hardware ideas to
be researched, but it has two main limitations. First, a soft-
ware simulator cannot provide feedback about a new idea’s
impact on implementation (cycle time, area and power, etc.).
Second, modeling errors are often introduced into a software
simulator when important but subtle details are mistakenly
simplified in an effort to save simulator development time
or simulation run time. These “abstraction” errors lead to
incorrect or unrealistic measurements, but they often go un-
detected if they do not break the simulator’s functional cor-
rectness.

2.2 Hardware Emulators
FPGA-based prototypes are routinely used in ASIC devel-

opments today to allow rapid design iteration and to enable
early development of the surrounding system. In the mi-
croprocessor arena, until recently, the capacity of FPGAs
has been quite limited, and consequently FPGAs have only

been used to prototype relatively simple processor architec-
tures [2, 5, 9, 11, 14, 16].

Large scale hardware emulation systems (e.g., Quickturn
and Ikos) have been used to prototype commercial micropro-
cessor designs in the developments of Intel Pentium, SUN
UltraSPARC-I [7], AMD K5 [6] and K6. A design as com-
plicated as a microprocessor must be partitioned into small
chunks and distributed over a large number (hundreds to
thousands) of interconnected FPGAs. In these industry ap-
plications of hardware emulation, the primary goal is to in-
crease the speed of RTL design simulations of a few million
to tens of million gates. Detailed RTL design representations
are compiled for cycle-accurate functional and performance
simulation. These costly big-iron hardware emulators cur-
rently face growing competition from greatly improved soft-
ware RTL simulator performance and high-density FPGAs.

These examples of prototyped processors were synthesized
from detailed schematics or RTL design descriptions. In
these cases, although FPGA and hardware emulators elimi-
nate the long turn-around time of a full IC design flow, the
efforts required to develop the low-level synthesis model it-
self can be prohibitive as a preliminary design evaluation
technique.

3. PROTOTYPING TECHNOLOGIES
In this section we describe our technologies for accelerat-

ing processor modeling and prototype implementation. We
begin by describing the operation-centric hardware descrip-
tion framework for modeling.

3.1 High-level Description and Synthesis
We choose an experimental operation-centric language [10]

over mainstream RTL-based languages (e.g. RTL subset of
Verilog or VHDL) to deal with the complexity of micropro-
cessor designs. The operation-centric language/abstraction
allows us to describe a complex design more concisely and
with less chance for bugs. In an operation-centric descrip-
tion, state elements are declared explicitly as in RTL, but
the behavior of the system is decomposed into a collection of
predicated (a.k.a. guarded) operations. (This is in contrast
to RTL descriptions which decompose a system’s behavior
into a collection of per-state-element next-state logic.) An
operation can control the next-state value of any number of
registers (and other types of state elements), but an opera-
tion is only relevant for a given instant when its predicate
condition is satisfied.

The entire effect of an operation is considered atomic, that
is an operation “reads” the entire state of the system in one
step, and if the operation is enabled, the operation updates
the state in the same step. If several operations are enabled
in a step, any one (but only one) of the operations can be
selected to update the state in one step, and afterwards a
new step begins with the updated new state. The atomic se-
mantics of operations permits the designer to formulate each
operation under the assumption that the rest of the system
is not changing at the same time—the designer does not
have to worry about race conditions with other potentially
concurrent operations. This permits an unambiguous and
apparently sequential description of the hardware behavior.
An execution is interpreted as a sequential interleaving of op-
erations such that each operation produces a new state that
enables the next operation. This sequential conceptual in-
terpretation, however, does not preclude an implementation



that in reality overlaps the execution of multiple operations
for better performance

In this work, we use an experimental operation-centric
hardware description language TRSpec and its compiler.
The TRSpec language is an adaptation of Term Rewriting
Systems (TRS) [12]. In Section 4.1.1, we present exam-
ples from our TRSpec description of a superscalar proces-
sor. Here, we give an overview of TRSpec with the help of a
simple two-stage pipelined processor example. In TRSpec,
the collective values of the processor state elements can be
symbolically represented as a term. In this case, a two-stage
pipelined processor can be represented by terms of the form
Proc(pc, rf, bf, imem). The four fields in a processor term
are pc the program counter, rf the register file (an array of
integer values), bf the pipeline buffer (a FIFO of fetched in-
structions), and imem the instruction memory (an array of
instructions). The operation of instruction fetching in the
fetch stage can be described by the TRSpec rule:

Fetch Rule:
Proc(pc, rf, bf, imem)

→ Proc(pc+1, rf, bf.enq(imem[pc]), imem)

The handling of an Add instruction in the execute stage is
given by the rule:

Add Rule:
Proc(pc, rf, bf, imem) where Add(rd,r1,r2)=bf.first()

→ Proc(pc, rf[rd:=(rf[r1]+rf[r2])], bf.deq(), imem)

Each TRSpec rule specifies an operation. The left-hand-side
(LHS, i.e., left of the rewrite symbol →) of a rule specifies a
pattern and other predicate conditions that must be satisfied
for the rule to apply; the right-hand-side (RHS) describes
the state changes when a rule is applied. The Fetch Rule
follows pc to fetch from consecutive instruction memory lo-
cations and enqueues the fetched instructions into bf. The
operationally-isolated Fetch Rule is not concerned with what
happens if a branch is taken or if the pipeline encounters an
exception. The Add Rule, on the other hand, would process
the next pending instruction in bf as long as it is an Add in-
struction. Next consider the two possible executions of the
Bz (branch if zero) instruction,

Bz Taken Rule:
Proc(pc, rf, bf, imem) if (rf[rc]=0)

where Bz(rc, ra)=bf.first()
→ Proc(rf[ra], rf, bf.clear(), imem)

Bz Not-Taken Rule:
Proc(pc, rf, bf, imem) if (rf[rc]!=0)

where Bz(rc, ra)= bf.first()
→ Proc(pc, rf, bf.deq(), imem)

Although the Fetch Rule and the Bz Taken Rule both affect
pc and bf, the sequential semantics of rules allows the formu-
lation of the Bz Taken Rule to ignore contentions with the
Fetch Rule, making it easy to independently verify that the
Bz Taken Rule correctly handles a taken branch instruction.
The complete behavior of this processor can be specified by
additional TRSpec rules corresponding to the remaining op-
codes, but notice that the specifications of new operations
do not affect the correctness of the already existing rules.

Figure 1: Baseline microarchitecture.

The convenient sequential and atomic interpretation of
an operation-centric description taken by designers does not
prevent a legal implementation from executing several op-
erations in the same clock cycle. In fact, in the simple
pipelined processor example above, the Fetch Rule and the
execute stage rules must be executed concurrently for the
implementation to be truly pipelined. In a correct imple-
mentation, the concurrent execution of multiple operations
in the same clock cycle must still lead to a state that corre-
sponds exactly to the result of some sequential and atomic
execution of those same operations. To synthesize such an
implementation, the TRSpec compiler analyzes dependence
and interference relationships between all operations of a
design to discover parallelism that can be safely exploited
in hardware. The processed dependence information is en-
capsulated into an arbitrator that dynamically decides when
to select multiple enabled but non-conflicting operations to
execute in the same clock cycle1. The current version of the
TRSpec compiler compiles a TRSpec description to a syn-
thesizable Verilog RTL description. We use the generated
Verilog for both simulation and synthesis. For prototyp-
ing, the Verilog description is compiled using commercial
RTL synthesis tools such as Xilinx ISE to target FPGAs.
The Verilog description can also be synthesized against gate-
array or standard-cell libraries to extract the area and tim-
ing of a hypothetical implementation in those technologies.

3.2 FPGA Prototyping Board
The availability of low-cost, high-density FPGAs have

made rapid prototyping of complex processor microarchi-
tectures possible. The current generation of FPGAs signif-
icantly out-price and out-perform the multi-million-dollar
hardware emulators of just a few years back. The latest
FPGAs cost on the order of several thousand dollars and can
support million-gate logic designs (or upward of 8 million
gate equivalents if 30% of the FPGA’s reconfigurable logic
look-up tables are employed as SRAM storage). Commercial
prototyping boards bundle FPGAs with memory and I/O
interfaces to streamline accessibility and prototype develop-
ment. A selection of commercial prototyping boards with
differing capabilities and software support are available (see
[20] for examples). Our prototypes are based on the Spyder
PCI card, containing a Xilinx XCV2000E-6C FPGA and two
1-MByte SRAM banks [19]. The synthesized FPGA config-

1Please refer to [10] for additional details on the synthesis
and scheduling algorithms.



Forward Arg1 Rule:
IntU( Queue(..{ entry }[i]..), ..., int rslt bus, ... )

if (rslt tag==arg tag)
where Result(Valid, rslt tag, rslt value) = int rslt bus

RsEntry(Valid, id, op, arg1, arg2) = entry
Arg(NotValid, –, arg tag) = arg1

→ IntU( Queue(..{ entry’ }[i]..), .... )
where entry’ = RsEntry(Valid, id, op, arg1’, arg2)

arg1’= Arg(Valid, rslt value, –)

Issue Instruction (Non-Branch) Rule:
IntU( Queue(..{ entry }[i]..), .... )

if ( op is a valid type && ALU is available )
where RsEntry(Valid, id, op, arg1, arg2) = entry

Arg(Valid, value1, –) = arg1
Arg(Valid, value2, –) = arg2

→ IntU( Queue(..{ RsEntry(Invalid, .... ) }[i]..), ..., int rslt bus, ... )
where int rslt bus=Result(Valid, id, result)

result=Execute(op, value1, value2)

Figure 2: Examples of two TRSpec rules that describe the instruction issue operations of the reservation
stations. The second rule is simplified for brevity.

uration bitstream can be downloaded to the FPGA through
the PCI bus by the host computer’s processor. Software on
the host processor can access user-defined registers in the
FPGA and the contents of the SRAMs by memory-mapped
I/O.

4. PROCESSOR MODELING AND PROTO-
TYPING

In this section, we describe our experience in develop-
ing prototype implementations of superscalar out-of-order
processors on FPGAs. Using TRSpec, we have created the
detailed model of a superscalar speculative out-of-order pro-
cessor core with a small BTB (branch-target-buffer), I-cache
and D-cache. To evaluate the effectiveness of reusing the
model to derive other microarchitecture models, we have
also developed a version of the soft-error-tolerant super-
scalar microarchitecture proposed in [17]. Here, we first
describe the level of detail captured in our high-level pro-
cessor models and then discuss the issues in modeling and
prototyping.

4.1 Processor Models

4.1.1 Baseline
The baseline model is a 4-way superscalar speculative

out-of-order processor that executes the integer subset of
SimpleScalar’s PISA (portable instruction set architecture).
With few exceptions, the processor model is specified in an
operation-centric fashion using TRSpec. Only small sections
of the arbitration and interface glue logic at the periphery
of the processor are coded directly in Verilog as a top-level
wrapper. The block diagram of the baseline microarchitec-
ture is shown in Figure 1. Below we describe the salient
characteristics of this superscalar core, including examples
of TRSpec rules regarding the operations of the reservation
stations (RS).
Instruction Fetch: Up to four instructions in the same
cache line are fetched from the instruction cache in each

clock cycle. A 256-entry BTB, using 1-bit predictors, pre-
dicts the next fetch address. Unpredicted “absolute jump”
instructions are caught and corrected in the first stage of
the two-stage decode.
Decode and Dispatch: The baseline microarchitecture
utilizes separate in-order architectural and out-of-order re-
name register files (where the renamed registers are logically
associated with the reorder buffer (ROB)). A register alias
table (RAT) helps rename the source operand registers. A
source operand value, if ready, is fetched from either the
renamed register file or the architectural register file. Af-
ter renaming, instructions are dispatched to the appropri-
ate functional unit’s RS, and, at the same time, they are
also entered into the eight-entry ROB. The size of ROB and
RSs can be changed by resetting their corresponding param-
eters in the TRSpec description. Up to four instructions (2
integer/branch, 1 load and 1 store) can be renamed and
dispatched per cycle, and up to four instructions can retire
from ROB in program order.
Issue and Execution: The microdataflow execution core
consists of an integer unit, a branch unit, a load unit and
a store unit. The integer unit and the branch unit share
an eight-entry RS, while the load and store units each have
their own four-entry RSs. The shared integer/branch RS can
accept two instructions (any mix) per cycle and launch two
instructions (1 integer/1 branch) per cycle. The load and
store RSs each can accept one and launch one instruction
per cycle. The load/store units have their own address gen-
eration logic. Stores are executed to memory in-order after
it retires from ROB. After retirement, a store can continue
to wait in the store buffer for its turn to access the cache.
Loads and stores are never reordered, but loads can be re-
ordered if there are no stores between them. The predicted
branches are checked by the branch unit. Instruction refetch
is triggered immediately after a branch misprediction, but
decoding and renaming of new instructions are stalled until
all committable instructions have retired from ROB.

Instructions pending in RSs are eligible for execution as
soon as their data dependencies are satisfied. The data



Figure 3: Soft error detection and recovery in a su-
perscalar processor.

operands unknown at dispatch time are satisfied by for-
warding. Figure 2 gives two TRSpec rules describing op-
erations related to microdataflow instruction scheduling in
the integer RS. The Forward Arg1 Rule describes how the
result of a completing instruction is forwarded to the first
operand of a data-dependent instruction in the integer RS.
(There is a corresponding rule for forwarding to the 2nd
operands.) In the rule’s LHS (left-hand-side), the terms
“Queue(..{ entry }[i]..)” and “int rslt bus” name the i’th en-
try of the integer RS and the completion bus, respectively.
The where clause of LHS restricts the rule to be applicable
only when rslt tag on int rslt bus matches the operand tag
of a pending instruction in the i’th entry of RS.2 The RHS
(right-hand-side) of the rule describes how the RS entry is
updated if the LHS predicate conditions are satisfied. This
rule is parameterized over the variable ‘i’ such that this one
rule covers the forwarding operation of all integer RS entries.
The Issue Instruction Rule in Figure 2 describes the operation
of finding a readied integer instruction for execution.
Instruction and Data Caches: The operation-centric
processor model includes a direct mapped on-chip I-cache for
512 64-bit PISA instructions in four-instruction-wide cache
lines. The stated size of the I-cache is limited by the current
FPGA capacity but can be adjusted easily as a parameter
in the TRSpec model. The original model also includes a
non-blocking D-cache that allows a load to bypass a load
miss, but it is omitted from the FPGA-prototyped version
due to capacity limitations.
Performance Counters: The fluidity of high-level models
and quick prototype turn-around allow us to make inter-
esting use of performance counters in debugging and per-
formance evaluation. Counters to monitor specific events
(elapse cycle, instruction retiring, I/D cache misses, branch
mispredictions, etc.) can be added to the high-level model
as required by experimentations.

4.1.2 Soft-Error Tolerance (SET)
Future microprocessors will become increasingly suscepti-

ble to transient hardware failures (or soft errors). A simple
extension that provides protection against soft errors in a

2In this example, we use the convention where terms be-
ginning with uppercase characters are symbolic constants
while terms beginning with lowercase characters are vari-
ables. Variables are bound by pattern matching either in
the main LHS pattern or in the where clauses. The “–”
symbol signifies “don’t care”.

superscalar processor datapath is described in [17]. As de-
picted in Step (1) of Figure 3, instructions fetched from a
single stream can be dispatched redundantly as two data-
independent threads, using pre-existing register renaming
capabilities. In Step 2, the redundantly computed results
from the two threads are checked against each other at
the commit stage for error detection. In Step (3), any in-
consistency between the redundant results triggers the also
pre-existing execution-rewind mechanism to recover the pro-
gram’s execution from the failed instruction. The perfor-
mance of the SET scheme has been studied using a software
simulator. Here, we extend our baseline superscalar model
with the proposed changes to verify the hardware feasibil-
ity of the modifications. The derivative model is subjected
to the same prototyping and evaluation as the baseline pro-
cessor to verify the hypothesis that the modifications only
minimally impact the implementation’s area and cycle time.

4.2 Experiences and Issues in Modeling
The initial baseline processor model is completed over the

course of a semester by one student. The complete descrip-
tion contains 128 rules in about 6000 lines of text. Since
a rule could have multiple application sites (as in the ex-
amples in Figure 2), the 128 rules actually specify about
7000 distinct operations in the out-of-order processor, most
of which are in RS and ROB. The operation-centric style
descriptions are helpful in managing the complexity of the
description by allowing us to focus on designing one rule at
a time and keeping interactions between the numerous rules
to a minimum. Starting from a stable baseline model, the
modifications to add SET requires only one working day to
incorporate and another day to debug. The SET extensions
only involve modifying or adding a total of 21 rules in the
TRSpec source files.

The use of high-level hardware description language in
this study simplifies implementation efforts but by the same
token introduces a potential source of inaccuracy in the pro-
totypes. As described in Section 3.1, state transitions in an
operation-centric description are not sequenced by a global
clock; rather, at design time the execution is conceptually
viewed as a sequence of steps. The final allocation of steps to
clock cycles is controlled by the TRSpec compiler which tries
to discover parallelism in the description and allows multi-
ple parallelizable operations to take place in the same cycle.
Whether the quality of the resulting prototype is represen-
tative of a best-effort implementation of the intended design
depends on the ability of the compiler to make reasonable
design decisions. This is an inherent property of any high-
level design framework that reduces development efforts by
off-loading low-level design decisions from the designer. This
type of modeling inaccuracies, however, is different from
microarchitecture-level correctness which remains under a
high-level designer’s control. A high-level synthesis flow still
demands a complete and unambiguous description in order
to produce a correctly working prototype.

4.3 Prototyping Flow
Figure 4 illustrates our prototyping flow from an

operation-centric model to a prototype executing on the
Spyder board. The operation-centric descriptions are syn-
thesized to Verilog RTL and then combined with the top-
level Verilog wrapper. The wrapper implements the inter-
faces to memory and the local bus. The combined Verilog
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descriptions are synthesized to create the FPGA configura-
tion bitstream.

A Verilog simulation testbench based on a board-level
model of the Spyder board provides a simulation and de-
bugging environment. The testbench allows loading of PISA
binaries (integer subset) into the simulated SRAMs and sim-
ulates the execution of the prototyped processor. For de-
bugging, we use test programs compiled from C for general
testing and hand-coded assembly segments for corner-case
scenarios.

Next, the TRSpec generated Verilog descriptions are syn-
thesized to an EDIF netlist using Synplify 7.0. In this step,
Synplify automatically infers SRAM usage from Verilog’s
two-dimensional array constructs. The synthesized netlist
is then targeted for the Spyder board’s Xilinx XCV2000E
FPGA using place-and-route tools from Xilinx ISE 4.1. Fi-
nally, the configuration bitstream is downloaded onto the
FPGA using the Spyder device driver. Figure 5 illustrates
the general architecture of a prototyped implementation and
highlights the interfaces between the processor core and the
rest of the system.

Currently, we are only executing small test programs. The
size of executable benchmarks is limited by the 2-MByte
SRAM “main memory” of the prototype system. Our goal
is to expand the supporting infrastructure so we can execute
complete benchmarks. The key challenge will be to support

system calls. For future work, we plan to use an FPGA card
that plugs into the processor slot of a real system mother-
board. Such a processor emulation environment can greatly
enhance the usefulness of FPGA-based processor prototyp-
ing studies.

5. PROTOTYPE-BASED EVALUATIONS
In this section, we present implementation characteristics

(area and cycle time) and architectural performance met-
rics (IPC and I-cache miss rate) for the prototype processor
implementations. In addition, we use these results to eval-
uate the area and timing impact of the SET modifications.
Implementation area and cycle time are generated by Xil-
inx ISE 4.1 tools on place-and-routed FPGA designs. The
performance results are measured directly using the perfor-
mance counters built into our models. The goal of this sec-
tion is to motivate the additional types of information that
could be extracted if prototyping becomes a viable option
in microarchitecture studies.

5.1 FPGA Prototyping Capacity
Our initial baseline design with an on-chip D-cache can-

not be place-and-routed for the Xilinx XCV2000E FPGA. A
compromise is made to eliminate the on-chip D-cache such
that the load and store units directly access the 3-cycle-
latency external SRAMs on the Spyder board. This trun-
cated design utilizes only 76% of the logic resources and can
be place-and-routed in about 1 hour. This nominally 6-stage
pipelined microarchitecture achieves a maximum frequency
of 14.9 MHz. The critical path (61.17 ns) is attributed to
the lengthy combinational path required for register renam-
ing and operand fetch in the decode stage.

The capacity of the current generation of FPGAs are not
yet completely adequate, but they are beginning to be able
to support modestly complicated designs. One may argue
that, due to approximately a factor of 10 loss in efficiency for
reconfigurability, the modeling capacity of state-of-the-art
FPGAs (currently equivalent to less than 10 million ASIC
gates under the best assumptions) can never match the tran-
sistor count of state-of-the-art microprocessors (a few hun-
dred million transistors), and thus any relevant processor de-
sign will never fit in a contemporary FPGA. This argument
is not necessarily true. A great majority of modern proces-
sors’ transistor budget is expanded in caches. The second-
generation Itanium processor (McKinley) spends only 25 out
of the total 221 million transistors for logic [13]; the capac-
ity needed by logic transistors is imminently reachable by a
single FPGA within a couple of years. By mapping cache hi-
erarchies to external memory devices, FPGAs can be a very
capable prototyping platform for microarchitecture studies.

5.2 FPGA Synthesis Results
Table 1 summarizes the area and cycle time for four vari-

ations of the baseline superscalar design and the SET super-
scalar design. The four variations are 1. the baseline model
(as described in Section 4.1.1); 2. a variation with a 16-entry
ROB (instead of the 8-entry baseline); 3. a variation that
only retires two instructions per cycle; 4. a variation with
bypasses to allow the oldest instructions to retire in the same
cycle it completes. All results are extracted from place-and-
routed FPGA design files. The area is reported both in



Table 1: Area and cycle time of five FPGA proto-
types.

Designs Area Area Period
(slice) (gate) (ns)

1. Baseline Superscalar 14768 425609 67.17
2. Baseline: 16-entry ROB 18255 — —
3. Baseline: 2-way retire 12468 388357 62.91
4. Baseline: Bypassing 15346 432432 69.66
5. SET 15821 442173 69.74

Table 2: IPC and I-cache miss rate obtained using
performance counters.

I-cache Inst. Cycle
Program / HW IPC Miss/Try Count Count

Bubble Sort, n=100
Baseline 0.53 7/94507 50751 95576
SET 0.35 8/143080 50751 143171

Fibonacci, n=10
Baseline 0.48 10/5340 2618 5420
SET 0.34 13/7565 2681 7626

terms of slice3 (pre-place-and-route) and ASIC gate equiv-
alents (post-place-and-route). The absolute values of these
results are less important than the trends they exhibit. For
example, it is determined that the SET extensions require
only about 3.9% more area than the baseline superscalar,
and it also only affects the cycle time by a small margin.
The modifications increase the critical path in decoding and
register renaming by about 3.8%. These results give empir-
ical data to support that the proposed SET mechanism can
be implemented on a superscalar datapath with only a small
implementation overhead.

5.3 Microarchitectural Performance Simula-
tions

The prototypes can also be used to execute benchmark
programs directly to assess dynamic microarchitecture-level
behaviors. Table 2 reports the IPC and I-cache miss rates
of the baseline and the SET processors. The two toy bench-
marks are a bubble sort on 100 random integers and a re-
cursive Fibonacci number generator (n = 10). The pro-
grams are coded in C and compiled using SimpleScalar’s
GCC PISA cross-compiler. The on-chip I-cache is initially
empty for these measurements.

The processor models include performance counters that
can be defined or reassigned, from run to run, to collect dif-
ferent statistics and to increase the observability of run-time
hardware behaviors. Once a performance problem is uncov-
ered by the performance counters, it can be diagnosed in
detail in the Verilog testbench environment. For example,
bubble sort’s low IPC is traced to a mismatch between its
memory-intensive inner loop and the poor load/store per-
formance of our prototyped processor designs.

3A slice is the basic building block of Virtex FPGAs. Each
slice has 2 SRAM-based 4-to-1 lookup tables and 2 1-bit
registers. XCV2000E contains over 19 thousand slices.

6. CONCLUSIONS
Ideally, an architectural investigation would begin with

paper designs and simulations, but ultimately an idea should
be tested in hardware. Unfortunately, the high up-front
cost of hardware development limits the number of ideas
that can be prototyped in VLSI. Granted, very good ideas
will eventually be tried by the industry. But, if computer
architecture research must rely on the industry for proof-of-
concept, it would be very difficult to explore ideas that are
outside of short-term development trends.

In this paper, we present our work in combining a high-
level hardware design framework and FPGAs to develop pro-
totype implementations of processor microarchitectures. We
show that 1. interesting and non-trivial microarchitecture
prototypes can be developed in a justifiable amount of time
and effort and 2. prototyping can help provide answers that
are not readily addressable through simulations. By bring-
ing together the flexibility of a high-level design environment
and FPGAs, we hope to achieve a processor prototyping flow
that achieves that same flexibility and convenience as soft-
ware development.
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