

A Buffer Planning Algorithm with Congestion Optimizationτ

Song Chen1, Xianlong Hong1, Sheqin Dong1, Yuchun Ma1, Yici Cai1,
Chung-Kuan Cheng2, Jun Gu3

1Dept. of Computer Science & Technology, Tsinghua Univ., Beijing, China
2Dept. of Computer Science and Engineering, Univ. of California, San Diego USA

3Dept. of Computer Science, Science & Technology University of HongKong

Abstract - This paper studies the problem of buffer planning
for interconnect-centric floorplanning. We devise a
congestion-driven buffer insertion algorithm, in which
single-pair shortest-path model is used to compute optimal
buffer locations and simultaneously to preserve the
monotonicity of routing paths. Congestion estimation is
achieved by an approach of probabilistic analysis. In order to
get more buffers inserted, on the basis of a rough estimation of
buffer locations, some channels determined by the boundaries
of circuit block are inserted, while the topology of the
placement keeps unchanged. Furthermore, we change the
distribution of the dead space among blocks to optimize the
time closure and routing congestion. The performance of the
chip can be improved greatly on penalty of a small area usage.
The effectiveness of the proposed algorithm has been
demonstrated by the experimental results.τ

I. INTRODUCTION

As the VLSI circuits are scaled into nanometer dimensions
and operate in gigahertz frequencies, interconnect design and
optimization has become critical. To ensure the timing
closure of design, interconnects must be considered as early
as possible in the design flow.

Buffer insertion is an effective technique to reduce the
interconnect delay. While the Elmore delay of a long wire
grows quadratically in terms of the length of the wire, buffer
insertion properly results in a linear delay increase due to the
length of the wire. The number of buffers needed to achieve
timing closure continues to increase with decreasing feature
size. Buffers must be planned early in the design because they
will take up silicon resources. It is very useful that a good
planning of the buffer positions can be obtained in the
placement stage to favor later routing stages.

A. Previous Work

 J. Cong et al[2] introduces the concept of feasible region,
which is used to generate buffer bocks. Sarkar et al[5] adds the
notion of independence to feasible region and tries to improve
the routing congestion. These two papers give the basic idea
of Feasible Region, on which they proposed the buffer
planning algorithm. But both of their methods take complex
scanning to obtain the feasible buffer insertion sites, and [5]
decomposes multi-pin nets by the star model, which will
cause a very over-estimated congestion. Tang and Wong[8]

τ This work is supported by the National Natural Science
Foundation of China 60121120706 and National Natural Science
Foundation of USA CCR-0096383, the National Foundation
Research(973) Program of China G1998030403, the National
Natural Science Foundation of China 90307005, NSFC&HK GRC
joint Grant No. 60218004 and 863 Hi-Tech Research &
Development Program of China 2002AA1Z1460

proposes an optimal algorithm based net flow to assign
buffers to buffer blocks assuming only one buffer for each
net. F.F. Dragan[9][10] allocates buffers to existent buffer
blocks by the multi-commodity flow-based approach. Alpert

[11] makes use of tile graph and dynamic programming to
perform buffer block planning. They assume that buffers be
allowed to be inserted inside macro blocks. S. Chen [15]

optimizes the distribution of the dead space to improve the
number of nets that satisfy delay constrains and buffer
insertion is modeled as max cardinality matching problem,
but the monotonicity of routing paths cannot be retained. Y.
Ma [18] and K.W.C. Wong [19] integrate floorplanning with
buffer planning and congestion analysis. Although buffers
are mostly inserted into dead space and some of previous
works consider routability, none of them optimize buffer
insertion and the routing congestion by changing the dis-
tribution of the dead space in the results of the floorplanning.

B. Our Contributions

This paper proposes approach to optimize the congestion
and time closure by changing the distribution of the dead
space in the placement, and devised a congestion-driven
buffer insertion algorithm, in which a single-pair shortest-
-path model is used to compute optimal positions for buffers,
and simultaneously to preserve the monotonicity of the
routing paths. As a pre-processing, the chip is dissected into
rooms in each of which at most one block is located, and in
order to get more buffers inserted, on the basis of a rough
estimation of buffer location, some channels determined by
the boundary of circuit block are inserted into rooms that are
entirely held by blocks, while the topology of the placement
keeps unchanged. The performance of the chip can be
improved greatly on penalty of a small area usage. The
effectiveness of the proposed algorithm has been
demonstrated by the experimental results.

Instead of star model that used in [2], [5], [15], and [18],
Minimum Spanning Tree (MST) model is used to decompose
multi-pin nets. In order to achieve the congestion estimation,
an accurate congestion model [16] is adopted.

Given the results of the floorplanning, as a post-layout
processing, our algorithm can achieve buffer planning and
improve further the routing congestion of the chip.
 The rest of the paper is organized as follows. Section II
gives the problem definition, introduces the calculation of
independent feasible region and gives a brief review of the
redistribution of the dead space. The method of channel
allocation is shown in section III. The congestion driven
buffer insertion algorithm is discussed in section IV. Section
V involves the congestion optimization based on the
redistribution of dead space. Section VI and section VII give
the experimental results and conclusion, respectively.

II. PRELIMILARY

A. Problem Definition

 In this paper, we concentrate on the buffer planning
problem: Given an initial placement/floorplan and timing
constraints for each net, we try to determine the number and
locations of buffers for each net to achieve the timing closure
of design, and take the routing congestion considered. The
buffers are inserted into the dead-spaces and channels that are
allocated based on a roughly estimation of the distribution of
the buffers.

B. Independent Feasible Region

The concept of independent feasible region (IFR) is
introduced for buffer insertion [5]. The IFR for a buffer b is the
maximum region where b can be located such that by
inserting buffer b into any location in that region, the net
delay constraint can be satisfied, assuming that the other
buffers of that net are also located within their respective
independent feasible regions.

The minimum number of buffers to meet the delay
constraint Treq for an interconnect of length l is

⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡ −−−
=

4

64
2
55

min 2
4

K
KKKK

k (1)

where
bbb TCRK +=4

2

5

)(
2

2)(
2

)(

dblb

reqlbbdbbb

RR
r

cCC
c
r

TCRCRTlcRrCK

−−−−

−++++=

reqlddl TCRlcRrCrclK −+++=)(
2
1 2

6

The notation for the physical parameters of the interconnect
and buffer we use in this paper is as follows:

r wire resistance per unit length
c wire capacitance pre unit length
Tb intrinsic buffer delay
Cb buffer input capacitance
Rb buffer output resistance
Cl sink capacitance;
Rd driver resistance;
ln the length of source-sink net N (two-pin net)

 The IFR of each buffer in a net can be calculated by means
of the method developed in [5].

C. Redistribution of dead spaces

The dead-spaces are defined as the spaces within a
placement that are not held by any circuit block. The chip can
always be dissected into small rectangles, denoted as room,
and there is at most one block in each room. All the rooms are
not held entirely by the circuit blocks and there may be some
empty room assigned no circuit block. In the former, the dead
space is called Detached Dead-Space (DDS) [15], and the
later type of dead-space is called Attached Dead-Space (ADS)
[15].

The DDSs are moveless, while the distribution of ADSs
can be changed. Through the topological representation of the
placement/floorplan, we can respectively associate ADSs

with some circuit blocks. Consequently, the distribution of
dead-spaces can be changed by moving the circuit block
within the room which is not entirely held.

III. CHANNELS ALLOCATION

Given a placement, the area of dead space is limited.
Hence there are many buffers that may be inserted
unsuccessfully to reduce the delay. It is not economical to
reserve channels between each two adjacent blocks. In the
work of [2] and [5], the channels are inserted during the
buffer planning according to the necessaries, but the move of
the blocks must change the pin position of nets, which
maybe lead to a rough calculation of the number and
locations of buffers. Therefore, we will first allocate
channels before buffer planning. On the basis of estimating
roughly the distribution of buffers, some vertical or
horizontal channels are inserted into rooms held entirely by
blocks, while the topology of the circuit keeps unchanged.

In general, the packing results are left-bottom compacted,
we hence insert vertical channels into the left boundary or
horizontal channels into bottom boundary of circuit blocks.
For each block, if the center of the left boundary is located
in the IFR of a buffer, we think that the buffer may be
inserted into the left boundary nearby. Similarly, if the center
of the bottom boundary is located in the IFR of a buffer, the
buffer may be inserted into the bottom boundary nearby. For
each block, we count the number of buffers possibly inserted
the left boundary and bottom boundary nearby. Depending
on the distribution of the buffers and the association among
dead space and blocks, we determine whether or not the
channels are inserted. The length of the channel is
determined by the boundary of the block, and the width of
channels depends on the number of possible inserted buffers.

IV. CONGESTION-DRIVEN BUFFER INSERTION

To perform congestion estimation, the chip is divided into
2-dimensional array of fixed-size grids. Hence, we can get
the congestion information at every location of all over the
floorplan. Because the dissection of the dead space for
buffer insertion is separated from the dissection of the chip
for routing congestion estimation, buffer resources has not to
be considered during congestion estimating. Therefore, we
can apply the traditional congestion model in our buffer
planning algorithm. Fig.1 illustrated the congestion grids
and the tiles buffer can be inserted. For simplicity, we think
that a buffer lies in a grid if the center of the corresponding
tile is located in the grid.

M1 M2

M3

M4

Fig.1 Grids for congestion estimation and
tiles for buffer insertion

Tiles for
Buffer
insertion

Grids for
congestion

s

t

A. Congestion Estimation

The congestion model employed is essentially a two
dimensional rectangular grid based probabilistic map
assuming every multi-bend route of shortest Manhattan
distance is feasible. The congestion of a routing grid (i, j) is
defined as follows.

cgh(i, j) = Expected number of routes passing through grid
(i, j) horizontally.

cgv(i, j) = Expected number of routes passing through grid
(i, j) vertically.

To calculate the congestion numbers for the routing grid,
we first compute the number of possible routes passing
through every routing grid for each net with fixed source and
fixed sink. Assuming that all these routes have equal
probability, we obtain the probabilistic usage matrix which
is similar to that in [16]. We compute the contribution of
each net to the congestion matrices, cgh

s(i, j) and cgv
s(i, j).

Thus, given a set of two pin nets, we can compute the
congestion matrices and cgh(i, j) and cgv(i, j) as follows:

∑=

∑=

∈

∈

}{

}{

),(),(

),(),(

netsofsets

netsofsets

jisv
scgjivcg

jih
scgjihcg

 (3)

On the other hand, with consideration of buffer positions,
we define a sub-net as the segment of a net between two
consecutive buffers, between the source and the first buffer,
or between the last buffer and the sink. We compute the
contribution of each subnet to the congestion matrices. The
“set of nets” in formula (3) maybe include sub-nets in this
situation.

The congestion is initialized by all the nets without
consideration of buffers in the beginning of the buffer
planning. And then the congestion estimation process is
performed net by net. For each net, by solving a shortest
path problem (discussed in sub-section C), we will select the
best possible buffer locations for each net so that it is
minimized that the sum of the congestion of the most
congestive grid in the possible routing path of the sub-nets
of the net. Following that, we will erase the congestion
contribution of this net without consideration of buffers, and
add the congestion contribution due to this net by breaking
the net into a set of sub-nets consisting of all the source-buffer
pair, buffer-buffer pairs and the buffer-sink pair along the
route. The congestion information at each grid will be
updated, which will affect the buffer insertion process of the
other nets. The whole process is repeated until all the nets
are routed and analyzed.

B. Multi-pins Nets Handling

In order to handle multi-pin nets, we need to decompose a
multi-pin net into a set of two-pin nets. There are several
methods to decompose a multi-pin net into two-pin nets such
as star method, the MST method, or the rectilinear steiner
tree (RST) method. The star-decomposed method is
over-estimate congestion greatly because of overlapping net
segments. MST may over-estimate the congestion. However,
this conservative estimation will not affect the resultant
packing significantly because the total length of an MST can
be reduced at most by 6% to 9% by removing all the
overlapping net segments to obtain a corresponding RST [12].
MST is a better choice for estimation purposes. As a result,
we apply MST to handle multi-pin nets before our buffer

planning algorithm. In our optimization algorithm, since the
blocks are only moved in a local small area, we will not
change the decomposition of the multi-pin nets.

C. Buffer Net with Congestion and Monotonicity considered

Definition 1 Monotonicity For a net N, if the routing
path constrained by the inserted buffers (more than one) is a
monotonic Manhattan path from the source to the sink, we
say that the buffers satisfy monotonicity each other.

For each net with buffers inserted, to keep the routing path
monotonic and select optimal buffer positions, we model the
assignment problem of buffers to tiles as a single source to
single sink shortest path problem, and the location of buffers
are determined based on the shortest path.

For a net with n consecutive buffers b1, b2, …, bn from
source to sink, the s-t graph used for single-pair shortest-path
model is constructed as follow.

1. G = (V, E).
2. V = V1 ∪ V2 ∪…∪ Vn ∪ {s, t}, where Vi (i=1, ..., n) is the

set of the candidate tiles of buffer bi, s and t represent
the source and the sink of the net respectively.

3. E = E1 ∪ E2 ∪ … ∪ En ∪ En+1, where E1 = {(s, v), v ∈
V1}, Ei = {(u, v), u∈Vi-1, v∈Vi, and u and v satisfy
monotonicity}, i = 2, …, n, and En = {(v, t), v ∈ Vn}

The cost of each edge in the graph G is assigned to the
value of the most congestive grid located in the possible
routing path from the source endpoint of the edge to the sink
endpoint of the edge. In the graph G, each path from s to t
represents one strategy of buffers insertion keeping the
routing path monotonic. Therefore, we assigned the buffers
of the net to tiles by finding the shortest path from s to t,
which ensure the net with buffer inserted pass through grids
with low congestion.

Fig.2 shows an example. For convenience, the tiles are not
drawn. Two buffers b1 and b2 need to be inserted into the net
to satisfy the delay constraint. As shown in the left of Fig.2,
the light blue tiles are the candidate tiles of first buffer, and
gray tiles are for the second buffer. And in the right side of
the figure is the corresponding s-t graph which is
constructed following the above method. It is obvious that
the routing path is non-monotonic if we insert buffer b1 into
tile c11 and buffer b2 into tile c23. Therefore, there is not an
edge from c11 to c23 in the s-t graph.

As shown in Fig.2, the congestion of each grid is shown
in the left-bottom corner. We can assign each edge a cost
which is the congestion of the most congestive grid in the
possible routing. For example, the cost of edge (c13, c22) is 3.
By finding the single-pair shortest path, buffer b1 is inserted
tile c13, and b2 is inserted c21.

s

t
c11

c12

c13

c21

c22

c23

s t

Fig.2 s-t graph used in congestion
driven buffer insertion algorithm

b2

c11

c12

c13

c21

c22

c23

b1

5

2

3

6 3

4

1

1 1

4

1

2

3

5

1

3

3

4

3

1

D. Buffer Insertion with consideration of congestion

The overview of the congestion driven buffer insertion
algorithm is shown in fig.3.

Steps 1 through 3 are data prepare stages. In the step 2, the
set of candidate tile for each buffer is calculated. Without
consideration of buffers we compute each net’s contribution
to the congestion in the step 3.

In step 4, for each net, the assignment from buffer to tile
is achieved by solving a single-pair shortest-path problem,
which is described in section IV.B. We will update the
contribution of the net to the global congestion if the buffers
of a net are all inserted successfully. Otherwise, the net is
buffered unsuccessfully, which means there is no feasible
dead space for buffer insertion, or all of the possible routing
path constrained by buffers are non-monotonic.

V. CONGESTION OPTIMIZATION BY CHANGING THE

DISTRIBUTION OF THE DEAD SPACE

In this section, we try to optimize the performance of the
chip by redistributing the dead-spaces all over the placement.
The above congestion-driven buffer planning algorithm is
embedded into the optimization procedure. The objective is
to maximize the number of nets that meet the delay
constraints and minimize the congestion. The cost function
is shown as follows.

CpNTNpCost **)(* 21 λ+−=
In which the p1 and p2 is the weight for two different

objectives, TN is the number of total two-pin nets, N is the
number of nets that satisfy the delay constraint, λ is balance
factor and C is the average of the congestion of the top 5%
most congestive grids. Fig.4 outlines the Optimization
algorithm.

Step 1 find all the dead space in the placement, and
associate dead space with circuit block. The decomposition
of the multi-pin nets follows. Steps 3 to 4 inserted some
channels according to method discussed in section III.

Step 6 and step 8 perform the congestion-driven buffer
insertion algorithm proposed in section IV. The congestion is
evaluated by the average of the top 5% most congestive
grids. Because of the timing consumption of the buffer
insertion algorithm, steps 7 to 9 perform a local search on
the distribution of the dead space.

In step 7, the new distribution of the dead space in the
placement can be generated by the following methods.

One dead space block is randomly selected, and the
associated block is moved to change the dead space

distribution around the block. The dead space have been
dissect into tiles, hence we move the block by random times
of width or height of tile. And then we update the length and
buffer number of the nets that have pins in the moved circuit
block and independent feasible region of each buffer. If the
new dead-space distribution is not accepted, we erase all the
changes that have made.

The topology and total area of the placement keep

unchanged during the dead-space redistribution. We perform
the previous congestion driven buffer insertion algorithm to
compute the number of nets that meet the target delay and the
congestion cost under each new distribution of the dead
space.

VI. EXPERIMENTAL RESULTS

The congestion driven buffer insertion algorithm and the
congestion optimization algorithm have been implemented
using C++ language on a Pentium III 733 machine. In this
section, we present some details of our experimental results
obtained. The values for parameters shown in Table.1 are
based on a 0.18µm technology in the NTRS’97 roadmap [17].
In the implementation, the size of tiles used for buffer
insertion is selected as four times of the buffer size and the
congestion grid size is four times of tile size.

We ignore all power and ground interconnects. The initial
placements of the MCNC benchmark circuits were obtained
from [1]. We assign target delays of the two-pin nets, since
the MCNC benchmarks include no any timing information.
All two-pin nets whose lengths are smaller than the critical
length lmin

[6] are ignored, because buffer insertion cannot
reduce their delay. And then we compute the optimal delay
Topt under optimal buffer insertion [6] for each net and then

Fig.4 Overview of the optimization algorithm

Algorithm.1 Congestion Driven Buffer Insertion

1. Build the tile data structure for all the dead-spaces.
2. Compute the set of candidate tiles for each buffer.
3. Build grid data structure for congestion estimation and

initialize the congestion value for each congestion grid.
4. For each net, perform the following operations.

Construct the s-t graph G.
Calculate cost for each edge.
Find the shortest path, if the graph G is connected.
According to the shortest path, the buffers are inserted.

 Update the congestion information.

Fig.3 Overview of the buffer insertion algorithm

Algorithm.2 Congestion Optimization

1. Compute all the dead-spaces in the placement, and
associate each of the dead-spaces with some block.

2. Find the MST for each multi-pin net and decompose the
multi-pin net into two-pin nets according to the edges of
the MST.

3. Calculate the number of buffers needed for each net and
IFR for each buffer and estimate the distribution of the
buffers roughly.

4. Insert channels, update the dead-spaces in the placement.
5. Update the number of buffers needed for each net and

calculate IFR for each buffer.
6. Perform the congestion driven buffer insertion algorithm

to compute the number of nets that meet the target delay,
denoted as Nold and the average of the congestion of the
top 5% most congestive grids, denoted as Cold, Costold =
p1*(TN-Nold) + p2*λ*Cold.

7. Generate new distribution of the dead-spaces and update
related information.

8. Perform the congestion-driven buffer insertion algorithm
to compute the number of nets that meet the delay
constraints, denoted as Nnew, and congestion Cnew,
Costnew = p1*(TN - Nnew) + p2*λ*Cnew.

9. If Costold < Costnew, Costnew = Costold, Nold = Nnew, Cold =
Cnew, the new dead space distribution is accepted.
Otherwise, restore the changes.

10. Repeat steps 6 to 9 until no improvement in given times.

randomly assign a constraint delay between 1.05 and 1.20
times Topt to the net as in [2,5]. We provide the results of our
algorithm for 5 MCNC benchmark circuits [7]. The details of
these circuits are shown in Table.2.

TABLE 1 VALUE FOR THE PARAMETERS USED
r Unit length wire resistance (Ω/µm) 0.075
c Unit length wire capacitance (fF/µm) 0.118

Tb Intrinsic buffer delay (ps) 36.4
Cb Buffer input capacitance (fF) 23.4
Rb Buffer output resistance (Ω) 180
Rd Driver output resistance (Ω) 180
Cl Sink input capacitance (fF) 23.4

TABLE 2
MCNC BENCHMARKS STATISTICS

Circuit Blocks Nets Two-pin Nets
Apte 9 97 172
Xerox 10 203 455
Hp 11 83 226
Ami33 33 123 363
Ami49 49 408 545

In Table.3 and Table.4, we provide some experimental
results from our buffer planner, which include running the
congestion-driven buffer insertion algorithm in the original
placement (BP1), in the placement with inserted channels
(BP2) and in the optimization procedure (BP3). Each of the
situations includes the number of nets which meet the delay
constraint (#meet), the total number of buffers of nets that
satisfy target delay and the total number of buffers needed
(#IB/#TB), the area usage, the routing congestion and CPU
times. In BP3 the area usage is not shown, because the total
area is not changed during all the optimization stage. Table.3
also shows the comparison between BP1 and BP2 (BP2 to
BP1) by the ratios of improvement. Table.4 shows the
comparison between BP2 and BP3 (BP3 to BP2), and BP1
and BP3 (BP3 to BP1). All of the experimental results
include nets that can not meet the timing constraints after
channel insertion and nets that are shorter than the critical
length lmin

[6]. We enlarge all the circuit to involve more
buffers to test our algorithms.

Since the method of decomposing the multi-pin nets is
different from each other, it is meaningless to make a
comparison with the results from [2] and [5]. However, we
list the experimental results in [15] (BP [15]) for references.

Comparing BP3 with BP1, we can find that the
performance of the chip is improved greatly on penalty of a
small area usage. For circuit Xerox, the number of nets that
meet the delay constraints increases 24.3% by a cost of 1.1%
area usage and the congestion is decreased 17.2%.

The results in Table.4 also show that changing the
distribution of the dead space is able to reduce routing
congestion. With p1=1 and p2=0 the objective function is
oriented towards the increasing of the nets satisfying the
target delay, whereas setting p1=0 and p2=1 causes the
routing congestion to be reduced. p1=p2=0.5 represents a
solution with a tradeoff between the two different objectives.
According to BP2 and BP3, changing the distribution of the
dead space maybe improve the routing congestion, and
simultaneously increase the number of delay-met nets. For
example, in the circuit Xerox, the number of nets meeting
target delay increases 5.2% and the routing congestion
decrease 4.2%, and the area usage decreases 1.1%. However,

the area usage of five test cases decreases 2.08% averagely
and the optimization procedure is very time consuming.

Fig.5 (a), (b), and (c) illustrate the experimental results of
the circuit Xerox under three different situations. The very
small rectangles (more like points) are buffers that have
been inserted. In Fig.5 (c), the upper-left block and
upper-right block are moved so that the dead space
distribution is changed, and more buffers are inserted. From
Fig.5, we can observe the effectiveness of the proposed
algorithms clearly.

VII. CONCLUSION

This paper proposed a congestion-driven buffer insertion
algorithm, in which single-pair shortest-path model is used
for computing the optimal buffer location and preserving
monotonicity of routing paths. In order to get more buffers
inserted, on the basis of a rough estimation of buffer location,
some channels determined by the boundary of circuit block
are inserted. Furthermore, we change the distribution of the
dead space to perform an optimization for buffer insertion
and routing congestion, which can be improved greatly by
costing small area usage. The efficiency of proposed
algorithm has been demonstrated by the experimental results.

Because of time consumption, a greedy local search
algorithm is used for optimization in our paper. Though the
experimental results show that the greedy strategy is efficient,
it is required to develop a faster buffer planning algorithm for
applying a better search strategy.

References
[1] X.L. Hong, G. Huang, Y.C. Ma, Yici Cai, S.Q. Dong, “Corner
Block List: an effective and efficient topological representation of
non-slicing floorplan,” ICCAD’2000.
[2] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for
interconnect-driven floorplanning”, IEEE/ACM ICCAD, 1999.
[3] J. Cong, “Challenges and opportunities for design innovations in
nanometer technologies,” Frontiers in Semiconductor Research: A
collection of SRC Working Papers, Semiconductor Research
Corporation, http://www.src.org/prg_mgmt/frontier.dgw, 1997
[4] J. Cong, L. He, C-K. Koh, P.H. Madden, “Performance
optimization of VLSI interconnect layout” Integration, the VLSI
Journal, vol.21, Nov. 1996.
[5] P. Sarkar, C. K. Koh, “Routability-driven repeater block planning
for interconnect-centric floorplanning,” International. Symposium
on Physical Design, 2000.
[6] C.J. Alpert, A. Devgan, “Wire segmenting for improved buffer
insertion,” in Proc. Design Automation Conf, June 1997.
[7] Collaborative Benchmarking Laboratory, North Carolina State
University, http://www.cbl.ncsu.edu/CBL Docs/lys92.html:
LayoutSynth’92 Benchmark Information.
[8] X. Tang and D.F. Wong, “Planning buffer locations by network
flows”, Intl. Symp. Physical Design, 2000, pp. 180-185.
[9] F. F. Dragan, A. B. Kahng, I. Mandoiu, S. Muddu, “Provably
good global buffering using an available buffer block plan”,
IEEE/ACM ICCAD, 2000
[10] F. F. Dragan, A. B. Kahng, et al“Provably good global buffering
by multiterminal multicommodity flow approximation”, ASP-DAC,
2001.
[11] C.J. Alpert, J. Hu, S.S. Sapatnekar, P.G. Villarrubia, “A practical
methodology for early buffer and wire resource allocation,” DAC,
2001.
[12] J. M. Ho and G. Vijayan and C. K. Wong, “New algorithms for
the rectilinear Steiner tree problem”, Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, Volume: 9
Issue: 2, Feb. 1990.

[13] C. W. Sham, F. Y. Young, “ Routability driven floorplanner
with buffer block planning”, ISPD 2002.
[14] F. Ragiq, M. C. Jeske, H. H. Yang, N. Sherwani, “Integrated
floorplanning with buffer/channel insertion for bus-based
microprocessor designs”, ISPD 2002.
[15] S. Chen, X. L. Hong, S. Q. Dong, Y. C. Ma, Y. C. Cai, et al, “A
buffer planning algorithm based on dead space redistribution”,
ASP-DAC 2003.
[16] J. Lou, S. Thakur, S. Krishnamoorthy, H.S. Sheng, “Estimating
Routing Congestion Using Probabilistic Analysis”, IEEE

transaction on computer-aided design of integrated circuits and
systems. vol. 21, no.1, January 2002.
[17] Semiconductor Industry Association, National Technology
Roadmap for Semiconductors, 1997.
[18] Y. Ma, X. Hong, S. Dong, S. Chen, Y. Cai, et al, “Dynamic
Glocal Buffer Planning Optimization Based on Detail Block
Locating and Congestion Analysis”, DAC 2003.
[19] K. W.C. Wong, F. Y. Yong, “Fast Buffer Planning and
Congestion Optimization in Interconnect-driven Floorplanning”,
ASP-DAC 2003.

 (a) Initial placement (b) Channels Inserted (c) Dead-space distribution optimized

Fig.5 Results of circuit Xerox

TABL.3 EXPERIMENTAL RESULTS OF CHANNEL INSERTION

#meet #IB/TB usage(%) congestion time(s) #meet #IB/TB usage(%) congestion time(s) #meet #usage #meet #IB
apte 78 15/156 96.9 18.18 1.65 116 71/159 95.9 16.89 1.52 48.70% 1.00% 100 104

xerox 313 57/155 93.9 23.51 2.35 366 125/162 92.8 20.07 2.29 16.90% 1.10% 315 182
hp 152 6/59 90.9 13.85 0.05 169 27/60 89.1 11.49 0.07 11.20% 1.80% 139 182

ami33 308 28/71 90.9 8.48 0.16 320 47/81 88.6 8.88 0.28 3.90% 2.30% 249 178
ami49 412 173/199 90.1 27.23 1.33 456 241/265 85.9 27.96 2.36 10.70% 4.20% 457 253

BP2 to BP1 BP[15]
circuit

BP1 BP2

TABLE.4 EXPERIMENTAL RESULTS OF OPTIMIZATION

p1, p2 #meet #IB/TB congestion time(s) #meet congestion #meet #congestion #usage
p1=1, p2=0 117 69/159 16.89 99.12 0.09% 0.00% 50.00% 7.10%
p1=p2=0.5 117 69/159 16.89 98.90 0.09% 0.00% 50.00% 7.10%
p1=0, p2=1 117 69/159 16.89 98.96 0.09% 0.00% 50.00% 7.10%
p1=1, p2=0 389 154/174 19.69 317.70 6.30% 2.00% 24.30% 16.20%
p1=p2=0.5 389 152/174 19.46 655.67 6.30% 3.40% 24.30% 17.20%
p1=0, p2=1 385 149/177 19.23 620.44 5.20% 4.20% 23.00% 18.20%
p1=1, p2=0 193 48/61 12.10 63.91 14.20% -5.00% 27.00% 12.60%
p1=p2=0.5 190 47/61 10.52 92.37 12.40% 8.40% 25.00% 24.00%
p1=0, p2=1 174 43/66 9.89 92.37 3.00% 13.93% 14.50% 28.60%
p1=1, p2=0 335 69/95 8.13 447.34 4.90% 8.45% 8.80% 4.10%
p1=p2=0.5 335 69/95 8.13 452.50 4.90% 8.45% 8.80% 4.10%
p1=0, p2=1 330 63/93 8.04 374.46 3.10% 8.00% 7.10% 7.53%
p1=1, p2=0 472 255/262 28.35 471.87 3.50% -1.37% 14.60% -4.00%
p1=p2=0.5 461 238/264 27.50 212.80 0.44% 1.60% 11.90% -1.00%
p1=0, p2=1 461 238/264 27.50 210.17 0.44% 1.60% 11.90% -1.00%

BP3 BP3 to BP1

1.10%

1.00%

4.20%

ami33

ami49

circuit

apte

xerox

1.80%hp

BP3 to BP2

2.30%

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

