
Gradual Relaxation Techniques with Applications to
Behavioral Synthesis*

Zhiru Zhang, Yiping Fan, Miodrag Potkonjak, Jason Cong
Computer Science Department, University of California, Los Angeles

Los Angeles, CA 90095, USA
{zhiruz, fanyp, miodrag, cong}@cs.ucla.edu

ABSTRACT
Heuristics are widely used for solving computational intractable
synthesis problems. However, until now, there has been limited
effort to systematically develop heuristics that can be applied to a
variety of synthesis tasks. We focus on development of general
optimization principles so that they can be applied to a wide range
of synthesis problems. In particular, we propose a new way to
realize the most constraining principle where at each step we
gradually relax the constraints on the most constrained elements
of the solution. This basic optimization mechanism is augmented
with several new heuristic principles: minimal freedom reduction,
negative thinking, calibration, simultaneous step consideration,
and probabilistic modeling.
We have successfully applied these optimization principles to a
number of common behavioral synthesis tasks. Specifically, we
demonstrate a systematic way to develop optimization algorithms
for maximum independent set, time-constrained scheduling, and
soft real-time system scheduling. The effectiveness of the
approach and algorithms is validated on extensive real-life
benchmarks.

1. MOTIVATION
We have two strategic objectives in this paper: development of
general optimization principles and applications to a wide range
of synthesis problems. The optimization goal is to advance the
state of the art in the design of heuristic algorithms. Heuristics are
widely used for solving computational intractable synthesis
problems. However, until now, there has been limited effort to
systematically develop heuristics that can be easily applied to a
variety of synthesis tasks.
In this paper, we propose a new heuristic optimization paradigm
that can be applied on a broad spectrum of computationally
intractable problems. While the traditional most constraining
principle always addresses the most constrained part of the
problem first, we employ the most constraining principle where at
each step we make a decision that maximally relaxes the
constraints on the most constrained elements of the solution. This
basic optimization mechanism is augmented with several new
heuristic insights: minimal freedom reduction, negative thinking,
calibration, simultaneous step consideration, and probabilistic
modeling. We call them the gradual relaxation techniques.
The minimal freedom reduction principle aims to make the
minimal possible quantum of decision at each step. The rationale

 * This research is partially supported by National Science Foundation

under award CCR-0096383.

is that after a small step is made, one can better evaluate its
impacts and prevent the heuristic from following a greedy mode
of optimization to produce local optimal solutions. The main way
to realize this principle is to use negative thinking, i.e., to decide
what the optimization process will not do at the next step, instead
of what to do. The options that stay at the end of this process form
a set of decisions to yield a high quality solution. Calibration is a
step where the chances for optimization along a particular
direction are evaluated and compared. If a particular direction is
not promising, all efforts along that line are terminated or
assigned a lower priority. A typical example is resource
allocation. If the design is such that the number of required adders
cannot be reduced below some bound, and there is room for
minimization of the number of multipliers, the scheduling is
conducted so that the operation that has to be assigned to
multipliers preserves maximum slack. Moreover, in some cases, it
is advantageous to simultaneously consider several small steps
applied on several parts of the problem in order to evaluate their
compound impact. Finally, in order to further increase the
effectiveness of the proposed heuristic, we also propose a new,
more realistic technique for probabilistic modeling during the
optimization process.
Optimization techniques can rarely be developed completely out
of context. Even more difficult is to evaluate their effectiveness,
unless they are applied on important, real-life problems and
compared with existing methods. Therefore, our second and
actually main goal is to develop a system of effective and fast
optimization techniques for common behavioral synthesis tasks.
Specifically, we demonstrate a systematic way to develop
optimization algorithms for maximum independent set, time-
constrained scheduling, and soft real-time system scheduling. The
problems are selected not only because of their importance, but
also because they have a very different nature. For example, in
static schedule one has to map all of the operations to control
steps while in the MIS problem the goal is to select only a subset
of nodes.
While behavioral synthesis is still looking to establish itself, the
intuition is that this will make algorithms more accurate. Consider
the simple motivational example shown in Figure 1. We list all
the possible configurations of a CDFG with 3 operations
scheduled to 5 available control steps. We denote prob(i, t) to be
the probability of assigning the operation i in control step t.
According to traditional approaches, uniform distribution is
assumed. For example, we have prob(1,1) = prob(1,2) = prob(1,3)
=0.33, However, the realistic probabilities should be prob(1,1) =
0.6, prob(1,2) = 0.3 and prob(1,3) = 0.1, which are significantly
different from the previous ones.

529

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

1

2

3

1

2

3

2

3

1

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

1

2

3

c-step 1

c -s tep 2

c -s tep 3

c -s tep 4

c -s tep 5

3

1

2

Figure 1. A simple example of the non-uniform distribution

2. RELATED WORK
In this section, we survey the related work along the following
four directions: maximally constrained minimally constraining
heuristics, force-directed optimization, static and soft real-time
system scheduling, and maximum independent set.
Bitner and Reingold [2] were the first to propose the systematic
use of the maximally constrained variable selection paradigm.
They use it to guide the search within a generic backtracking
search for the optimal solution. The first to use the maximally
constrained rule as part of fast heuristic program was Brelaz for
graph coloring [3]. Another popular family of heuristics is based
on notion of slack [7][9]. Slack is usually defined as value
proportional to the cardinality of a set of still viable options for
assigning a specific variable from the problem formulation. In
CAD literature, the most constrained least constraining paradigm
has been widely used, mostly under the name of force-directed
heuristics [20]. A more global picture of the role of a maximally
constrained minimally constraining approach as an efficient
heuristics is given in [21].
Scheduling is a mandatory task in behavioral synthesis and
compilation [17][18]. In behavioral synthesis, scheduling is
closely related to resource allocation, a task where the hardware
required for a specific application is allocated. We target two
important and widely required types of scheduling: static and soft
real-time systems. For the former, we assume a synchronous data
flow model of computation [15]. Our goal is to minimize the
required hardware for a given sampling rate.
The proliferation of multimedia applications and soft real-time
system is gaining rapidly increasing attention. The basis for soft-
real system scheduling was formed in the work done in the
Garcia-Molina research group [13][1]. In multimedia research,
soft real-time system are most often used to model video and
WWW servers [12]. Real time system community has placed
emphasis on a sound formal definition of requirements associated
with soft real-time systems [6]. In CAD and embedded system
literature notable soft real-time related efforts include
[28][27][22]
Maximum Independent Set (MIS) is one of the most popular
generic NP-complete problems [8]. For example, it was among
the first set of problems proved to be NP-complete [8]. MIS is
mainly used in one of its modifications as a set during graph
coloring. For example, it has been experimentally demonstrated
that in many domains, finding an MIS is sufficient to make
coloring popular benchmarks both fast and provably optimal [14].

3. GENERIC TECHNIQUE
In this section, we introduce the seven main new insights that can
be used to build a new generation of efficient heuristics for a

variety of computationally intractable problems. The insights are
as follows:
(1) Most constrained principle. The traditional most constrained

paradigm for developing heuristics looks to first resolve the
components (e.g., nodes or variable) that participated in the
largest number of constraints or the constraints that are very
strict. The rationale is that it is better to resolve this situation
early, while there is still enough freedom to resolve them.
The components are usually resolved in such a way that the
difficulty of still unresolved constraints is minimally
impacted. In practice, the effectiveness of these heuristics is
mainly due to the second insight. We propose to use a new
insight that resolves the components that participate in the
same constraints as the most difficult components. Note that
these are not necessarily the most difficult components
themselves. The rationale is that these components can often
be resolved in such a way as to make the most difficult
constraints more relaxed.

(2) Minimal freedom reduction. The key impediment to
effectiveness of a heuristic is the often greedy behavior of
optimization, where short term benefits are achieved at the
expense of increased difficulty and cost in later stages of
optimization. One way to avoid such behavior is to make a
small gradual atomic decision and evaluate its individual
impact before committing to large decisions.

(3) Negative thinking. This idea is a specific way to realize the
previous paradigm. Essentially, it is often more beneficial to
state what will not be considered as option instead of
resolving a specific component of the solution. The similar
ideas appeared in [26] for a special case of scheduling and
in [4] for the standard cell global routing (i.e., the iterative
deletion method). We generalize it other problems. For
example, for the MIS problem, it means that we will
eliminate nodes as candidate for MIS one by one, until the
remaining set of nodes does not have any incident edges.
This is in contrast to the standard procedure of selecting
nodes for MIS one by one.

(4) Compounding Variables. At first sight it seems that it is
impossible to apply the previous two paradigms to problems
where variables can be assigned only to binary values. For
example, in the SAT problem, the negative decision to not
assign a variable to 1 is that the variable is assigned to 0.
This difficulty can be resolved, if we consider two or more
variables simultaneously. For example, we may decide that
variable xi and xj will not be simultaneously assigned to
value 1. Therefore, after this decision, there are still three
options how these two variables can be simultaneously
assigned.

(5) Simultaneous steps consideration. The previous idea can be
further generalized even when there is no intrinsic need to
create compound variables. The practice indicates that it is
often advantageous to simultaneously consider a small
negative decision on a set of variables.

(6) Calibration. In many situations, one can conclude that the
way a subset of variables is resolved will not have an impact
on the quality of the final solution. In that situation, there is
no need to preserve the options for these variables. The
solution to the resource allocation problem discussed in
Section 1 is a typical example of calibration.

530

(7) Probabilistic modeling. Our motivational example indicates
this assumption is rarely close to reality, even when very
small instances are considered. Therefore, we propose to
model options on how to resolve each variable in a non-
uniform way as a function of all constraints that are imposed
on that particular variable.

4. WHEN IS GRADUAL RELAXATION
MOST EFFECTIVE?
It is well know that different types of algorithms are best suited
for different types of optimization problems. For example, greedy
algorithms are optimal and the fastest for the problems that have
matroid structure [19]. Similarly, in order to apply dynamic
programming, the problem of interest has to have the property
that the optimal solution is composed of optimal sub-solutions. At
the same time, it is important to realize that the effectiveness of a
particular algorithm also greatly depends on the structure of the
instance. For example, it is well known that the graph coloring
problem for sparse graphs can be almost always solved optimally
[25][5].
In general, however, it is not easy to identify classes of problems
and instances that can be solved using a particular technique
efficiently. Most often these insights are obtained by
comprehensive studies and statistical analysis [10][11].
Nevertheless, it is possible to obtain some important insights by
considering specific characteristics of the problem or the instance.
We first focus our attention on the type of instances where the
system of gradual relaxation performs well.
Force directed approaches work well when there exist significant
difference in slacks (i.e., range of value that a particular variable
can be assigned to) and strictness of constraints that are associated
with each variable. The technique of gradual relaxation through
negative thinking provides additional effectiveness when a large
number (or percentage) of variables have significant slack and
when variables have more complex interactions among a large
number of constraints. This observation is a consequence of the
fact that in these situation gradual relaxation will better reveal the
impact of each optimization decision.
Compounding variables and simultaneous steps consideration
techniques are most effective when each variable itself has a set
of potential values with small cardinality. In particular, it is
effective for binary variables. Calibration is most effective for
instances where the final solution only involves relatively few
occurrences of each type of resources. Finally, probabilistic
modeling is most relevant for large and complex instances.
Furthermore, we expect that problems where each variable can be
assigned to many values (e.g. coloring and scheduling) are more
amenable for optimization using gradual relaxation than problems
that are defined on binary variables (e.g. SAT).

5. DRIVER EXAMPLES
In this section, we demonstrate how a properly selected subset of
the proposed heuristic optimization principles can be applied to
common behavioral synthesis tasks.

5.1 Maximum Independent Set and Graph
Coloring

In this subsection, the MIS problem is used to demonstrate the
most constraining, minimal freedom reduction, and negative
thinking principles.
In behavioral synthesis, the resource sharing problem is usually
transformed to the graph coloring problem for the corresponding
resource conflict graph. Unfortunately, graph coloring is an NP-
complete problem in general [8], defined as:

Problem: Graph k-Coloring

Given: (1) A graph G (V, E) with vertex set V and edge set E, (2)
A positive integer K ≤ |V|.

Objective: To determine whether there exists a coloring of G
using no more than k unique colors so that for every edge (u, v) ∈
E, u and v have different colors.
The graph coloring problem is to find the minimum number of
colors needed to color a given graph.
An efficient heuristic to solve this problem was presented in [14].
Its approach is to divide the whole problem into serial
independent set problems, i.e., in every step the algorithm
searches a constrained independent set and assigns one color to its
vertices. The independent set search is basically an iterative
improvement algorithm, which randomly generates an initial
solution and defines the move as vertex exclusion/inclusion. The
maximum independent set is also an NP-complete problem stated
as:

Problem: Maximum Independent Set
Given: a graph G (V, E) with vertex set V and edge set E.

Objective: To find the maximum-size independent set in G. An
independent set of G is a subset V’ ⊆ V of vertices such that if u ∈
V’ and v ∈ V’, then u and v are not adjacent.
We focus on applying the gradual relaxation technique to solve
the MIS problem. We observe that typically in a real-life graph,
the MIS size is much smaller than the total graph size. Thus the
decision to choose a vertex into an independent set imposes much
more constraints to the other node than the decision to choose a
vertex to be out of the independent set. Following the minimal
freedom reduction principle, we drop off vertices gradually from
an initial vertex set to obtain an independent set.
The algorithm, described in Figure 2, is fairly straightforward. We
start with an initial solution set containing all of the vertices. At
each step, we select the maximally constrained vertex and remove
it from the current vertex set until the solution is legal. We use
force to denote the cost function. Note that a vertex with a large
number of neighbors is unlikely to be in the resulting independent
set. Hence, we have the following Level-1 heuristic for the force
calculation:

force (v) = Num_of_Neighbors (v)
However, by looking forward one level, we have the observation
that for a vertex, if the number of its neighbors’ neighbors is very
large, it tends to be in the resulting set. Figure 3 shows this
situation. The black vertex has a maximum degree, but it should
be in the MIS with the eight leaf vertices.

531

S V
while S is not a independent set

update force for every vertex
select the vertex v with maximal force
remove v from S

return S

Figure 2. The gradual relaxation algorithm for MIS

To describe this look-ahead force, we define the Level-2 heuristic
as follows

force (v) = ∑ u ∈ Neighbors (v) (1 / Num_of_Neighbors (u))
The force update is in O(|V|) time for the Level-1 heuristic and
O(|V|2) for the Level-2 heuristic. In every step of the algorithm,
we remove one vertex. Hence the time complexity is O(|V|2) and
O(|V|3).

Figure 3. An example of the Level-2 heuristic

5.2 Time-Constrained Scheduling for
Behavioral Synthesis

Problem: Time-Constrained Scheduling
Given: (1) A CDFG G (V, E). (2) A timing constraint T.
Objective: to schedule the operations of V into T control steps
such that the resource usage is minimized.
In this subsection we show how to use the negative thinking
principle to improve the widely accepted force-directed
scheduling (FDS) algorithm [20].

5.2.1 Enhancement by Negative Thinking
The essence of FDS algorithm is to reduce the resource usage by
evenly distributing the operations to the available control steps.
The FDS algorithm uses the uniform probability that an operation
will be scheduled within its ALAP-ASAP range.
At each step of FDS algorithm, the time frame of the most
constrained operation with least forces will be reduced to a single
control step. That is a significant step with potentially high impact.
Following the most constraining and negative thinking principles,
we first select the operation that has options to be scheduled to
the most congested time slot. After that, we prune only one
control step, the most congested one, from the operation’s time
frame. Therefore, we always keep a global picture before
scheduling an operation by gradually shrinking the time frames
and postpone the decision to a later stage when more accurate
estimates are available.

5.2.2 Efficiency Improvement
Since the above method tends to increase the timing complexity,
we employ the Gradual Time-Frame Reduction (GTFR) technique
proposed in [26] to speedup the process. Suppose the time frame
of the operation n is denoted as [an, bn]. In each iteration, GTFR
only computes for each node n the forces of assigning n to an and
bn instead of all its feasible control steps. The assignment
incurring the most force will be identified and the corresponding

control step will be removed. As pointed out in [26], the time
complexity of this algorithm is O(T2N3), where T is the timing
constraint and N is the number of operations. It is the same as that
of the basic force-directed scheduling. Although the removal of
each control step increases the number of iteration to O(TN), the
tentative assignments has to be calculated reduce to 2, instead of
O(T) times.

5.3 Soft Real-Time Scheduling
In this subsection, we use soft real-time scheduling to illustrate
the effectiveness of minimal freedom reduction and probabilistic
modeling principles.
Problem: Soft Real-Time Scheduling

Given: (1) A set of Ψ={τ1,τ2,…τn} tasks and each task τi=(ai, di,
ei) is characterized by an arrival time ai, a deadline di and an
execution time ei. (2) A single processor P. (3) A timing
constraint T.
Assumptions: All tasks are non-preemptive and independent.

Objective: To schedule a subset of tasks in Ψ on processor P
within the available time T so that the number of tasks scheduled
is maximized.

5.3.1 Basic Definitions
The time frame of a task is the time interval within which it can
be scheduled. Time frame of task τi is denoted as time-frame=[ai,
di]. The mobility of a task determines the maximum number of
different schedules for it. We denote the mobility of a task τi as
mobility(τi)=|time-frame(τi)|-ei+1. We denote the probability of
the task τi at a time slot t as prob(τi, t). It can be derived by the
equation shown in the left side of Figure 4. The probability
distribution is non-uniform as shown by the trapezium-shape
curve in the right side of Figure 4.

ai di

prob(τi, t)

t

ai+ei di-ei

ei / mobility(τi)















<+
+

<+
+

=

Otherwise
)mobility(τ

e

e 1t-d
)mobility(τ

1)t-(d

e 1a-t
)mobility(τ

1)a-(t

tprob

i

i

ii
i

i

ii
i

i

i),(τ

Figure 4. Definition and the curve of Prob (τι , t)

A distribution graph is defined to capture the likelihood of the
potential competitions among different tasks for a single time slot.
The distribution at the time slot t is computed by

∑
=

=
n

i
i tprobtDG

1
),()(τ . Two tasks τi and τj are said to be in

conflict when their time frames overlap. It is denoted by

conflict(τi,τj)=(time-frame(τi)∩ time-frame(τj)≠ ∅).

5.3.2 Solution Overview
Observe that the less the conflicts exist, the more chances we may
have to schedule a larger number of the tasks. We use a two-step
heuristic to solve the problem. In the first step, the tasks are
scheduled to minimize the number of conflicts. Since this initial
solution may not be feasible, the legalization is performed in the
second step to get the best legal schedule in terms of the number
of scheduled tasks.

532

 Soft-Real-Time-Scheduling (Ψ)
/*step1: conflict minimization*/
while there exists unlocked task in Ψ

compute the distribution graph
for each unlocked task τi

a-force(i) self-force-arrival(τi)
d-force(i) self-force-deadline(τi)

choose task τk which incurs the maximal force
//shrink the time frame of τk
if a-force(k)≥d-force(k)

then Time-Frame(τk) [ak+1,dk]
else Time-Frame(τk) [ak,dk-1]

if |Time-Frame(τk)|=ek

then set τk locked

/*step2: legalization*/
sort all τi in the non-decreasing order of ai
 V {v1 .. vn}
for i 1 to n

for j i+1 to n
if all the predications hold

then add an edge <vi, vj> into G
schedule T by traversing the longest path in G

Figure 5. Soft real-time scheduling algorithm

5.3.3 Conflict Minimization
In order to minimize the conflicts, we again apply the minimal
freedom reduction technique to gradually shrink the time frames.
The force concept is also employed to balance the conflicts along
the available time slots. We only consider the self-force of
relating a task τi to its arrival time and its deadline. They are
denoted by self-force-arrival(τi) and self-force-deadline(τi),
respectively.

self-force-arrival(τi)=

∑∑
+=

−+

=

−+−
i

ii

ii

i

d

eat

i
ea

at

i

ttasks
tprob

tDG
ttasks

tprob
tDG)

)(
),(

0)(()
)(

),(
1)((

1 ττ

self-force-dealine(τi)=

∑∑
+

=+−=

−+−
ii

i

i

ii

ed

at

i
d

edt

i

ttasks
tprobtDG

ttasks
tprobtDG)

)(
),(0)(()

)(
),(1)((

1

ττ

At each step, the assignment of a task to a time slot which results
in highest force will be rejected, and the time frame of the
corresponding task τi will be shrunk accordingly. When the size
of a task’s time frame is reduced to its execution time, this task
will be locked (marked as semi-scheduled). The first step
algorithm ends when all tasks are locked with the hope that they
are evenly distributed. The first part of Figure 5 illustrates the
algorithm.

5.3.4 Legalization
After the conflict minimization, all tasks have been semi-
scheduled, namely, the time frame of each task is shrunk exactly
to its execution time.
A compatibility graph G can be built from the initial solution.
Define G=(V, E) where V={vi|1≤i≤n}. An edge <τi,τj>∈E if and
only if all the following three predications hold:

(1) ¬conflict(τi,τj): τi andτj are compatible

(2) ai≤aj: τi arrives earlier than τj

(3) ¬∃ k <vi,vk>∈E∧<vk,vj>∈E: edge <vi, vj> is irredundant.
It can be easily shown that G is a directed acyclic graph and we
can get the best legal schedule by traversing the longest path in G.
A task τi is scheduled in its time frame if vi appears in the longest
path, otherwise it is dropped. Note that the longest path in a DAG
can be optimally found in linear time. The algorithm is illustrated
in the second part of Figure 5.

5.4 Experimental Results
5.4.1 Maximum Independent Set
To evaluate our MIS algorithm, we take a set of DIMACS
benchmark graphs for the Clique problem challenge. Since the
maximum clique of a graph is the maximum independent set in
the complementary graph, we complemented these benchmarks
and apply the algorithm discussed in Section 5.1, as well as
Kirovski’s algorithm [14] for comparison. Our programs are
implemented with C++/UNIX environment. Kirovski’s program
is the open source from his personal website. The experiments are
run with a Sun Blade 1000 workstation with 750 MHz frequency.
The experimental results are shown in Table 4. The first column
lists the name of each benchmark. The second and third columns
are the corresponding vertex and edge numbers. In column Opt,
we list the optimal solution if known. The next three columns are
independent set sizes produced by three algorithms. Columns A
and B are the results from our algorithm with the Level-1 and
Level-2 heuristic respectively. Column C lists the results from
Kirovski’s iterative improvement algorithm.
In most of the cases, our Level-2 heuristic produced better
solutions than the Level-1 heuristic. Compared with Kirovski’s
algorithm, our Level-2 algorithm achieves only marginally worse
result but with a dramatic improvement in runtime. As shown in
Table 5, on average, our Level-1 algorithm is more than 50 times
faster than the Level-2 algorithm, which is more than 30 times
faster than the iterative improvement algorithm.

5.4.2 Behavioral Synthesis Scheduling
Table 1. Scheduling results comparison

under critical-path time constraint
Node Cycles ALU ALU* MULT MULT*

FFT 27 7 3 3 2 2
WANG 48 7 5 5 8 8
MCM 94 8 11 10 9 9

HONDA 97 7 8 9 14 14
DIR 148 9 10 10 9 8

CHEM_PLANT 347 16 15 13 13 13
AIRCRAFT_S 422 20 15 12 16 12

11_u5ml 497 17 20 17 22 17
12_u5ml 547 19 21 17 16 16

FEIG_DCT 548 69 9 7 3 2
GSM 617 41 10 9 6 6

AIRCRAFT_L 2283 35 43 36 48 35
Total - - 170 148 166 142

Improvement - - - 13% - 14%
We implemented both the force-directed algorithm and our
gradual relaxation scheduling approach in C++/STL. The selected
DFG benchmarks were taken from [23] with several DCT
algorithms (WANG, DIR, FEIG_DCT), and a set of real-time

533

DSP programs. For the experimental results listed in Table 1, we
used the critical path as the time constraint.
The second and the third columns list the size of DFG and its
critical path length, respectively. The following columns list the
number of required function unit ALU and MULT for different
algorithms. Columns named ALU and MULT are the results from
the force-directed algorithm, and columns ALU* and MULT* are
from our algorithm.
For small examples (FFT and WANG), these two algorithms
produced the same results. As the DFG size and parallelism
became larger, our algorithm consistently outperformed the force-
directed algorithm. On average, our algorithm achieved about
13% resource reduction compared with the force-directed
algorithm.

Table 2. Scheduling results comparison
under time constraint with 1.5 times of the critical path

 Node Cycles ALU ALU* MULTMULT*
FFT 27 10 2 2 1 1

WANG 48 10 4 4 8 3
MCM 94 12 8 7 6 6

HONDA 97 10 8 6 7 7
DIR 148 13 8 7 6 6

CHEM_PLANT 347 24 12 8 8 9
AIRCRAFT_S 422 30 10 8 16 9

11_u5ml 497 25 15 11 14 12
12_u5ml 547 28 15 11 12 11

FEIG_DCT 548 103 8 5 4 2
GSM 617 60 7 6 3 3

AIRCRAFT_L 2283 52 33 23 31 26
Total - - 130 98 116 95

Improvement - - - 25% - 18%
Another set of experimental results in Table 2 is produced when
we set the timing constraint as the 1.5 times of the critical path
length. Our algorithm achieves 25% ALU reduction and 18%
MULT reduction compared with the force-directed algorithm.
This indicates that when we relax the time constraint, our gradual
relaxation technique performs even better with more slack on
each operation node.

5.4.3 Soft Real-Time Scheduling
Table 3. Soft real-time scheduling results

T Task No. Period EDF. No. Busy Util.
p1_ts9 20 56 8 12 48 0.8571
p2_ts9 20 56 7 9 49 0.8750
p3_ts9 20 56 5 6 53 0.9464
p4_ts9 20 56 4 6 47 0.8393

p1_ts14 25 145 7 10 119 0.8207
p2_ts14 25 145 7 12 128 0.8828
p3_ts14 25 145 10 18 115 0.7931
p4_ts14 25 145 6 9 124 0.8552
Average 22.5 100.5 6.75 10.25 85.38 0.8587

A set of benchmarks from [16] was applied to evaluate our soft
real-time scheduling algorithm. As shown in Table 3, every cell
in the first column is a task set executed in a particular processor.
The second and third columns are the task numbers and
scheduling periods. The fourth column lists resulting scheduled
task numbers from the Earliest-Deadline First (EDF)1 scheduling

1 The full schedulability is not achievable in our testcases. Otherwise,

EDF would generate optimal results.

[24] for comparison. The next three columns list resulting
scheduled task number (No.), processor busy time (Busy), and
utilization ratio (Util.) from our algorithm. On average, our
algorithm schedules 3.5 more tasks than EDF, which is being
used in many real-time applications. Our algorithm achieved
about 86% utilization ratio for this benchmark set.

6. CONCLUSIONS
We introduce a suite of new heuristic principles for design of
algorithms for computational intractable synthesis tasks. The
effectiveness of these principles is demonstrated on three
important behavioral synthesis problems: maximal independent
set, static time-constrained scheduling, and synthesis of soft real-
time systems.

7. REFERENCES
[1] B. Adelberg, H. Garcia-Molina; and B. Kao, “Emulating Soft Real-

Time Scheduling Using Traditional Operating System Schedulers,”
in Proceedings of Real-Time Systems Symposium, pp. 292-298, Dec.
1994.

[2] J. Bitner and E. Reingold, “Backtrack Programming Techniques,”
Communications of the ACM, vol. 18(11), pp. 651-655, Nov. 1975.

[3] D. Brelaz, “New Methods to Color the Vertices of a Graph,”
Communications of the ACM, vol. 22(4), pp. 251-256, Apr. 1979.

[4] J. Cong and Patrick H. Madden, “Performance Driven Global
Routing for Standard Cell Design,” in Proceedings of International
Symposium on Physical Design, pp. 73-80, Apr. 1997.

[5] O. Coudert, “Exact Coloring of Real-Life Graphs is Easy,” in
Proceedings of the 34th Design Automation Conference, pp. 121-
126, Jun. 1997.

[6] P. D'Argenio, J.-P. Katoen, and E. Brinksma, “Specification and
Analysis of Soft Real-Time Systems: Quantity and Quality,” in
Proceedings of the 20th IEEE Real-Time Systems Symposium, pp.
104-114, Dec. 1999.

[7] R. I. Davis, K. W. Tindell, and A. Burns, “Scheduling Slack Time in
Fixed Priority Pre-emptive Systems,” in Proceedings of Real-Time
Systems Symposium, pp. 222-231, Dec. 1993.

[8] M. R. Garey and D. S. Johnson, “Computers and Intractability: A
Guide to the Theory of NP-Completeness,” San Francisco:
Freeman, 1979.

[9] M. Goldwasser, “Patience is a Virtue: The Effect of Slack on
Competitiveness for Admission Control,” to appear in Journal of
Scheduling, 2003.

[10] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
“Optimization by Simulated Annealing: An Experimental
Evaluation; Part 1, Graph Partitioning,” Operations Research, vol.
37(6), pp. 865-893, 1989

[11] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
“Optimization by Simulated Annealing: Part II, Graph Coloring and
Number Partitioning,” Operations Research, vol. 39(3), pp. 378-406,
1991.

[12] M. Jones, D. Rosu, and M.-C. Rosu, “CPU Reservations and Time
Constraints: Efficient, Predictable Scheduling of Independent
Activities,” in Proceedings of the 16th ACM Symposium on
Operating System Principles, vol. 31(5), pp. 198-211, Dec. 1997.

[13] B. Kao and H. Garcia-Molina, “Subtask Deadline Assignment for
Complex Distributed Soft Real-Time Tasks,” in Proceedings of
International Conference on Distributed Computing Systems, pp.
172-181, Jun. 1994.

[14] D. Kirovski and M. Potkonjak, “Efficient Coloring of a Large
Spectrum of Graphs,” in Proceedings of the 35th Design Automation
Conference, pp. 427-432, Jun. 1998.

534

[15] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” in
Proceedings of the IEEE, vol. 75(9), pp. 1235-1245, Sep. 1987.

[16] C. Lee, M. Potkonjak, and W. H. Wolf, “Synthesis of Hard Real-
Time Application Specific Systems,” Design Automation for
Embedded Systems, vol. 4(4), pp. 215-242, Oct. 1998.

[17] M. C. McFarland, A. C. Parker, and R. Camposano, “The High-
Level Synthesis of Digital Systems,” in Proceedings of the IEEE,
vol. 78(2), pp. 301-318, Feb. 1990.

[18] G. D. Micheli, "Synthesis and Optimization of Digital Circuits,"
McGraw-Hill, 1994.

[19] C. Papadimitriou and K. Steiglitz, “Combinatorial Optimization:
Algorithms and Complexity,” Prentice Hall, 1982.

[20] P. G. Paulin and J. P. Knight, “Force-Directed Scheduling for the
Behavioral Synthesis of ASICs,” in IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 8(6), pp. 661-679,
Jun. 1989.

[21] J. Pearl, “Heuristics: Intelligent Search Strategies for Computer
Problem Solving,” Addison-Wesley, 1984.

[22] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst, “Model
Composition for Scheduling Analysis in Platform Design,” in
Proceedings of the 39th Design Automation Conference, pp. 287-
292, Jun. 2002.

[23] M. B. Srivastava and M. Potkonjak, “Optimum and Heuristic
Transformation Techniques for Simultaneous Optimization of
Latency and Throughput,” in IEEE Trans. on Very Large Scale
Integration Systems, vol. 3(1), pp. 2-19, Mar. 1995.

[24] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo,
“Implications of Classical Scheduling Results for Real-Time
Systems,” IEEE Computer, vol. 28(6), pp. 16-25, Jun. 1995.

[25] J. S. Turner, “Almost All k-Colorable Graphs are Easy to Color,”
Journal of Algorithms, vol. 9, pp. 63-82, Mar. 1988.

[26] W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst, J.
L. van Meerbergen, and A. van der Werf, “Improved Force-Directed
Scheduling in High-Throughput Digital Signal Processing,” in IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 14(8), pp. 945-960, Aug. 1995.

[27] D. Verkest, P. Yang, C. Wong, and P. Marchal, “Optimisation
Problems for Dynamic Concurrent Task-Based Systems,” in
Proceedings of the 2001 International Conference on Computer-
Aided Design, pp. 265-268, Nov. 2001.

[28] D. Ziegenbein, J. Uerpmann, and R. Ernst, “Dynamic Response
Time Optimization for SDF Graphs,” in Proceedings of the 2000
International Conference on Computer-Aided Design, pp. 135-141,
Nov. 2000.

Table 4. Solution quality comparison
of three MIS algorithms

Example V Edges Opt A B C
brock200_1 200 14834 ? 18 19 20
c-fat200-1 200 1534 12 12 12 12
c-fat200-5 200 8473 58 58 58 58
c-fat500-1 500 4459 14 14 14 14

c-fat500-10 500 46627 126 126 126 126
c-fat500-5 500 23191 64 64 64 64

hamming10-2 1024 518656 512 512 512 512
hamming10-4 1024 434176 ? 32 34 38
hamming6-2 64 1824 32 32 32 32
hamming8-2 256 31616 128 128 128 128

johnson32-2-4 496 107880 ? 16 16 16
johnson8-4-4 70 1855 14 14 14 14
MANN_a27 378 70551 ? 125 125 125
MANN_a45 1035 533115 ? 342 342 341
MANN_a81 3321 5506380 ? 1096 1096 1089
MANN_a9 45 918 ? 16 16 16

p_hat1000-1 1000 122253 ? 9 10 10
p_hat1000-2 1000 244799 ? 43 46 43
p_hat1000-3 1000 371746 ? 60 63 38
p_hat1500-2 1500 568960 ? 58 61 65
p_hat1500-3 1500 847244 ? 85 91 92
p_hat300-2 300 21928 25 24 25 23
p_hat300-3 300 33390 36 30 34 28
p_hat500-2 500 62946 36 34 36 32
p_hat500-3 500 93800 ? 44 48 47
p_hat700-1 700 60999 ? 9 9 9
p_hat700-3 700 183010 ? 59 59 58
sanr200_0.7 200 13868 18 14 16 18
sanr200_0.9 200 17863 ? 38 40 40
sanr400_0.5 400 39984 ? 10 12 12
sanr400_0.7 400 55869 ? 17 21 20

Table 5. Runtime comparison
of three MIS algorithms (sec)

Example V Edges Time A Time B Time C
brock200_1 200 14834 0 0.1 6.02
c-fat200-1 200 1534 0.01 0.36 87.95
c-fat200-5 200 8473 0.01 0.21 432
c-fat500-1 500 4459 0.04 5.95 334.22
c-fat500-10 500 46627 0.14 3.64 2627.11
c-fat500-5 500 23191 0.08 4.92 1491.21

hamming10-2 1024 518656 0.19 0.62 1545.38
hamming10-4 1024 434176 0.19 9.36 25.88
hamming6-2 64 1824 0 0 6.37
hamming8-2 256 31616 0.01 0.03 98.71

johnson32-2-4 496 107880 0.04 0.77 7.75
johnson8-4-4 70 1855 0 0.01 3.03
MANN_a27 378 70551 0.02 0.04 1.94
MANN_a45 1035 533115 0.17 0.33 4.38
MANN_a81 3321 5506380 2.11 3.8 13.59
MANN_a9 45 918 0 0 0.85

p_hat1000-1 1000 122253 0.18 38.22 98.42
p_hat1000-2 1000 244799 0.24 22.27 72.86
p_hat1000-3 1000 371746 0.23 11.12 31.36
p_hat1500-2 1500 568960 0.57 78.5 112.26
p_hat1500-3 1500 847244 0.54 38.64 114.88
p_hat300-2 300 21928 0.02 0.57 25.07
p_hat300-3 300 33390 0.01 0.29 8.54
p_hat500-2 500 62946 0.05 2.54 47.03
p_hat500-3 500 93800 0.05 1.29 27.92
p_hat700-1 700 60999 0.1 12.31 44.54
p_hat700-3 700 183010 0.11 3.59 42.07
sanr200_0.7 200 13868 0.01 0.11 7.81
sanr200_0.9 200 17863 0.01 0.04 12.34
sanr400_0.5 400 39984 0.03 1.56 38.03
sanr400_0.7 400 55869 0.03 0.94 13.29

Total - - 5.19 242.13 7382.81

535

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

