
Low-Power High-Level Synthesis for FPGA Architectures
Deming Chen, Jason Cong, Yiping Fan

Computer Science Department
University of California, Los Angeles

{demingc, cong, fanyp}@cs.ucla.edu

ABSTRACT

This paper addresses two aspects of low-power design for FPGA
circuits. First, we present an RT-level power estimator for FPGAs
with consideration of wire length. The power estimator closely
reflects both dynamic and static power contributed by various
FPGA components in 0.1um technology. The power estimation
error is 16.2% on average. Second, we present a low power high
level synthesis system, named LOPASS, for FPGA designs. It
includes two algorithms for power consumption reduction: (i) a
simulated annealing engine that carries out resource selection,
function unit binding, scheduling, register binding, and data path
generation simultaneously to effectively reduce power; (ii) an
enhanced weighted bipartite matching algorithm that is able to
reduce the total amount of MUX ports by 22.7%. Experimental
results show that LOPASS is able to reduce power consumption
by 35.8% compared to the results of Synopsys’ Behavioral
Compiler.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids –
Optimization.

General Terms
Algorithms, Measurement, Performance, Design.

Keywords
RT-level power estimation, Data path optimization, FPGA power
reduction.

1. INTRODUCTION
Power optimization has attracted increased attention due to the
rapid growth of personal wireless communications, battery-
powered devices and portable digital applications. Compared to
ASIC chips, FPGA chips are generally perceived as not power
efficient because they use a larger amount of transistors to provide
programmability. Large power consumption of FPGA chips
becomes a constraining factor for FPGA designs to enter main-
stream low-power applications. Our goal is to reduce the power
consumption without sacrificing much performance or incurring a

larger chip area so that we can expand the territories of the FPGA
applications effectively.
There have been extensive studies on power optimization in high-
level synthesis for ASIC designs [1,2,3,4,5]. However, there is
little work on high-level synthesis research specifically targeting
the low power FPGA designs. Most of previous high-level
synthesis research for FPGAs is not on power reduction. Works in
[6,7] presented algorithms for dynamically reconfigurable FPGAs.
In [8], a layout-driven high-level synthesis approach was
presented to reduce the gap between predicted metrics during
RTL synthesis and the actual data after implementation of the
FPGA. High-level synthesis for a Multi-FPGA system was done
in [9]. The only work we found for low-power high-level
synthesis on FPGAs was [10]. A design technique was presented
that used pre-computed tables to characterize the RTL and IP
components for power estimation. It showed that a low power
design could be achieved through this design methodology.
However, the model presented was quite simplistic and didn’t
consider the power consumption of the steering logic, such as the
MUX (multiplexer).

As multi-million-gate FPGAs become a reality, increasing design
complexity and the need to reduce the design time require early
design decisions, especially for the FPGA customers because they
care more about time-to-market. As a result, we need to estimate
the power consumption at a high level of abstraction, before the
low level details of the circuit have been finalized. An accurate
RT-level power estimator will provide invaluable directions for
effective power reduction.

A recent study [11] indicates that power consumption of
interconnects is a dominant source in deep sub-micron (0.1um)
FPGAs (more than 60% of the total power). Consequently, power
estimation in high-level synthesis must consider total wire
capacitance. In this work, we first explore the accuracy of
applying Rent’s rule for wire length estimation during high-level
synthesis for FPGA architectures. Secondly, due to the importance
of switching activity for power estimation, we adopt a fast
switching activity calculation algorithm [12]. Thirdly, we build a
simulated annealing engine that uses estimated power as its cost
function during the annealing process and carries out resource
selection, function unit binding, scheduling, register binding, and
data path generation simultaneously. Finally, we apply a MUX
optimization algorithm to further reduce the power consumption
of the design. The examples used in this study are data-dominated
behavioral descriptions with predominantly arithmetic operations
that are commonly encountered in signal and image processing
applic
Sectio
the F

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’03 August 25-27, 2003, Seoul Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008…$5.00

134
ations. The rest of the paper is organized as follows. In
n 2, we show the architecture and power evaluation flow for
PGA. Section 3 presents our RT-level power estimator.

Section 4 first shows the functional unit library we build, and then
it presents our simulated annealing algorithm and MUX
optimization algorithm for power reduction. Section 5 presents
the experimental data and Section 6 concludes this paper.

2. ARCHITECTURE MODELING AND
POWER EVALUATION FRAMEWORK
In this section, we will first briefly introduce the targeted FPGA
architecture and then introduce the power evaluation framework.

2.1 Candidate Architectures
FPGA architecture is mainly defined by its logic block
architecture and routing architecture. The basic building logic cell
is called the basic logic element (BLE) that consists of one K-
input lookup table (K-LUT) and one flip-flop. A group of BLEs
can form a cluster, or a so-called configurable logic block (CLB),
as shown in Figure 1. The number of BLEs (N in the figure) is
referred as the size of the logic block.

We will examine island-style FPGA routing architectures. A
simplified view of such a routing architecture is shown in Figure 2
[13]. In Figure 2, for example, half the routing tracks consist of
length one wire segments (span one logic block), while the other
half consist of length two wire segments. Some of the
programmable routing switches are pass transistors, while others
are tri-state buffers. There are also switches (connection boxes) to
connect the wire segments to the inputs and outputs of each logic
block.
By varying logic blocks and routing structures, one can easily
create many different FPGA architectures. In this work, we will

use logic block size N as 4 and LUT input size K as 4. All the wire
segments are length one segments, and all the routing switches are
tri-state buffers. This architecture is similar as the one used in
[14]. We believe our results hold for similar architectures with
different logic or routing parameters.

2.2 Power Evaluation Framework
In order to achieve accurate quantitative analysis of the effects of
different FPGA architectural parameters as well as novel power
minimization techniques, we need a flexible power evaluation
framework. Such a framework was recently developed, named
fpgaEva_LP [11]. It takes logic block architecture and routing
architecture descriptions, as well as the process technology as
inputs, goes through synthesis, mapping, placement, routing,
delay/capacitance extraction, and analysis/estimation steps to
provide quantitative evaluation of area, performance, and power
of the proposed architecture on the given benchmark examples.
fpgaEva_LP is used in this work to evaluate the efficiency of our
high-level power optimization tool.

3. RT-LEVEL POWER ESTIMATION
3.1 Wire Length Estimation
Wire length estimation before layout has been one of the most
important applications of Rent’s rule. Rent’s rule was first
introduced by E. F. Rent of IBM, who published an internal
memoranda for log plots of “number of pins” vs. “number of
circuits” in a logic design in 1960. Such plots tend to form
straight lines in a log-log scale and follow the relationship

PkNT =
where T is the number of external pins of a logic network; N is
number of gates contained in the network; k is the average number
of pins per gate in the network, and p is the Rent’s parameter. A
series of works followed starting with Landman and Russo in
1971 [15]. The classical work [16, 17] gives good estimates for
post-layout interconnect wire length. More recent work improves
the estimation by considering occupying probability [18] or
recursively applying Rent’s rule throughout an entire monolithic

system [19]. In [19], it offers a complete description of local,
semi-global, and global wires for targeted microprocessor
architectures. It models the architecture as homogeneous arrays of
gates evenly distributed in a square die. This architecture model
closely reflects the characteristics of an island-style FPGA
architecture, where we can treat each logic block as a gate (Figure

Figure 1: Configurable Logic Block

Figure 2: An Island Style FPGA Routing Architecture

Figure 3: Interconnect Density Function

Region I:

Region II:

 B L E
 # 1

 B L E
 # N

 N
O u t p u t s

 I In p u t s

C l o c k

I
N

Routing wire
Logic block pin to routing
connection point

Tri-state buffer
routing switch

Pass transistor
routing switch Logic block

Nl <≤1
3

2 2 4() (2 2)
2 3

pk li l N l N l lα −= Γ − +

3 2 4() (2)
6

pki l N l lα −= Γ −

2N l N≤ <

. .
. . 1

 () ()
b

a

f ow here
f o

such tha t I a l b i l d l

α =
+

< < = ∫

135

2). Therefore, we apply the interconnect density function derived
in [19]. In Figure 3, I(a<l<b) gives the total number of
interconnects between length l = a and l = b (l in units of logic
block pitches). N is the number of logic blocks in the design, p is
the Rent’s exponent, α is the fraction of the on-chip terminals that
are sink terminals, f.o. is the average fanout, and Γ represents a
constant calculated through N and p [19]. We use the Rent’s
exponent extracted from [14] because they explore similar FPGA
architecture, and the placement and routing flow is quite similar
as well. This is important because p is an empirical constant that
closely relates to architecture and design flow.

3.2 Switching Activity Estimation
We implement an efficient switching activity calculator using
CDFG (control data flow graph) simulation, extending the idea
from [12] that performs simulation just once at the beginning and
computes switching activities for any legal binding afterwards
without repeating simulations.
For a functional unit, TCin(O, O’), called the toggle count from
operation O to operation O’, represents the input transitions when
the functional unit switches the execution from O to O’.
After binding and scheduling, every node (operation) of the
CDFG is bound to a functional unit and scheduled to a certain
control step. In other words, a bound functional unit will execute
a set of operations in a certain order. For functional unit FU, let
(O1 → O2 … → ON) be the operation set in the execution order.
Let (IV1 → IV2 … → IVK) be a set of input vectors for the CDFG.
TCin(Oi, Oi+1) and TCin(ON, O1) are defined as follows:

1 1
1

(,) (,)
K

j j
in i i H i i

j
TC O O D IN IN+ +

=
=∑ (1)

1
1

1 1
1

(,) (,)
K

j j
in N H N

j
TC O O D IN IN

−
+

=
=∑ (2)

where 1 ≤ i < N, and DH(X, Y) represents the Hamming Distance
between bit vectors X and Y, and INi

j is the input vector on the FU
when executing Oi with the input vector IVj.
The transition probability of the inputs of FU is defined as

1

1 1
1

(,) (,)

_ (1)

N

in i i in N
i

in

TC O O TC O O
TP

Bit width N K

−

+
=

+
=

× × −

∑
,

where Bit_width is the input vector width of FU.
In [12], a matrix of TCin is constructed after scheduling but before
binding, and is used for looking up when calculating the TPin after
every binding solution. Two operations are compatible if they can
be bound to the same functional unit. For two compatible
operations Oi and Oj, there will be two entries [Oi, Oj] and [Oj,
Oi] in the pre-calculated matrix. Suppose Oi is scheduled before
Oj, the value of [Oi, Oj] is from equation (2) and the value of [Oj,
Oi] is from (3). After binding, the operation set is known for
every functional unit. According to the execution order of the
operation set, every TCin value is looked up in the matrix, and the
input transition probability can be calculated based on the above
equation. The scheduling cannot be changed after the TCin matrix
is constructed in [12].

To make the switching activity estimation more flexible, we
extend the TCin matrix to support every possible scheduling and
binding. That is, for every two compatible operations Oi and Oj,
we pre-calculate the TCin values for scheduling order (Oi → Oj)
and (Oj → Oi) using both equation (1) and (2), so there will be
two values for each scheduling order of Oi and Oj. As such,
regardless how Oi and Oj are scheduled and bound, we can still
find the entries in the matrix when calculating the TPin.
For the transition probability of the outputs of FU, we use the
same method. The total switching activity of the CDFG is the
weighted sum of the input and output transition probabilities of
each used functional unit.

3.3 RT-level Power Model
We consider both dynamic and static power for various FPGA
components. FPGA contains buffer-shielded LUT cells with fixed
capacitance load and routing wires of unpredictable capacitances.
We can use pre-characterization-based macro-modeling to capture
the average switching power per access of the LUT and register.
As for interconnects, switch level calculation can be used. This
mixed-level FPGA power model is also used in [11]. A gate-level
power estimator is presented in [11], where power-macro-
modeling of individual LUT and registers are carried out using
SPICE simulation for 0.1um technology, and the interconnect
delay and capacitance are extracted after layout to calculate
interconnect power consumption.
Our RT-level power model can be summarized in equations (3)
and (4). In equation (3), S is the estimated switching activity. The
dynamic power is contributed from PLUT (macro-modeling power
summing over all the LUTs), PREG (macro-modeling power
summing over all the registers), PLW (power of local wires within
the CLB estimated through CLB size), and PGW (power of global
routing wires estimated by the method explained in Section 3.1).

PLW and PGW are calculated through WireC
dd

Vf ⋅⋅ 25.0 . In

equation (4), the static power of all the idle LUTs and local and
global buffers are counted in. The total power is the sum of
PDynamic and PStatic.

)(GWLWREGLUTDynamic PPPPSP +++= (3)

GBStaticLBStaticLUTIdleStatic PPPP ___ ++= (4)

4. POWER OPTIMIZATION
In this section, we will first introduce our RT-level library
characterization, and then we present a simulated annealing
procedure and a MUX optimization algorithm for power
reduction.

4.1 Library Characterization
Synopsys offers collections of reusable parameterized Intellectual
Property (IP) blocks that are integrated into their synthesis
products. The DesignWare-Basic and DesignWare-Foundation
libraries contain multipliers, multiplier accumulators, adders and
FIR components. These IP blocks are available for Synopsys’
FPGA compiler. Since we assume that the FPGA architecture can
take advantage of these soft IP blocks during their design process,
we will provide different resources implementing the same type of
operation in this work. These resources will have different area,

136

delay and power characteristics. It is up to the high-level synthesis
procedure to select various resources to serve different objectives.
Under this assumption, we select adders, multipliers, comparators
and other FU (functional unit) components with different
implementations and characterize their area, delay and power
respectively. Figure 4 shows the flow for the characterization.
Table 1 shows some of the characterization data. Area in terms of
number of CLBs required to map the FU, critical path delay after
layout, and power value are reported. The average number of pins
per CLB and the average fanout number of the FUs are also
recorded because they are used in the calculations of the wire
distributions (Section 3.1). The power values shown in Table 1
are just for reference and are not used in our power estimator
because they only represent atomic power values. Our RT-level
power model considers detailed power characterization for both
logic elements used by the entire design (including the LUTs
mapped by both operational nodes and steering logic such as
MUXes) and the estimated interconnect usage.

Figure 4: FU Characterization Flow

DesignWare IP
Components

Synopsys Design Compiler
(synthesis and mapping)

VHDL to BLIF conversion

2-input gate-level circuit

fpgaEva_LP

 Area, Delay, Power

4.2 Simultaneous Binding and Scheduling for
Power Minimization
Before we show our algorithm, we will examine some of the
FPGA’s unique features that will help us gain some insights for
forming an efficient algorithm:
(1) FPGA offers an abundance of distributed registers.
(2) It has no efficient support for wide MUXes (Table 1).
(3) Smaller numbers of functional units and/or registers may not
correspond to a smaller area or power.
These properties will influence register binding and steering logic
allocation, i.e., MUX generation, during high-level synthesis.
Particularly, since FPGA is not efficient in implementing wide
input MUXes due to limited routing resources, smaller numbers
of functional units allocated but larger number of wide-input
MUXes incurred may lead to an unfavorable solution. This
requires an algorithm to explore a large solution space
considering multiple constraining parameters for FU and register
binding, MUX generation, and scheduling.
The simulated annealing algorithm has been proved efficient for
high-level synthesis to tackle intractable problems [7,9,20], and is
adopted in this work. Our simulated annealing engine starts with
an initial FU binding generated by a force-directed algorithm. It
then performs five types of moves to gradually reduce the overall

cost. The cost is the total power consumption calculated by our
RT-level power estimator. The moves are randomly picked and
the targeted FU binding(s) for each move is randomly picked as
well. The moves are as follows:
• Reselect: selects another FU of the same functionality but
different implementation for a binding.
• Swap: swaps two bindings of the same functionality but different
implementations.
• Merge: merges two bindings into one, i.e., the operations bound
to the two FUs are combined into one FU.
• Split: splits one binding into two. Reverse of Merge.
• Mix: selects two bindings, merge them, sort the merged
operations according to their slack, and then split the operations.
Each of these moves has its own attributes. For example, Reselect
may pick a smaller FU (possibly larger delay) for operations that
are not on critical path (slack > 0) of the CDFG without violating
latency constraint, and Mix may lead to rebinding the operations
that have larger slacks into a pipe-lined function unit such as
Mul18bit_wall_s4. Split will be disabled when the temperature is
low so the binding solution will not be dramatically changed.
After each move, a list scheduling is called to verify the total
latency. Then, the left edge algorithm is used for register binding
followed by MUX generation. The total amount of CLBs is
estimated through the FU and MUX characterization library, and
the routing wires are estimated as shown in Section 3.1. Finally,
the cost is calculated for the current binding and scheduling
solution. The annealing process exits when the percentage of
accepted moves are low enough.

4.3 MUX Optimization
Since wide-input MUX is very expansive for FPGAs in terms of
area, delay and power, an efficient MUX reduction algorithm is
required to reduce steering logic expanses. Pangrle showed that
connectivity reduction with a fixed unit binding is an NP-
Complete problem [21]. Register binding has a great impact on
the MUX cost in the final data path, especially when scheduling
and functional unit binding are fixed. A register allocation
algorithm based on weighted bipartite matching was proposed in
[22] trying to optimize the MUX cost before functional unit
binding. We design a new cost function so the register binding
can be carried out after the functional unit binding and reduce the

FU Implementation Area
(clb)

Delay
(ns)

Power
(w)

add24bit_bk Brent-Kung 42 6.09 0.016
add24bit_cla Carry look-ahead 26 11.78 0.010
ash24bit Arithmetic shifter 67 5.33 0.023
cmp24bit Comparator 14 4.17 0.003
mul18bit_nbw Non-Booth-recoded 288 14.55 0.246
mul18bit_wall Booth-recoded Wallace 280 14.78 0.308
Mul18bit_wall_s2 Wallace tree 2 stage 286 11.43 0.164
Mul18bit_wall_s4 Wallace tree 4 stage 262 7.14 0.114
mux24bit_2to1 Synopsys synthesis 6 0.57 0.002
mux24bit_4to1 Synopsys synthesis 18 2.34 0.005
mux24bit_8to1 Synopsys synthesis 66 4.60 0.023
mux24bit_16to1 Synopsys synthesis 135 6.91 0.083
mux24bit_32to1 Synopsys synthesis 276 10.93 0.240

Table 1: Function Unit Characterization Data

137

total amount of MUX ports directly. Meanwhile, we allow the
register number to be relaxed by a small percentage, which will
introduce more flexibility to reduce MUX cost.
First, the algorithm calls the left edge algorithm to get the
minimum number of registers required. We then relax the register
number by a certain ratio. After that, we get a register set R.
The variables will be assigned to R iteratively. In an iteration,
according to the ascending order of the left edges of the variables,
we select a mutually incompatible set of unassigned variables VIC,
where |VIC| = |R| (We may also relax the size of VIC to include
more variables in order to catch a more global picture). We then
construct a weighted bipartite graph G = (VIC∪ R, E), where E =
{(v, r) | v∈ VIC and r ∈ R such that v is compatible with the
variables allocated in r}. Each edge will be attached a weight,
which will be discussed later. After solving the minimum weight
bipartite matching, we allocate the variables to R according to the
matching. The process is repeated until all the variables are
allocated.
The weight of an edge (v, r) in G is

1 1 2 2(,) (,) (,) (,)w v r x v r x v r y v rα α β= ⋅ + ⋅ + ⋅ .
A MUX is introduced before a register r when more than one
functional units produce results and store them into this register,
as shown in Figure 5 (a). We use MUXR(r) to represent this MUX.
A MUX is introduced before a port p of a functional unit when
more than one registers feeding data to this port, as shown in
Figure 5 (b). MUXP(p) is used to represent this MUX.

Functional
Unit

MUX

Functional
Unit

Functional
Unit

(a) (b)

MUX

Figure 5: (a) MUX Introduced Before a Register;

 (b) MUX Introduced Before a Port.
In the weight function, x1(v, r) is the size of MUXR(r) if v is
assigned to r. This item tries to reduce the maximal MUX width.
x2(v, r) represents the increase of the width of MUXR(r) if v is
assigned to r. That is, x2(v, r) = 0 if the functional unit producing
v already drove register r before this register binding iteration.
Otherwise, x2(v, r) = 1. y(v, r) is the sum of MUXP(p) for every
port p of every functional unit if v is assigned to r. Terms x2 and y
are to control the total width of MUXes.

5. EXPERIMENTAL RESULTS
Our LOw Power Architectural Synthesis System (LOPASS)
consists of the simultaneous binding and scheduling followed by
MUX optimization. We will show our MUX optimization results
separately in Section 5.1 before we show the power reduction
results in Section 5.2. Our benchmarks include several different
DCT algorithms, such as PR, WANG, and DIR, and two DSP
programs MCM and HONDA. These benchmarks are from [23].

5.1 MUX Reduction Results
Table 2 shows that our MUX optimization algorithm reduces total
MUX ports by 22.7% on average with register number increased
by 3 to 5 compared to the left edge-based register binding
algorithm. Since an FPGA contains a rich amount of registers on
the chip, we believe this increase is trivial in practice. On the
other hand, the amount of MUX ports reduced is significant. We
also tried no register number relaxation, the result is 6.3% worse
on MUX port reduction than that with relaxation.

5.2 Power Reduction Results
The experimental flow is similar to that of Figure 4. The RT-level
design generated from LOPASS will go through Synopsys’
Design Compiler for synthesis and mapping. After VHDL-BLIF
conversion, fpgaEva_LP reports area, delay and power data.
Table 3 shows how our wire length and power estimation work.
Wire length is just 13.6% away from reality. This indicates that
Rent’s rule-based estimation method is effective to estimate wire
length for FPGA designs before layout information is available.
Our RT-level power estimation also works well with a 16.2%
average error.

1 S-BC usually uses multipliers of different sizes for constant handling

and timing optimization. Although S-BC uses more multipliers than
LOPASS, the sizes of their multipliers can be smaller than those used in
LOPASS. LOPASS only uses multipliers of the same size. We set high
effort option for S-BC.

Left-edge LOPASS Comparison
Bench-
marks

Reg No. Mux Port Reg No. Mux Port Reg No. Mux Port

dir 44 320 48 237 9.1% -25.9%
honda 34 214 37 154 8.8% -28.0%
mcm 54 173 59 146 9.3% -15.6%

pr 31 82 34 68 9.7% -17.1%
wang 29 101 32 74 10.3% -26.7%
Ave. 9.4% -22.7%

Table 2: MUX Reduction Results of LOPASS

 Estimated Actual Estimation Error

Bench-
marks

Wire
Length

Power
(w)

Wire
Length

Power
(w)

Wire
Length Power

dir 158187 1.79 188891 1.68 -16.3% 6.0%
honda 119140 1.33 100804 1.04 18.2% 27.5%
mcm 76569 0.88 97292 1.08 -21.3% -18.8%

pr 39617 0.47 43662 0.58 -9.3% -18.8%
wang 39978 0.46 41167 0.52 -2.9% -10.1%
Ave. 13.6% 16.2%

Table 3. Wire Length and Power Estimation

 S-BC1 LOPASS

Bench
marks

Node
No. Adder

Multi-
plier Cycle

Reg
No. Adder

Multi-
plier Cycle

Reg
No.

dir 152 9 16 32 75 5 7 32 55
honda 101 9 14 29 55 3 6 28 40
mcm 98 23 6 36 118 4 3 35 59

pr 46 13 8 24 33 2 2 23 34
wang 52 5 8 29 29 2 2 28 30

Table 4. Binding and Scheduling Comparison

138

Our simulated annealing engine can either pick the moves that
fulfill the latency requirement set by the user or allow a certain
percentage of latency relaxation to trade-off latency with power.
Table 4 shows the results when we control the latency within the
value generated by Synopsys’ Behavioral Compiler (S-BC). Node
No. column shows the number of the operational nodes of the
benchmarks. Cycle columns show the control steps scheduled, and
the adder and multiplier columns show the binding information
for both S-BC and LOPASS.

Table 5 shows the area, delay and power comparison results. Area
is the number of the LUTs used in the design. On average, our
solution reduces required LUTs by half to realize the design on an
FPGA and improves power by 35.8% compared to S-BC. There
is a small delay overhead (2.3%).

6. CONCLUSION AND FUTURE WORK
We have presented an RT-level power estimator for FPGAs with
consideration of wire length. We showed that our wire length
estimation error is 13.6% on average. Our RT-level power
estimator controls estimation error as 16.2% on average. We also
presented two algorithms to reduce power consumption. We first
built a simulated annealing engine that carried out resource
selection, function unit binding, scheduling, register binding, and
data path generation simultaneously to effectively reduce power.
We then designed an enhanced weighted bipartite matching
algorithm and reduced the total amount of MUX ports by 22.7%
on average. Experimental results showed that we were able to
reduce power consumption by 35.8% after placement and routing
on average. In the future, we plan to investigate the trade-off
behavior between latency and power.

7. ACKNOWLEDGMENTS
This work is partially supported by the NSF Grant CCR-0096383
and Altera Corporation under the California MICRO program.

8. REFERENCES
[1] A. Raghunathan and N.K. Jha, “Behavioral synthesis for low-power,”
International Conference on Computer Design, Oct 1994.
[2] P. Kollig and B.M. Al-Hashimi, “A new approach to simultaneous
scheduling, allocation and binding in high level synthesis,” IEE
Electronics Letters, vol. 33, Aug 1997.
[3] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey and R.W.
Brodersen, “Optimizing power using transformations,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no.
1, pp. 12-31, Jan. 1995.
[4] A. Raghunathan and N.K. Jha, “SCALP: An iterative improvement-
based low-power data path synthesis system,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 16 11,
Nov. 1997, pp 1260-1277.
[5] M. Ercegovac, D. Kirovski and M. Potkonjak, “Low-power behavioral
synthesis optimization using multiple precision arithmetic,” Proc. 37th
Design Automation Conference, 1999.
[6] M. Vasilko and D. Ait-Boudaoud, “Scheduling for dynamically
reconfigurable FPGAs,” Proc. of International workshop on logic and
architecture synthesis, 1995.
[7] J. C. Alves and J. S. Matos, “A simulated annealing approach for
high-level synthesis with reconfigurable functional units,” Proc. 38th
Midwest Symposium on Circuits and Systems, 1996.
[8] M. Xu and F. J. Kurdahi, “Layout-driven high level synthesis for
FPGA based architectures,” Proc. IEEE Symposium on FPGAs for
Custom Computing Machines, 1998.
[9] A. A. Duncan, D. C. Hendry and P. Gray, “An overview of the
COBRA-ABS high level synthesis system for multi-FPGA systems,” Proc.
IEEE Symposium on FPGAs for Custom Computing Machines, 1998.
[10] F. G. Wolff, M. J. Knieser, D. J. Weyer and C. A. Papachristou,
“High-level low power FPGA design methodology,” IEEE National
Aerospace Conference, 2000.
[11] F. Li, D. Chen, L. He and J. Cong, “Architecture evaluation for
power-efficient FPGAs,” ACM International Symposium on FPGA,
February 2003.
[12] A. Bogliolo, L. Benini, B. Riccó and G. De Micheli, “Efficient
switching activity computation during high-level synthesis of control-
dominated designs,” Proceedings 1999 International Symposium on Low
Power Electronics and Design, pages 127-132, August 16-17, 1999.
[13] V. Betz and J. Rose, “FPGA routing architecture: segmentation and
buffering to optimize speed and density,” ACM International Symposium
on FPGA, February 1999.
[14] A. Singh and M. Marek-Sadowska, “Efficient circuit clustering for
area and power reduction in FPGAs,” ACM FPGA, February 24-26, 2002.
[15] B. Landman and R. Russo, “On a pin versus block relationship for
partitions of logic graphs,” IEEE Transactions on Computers, c-20:1469–
1479, 1971.
[16] W. E. Donath, “Placement and average interconnection lengths of
computer logic,” IEEE Transactions on Circuits and Systems, 26(4):272–
277, April 1979.
[17] M. Feuer, “Connectivity of random logic,” IEEE Transactions on
Computers, C-31(1):29–33, Jan 1982.
[18] D. Stroobandt and J. V. Campenhout, “Accurate interconnection
length estimations for predictions early in the design cycle,” VLSI Design,
Special Issue on Physical Design in Deep Submicron, 10(1):1–20, 1999.
[19] J.A. Davis, V.K. De and J. Meindl, “A stochastic wire-length
distribution for gigascale integration (GSI) –Part I: Derivation and
validation,” IEEE Trans. on Electron Devices, 45(3):580–589, Mar.
1998.
[20] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for
power minimization during microarchitecture synthesis,” Proc. 1995
International Symposium on Low Power Design, April 23-26, 1995.
[21] B.M. Pangrle, “On the complexity of connectivity binding,” IEEE
Transactions on Computer-Aided Design, Vol. 10. No. 11, 1991.
[22] C.Y. Huang, Y.S. Chen, Y.L. Lin and Y.C. Hsu, “Data path
allocation based on bipartite weighted matching,” 27th ACM/IEEE
Design Automation Conference, pp.499-504, June 24-27, 1990.
[23] M. B. Srivastava and M. Potkonjak, “Optimum and heuristic
transformation techniques for simultaneous optimization of latency and
throughput,” IEEE Trans. on VLSI Systems, vol.3 (1), pp.2-19, Mar.
1995.

 S-BC LOPASS Comparison
Benchm

arks
LUT
No.

Delay
(ns)

Power
(w)

LUT
No.

Delay
(ns)

Power
(w) LUT No. Delay Power

dir 18658 54.7 2.55 11281 53.5 1.68 -39.5% -2.2% -34.0%
honda 16426 43.4 1.85 7584 40 1.04 -53.8% -7.8% -43.8%
mcm 15991 46.8 1.97 7396 50.8 1.08 -53.7% 8.5% -44.8%

pr 7663 30.2 0.72 3873 34.4 0.58 -49.5% 13.9% -19.1%
wang 9057 35.7 0.83 3925 35.4 0.52 -56.7% -0.8% -37.4%
Ave. -50.6% 2.3% -35.8%

Table 5: LUT Number, Delay and Power Comparison

139

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

