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ABSTRACT 
Heuristics are widely used for solving computational intractable 
synthesis problems. However, until now, there has been limited 
effort to systematically develop heuristics that can be applied to a 
variety of synthesis tasks. We focus on development of general 
optimization principles so that they can be applied to a wide range 
of synthesis problems. In particular, we propose a new way to 
realize the most constraining principle where at each step we 
gradually relax the constraints on the most constrained elements 
of the solution. This basic optimization mechanism is augmented 
with several new heuristic principles: minimal freedom reduction, 
negative thinking, calibration, simultaneous step consideration, 
and probabilistic modeling. 
We have successfully applied these optimization principles to a 
number of common behavioral synthesis tasks. Specifically, we 
demonstrate a systematic way to develop optimization algorithms 
for maximum independent set, time-constrained scheduling, and 
soft real-time system scheduling. The effectiveness of the 
approach and algorithms is validated on extensive real-life 
benchmarks. 

1. MOTIVATION  
We have two strategic objectives in this paper: development of 
general optimization principles and applications to a wide range 
of synthesis problems. The optimization goal is to advance the 
state of the art in the design of heuristic algorithms. Heuristics are 
widely used for solving computational intractable synthesis 
problems. However, until now, there has been limited effort to 
systematically develop heuristics that can be easily applied to a 
variety of synthesis tasks.  
In this paper, we propose a new heuristic optimization paradigm 
that can be applied on a broad spectrum of computationally 
intractable problems. While the traditional most constraining 
principle always addresses the most constrained part of the 
problem first, we employ the most constraining principle where at 
each step we make a decision that maximally relaxes the 
constraints on the most constrained elements of the solution. This 
basic optimization mechanism is augmented with several new 
heuristic insights: minimal freedom reduction, negative thinking, 
calibration, simultaneous step consideration, and probabilistic 
modeling. We call them the gradual relaxation techniques.  
The minimal freedom reduction principle aims to make the 
minimal possible quantum of decision at each step. The rationale 
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is that after a small step is made, one can better evaluate its 
impacts and prevent the heuristic from following a greedy mode 
of optimization to produce local optimal solutions. The main way 
to realize this principle is to use negative thinking, i.e., to decide 
what the optimization process will not do at the next step, instead 
of what to do. The options that stay at the end of this process form 
a set of decisions to yield a high quality solution. Calibration is a 
step where the chances for optimization along a particular 
direction are evaluated and compared. If a particular direction is 
not promising, all efforts along that line are terminated or 
assigned a lower priority. A typical example is resource 
allocation. If the design is such that the number of required adders 
cannot be reduced below some bound, and there is room for 
minimization of the number of multipliers, the scheduling is 
conducted so that the operation that has to be assigned to 
multipliers preserves maximum slack. Moreover, in some cases, it 
is advantageous to simultaneously consider several small steps 
applied on several parts of the problem in order to evaluate their 
compound impact. Finally, in order to further increase the 
effectiveness of the proposed heuristic, we also propose a new, 
more realistic technique for probabilistic modeling during the 
optimization process. 
Optimization techniques can rarely be developed completely out 
of context. Even more difficult is to evaluate their effectiveness, 
unless they are applied on important, real-life problems and 
compared with existing methods. Therefore, our second and 
actually main goal is to develop a system of effective and fast 
optimization techniques for common behavioral synthesis tasks. 
Specifically, we demonstrate a systematic way to develop 
optimization algorithms for maximum independent set, time-
constrained scheduling, and soft real-time system scheduling. The 
problems are selected not only because of their importance, but 
also because they have a very different nature. For example, in 
static schedule one has to map all of the operations to control 
steps while in the MIS problem the goal is to select only a subset 
of nodes. 
While behavioral synthesis is still looking to establish itself, the 
intuition is that this will make algorithms more accurate. Consider 
the simple motivational example shown in Figure 1. We list all 
the possible configurations of a CDFG with 3 operations 
scheduled to 5 available control steps. We denote prob(i, t) to be 
the probability of assigning the operation i in control step t. 
According to traditional approaches, uniform distribution is 
assumed. For example, we have prob(1,1) = prob(1,2) = prob(1,3) 
=0.33, However, the realistic probabilities should be prob(1,1) = 
0.6, prob(1,2) = 0.3 and prob(1,3) = 0.1, which are significantly 
different from the previous ones. 
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Figure 1. A simple example of the non-uniform distribution 

2. RELATED WORK 
In this section, we survey the related work along the following 
four directions: maximally constrained minimally constraining 
heuristics, force-directed optimization, static and soft real-time 
system scheduling, and maximum independent set. 
Bitner and Reingold [2] were the first to propose the systematic 
use of the maximally constrained variable selection paradigm. 
They use it to guide the search within a generic backtracking 
search for the optimal solution. The first to use the maximally 
constrained rule as part of fast heuristic program was Brelaz for 
graph coloring [3]. Another popular family of heuristics is based 
on notion of slack [7][9]. Slack is usually defined as value 
proportional to the cardinality of a set of still viable options for 
assigning a specific variable from the problem formulation. In 
CAD literature, the most constrained least constraining paradigm 
has been widely used, mostly under the name of force-directed 
heuristics [20]. A more global picture of the role of a maximally 
constrained minimally constraining approach as an efficient 
heuristics is given in [21]. 
Scheduling is a mandatory task in behavioral synthesis and 
compilation [17][18]. In behavioral synthesis, scheduling is 
closely related to resource allocation, a task where the hardware 
required for a specific application is allocated. We target two 
important and widely required types of scheduling: static and soft 
real-time systems. For the former, we assume a synchronous data 
flow model of computation [15]. Our goal is to minimize the 
required hardware for a given sampling rate.  
The proliferation of multimedia applications and soft real-time 
system is gaining rapidly increasing attention. The basis for soft-
real system scheduling was formed in the work done in the 
Garcia-Molina research group [13][1]. In multimedia research, 
soft real-time system are most often used to model video and 
WWW servers [12]. Real time system community has placed 
emphasis on a sound formal definition of requirements associated 
with soft real-time systems [6]. In CAD and embedded system 
literature notable soft real-time related efforts include 
[28][27][22]  
Maximum Independent Set (MIS) is one of the most popular 
generic NP-complete problems [8]. For example, it was among 
the first set of problems proved to be NP-complete [8]. MIS is 
mainly used in one of its modifications as a set during graph 
coloring. For example, it has been experimentally demonstrated 
that in many domains, finding an MIS is sufficient to make 
coloring popular benchmarks both fast and provably optimal [14]. 

3. GENERIC TECHNIQUE 
In this section, we introduce the seven main new insights that can 
be used to build a new generation of efficient heuristics for a 

variety of computationally intractable problems. The insights are 
as follows: 
(1) Most constrained principle. The traditional most constrained 

paradigm for developing heuristics looks to first resolve the 
components (e.g., nodes or variable) that participated in the 
largest number of constraints or the constraints that are very 
strict. The rationale is that it is better to resolve this situation 
early, while there is still enough freedom to resolve them. 
The components are usually resolved in such a way that the 
difficulty of still unresolved constraints is minimally 
impacted. In practice, the effectiveness of these heuristics is 
mainly due to the second insight. We propose to use a new 
insight that resolves the components that participate in the 
same constraints as the most difficult components. Note that 
these are not necessarily the most difficult components 
themselves. The rationale is that these components can often 
be resolved in such a way as to make the most difficult 
constraints more relaxed. 

(2) Minimal freedom reduction. The key impediment to 
effectiveness of a heuristic is the often greedy behavior of 
optimization, where short term benefits are achieved at the 
expense of increased difficulty and cost in later stages of 
optimization. One way to avoid such behavior is to make a 
small gradual atomic decision and evaluate its individual 
impact before committing to large decisions. 

(3) Negative thinking. This idea is a specific way to realize the 
previous paradigm. Essentially, it is often more beneficial to 
state what will not be considered as option instead of 
resolving a specific component of the solution. The similar 
ideas appeared in [26] for a special case of scheduling and 
in [4] for the standard cell global routing (i.e., the iterative 
deletion method). We generalize it other problems. For 
example, for the MIS problem, it means that we will 
eliminate nodes as candidate for MIS one by one, until the 
remaining set of nodes does not have any incident edges. 
This is in contrast to the standard procedure of selecting 
nodes for MIS one by one. 

(4) Compounding Variables. At first sight it seems that it is 
impossible to apply the previous two paradigms to problems 
where variables can be assigned only to binary values. For 
example, in the SAT problem, the negative decision to not 
assign a variable to 1 is that the variable is assigned to 0. 
This difficulty can be resolved, if we consider two or more 
variables simultaneously. For example, we may decide that 
variable xi and xj will not be simultaneously assigned to 
value 1. Therefore, after this decision, there are still three 
options how these two variables can be simultaneously 
assigned.  

(5) Simultaneous steps consideration. The previous idea can be 
further generalized even when there is no intrinsic need to 
create compound variables. The practice indicates that it is 
often advantageous to simultaneously consider a small 
negative decision on a set of variables.  

(6) Calibration. In many situations, one can conclude that the 
way a subset of variables is resolved will not have an impact 
on the quality of the final solution. In that situation, there is 
no need to preserve the options for these variables. The 
solution to the resource allocation problem discussed in 
Section 1 is a typical example of calibration. 
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(7) Probabilistic modeling. Our motivational example indicates 
this assumption is rarely close to reality, even when very 
small instances are considered. Therefore, we propose to 
model options on how to resolve each variable in a non-
uniform way as a function of all constraints that are imposed 
on that particular variable. 

4. WHEN IS GRADUAL RELAXATION 
MOST EFFECTIVE? 
It is well know that different types of algorithms are best suited 
for different types of optimization problems. For example, greedy 
algorithms are optimal and the fastest for the problems that have 
matroid structure [19]. Similarly, in order to apply dynamic 
programming, the problem of interest has to have the property 
that the optimal solution is composed of optimal sub-solutions. At 
the same time, it is important to realize that the effectiveness of a 
particular algorithm also greatly depends on the structure of the 
instance. For example, it is well known that the graph coloring 
problem for sparse graphs can be almost always solved optimally 
[25][5]. 
In general, however, it is not easy to identify classes of problems 
and instances that can be solved using a particular technique 
efficiently. Most often these insights are obtained by 
comprehensive studies and statistical analysis [10][11]. 
Nevertheless, it is possible to obtain some important insights by 
considering specific characteristics of the problem or the instance. 
We first focus our attention on the type of instances where the 
system of gradual relaxation performs well. 
Force directed approaches work well when there exist significant 
difference in slacks (i.e., range of value that a particular variable 
can be assigned to) and strictness of constraints that are associated 
with each variable. The technique of gradual relaxation through 
negative thinking provides additional effectiveness when a large 
number (or percentage) of variables have significant slack and 
when variables have more complex interactions among a large 
number of constraints. This observation is a consequence of the 
fact that in these situation gradual relaxation will better reveal the 
impact of each optimization decision.  
Compounding variables and simultaneous steps consideration 
techniques are most effective when each variable itself has a set 
of potential values with small cardinality. In particular, it is 
effective for binary variables. Calibration is most effective for 
instances where the final solution only involves relatively few 
occurrences of each type of resources. Finally, probabilistic 
modeling is most relevant for large and complex instances. 
Furthermore, we expect that problems where each variable can be 
assigned to many values (e.g. coloring and scheduling) are more 
amenable for optimization using gradual relaxation than problems 
that are defined on binary variables (e.g. SAT). 

5. DRIVER EXAMPLES 
In this section, we demonstrate how a properly selected subset of 
the proposed heuristic optimization principles can be applied to 
common behavioral synthesis tasks. 

5.1 Maximum Independent Set and Graph 
Coloring 

In this subsection, the MIS problem is used to demonstrate the 
most constraining, minimal freedom reduction, and negative 
thinking principles. 
In behavioral synthesis, the resource sharing problem is usually 
transformed to the graph coloring problem for the corresponding 
resource conflict graph. Unfortunately, graph coloring is an NP-
complete problem in general [8], defined as: 

Problem: Graph k-Coloring 

Given: (1) A graph G (V, E) with vertex set V and edge set E, (2) 
A positive integer K ≤ |V|. 

Objective: To determine whether there exists a coloring of G 
using no more than k unique colors so that for every edge (u, v) ∈ 
E, u and v have different colors. 
The graph coloring problem is to find the minimum number of 
colors needed to color a given graph.  
An efficient heuristic to solve this problem was presented in [14]. 
Its approach is to divide the whole problem into serial 
independent set problems, i.e., in every step the algorithm 
searches a constrained independent set and assigns one color to its 
vertices. The independent set search is basically an iterative 
improvement algorithm, which randomly generates an initial 
solution and defines the move as vertex exclusion/inclusion. The 
maximum independent set is also an NP-complete problem stated 
as: 

Problem: Maximum Independent Set 
Given: a graph G (V, E) with vertex set V and edge set E. 

Objective: To find the maximum-size independent set in G. An 
independent set of G is a subset V’ ⊆ V of vertices such that if u ∈ 
V’ and v ∈ V’, then u and v are not adjacent. 
We focus on applying the gradual relaxation technique to solve 
the MIS problem. We observe that typically in a real-life graph, 
the MIS size is much smaller than the total graph size. Thus the 
decision to choose a vertex into an independent set imposes much 
more constraints to the other node than the decision to choose a 
vertex to be out of the independent set. Following the minimal 
freedom reduction principle, we drop off vertices gradually from 
an initial vertex set to obtain an independent set.  
The algorithm, described in Figure 2, is fairly straightforward. We 
start with an initial solution set containing all of the vertices. At 
each step, we select the maximally constrained vertex and remove 
it from the current vertex set until the solution is legal. We use 
force to denote the cost function. Note that a vertex with a large 
number of neighbors is unlikely to be in the resulting independent 
set. Hence, we have the following Level-1 heuristic for the force 
calculation: 

force (v) = Num_of_Neighbors (v) 
However, by looking forward one level, we have the observation 
that for a vertex, if the number of its neighbors’ neighbors is very 
large, it tends to be in the resulting set. Figure 3 shows this 
situation. The black vertex has a maximum degree, but it should 
be in the MIS with the eight leaf vertices.  
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S  V 
while S is not a independent set  

update force for every vertex 
select the vertex v with maximal force 
remove v from S 

return S  

 

 
Figure 2. The gradual relaxation algorithm for MIS 

To describe this look-ahead force, we define the Level-2 heuristic 
as follows 

force (v) = ∑ u ∈ Neighbors (v) (1 / Num_of_Neighbors (u)) 
The force update is in O(|V|) time for the Level-1 heuristic and 
O(|V|2) for the Level-2 heuristic. In every step of the algorithm, 
we remove one vertex. Hence the time complexity is O(|V|2) and 
O(|V|3).  

 

 
Figure 3. An example of the Level-2 heuristic 

5.2 Time-Constrained Scheduling for 
Behavioral Synthesis 

Problem: Time-Constrained Scheduling  
Given: (1) A CDFG G (V, E). (2) A timing constraint T. 
Objective: to schedule the operations of V into T control steps 
such that the resource usage is minimized. 
In this subsection we show how to use the negative thinking 
principle to improve the widely accepted force-directed 
scheduling (FDS) algorithm [20].  

5.2.1 Enhancement by Negative Thinking 
The essence of FDS algorithm is to reduce the resource usage by 
evenly distributing the operations to the available control steps. 
The FDS algorithm uses the uniform probability that an operation 
will be scheduled within its ALAP-ASAP range.  
At each step of FDS algorithm, the time frame of the most 
constrained operation with least forces will be reduced to a single 
control step. That is a significant step with potentially high impact. 
Following the most constraining and negative thinking principles, 
we first select the operation that has options to be scheduled to 
the most congested time slot. After that, we prune only one 
control step, the most congested one, from the operation’s time 
frame. Therefore, we always keep a global picture before 
scheduling an operation by gradually shrinking the time frames 
and postpone the decision to a later stage when more accurate 
estimates are available. 

5.2.2 Efficiency Improvement 
Since the above method tends to increase the timing complexity, 
we employ the Gradual Time-Frame Reduction (GTFR) technique 
proposed in [26] to speedup the process. Suppose the time frame 
of the operation n is denoted as [an, bn]. In each iteration, GTFR 
only computes for each node n the forces of assigning n to an and 
bn instead of all its feasible control steps. The assignment 
incurring the most force will be identified and the corresponding 

control step will be removed. As pointed out in [26], the time 
complexity of this algorithm is O(T2N3), where T is the timing 
constraint and N is the number of operations. It is the same as that 
of the basic force-directed scheduling. Although the removal of 
each control step increases the number of iteration to O(TN), the 
tentative assignments has to be calculated reduce to 2, instead of 
O(T) times. 

5.3 Soft Real-Time Scheduling 
In this subsection, we use soft real-time scheduling to illustrate 
the effectiveness of minimal freedom reduction and probabilistic 
modeling principles. 
Problem: Soft Real-Time Scheduling 

Given: (1) A set of Ψ={τ1,τ2,…τn} tasks and each task τi=(ai, di, 
ei) is characterized by an arrival time ai, a deadline di and an 
execution time ei. (2) A single processor P. (3) A timing 
constraint T. 
Assumptions: All tasks are non-preemptive and independent. 

Objective: To schedule a subset of tasks in Ψ on processor P 
within the available time T so that the number of tasks scheduled 
is maximized. 

5.3.1 Basic Definitions 
The time frame of a task is the time interval within which it can 
be scheduled. Time frame of task τi is denoted as time-frame=[ai, 
di]. The mobility of a task determines the maximum number of 
different schedules for it. We denote the mobility of a task τi as 
mobility(τi)=|time-frame(τi)|-ei+1. We denote the probability of 
the task τi at a time slot t as prob(τi, t). It can be derived by the 
equation shown in the left side of Figure 4. The probability 
distribution is non-uniform as shown by the trapezium-shape 
curve in the right side of Figure 4.  

 

ai di

prob(τi, t) 

t 

ai+ei di-ei

ei / mobility(τi) 

 















<+
+

<+
+

=

Otherwise 
)mobility( τ

e

e  1t-d
)mobility( τ

1)t-(d

e 1a-t
)mobility( τ

1)a-(t

tprob

i

i

ii
i

i

ii
i

i

i ),(τ

 
Figure 4. Definition and the curve of Prob (τι , t) 

A distribution graph is defined to capture the likelihood of the 
potential competitions among different tasks for a single time slot. 
The distribution at the time slot t is computed by 

∑
=

=
n

i
i tprobtDG

1
),()( τ . Two tasks τi and τj are said to be in 

conflict when their time frames overlap. It is denoted by 

conflict(τi,τj)=(time-frame(τi)∩ time-frame(τj)≠ ∅). 

5.3.2 Solution Overview 
Observe that the less the conflicts exist, the more chances we may 
have to schedule a larger number of the tasks. We use a two-step 
heuristic to solve the problem. In the first step, the tasks are 
scheduled to minimize the number of conflicts. Since this initial 
solution may not be feasible, the legalization is performed in the 
second step to get the best legal schedule in terms of the number 
of scheduled tasks.  
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 Soft-Real-Time-Scheduling (Ψ) 
/*step1: conflict minimization*/ 
while there exists unlocked task in Ψ 

compute the distribution graph 
for each unlocked task τi  

a-force(i) self-force-arrival(τi) 
d-force(i) self-force-deadline(τi) 
 

choose task τk which incurs the maximal force 
//shrink the time frame of τk 
if a-force(k)≥d-force(k) 

then Time-Frame(τk) [ak+1,dk] 
else Time-Frame(τk) [ak,dk-1] 

if |Time-Frame(τk)|=ek 

then set τk locked 
 
/*step2: legalization*/ 
sort all τi in the non-decreasing order of ai 
 V {v1 .. vn} 
for i 1 to n 

for j i+1 to n 
if all the predications hold 

then add an edge <vi, vj> into G  
schedule T by traversing the longest path in G 

 
Figure 5. Soft real-time scheduling algorithm 

5.3.3 Conflict Minimization 
In order to minimize the conflicts, we again apply the minimal 
freedom reduction technique to gradually shrink the time frames. 
The force concept is also employed to balance the conflicts along 
the available time slots. We only consider the self-force of 
relating a task τi to its arrival time and its deadline. They are 
denoted by self-force-arrival(τi) and self-force-deadline(τi), 
respectively.  
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At each step, the assignment of a task to a time slot which results 
in highest force will be rejected, and the time frame of the 
corresponding task τi will be shrunk accordingly. When the size 
of a task’s time frame is reduced to its execution time, this task 
will be locked (marked as semi-scheduled). The first step 
algorithm ends when all tasks are locked with the hope that they 
are evenly distributed. The first part of Figure 5 illustrates the 
algorithm. 

5.3.4 Legalization 
After the conflict minimization, all tasks have been semi-
scheduled, namely, the time frame of each task is shrunk exactly 
to its execution time. 
A compatibility graph G can be built from the initial solution. 
Define G=(V, E) where V={vi|1≤i≤n}. An edge <τi,τj>∈E if and 
only if all the following three predications hold: 

(1) ¬conflict(τi,τj): τi andτj are compatible 

(2) ai≤aj: τi arrives earlier than τj 

(3) ¬∃ k <vi,vk>∈E∧<vk,vj>∈E: edge <vi, vj> is irredundant. 
It can be easily shown that G is a directed acyclic graph and we 
can get the best legal schedule by traversing the longest path in G. 
A task τi is scheduled in its time frame if vi appears in the longest 
path, otherwise it is dropped. Note that the longest path in a DAG 
can be optimally found in linear time. The algorithm is illustrated 
in the second part of Figure 5.  

5.4 Experimental Results 
5.4.1 Maximum Independent Set  
To evaluate our MIS algorithm, we take a set of DIMACS 
benchmark graphs for the Clique problem challenge. Since the 
maximum clique of a graph is the maximum independent set in 
the complementary graph, we complemented these benchmarks 
and apply the algorithm discussed in Section 5.1, as well as 
Kirovski’s algorithm [14] for comparison. Our programs are 
implemented with C++/UNIX environment. Kirovski’s program 
is the open source from his personal website. The experiments are 
run with a Sun Blade 1000 workstation with 750 MHz frequency.  
The experimental results are shown in Table 4. The first column 
lists the name of each benchmark. The second and third columns 
are the corresponding vertex and edge numbers. In column Opt, 
we list the optimal solution if known. The next three columns are 
independent set sizes produced by three algorithms. Columns A 
and B are the results from our algorithm with the Level-1 and 
Level-2 heuristic respectively. Column C lists the results from 
Kirovski’s iterative improvement algorithm. 
In most of the cases, our Level-2 heuristic produced better 
solutions than the Level-1 heuristic. Compared with Kirovski’s 
algorithm, our Level-2 algorithm achieves only marginally worse 
result but with a dramatic improvement in runtime. As shown in 
Table 5, on average, our Level-1 algorithm is more than 50 times 
faster than the Level-2 algorithm, which is more than 30 times 
faster than the iterative improvement algorithm. 

5.4.2 Behavioral Synthesis Scheduling 
Table 1. Scheduling results comparison  

under critical-path time constraint 
Node Cycles ALU ALU* MULT MULT*

FFT 27 7 3 3 2 2
WANG 48 7 5 5 8 8
MCM 94 8 11 10 9 9

HONDA 97 7 8 9 14 14
DIR 148 9 10 10 9 8

CHEM_PLANT 347 16 15 13 13 13
AIRCRAFT_S 422 20 15 12 16 12

11_u5ml 497 17 20 17 22 17
12_u5ml 547 19 21 17 16 16

FEIG_DCT 548 69 9 7 3 2
GSM 617 41 10 9 6 6

AIRCRAFT_L 2283 35 43 36 48 35
Total - - 170 148 166 142

Improvement - - - 13% - 14%
We implemented both the force-directed algorithm and our 
gradual relaxation scheduling approach in C++/STL. The selected 
DFG benchmarks were taken from [23] with several DCT 
algorithms (WANG, DIR, FEIG_DCT), and a set of real-time 
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DSP programs. For the experimental results listed in Table 1, we 
used the critical path as the time constraint.  
The second and the third columns list the size of DFG and its 
critical path length, respectively. The following columns list the 
number of required function unit ALU and MULT for different 
algorithms. Columns named ALU and MULT are the results from 
the force-directed algorithm, and columns ALU* and MULT* are 
from our algorithm.  
For small examples (FFT and WANG), these two algorithms 
produced the same results. As the DFG size and parallelism 
became larger, our algorithm consistently outperformed the force-
directed algorithm. On average, our algorithm achieved about 
13% resource reduction compared with the force-directed 
algorithm.  

Table 2. Scheduling results comparison  
under time constraint with 1.5 times of the critical path  

 Node Cycles ALU ALU* MULTMULT*
FFT 27 10 2 2 1 1

WANG 48 10 4 4 8 3
MCM 94 12 8 7 6 6

HONDA 97 10 8 6 7 7
DIR 148 13 8 7 6 6

CHEM_PLANT 347 24 12 8 8 9
AIRCRAFT_S 422 30 10 8 16 9

11_u5ml 497 25 15 11 14 12
12_u5ml 547 28 15 11 12 11

FEIG_DCT 548 103 8 5 4 2
GSM 617 60 7 6 3 3

AIRCRAFT_L 2283 52 33 23 31 26
Total - - 130 98 116 95

Improvement - - - 25% - 18%
Another set of experimental results in Table 2 is produced when 
we set the timing constraint as the 1.5 times of the critical path 
length. Our algorithm achieves 25% ALU reduction and 18% 
MULT reduction compared with the force-directed algorithm. 
This indicates that when we relax the time constraint, our gradual 
relaxation technique performs even better with more slack on 
each operation node.  

5.4.3 Soft Real-Time Scheduling 
Table 3. Soft real-time scheduling results 

T Task No. Period EDF. No. Busy Util. 
p1_ts9 20 56 8 12 48 0.8571
p2_ts9 20 56 7 9 49 0.8750
p3_ts9 20 56 5 6 53 0.9464
p4_ts9 20 56 4 6 47 0.8393

p1_ts14 25 145 7 10 119 0.8207
p2_ts14 25 145 7 12 128 0.8828
p3_ts14 25 145 10 18 115 0.7931
p4_ts14 25 145 6 9 124 0.8552
Average 22.5 100.5 6.75 10.25 85.38 0.8587

A set of benchmarks from [16] was applied to evaluate our soft 
real-time scheduling algorithm. As shown in Table 3, every cell 
in the first column is a task set executed in a particular processor. 
The second and third columns are the task numbers and 
scheduling periods. The fourth column lists resulting scheduled 
task numbers from the Earliest-Deadline First (EDF)1 scheduling 

                                                                 
1 The full schedulability is not achievable in our testcases. Otherwise, 

EDF would generate optimal results. 

[24] for comparison. The next three columns list resulting 
scheduled task number (No.), processor busy time (Busy), and 
utilization ratio (Util.) from our algorithm. On average, our 
algorithm schedules 3.5 more tasks than EDF, which is being 
used in many real-time applications. Our algorithm achieved 
about 86% utilization ratio for this benchmark set.  

6. CONCLUSIONS 
We introduce a suite of new heuristic principles for design of 
algorithms for computational intractable synthesis tasks. The 
effectiveness of these principles is demonstrated on three 
important behavioral synthesis problems: maximal independent 
set, static time-constrained scheduling, and synthesis of soft real-
time systems. 
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Table 4. Solution quality comparison  
of three MIS algorithms  

Example V Edges Opt A B C 
brock200_1 200 14834 ? 18 19 20 
c-fat200-1 200 1534 12 12 12 12 
c-fat200-5 200 8473 58 58 58 58 
c-fat500-1 500 4459 14 14 14 14 

c-fat500-10 500 46627 126 126 126 126 
c-fat500-5 500 23191 64 64 64 64 

hamming10-2 1024 518656 512 512 512 512 
hamming10-4 1024 434176 ? 32 34 38 
hamming6-2 64 1824 32 32 32 32 
hamming8-2 256 31616 128 128 128 128 

johnson32-2-4 496 107880 ? 16 16 16 
johnson8-4-4 70 1855 14 14 14 14 
MANN_a27 378 70551 ? 125 125 125 
MANN_a45 1035 533115 ? 342 342 341 
MANN_a81 3321 5506380 ? 1096 1096 1089 
MANN_a9 45 918 ? 16 16 16 

p_hat1000-1 1000 122253 ? 9 10 10 
p_hat1000-2 1000 244799 ? 43 46 43 
p_hat1000-3 1000 371746 ? 60 63 38 
p_hat1500-2 1500 568960 ? 58 61 65 
p_hat1500-3 1500 847244 ? 85 91 92 
p_hat300-2 300 21928 25 24 25 23 
p_hat300-3 300 33390 36 30 34 28 
p_hat500-2 500 62946 36 34 36 32 
p_hat500-3 500 93800 ? 44 48 47 
p_hat700-1 700 60999 ? 9 9 9 
p_hat700-3 700 183010 ? 59 59 58 
sanr200_0.7 200 13868 18 14 16 18 
sanr200_0.9 200 17863 ? 38 40 40 
sanr400_0.5 400 39984 ? 10 12 12 
sanr400_0.7 400 55869 ? 17 21 20 

 

Table 5. Runtime comparison  
of three MIS algorithms (sec) 

Example V Edges Time A Time B Time C 
brock200_1 200 14834 0 0.1 6.02 
c-fat200-1 200 1534 0.01 0.36 87.95 
c-fat200-5 200 8473 0.01 0.21 432 
c-fat500-1 500 4459 0.04 5.95 334.22 
c-fat500-10 500 46627 0.14 3.64 2627.11 
c-fat500-5 500 23191 0.08 4.92 1491.21 

hamming10-2 1024 518656 0.19 0.62 1545.38 
hamming10-4 1024 434176 0.19 9.36 25.88 
hamming6-2 64 1824 0 0 6.37 
hamming8-2 256 31616 0.01 0.03 98.71 

johnson32-2-4 496 107880 0.04 0.77 7.75 
johnson8-4-4 70 1855 0 0.01 3.03 
MANN_a27 378 70551 0.02 0.04 1.94 
MANN_a45 1035 533115 0.17 0.33 4.38 
MANN_a81 3321 5506380 2.11 3.8 13.59 
MANN_a9 45 918 0 0 0.85 

p_hat1000-1 1000 122253 0.18 38.22 98.42 
p_hat1000-2 1000 244799 0.24 22.27 72.86 
p_hat1000-3 1000 371746 0.23 11.12 31.36 
p_hat1500-2 1500 568960 0.57 78.5 112.26 
p_hat1500-3 1500 847244 0.54 38.64 114.88 
p_hat300-2 300 21928 0.02 0.57 25.07 
p_hat300-3 300 33390 0.01 0.29 8.54 
p_hat500-2 500 62946 0.05 2.54 47.03 
p_hat500-3 500 93800 0.05 1.29 27.92 
p_hat700-1 700 60999 0.1 12.31 44.54 
p_hat700-3 700 183010 0.11 3.59 42.07 
sanr200_0.7 200 13868 0.01 0.11 7.81 
sanr200_0.9 200 17863 0.01 0.04 12.34 
sanr400_0.5 400 39984 0.03 1.56 38.03 
sanr400_0.7 400 55869 0.03 0.94 13.29 

Total - - 5.19 242.13 7382.81 
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