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ABSTRACT 

This paper addresses two aspects of low-power design for FPGA 
circuits. First, we present an RT-level power estimator for FPGAs 
with consideration of wire length. The power estimator closely 
reflects both dynamic and static power contributed by various 
FPGA components in 0.1um technology. The power estimation 
error is 16.2% on average. Second, we present a low power high  
level synthesis system, named LOPASS, for FPGA designs. It 
includes two algorithms for power consumption reduction: (i) a 
simulated annealing engine that carries out resource selection, 
function unit binding, scheduling, register binding, and data path 
generation simultaneously to effectively reduce power; (ii) an 
enhanced weighted bipartite matching algorithm that is able to 
reduce the total amount of MUX ports by 22.7%. Experimental 
results show that LOPASS is able to reduce power consumption 
by 35.8% compared to the results of Synopsys’ Behavioral 
Compiler. 

Categories and Subject Descriptors 
B.5.2 [Register-Transfer-Level Implementation]: Design Aids – 
Optimization. 

General Terms 
Algorithms, Measurement, Performance, Design. 

Keywords 
RT-level power estimation, Data path optimization, FPGA power 
reduction. 

1. INTRODUCTION 
Power optimization has attracted increased attention due to the 
rapid growth of personal wireless communications, battery-
powered devices and portable digital applications. Compared to 
ASIC chips, FPGA chips are generally perceived as not power 
efficient because they use a larger amount of transistors to provide 
programmability. Large power consumption of FPGA chips 
becomes a constraining factor for FPGA designs to enter main-
stream low-power applications. Our goal is to reduce the power 
consumption without sacrificing much performance or incurring a 

larger chip area so that we can expand the territories of the FPGA 
applications effectively.  
There have been extensive studies on power optimization in high-
level synthesis for ASIC designs [1,2,3,4,5]. However, there is 
little work on high-level synthesis research specifically targeting 
the low power FPGA designs. Most of previous high-level 
synthesis research for FPGAs is not on power reduction. Works in 
[6,7] presented algorithms for dynamically reconfigurable FPGAs. 
In [8], a layout-driven high-level synthesis approach was 
presented to reduce the gap between predicted metrics during 
RTL synthesis and the actual data after implementation of the 
FPGA. High-level synthesis for a Multi-FPGA system was done 
in [9]. The only work we found for low-power high-level 
synthesis on FPGAs was [10]. A design technique was presented 
that used pre-computed tables to characterize the RTL and IP 
components for power estimation. It showed that a low power 
design could be achieved through this design methodology. 
However, the model presented was quite simplistic and didn’t 
consider the power consumption of the steering logic, such as the 
MUX (multiplexer). 

As multi-million-gate FPGAs become a reality, increasing design 
complexity and the need to reduce the design time require early 
design decisions, especially for the FPGA customers because they 
care more about time-to-market. As a result, we need to estimate 
the power consumption at a high level of abstraction, before the 
low level details of the circuit have been finalized. An accurate 
RT-level power estimator will provide invaluable directions for 
effective power reduction.  

A recent study [11] indicates that power consumption of 
interconnects is a dominant source in deep sub-micron (0.1um) 
FPGAs (more than 60% of the total power). Consequently, power 
estimation in high-level synthesis must consider total wire 
capacitance. In this work, we first explore the accuracy of 
applying Rent’s rule for wire length estimation during high-level 
synthesis for FPGA architectures. Secondly, due to the importance 
of switching activity for power estimation, we adopt a fast 
switching activity calculation algorithm [12]. Thirdly, we build a 
simulated annealing engine that uses estimated power as its cost 
function during the annealing process and carries out resource 
selection, function unit binding, scheduling, register binding, and 
data path generation simultaneously. Finally, we apply a MUX 
optimization algorithm to further reduce the power consumption 
of the design. The examples used in this study are data-dominated 
behavioral descriptions with predominantly arithmetic operations 
that are commonly encountered in signal and image processing 
applic
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ations. The rest of the paper is organized as follows. In 
n 2, we show the architecture and power evaluation flow for 
PGA. Section 3 presents our RT-level power estimator. 



Section 4 first shows the functional unit library we build, and then 
it presents our simulated annealing algorithm and MUX 
optimization algorithm for power reduction. Section 5 presents 
the experimental data and Section 6 concludes this paper. 

2. ARCHITECTURE MODELING AND 
POWER EVALUATION FRAMEWORK 
In this section, we will first briefly introduce the targeted FPGA 
architecture and then introduce the power evaluation framework.  

2.1 Candidate Architectures 
FPGA architecture is mainly defined by its logic block 
architecture and routing architecture. The basic building logic cell 
is called the basic logic element (BLE) that consists of one K-
input lookup table (K-LUT) and one flip-flop. A group of BLEs 
can form a cluster, or a so-called configurable logic block (CLB), 
as shown in Figure 1. The number of BLEs (N in the figure) is 
referred as the size of the logic block.  

We will examine island-style FPGA routing architectures. A 
simplified view of such a routing architecture is shown in Figure 2 
[13]. In Figure 2, for example, half the routing tracks consist of 
length one wire segments (span one logic block), while the other 
half consist of length two wire segments. Some of the 
programmable routing switches are pass transistors, while others 
are tri-state buffers. There are also switches (connection boxes) to 
connect the wire segments to the inputs and outputs of each logic 
block. 
By varying logic blocks and routing structures, one can easily 
create many different FPGA architectures. In this work, we will 

use logic block size N as 4 and LUT input size K as 4. All the wire 
segments are length one segments, and all the routing switches are 
tri-state buffers. This architecture is similar as the one used in 
[14]. We believe our results hold for similar architectures with 
different logic or routing parameters. 

2.2 Power Evaluation Framework 
In order to achieve accurate quantitative analysis of the effects of 
different FPGA architectural parameters as well as novel power 
minimization techniques, we need a flexible power evaluation 
framework. Such a framework was recently developed, named 
fpgaEva_LP [11]. It takes logic block architecture and routing 
architecture descriptions, as well as the process technology as 
inputs, goes through synthesis, mapping, placement, routing, 
delay/capacitance extraction, and analysis/estimation steps to 
provide quantitative evaluation of area, performance, and power 
of the proposed architecture on the given benchmark examples. 
fpgaEva_LP is used in this work to evaluate the efficiency of our 
high-level power optimization tool. 

3. RT-LEVEL POWER ESTIMATION 
3.1 Wire Length Estimation 
Wire length estimation before layout has been one of the most 
important applications of Rent’s rule. Rent’s rule was first 
introduced by E. F. Rent of IBM, who published an internal 
memoranda for log plots of “number of pins” vs. “number of 
circuits” in a logic design in 1960. Such plots tend to form 
straight lines in a log-log scale and follow the relationship  

PkNT =     
where T is the number of external pins of a logic network; N is 
number of gates contained in the network; k is the average number 
of pins per gate in the network, and p is the Rent’s parameter. A 
series of works followed starting with Landman and Russo in 
1971 [15]. The classical work [16, 17] gives good estimates for 
post-layout interconnect wire length. More recent work improves 
the estimation by considering occupying probability [18] or 
recursively applying Rent’s rule throughout an entire monolithic 

system [19]. In [19], it offers a complete description of local, 
semi-global, and global wires for targeted microprocessor 
architectures. It models the architecture as homogeneous arrays of 
gates evenly distributed in a square die. This architecture model 
closely reflects the characteristics of an island-style FPGA 
architecture, where we can treat each logic block as a gate (Figure 

Figure 1: Configurable Logic Block 

Figure 2: An Island Style FPGA Routing Architecture 

Figure 3: Interconnect Density Function 
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2). Therefore, we apply the interconnect density function derived 
in [19]. In Figure 3, I(a<l<b) gives the total number of 
interconnects between length l = a and l = b (l in units of logic 
block pitches). N is the number of logic blocks in the design, p is 
the Rent’s exponent, α is the fraction of the on-chip terminals that 
are sink terminals, f.o. is the average fanout, and Γ represents a 
constant calculated through N and p [19]. We use the Rent’s 
exponent extracted from [14] because they explore similar FPGA 
architecture, and the placement and routing flow is quite similar 
as well. This is important because p is an empirical constant that 
closely relates to architecture and design flow. 

3.2 Switching Activity Estimation 
We implement an efficient switching activity calculator using 
CDFG (control data flow graph) simulation, extending the idea 
from [12] that performs simulation just once at the beginning and 
computes switching activities for any legal binding afterwards 
without repeating simulations.  
For a functional unit, TCin(O, O’), called the toggle count from 
operation O to operation O’, represents the input transitions when 
the functional unit switches the execution from O to O’.  
After binding and scheduling, every node (operation) of the 
CDFG is bound to a functional unit and scheduled to a certain 
control step. In other words, a bound functional unit will execute 
a set of operations in a certain order. For functional unit FU, let 
(O1 → O2 … → ON) be the operation set in the execution order. 
Let (IV1 → IV2 … → IVK) be a set of input vectors for the CDFG.  
TCin(Oi, Oi+1) and TCin(ON, O1) are defined as follows:  
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where 1 ≤ i < N, and DH(X, Y) represents the Hamming Distance 
between bit vectors X and Y, and INi

j is the input vector on the FU 
when executing Oi with the input vector IVj.  
The transition probability of the inputs of FU is defined as  

1
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where Bit_width is the input vector width of FU.  
In [12], a matrix of TCin is constructed after scheduling but before 
binding, and is used for looking up when calculating the TPin after 
every binding solution. Two operations are compatible if they can 
be bound to the same functional unit. For two compatible 
operations Oi and Oj, there will be two entries [Oi, Oj] and [Oj, 
Oi] in the pre-calculated matrix. Suppose Oi is scheduled before 
Oj, the value of [Oi, Oj] is from equation (2) and the value of [Oj, 
Oi] is from (3). After binding, the operation set is known for 
every functional unit. According to the execution order of the 
operation set, every TCin value is looked up in the matrix, and the 
input transition probability can be calculated based on the above 
equation. The scheduling cannot be changed after the TCin matrix 
is constructed in [12]. 

To make the switching activity estimation more flexible, we 
extend the TCin matrix to support every possible scheduling and 
binding. That is, for every two compatible operations Oi and Oj, 
we pre-calculate the TCin values for scheduling order (Oi → Oj) 
and (Oj → Oi) using both equation (1) and (2), so there will be 
two values for each scheduling order of Oi and Oj. As such, 
regardless how Oi and Oj are scheduled and bound, we can still 
find the entries in the matrix when calculating the TPin.  
For the transition probability of the outputs of FU, we use the 
same method. The total switching activity of the CDFG is the 
weighted sum of the input and output transition probabilities of 
each used functional unit. 

3.3 RT-level Power Model 
We consider both dynamic and static power for various FPGA 
components. FPGA contains buffer-shielded LUT cells with fixed 
capacitance load and routing wires of unpredictable capacitances. 
We can use pre-characterization-based macro-modeling to capture 
the average switching power per access of the LUT and register. 
As for interconnects, switch level calculation can be used. This 
mixed-level FPGA power model is also used in [11]. A gate-level 
power estimator is presented in [11], where power-macro-
modeling of individual LUT and registers are carried out using 
SPICE simulation for 0.1um technology, and the interconnect 
delay and capacitance are extracted after layout to calculate 
interconnect power consumption. 
Our RT-level power model can be summarized in equations (3) 
and (4). In equation (3), S is the estimated switching activity. The 
dynamic power is contributed from PLUT (macro-modeling power 
summing over all the LUTs), PREG (macro-modeling power 
summing over all the registers), PLW (power of local wires within 
the CLB estimated through CLB size), and PGW (power of global 
routing wires estimated by the method explained in Section 3.1). 

PLW and PGW are calculated through WireC
dd

Vf ⋅⋅ 25.0 . In 

equation (4), the static power of all the idle LUTs and local and 
global buffers are counted in. The total power is the sum of 
PDynamic and PStatic.  

)( GWLWREGLUTDynamic PPPPSP +++=   (3) 

GBStaticLBStaticLUTIdleStatic PPPP ___ ++=    (4) 

4. POWER OPTIMIZATION 
In this section, we will first introduce our RT-level library 
characterization, and then we present a simulated annealing 
procedure and a MUX optimization algorithm for power 
reduction. 

4.1 Library Characterization 
Synopsys offers collections of reusable parameterized Intellectual 
Property (IP) blocks that are integrated into their synthesis 
products. The DesignWare-Basic and DesignWare-Foundation 
libraries contain multipliers, multiplier accumulators, adders and 
FIR components. These IP blocks are available for Synopsys’ 
FPGA compiler. Since we assume that the FPGA architecture can 
take advantage of these soft IP blocks during their design process, 
we will provide different resources implementing the same type of 
operation in this work. These resources will have different area, 
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delay and power characteristics. It is up to the high-level synthesis 
procedure to select various resources to serve different objectives. 
Under this assumption, we select adders, multipliers, comparators 
and other FU (functional unit) components with different 
implementations and characterize their area, delay and power 
respectively. Figure 4 shows the flow for the characterization. 
Table 1 shows some of the characterization data. Area in terms of 
number of CLBs required to map the FU, critical path delay after 
layout, and power value are reported. The average number of pins 
per CLB and the average fanout number of the FUs are also 
recorded because they are used in the calculations of the wire 
distributions (Section 3.1). The power values shown in Table 1 
are just for reference and are not used in our power estimator 
because they only represent atomic power values. Our RT-level 
power model considers detailed power characterization for both 
logic elements used by the entire design (including the LUTs 
mapped by both operational nodes and steering logic such as 
MUXes) and the estimated interconnect usage. 

 

Figure 4: FU Characterization Flow 
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4.2 Simultaneous Binding and Scheduling for 
Power Minimization 
Before we show our algorithm, we will examine some of the 
FPGA’s unique features that will help us gain some insights for 
forming an efficient algorithm: 
(1) FPGA offers an abundance of distributed registers. 
(2) It has no efficient support for wide MUXes (Table 1).  
(3) Smaller numbers of functional units and/or registers may not 
correspond to a smaller area or power. 
These properties will influence register binding and steering logic 
allocation, i.e., MUX generation, during high-level synthesis. 
Particularly, since FPGA is not efficient in implementing wide 
input MUXes due to limited routing resources, smaller numbers 
of functional units allocated but larger number of wide-input 
MUXes incurred may lead to an unfavorable solution. This 
requires an algorithm to explore a large solution space 
considering multiple constraining parameters for FU and register 
binding, MUX generation, and scheduling.  
The simulated annealing algorithm has been proved efficient for 
high-level synthesis to tackle intractable problems [7,9,20], and is 
adopted in this work. Our simulated annealing engine starts with 
an initial FU binding generated by a force-directed algorithm. It 
then performs five types of moves to gradually reduce the overall 

cost. The cost is the total power consumption calculated by our 
RT-level power estimator. The moves are randomly picked and 
the targeted FU binding(s) for each move is randomly picked as 
well. The moves are as follows:  
• Reselect: selects another FU of the same functionality but 
different implementation for a binding. 
• Swap: swaps two bindings of the same functionality but different 
implementations.  
• Merge: merges two bindings into one, i.e., the operations bound 
to the two FUs are combined into one FU. 
• Split: splits one binding into two. Reverse of Merge. 
• Mix: selects two bindings, merge them, sort the merged 
operations according to their slack, and then split the operations. 
Each of these moves has its own attributes. For example, Reselect 
may pick a smaller FU (possibly larger delay) for operations that 
are not on critical path (slack > 0) of the CDFG without violating 
latency constraint, and Mix may lead to rebinding the operations 
that have larger slacks into a pipe-lined function unit such as 
Mul18bit_wall_s4. Split will be disabled when the temperature is 
low so the binding solution will not be dramatically changed.  
After each move, a list scheduling is called to verify the total 
latency. Then, the left edge algorithm is used for register binding 
followed by MUX generation. The total amount of CLBs is 
estimated through the FU and MUX characterization library, and 
the routing wires are estimated as shown in Section 3.1. Finally, 
the cost is calculated for the current binding and scheduling 
solution. The annealing process exits when the percentage of 
accepted moves are low enough. 

4.3 MUX Optimization 
Since wide-input MUX is very expansive for FPGAs in terms of 
area, delay and power, an efficient MUX reduction algorithm is 
required to reduce steering logic expanses. Pangrle showed that 
connectivity reduction with a fixed unit binding is an NP-
Complete problem [21]. Register binding has a great impact on 
the MUX cost in the final data path, especially when scheduling 
and functional unit binding are fixed. A register allocation 
algorithm based on weighted bipartite matching was proposed in 
[22] trying to optimize the MUX cost before functional unit 
binding. We design a new cost function so the register binding 
can be carried out after the functional unit binding and reduce the 

FU Implementation Area 
(clb) 

Delay 
(ns)

Power 
(w)

add24bit_bk Brent-Kung 42 6.09 0.016
add24bit_cla Carry look-ahead 26 11.78 0.010 
ash24bit Arithmetic shifter 67 5.33 0.023 
cmp24bit Comparator 14 4.17 0.003 
mul18bit_nbw Non-Booth-recoded 288 14.55 0.246 
mul18bit_wall Booth-recoded Wallace 280 14.78 0.308 
Mul18bit_wall_s2 Wallace tree 2 stage 286 11.43 0.164 
Mul18bit_wall_s4 Wallace tree 4 stage 262 7.14 0.114 
mux24bit_2to1 Synopsys synthesis 6 0.57 0.002 
mux24bit_4to1 Synopsys synthesis 18 2.34 0.005 
mux24bit_8to1 Synopsys synthesis 66 4.60 0.023 
mux24bit_16to1 Synopsys synthesis 135 6.91 0.083 
mux24bit_32to1 Synopsys synthesis 276 10.93 0.240 

Table 1: Function Unit Characterization Data 
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total amount of MUX ports directly. Meanwhile, we allow the 
register number to be relaxed by a small percentage, which will 
introduce more flexibility to reduce MUX cost. 
First, the algorithm calls the left edge algorithm to get the 
minimum number of registers required. We then relax the register 
number by a certain ratio. After that, we get a register set R. 
The variables will be assigned to R iteratively. In an iteration, 
according to the ascending order of the left edges of the variables, 
we select a mutually incompatible set of unassigned variables VIC, 
where |VIC| = |R| (We may also relax the size of VIC to include 
more variables in order to catch a more global picture). We then 
construct a weighted bipartite graph G = (VIC∪ R, E), where E = 
{(v, r) | v∈ VIC and r ∈  R such that v is compatible with the 
variables allocated in r}. Each edge will be attached a weight, 
which will be discussed later. After solving the minimum weight 
bipartite matching, we allocate the variables to R according to the 
matching. The process is repeated until all the variables are 
allocated. 
The weight of an edge (v, r) in G is  

1 1 2 2( , ) ( , ) ( , ) ( , )w v r x v r x v r y v rα α β= ⋅ + ⋅ + ⋅ . 
A MUX is introduced before a register r when more than one 
functional units produce results and store them into this register, 
as shown in Figure 5 (a). We use MUXR(r) to represent this MUX. 
A MUX is introduced before a port p of a functional unit when 
more than one registers feeding data to this port, as shown in 
Figure 5 (b). MUXP(p) is used to represent this MUX.  

 

Functional 
Unit 

MUX 

Functional 
Unit 

Functional 
Unit 

(a) (b) 

MUX 

 
Figure 5: (a) MUX Introduced Before a Register;   

            (b) MUX Introduced Before a Port. 
In the weight function, x1(v, r) is the size of MUXR(r) if v is 
assigned to r. This item tries to reduce the maximal MUX width. 
x2(v, r) represents the increase of the width of MUXR(r) if v is 
assigned to r. That is, x2(v, r) = 0 if the functional unit producing 
v already drove register r before this register binding iteration. 
Otherwise, x2(v, r) = 1. y(v, r) is the sum of MUXP(p) for every 
port p of every functional unit if v is assigned to r. Terms x2 and y 
are to control the total width of MUXes.  

5.  EXPERIMENTAL RESULTS 
Our LOw Power Architectural Synthesis System (LOPASS) 
consists of the simultaneous binding and scheduling followed by 
MUX optimization. We will show our MUX optimization results 
separately in Section 5.1 before we show the power reduction 
results in Section 5.2. Our benchmarks include several different 
DCT algorithms, such as PR, WANG, and DIR, and two DSP 
programs MCM and HONDA. These benchmarks are from [23]. 

5.1 MUX Reduction Results 
Table 2 shows that our MUX optimization algorithm reduces total 
MUX ports by 22.7% on average with register number increased 
by 3 to 5 compared to the left edge-based register binding 
algorithm. Since an FPGA contains a rich amount of registers on 
the chip, we believe this increase is trivial in practice. On the 
other hand, the amount of MUX ports reduced is significant. We 
also tried no register number relaxation, the result is 6.3% worse 
on MUX port reduction than that with relaxation.  

5.2  Power Reduction Results 
The experimental flow is similar to that of Figure 4. The RT-level 
design generated from LOPASS will go through Synopsys’ 
Design Compiler for synthesis and mapping. After VHDL-BLIF 
conversion, fpgaEva_LP reports area, delay and power data. 
Table 3 shows how our wire length and power estimation work. 
Wire length is just 13.6% away from reality. This indicates that 
Rent’s rule-based estimation method is effective to estimate wire 
length for FPGA designs before layout information is available. 
Our RT-level power estimation also works well with a 16.2% 
average error. 

                                                                 
1 S-BC usually uses multipliers of different sizes for constant handling 

and timing optimization. Although S-BC uses more multipliers than 
LOPASS, the sizes of their multipliers can be smaller than those used in 
LOPASS. LOPASS only uses multipliers of the same size. We set high 
effort option for S-BC. 

Left-edge LOPASS Comparison
Bench-
marks

Reg No. Mux Port Reg No. Mux Port Reg No. Mux Port

dir 44 320 48 237 9.1% -25.9%
honda 34 214 37 154 8.8% -28.0%
mcm 54 173 59 146 9.3% -15.6%

pr 31 82 34 68 9.7% -17.1%
wang 29 101 32 74 10.3% -26.7%
Ave.   9.4% -22.7%

Table 2: MUX Reduction Results of LOPASS 

  Estimated Actual Estimation Error 

Bench-
marks 

Wire 
Length 

Power 
(w) 

Wire  
Length 

Power  
(w) 

Wire  
Length Power 

dir 158187 1.79 188891 1.68 -16.3% 6.0% 
honda 119140 1.33 100804 1.04 18.2% 27.5% 
mcm 76569 0.88 97292 1.08 -21.3% -18.8% 

pr 39617 0.47 43662 0.58 -9.3% -18.8% 
wang 39978 0.46 41167 0.52 -2.9% -10.1% 
Ave.         13.6% 16.2% 

Table 3. Wire Length and Power Estimation 

  S-BC1 LOPASS 

Bench
marks

Node 
No. Adder

Multi-
plier Cycle 

Reg 
No. Adder 

Multi-
plier Cycle

Reg 
No.

dir 152 9 16 32 75 5 7 32 55
honda 101 9 14 29 55 3 6 28 40 
mcm 98 23 6 36 118 4 3 35 59 

pr 46 13 8 24 33 2 2 23 34 
wang 52 5 8 29 29 2 2 28 30 

Table 4. Binding and Scheduling Comparison 
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Our simulated annealing engine can either pick the moves that 
fulfill the latency requirement set by the user or allow a certain 
percentage of latency relaxation to trade-off latency with power. 
Table 4 shows the results when we control the latency within the 
value generated by Synopsys’ Behavioral Compiler (S-BC). Node 
No. column shows the number of the operational nodes of the 
benchmarks. Cycle columns show the control steps scheduled, and 
the adder and multiplier columns show the binding information 
for both S-BC and LOPASS.   

Table 5 shows the area, delay and power comparison results. Area 
is the number of the LUTs used in the design. On average, our 
solution reduces required LUTs by half to realize the design on an 
FPGA and improves power by 35.8% compared to S-BC.  There 
is a small delay overhead (2.3%).   

6. CONCLUSION AND FUTURE WORK 
We have presented an RT-level power estimator for FPGAs with 
consideration of wire length. We showed that our wire length 
estimation error is 13.6% on average. Our RT-level power 
estimator controls estimation error as 16.2% on average. We also 
presented two algorithms to reduce power consumption. We first 
built a simulated annealing engine that carried out resource 
selection, function unit binding, scheduling, register binding, and 
data path generation simultaneously to effectively reduce power. 
We then designed an enhanced weighted bipartite matching 
algorithm and reduced the total amount of MUX ports by 22.7% 
on average. Experimental results showed that we were able to 
reduce power consumption by 35.8% after placement and routing 
on average. In the future, we plan to investigate the trade-off 
behavior between latency and power.  
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 S-BC LOPASS Comparison 
Benchm

arks 
LUT 
No. 

Delay 
(ns) 

Power 
(w) 

LUT 
No. 

Delay 
(ns) 

Power  
(w) LUT No. Delay Power 

dir 18658 54.7 2.55 11281 53.5 1.68 -39.5% -2.2% -34.0%
honda 16426 43.4 1.85 7584 40 1.04 -53.8% -7.8% -43.8%
mcm 15991 46.8 1.97 7396 50.8 1.08 -53.7% 8.5% -44.8%

pr 7663 30.2 0.72 3873 34.4 0.58 -49.5% 13.9% -19.1%
wang 9057 35.7 0.83 3925 35.4 0.52 -56.7% -0.8% -37.4%
Ave.       -50.6% 2.3% -35.8%

Table 5: LUT Number, Delay and Power Comparison 
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