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Abstract - This paper studies the problem of buffer planning 
for interconnect-centric floorplanning. We devise a 
congestion-driven buffer insertion algorithm, in which 
single-pair shortest-path model is used to compute optimal 
buffer locations and simultaneously to preserve the 
monotonicity of routing paths. Congestion estimation is 
achieved by an approach of probabilistic analysis. In order to 
get more buffers inserted, on the basis of a rough estimation of 
buffer locations, some channels determined by the boundaries 
of circuit block are inserted, while the topology of the 
placement keeps unchanged. Furthermore, we change the 
distribution of the dead space among blocks to optimize the 
time closure and routing congestion. The performance of the 
chip can be improved greatly on penalty of a small area usage. 
The effectiveness of the proposed algorithm has been 
demonstrated by the experimental results.τ 

I. INTRODUCTION 

As the VLSI circuits are scaled into nanometer dimensions 
and operate in gigahertz frequencies, interconnect design and 
optimization has become critical. To ensure the timing 
closure of design, interconnects must be considered as early 
as possible in the design flow. 

Buffer insertion is an effective technique to reduce the 
interconnect delay. While the Elmore delay of a long wire 
grows quadratically in terms of the length of the wire, buffer 
insertion properly results in a linear delay increase due to the 
length of the wire. The number of buffers needed to achieve 
timing closure continues to increase with decreasing feature 
size. Buffers must be planned early in the design because they 
will take up silicon resources. It is very useful that a good 
planning of the buffer positions can be obtained in the 
placement stage to favor later routing stages. 

A. Previous Work 

  J. Cong et al[2] introduces the concept of feasible region, 
which is used to generate buffer bocks. Sarkar et al[5] adds the 
notion of independence to feasible region and tries to improve 
the routing congestion. These two papers give the basic idea 
of Feasible Region, on which they proposed the buffer 
planning algorithm. But both of their methods take complex 
scanning to obtain the feasible buffer insertion sites, and [5] 
decomposes multi-pin nets by the star model, which will 
cause a very over-estimated congestion. Tang and Wong[8] 
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proposes an optimal algorithm based net flow to assign 
buffers to buffer blocks assuming only one buffer for each 
net. F.F. Dragan[9][10] allocates buffers to existent buffer 
blocks by the multi-commodity flow-based approach. Alpert 

[11] makes use of tile graph and dynamic programming to 
perform buffer block planning. They assume that buffers be 
allowed to be inserted inside macro blocks. S. Chen [15] 

optimizes the distribution of the dead space to improve the 
number of nets that satisfy delay constrains and buffer 
insertion is modeled as max cardinality matching problem, 
but the monotonicity of routing paths cannot be retained. Y. 
Ma [18] and K.W.C. Wong [19] integrate floorplanning with 
buffer planning and congestion analysis. Although buffers 
are mostly inserted into dead space and some of previous 
works consider routability, none of them optimize buffer 
insertion and the routing congestion by changing the dis- 
tribution of the dead space in the results of the floorplanning. 

B. Our Contributions 

This paper proposes approach to optimize the congestion 
and time closure by changing the distribution of the dead 
space in the placement, and devised a congestion-driven 
buffer insertion algorithm, in which a single-pair shortest- 
-path model is used to compute optimal positions for buffers, 
and simultaneously to preserve the monotonicity of the 
routing paths. As a pre-processing, the chip is dissected into 
rooms in each of which at most one block is located, and in 
order to get more buffers inserted, on the basis of a rough 
estimation of buffer location, some channels determined by 
the boundary of circuit block are inserted into rooms that are 
entirely held by blocks, while the topology of the placement 
keeps unchanged. The performance of the chip can be 
improved greatly on penalty of a small area usage. The 
effectiveness of the proposed algorithm has been 
demonstrated by the experimental results. 

Instead of star model that used in [2], [5], [15], and [18], 
Minimum Spanning Tree (MST) model is used to decompose 
multi-pin nets. In order to achieve the congestion estimation, 
an accurate congestion model [16] is adopted. 

Given the results of the floorplanning, as a post-layout 
processing, our algorithm can achieve buffer planning and 
improve further the routing congestion of the chip. 
  The rest of the paper is organized as follows. Section II 
gives the problem definition, introduces the calculation of 
independent feasible region and gives a brief review of the 
redistribution of the dead space. The method of channel 
allocation is shown in section III. The congestion driven 
buffer insertion algorithm is discussed in section IV. Section 
V involves the congestion optimization based on the 
redistribution of dead space. Section VI and section VII give 
the experimental results and conclusion, respectively. 



 

II. PRELIMILARY 

A. Problem Definition 

  In this paper, we concentrate on the buffer planning 
problem: Given an initial placement/floorplan and timing 
constraints for each net, we try to determine the number and 
locations of buffers for each net to achieve the timing closure 
of design, and take the routing congestion considered. The 
buffers are inserted into the dead-spaces and channels that are 
allocated based on a roughly estimation of the distribution of 
the buffers. 

B. Independent Feasible Region 

The concept of independent feasible region (IFR) is 
introduced for buffer insertion [5]. The IFR for a buffer b is the 
maximum region where b can be located such that by 
inserting buffer b into any location in that region, the net 
delay constraint can be satisfied, assuming that the other 
buffers of that net are also located within their respective 
independent feasible regions. 

The minimum number of buffers to meet the delay 
constraint Treq for an interconnect of length l is 
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The notation for the physical parameters of the interconnect 
and buffer we use in this paper is as follows: 

r    wire resistance per unit length 
c    wire capacitance pre unit length 
Tb   intrinsic buffer delay 
Cb   buffer input capacitance 
Rb   buffer output resistance 
Cl   sink capacitance; 
Rd   driver resistance; 
ln the length of source-sink net N (two-pin net) 

  The IFR of each buffer in a net can be calculated by means 
of the method developed in [5]. 

C. Redistribution of dead spaces 

The dead-spaces are defined as the spaces within a 
placement that are not held by any circuit block. The chip can 
always be dissected into small rectangles, denoted as room, 
and there is at most one block in each room. All the rooms are 
not held entirely by the circuit blocks and there may be some 
empty room assigned no circuit block. In the former, the dead 
space is called Detached Dead-Space (DDS) [15], and the 
later type of dead-space is called Attached Dead-Space (ADS) 
[15]. 

The DDSs are moveless, while the distribution of ADSs 
can be changed. Through the topological representation of the 
placement/floorplan, we can respectively associate ADSs 

with some circuit blocks. Consequently, the distribution of 
dead-spaces can be changed by moving the circuit block 
within the room which is not entirely held. 

III. CHANNELS ALLOCATION 

Given a placement, the area of dead space is limited. 
Hence there are many buffers that may be inserted 
unsuccessfully to reduce the delay. It is not economical to 
reserve channels between each two adjacent blocks. In the 
work of [2] and [5], the channels are inserted during the 
buffer planning according to the necessaries, but the move of 
the blocks must change the pin position of nets, which 
maybe lead to a rough calculation of the number and 
locations of buffers. Therefore, we will first allocate 
channels before buffer planning. On the basis of estimating 
roughly the distribution of buffers, some vertical or 
horizontal channels are inserted into rooms held entirely by 
blocks, while the topology of the circuit keeps unchanged. 

In general, the packing results are left-bottom compacted, 
we hence insert vertical channels into the left boundary or 
horizontal channels into bottom boundary of circuit blocks. 
For each block, if the center of the left boundary is located 
in the IFR of a buffer, we think that the buffer may be 
inserted into the left boundary nearby. Similarly, if the center 
of the bottom boundary is located in the IFR of a buffer, the 
buffer may be inserted into the bottom boundary nearby. For 
each block, we count the number of buffers possibly inserted 
the left boundary and bottom boundary nearby. Depending 
on the distribution of the buffers and the association among 
dead space and blocks, we determine whether or not the 
channels are inserted. The length of the channel is 
determined by the boundary of the block, and the width of 
channels depends on the number of possible inserted buffers. 

IV. CONGESTION-DRIVEN BUFFER INSERTION 

To perform congestion estimation, the chip is divided into 
2-dimensional array of fixed-size grids. Hence, we can get 
the congestion information at every location of all over the 
floorplan. Because the dissection of the dead space for 
buffer insertion is separated from the dissection of the chip 
for routing congestion estimation, buffer resources has not to 
be considered during congestion estimating. Therefore, we 
can apply the traditional congestion model in our buffer 
planning algorithm. Fig.1 illustrated the congestion grids 
and the tiles buffer can be inserted. For simplicity, we think 
that a buffer lies in a grid if the center of the corresponding 
tile is located in the grid. 
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Fig.1 Grids for congestion estimation and 
tiles for buffer insertion 
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A. Congestion Estimation 



 

The congestion model employed is essentially a two 
dimensional rectangular grid based probabilistic map 
assuming every multi-bend route of shortest Manhattan 
distance is feasible. The congestion of a routing grid (i, j) is 
defined as follows. 

cgh(i, j) = Expected number of routes passing through grid 
(i, j) horizontally. 

cgv(i, j) = Expected number of routes passing through grid 
(i, j) vertically. 

To calculate the congestion numbers for the routing grid, 
we first compute the number of possible routes passing 
through every routing grid for each net with fixed source and 
fixed sink. Assuming that all these routes have equal 
probability, we obtain the probabilistic usage matrix which 
is similar to that in [16]. We compute the contribution of 
each net to the congestion matrices, cgh

s(i, j) and cgv
s(i, j). 

Thus, given a set of two pin nets, we can compute the 
congestion matrices and cgh(i, j) and cgv(i, j) as follows: 
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On the other hand, with consideration of buffer positions, 
we define a sub-net as the segment of a net between two 
consecutive buffers, between the source and the first buffer, 
or between the last buffer and the sink. We compute the 
contribution of each subnet to the congestion matrices. The 
“set of nets” in formula (3) maybe include sub-nets in this 
situation. 

The congestion is initialized by all the nets without 
consideration of buffers in the beginning of the buffer 
planning. And then the congestion estimation process is 
performed net by net. For each net, by solving a shortest 
path problem (discussed in sub-section C), we will select the 
best possible buffer locations for each net so that it is 
minimized that the sum of the congestion of the most 
congestive grid in the possible routing path of the sub-nets 
of the net. Following that, we will erase the congestion 
contribution of this net without consideration of buffers, and 
add the congestion contribution due to this net by breaking 
the net into a set of sub-nets consisting of all the source-buffer 
pair, buffer-buffer pairs and the buffer-sink pair along the 
route. The congestion information at each grid will be 
updated, which will affect the buffer insertion process of the 
other nets. The whole process is repeated until all the nets 
are routed and analyzed. 

B. Multi-pins Nets Handling 

In order to handle multi-pin nets, we need to decompose a 
multi-pin net into a set of two-pin nets. There are several 
methods to decompose a multi-pin net into two-pin nets such 
as star method, the MST method, or the rectilinear steiner 
tree (RST) method. The star-decomposed method is 
over-estimate congestion greatly because of overlapping net 
segments. MST may over-estimate the congestion. However, 
this conservative estimation will not affect the resultant 
packing significantly because the total length of an MST can 
be reduced at most by 6% to 9% by removing all the 
overlapping net segments to obtain a corresponding RST [12]. 
MST is a better choice for estimation purposes. As a result, 
we apply MST to handle multi-pin nets before our buffer 

planning algorithm. In our optimization algorithm, since the 
blocks are only moved in a local small area, we will not 
change the decomposition of the multi-pin nets. 

C. Buffer Net with Congestion and Monotonicity considered 

Definition 1 Monotonicity For a net N, if the routing 
path constrained by the inserted buffers (more than one) is a 
monotonic Manhattan path from the source to the sink, we 
say that the buffers satisfy monotonicity each other. 

For each net with buffers inserted, to keep the routing path 
monotonic and select optimal buffer positions, we model the 
assignment problem of buffers to tiles as a single source to 
single sink shortest path problem, and the location of buffers 
are determined based on the shortest path. 

For a net with n consecutive buffers b1, b2, …, bn from 
source to sink, the s-t graph used for single-pair shortest-path 
model is constructed as follow. 

1. G = (V, E). 
2. V = V1 ∪ V2 ∪…∪ Vn ∪ {s, t}, where Vi (i=1, ..., n) is the 

set of the candidate tiles of buffer bi, s and t represent 
the source and the sink of the net respectively. 

3. E = E1 ∪ E2 ∪ … ∪ En ∪ En+1, where E1 = {(s, v), v ∈ 
V1}, Ei = {(u, v), u∈Vi-1, v∈Vi, and u and v satisfy 
monotonicity}, i = 2, …, n, and En = {(v, t), v ∈ Vn} 

The cost of each edge in the graph G is assigned to the 
value of the most congestive grid located in the possible 
routing path from the source endpoint of the edge to the sink 
endpoint of the edge. In the graph G, each path from s to t 
represents one strategy of buffers insertion keeping the 
routing path monotonic. Therefore, we assigned the buffers 
of the net to tiles by finding the shortest path from s to t, 
which ensure the net with buffer inserted pass through grids 
with low congestion. 

Fig.2 shows an example. For convenience, the tiles are not 
drawn. Two buffers b1 and b2 need to be inserted into the net 
to satisfy the delay constraint. As shown in the left of Fig.2, 
the light blue tiles are the candidate tiles of first buffer, and 
gray tiles are for the second buffer. And in the right side of 
the figure is the corresponding s-t graph which is 
constructed following the above method. It is obvious that 
the routing path is non-monotonic if we insert buffer b1 into 
tile c11 and buffer b2 into tile c23. Therefore, there is not an 
edge from c11 to c23 in the s-t graph. 

As shown in Fig.2, the congestion of each grid is shown 
in the left-bottom corner. We can assign each edge a cost 
which is the congestion of the most congestive grid in the 
possible routing. For example, the cost of edge (c13, c22) is 3. 
By finding the single-pair shortest path, buffer b1 is inserted 
tile c13, and b2 is inserted c21. 
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Fig.2 s-t graph used in congestion 
driven buffer insertion algorithm 
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D. Buffer Insertion with consideration of congestion 

The overview of the congestion driven buffer insertion 
algorithm is shown in fig.3. 

Steps 1 through 3 are data prepare stages. In the step 2, the 
set of candidate tile for each buffer is calculated. Without 
consideration of buffers we compute each net’s contribution 
to the congestion in the step 3. 

In step 4, for each net, the assignment from buffer to tile 
is achieved by solving a single-pair shortest-path problem, 
which is described in section IV.B. We will update the 
contribution of the net to the global congestion if the buffers 
of a net are all inserted successfully. Otherwise, the net is 
buffered unsuccessfully, which means there is no feasible 
dead space for buffer insertion, or all of the possible routing 
path constrained by buffers are non-monotonic. 

 
V. CONGESTION OPTIMIZATION BY CHANGING THE 

DISTRIBUTION OF THE DEAD SPACE 

In this section, we try to optimize the performance of the 
chip by redistributing the dead-spaces all over the placement. 
The above congestion-driven buffer planning algorithm is 
embedded into the optimization procedure. The objective is 
to maximize the number of nets that meet the delay 
constraints and minimize the congestion. The cost function 
is shown as follows. 

CpNTNpCost **)(* 21 λ+−=  
In which the p1 and p2 is the weight for two different 

objectives, TN is the number of total two-pin nets, N is the 
number of nets that satisfy the delay constraint, λ is balance 
factor and C is the average of the congestion of the top 5% 
most congestive grids. Fig.4 outlines the Optimization 
algorithm. 

Step 1 find all the dead space in the placement, and 
associate dead space with circuit block. The decomposition 
of the multi-pin nets follows. Steps 3 to 4 inserted some 
channels according to method discussed in section III. 

Step 6 and step 8 perform the congestion-driven buffer 
insertion algorithm proposed in section IV. The congestion is 
evaluated by the average of the top 5% most congestive 
grids. Because of the timing consumption of the buffer 
insertion algorithm, steps 7 to 9 perform a local search on 
the distribution of the dead space. 

In step 7, the new distribution of the dead space in the 
placement can be generated by the following methods.  

One dead space block is randomly selected, and the 
associated block is moved to change the dead space 

distribution around the block. The dead space have been 
dissect into tiles, hence we move the block by random times 
of width or height of tile. And then we update the length and 
buffer number of the nets that have pins in the moved circuit 
block and independent feasible region of each buffer. If the 
new dead-space distribution is not accepted, we erase all the 
changes that have made. 

 
The topology and total area of the placement keep 

unchanged during the dead-space redistribution. We perform 
the previous congestion driven buffer insertion algorithm to 
compute the number of nets that meet the target delay and the 
congestion cost under each new distribution of the dead 
space. 

VI. EXPERIMENTAL RESULTS 

The congestion driven buffer insertion algorithm and the 
congestion optimization algorithm have been implemented 
using C++ language on a Pentium III 733 machine. In this 
section, we present some details of our experimental results 
obtained. The values for parameters shown in Table.1 are 
based on a 0.18µm technology in the NTRS’97 roadmap [17]. 
In the implementation, the size of tiles used for buffer 
insertion is selected as four times of the buffer size and the 
congestion grid size is four times of tile size. 

We ignore all power and ground interconnects. The initial 
placements of the MCNC benchmark circuits were obtained 
from [1]. We assign target delays of the two-pin nets, since 
the MCNC benchmarks include no any timing information. 
All two-pin nets whose lengths are smaller than the critical 
length lmin

[6] are ignored, because buffer insertion cannot 
reduce their delay. And then we compute the optimal delay 
Topt under optimal buffer insertion [6] for each net and then 

Fig.4 Overview of the optimization algorithm 

Algorithm.1 Congestion Driven Buffer Insertion 

1. Build the tile data structure for all the dead-spaces. 
2. Compute the set of candidate tiles for each buffer. 
3. Build grid data structure for congestion estimation and 

initialize the congestion value for each congestion grid. 
4. For each net, perform the following operations. 

Construct the s-t graph G.  
Calculate cost for each edge. 
Find the shortest path, if the graph G is connected.  
According to the shortest path, the buffers are inserted.

 Update the congestion information. 

Fig.3 Overview of the buffer insertion algorithm

Algorithm.2 Congestion Optimization 

1. Compute all the dead-spaces in the placement, and 
associate each of the dead-spaces with some block. 

2. Find the MST for each multi-pin net and decompose the 
multi-pin net into two-pin nets according to the edges of 
the MST. 

3. Calculate the number of buffers needed for each net and 
IFR for each buffer and estimate the distribution of the 
buffers roughly. 

4. Insert channels, update the dead-spaces in the placement.
5. Update the number of buffers needed for each net and 

calculate IFR for each buffer. 
6. Perform the congestion driven buffer insertion algorithm 

to compute the number of nets that meet the target delay, 
denoted as Nold and the average of the congestion of the 
top 5% most congestive grids, denoted as Cold, Costold = 
p1*(TN-Nold) + p2*λ*Cold. 

7. Generate new distribution of the dead-spaces and update 
related information. 

8. Perform the congestion-driven buffer insertion algorithm 
to compute the number of nets that meet the delay 
constraints, denoted as Nnew, and congestion Cnew, 
Costnew = p1*(TN - Nnew) + p2*λ*Cnew. 

9. If Costold < Costnew, Costnew = Costold, Nold = Nnew, Cold = 
Cnew, the new dead space distribution is accepted. 
Otherwise, restore the changes. 

10. Repeat steps 6 to 9 until no improvement in given times.



 

randomly assign a constraint delay between 1.05 and 1.20 
times Topt to the net as in [2,5]. We provide the results of our 
algorithm for 5 MCNC benchmark circuits [7]. The details of 
these circuits are shown in Table.2. 

TABLE 1 VALUE FOR THE PARAMETERS USED 
r Unit length wire resistance (Ω/µm) 0.075
c Unit length wire capacitance (fF/µm) 0.118

Tb Intrinsic buffer delay (ps) 36.4 
Cb Buffer input capacitance (fF) 23.4 
Rb Buffer output resistance (Ω) 180 
Rd Driver output resistance (Ω) 180 
Cl Sink input capacitance (fF) 23.4 

TABLE 2 
MCNC BENCHMARKS STATISTICS 

Circuit Blocks Nets Two-pin Nets 
Apte 9 97 172 
Xerox 10 203 455 
Hp 11 83 226 
Ami33 33 123 363 
Ami49 49 408 545 

In Table.3 and Table.4, we provide some experimental 
results from our buffer planner, which include running the 
congestion-driven buffer insertion algorithm in the original 
placement (BP1), in the placement with inserted channels 
(BP2) and in the optimization procedure (BP3). Each of the 
situations includes the number of nets which meet the delay 
constraint (#meet), the total number of buffers of nets that 
satisfy target delay and the total number of buffers needed 
(#IB/#TB), the area usage, the routing congestion and CPU 
times. In BP3 the area usage is not shown, because the total 
area is not changed during all the optimization stage. Table.3 
also shows the comparison between BP1 and BP2 (BP2 to 
BP1) by the ratios of improvement. Table.4 shows the 
comparison between BP2 and BP3 (BP3 to BP2), and BP1 
and BP3 (BP3 to BP1). All of the experimental results 
include nets that can not meet the timing constraints after 
channel insertion and nets that are shorter than the critical 
length lmin 

[6]. We enlarge all the circuit to involve more 
buffers to test our algorithms. 

Since the method of decomposing the multi-pin nets is 
different from each other, it is meaningless to make a 
comparison with the results from [2] and [5]. However, we 
list the experimental results in [15] (BP [15]) for references. 

Comparing BP3 with BP1, we can find that the 
performance of the chip is improved greatly on penalty of a 
small area usage. For circuit Xerox, the number of nets that 
meet the delay constraints increases 24.3% by a cost of 1.1% 
area usage and the congestion is decreased 17.2%.  

The results in Table.4 also show that changing the 
distribution of the dead space is able to reduce routing 
congestion. With p1=1 and p2=0 the objective function is 
oriented towards the increasing of the nets satisfying the 
target delay, whereas setting p1=0 and p2=1 causes the 
routing congestion to be reduced. p1=p2=0.5 represents a 
solution with a tradeoff between the two different objectives. 
According to BP2 and BP3, changing the distribution of the 
dead space maybe improve the routing congestion, and 
simultaneously increase the number of delay-met nets. For 
example, in the circuit Xerox, the number of nets meeting 
target delay increases 5.2% and the routing congestion 
decrease 4.2%, and the area usage decreases 1.1%. However, 

the area usage of five test cases decreases 2.08% averagely 
and the optimization procedure is very time consuming. 

Fig.5 (a), (b), and (c) illustrate the experimental results of 
the circuit Xerox under three different situations. The very 
small rectangles (more like points) are buffers that have 
been inserted. In Fig.5 (c), the upper-left block and 
upper-right block are moved so that the dead space 
distribution is changed, and more buffers are inserted. From 
Fig.5, we can observe the effectiveness of the proposed 
algorithms clearly. 

VII. CONCLUSION 

This paper proposed a congestion-driven buffer insertion 
algorithm, in which single-pair shortest-path model is used 
for computing the optimal buffer location and preserving 
monotonicity of routing paths. In order to get more buffers 
inserted, on the basis of a rough estimation of buffer location, 
some channels determined by the boundary of circuit block 
are inserted. Furthermore, we change the distribution of the 
dead space to perform an optimization for buffer insertion 
and routing congestion, which can be improved greatly by 
costing small area usage. The efficiency of proposed 
algorithm has been demonstrated by the experimental results. 

Because of time consumption, a greedy local search 
algorithm is used for optimization in our paper. Though the 
experimental results show that the greedy strategy is efficient, 
it is required to develop a faster buffer planning algorithm for 
applying a better search strategy. 
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  (a) Initial placement    (b) Channels Inserted    (c) Dead-space distribution optimized 

Fig.5 Results of circuit Xerox 

TABL.3 EXPERIMENTAL RESULTS OF CHANNEL INSERTION 

#meet #IB/TB usage(%) congestion time(s) #meet #IB/TB usage(%) congestion time(s) #meet #usage #meet #IB
apte 78 15/156 96.9 18.18 1.65 116 71/159 95.9 16.89 1.52 48.70% 1.00% 100 104

xerox 313 57/155 93.9 23.51 2.35 366 125/162 92.8 20.07 2.29 16.90% 1.10% 315 182
hp 152 6/59 90.9 13.85 0.05 169 27/60 89.1 11.49 0.07 11.20% 1.80% 139 182

ami33 308 28/71 90.9 8.48 0.16 320 47/81 88.6 8.88 0.28 3.90% 2.30% 249 178
ami49 412 173/199 90.1 27.23 1.33 456 241/265 85.9 27.96 2.36 10.70% 4.20% 457 253

BP2 to BP1 BP[15]
circuit

BP1 BP2

 
TABLE.4 EXPERIMENTAL RESULTS OF OPTIMIZATION 

p1, p2 #meet #IB/TB congestion time(s) #meet congestion #meet #congestion #usage
p1=1, p2=0 117 69/159 16.89 99.12 0.09% 0.00% 50.00% 7.10%
p1=p2=0.5 117 69/159 16.89 98.90 0.09% 0.00% 50.00% 7.10%
p1=0, p2=1 117 69/159 16.89 98.96 0.09% 0.00% 50.00% 7.10%
p1=1, p2=0 389 154/174 19.69 317.70 6.30% 2.00% 24.30% 16.20%
p1=p2=0.5 389 152/174 19.46 655.67 6.30% 3.40% 24.30% 17.20%
p1=0, p2=1 385 149/177 19.23 620.44 5.20% 4.20% 23.00% 18.20%
p1=1, p2=0 193 48/61 12.10 63.91 14.20% -5.00% 27.00% 12.60%
p1=p2=0.5 190 47/61 10.52 92.37 12.40% 8.40% 25.00% 24.00%
p1=0, p2=1 174 43/66 9.89 92.37 3.00% 13.93% 14.50% 28.60%
p1=1, p2=0 335 69/95 8.13 447.34 4.90% 8.45% 8.80% 4.10%
p1=p2=0.5 335 69/95 8.13 452.50 4.90% 8.45% 8.80% 4.10%
p1=0, p2=1 330 63/93 8.04 374.46 3.10% 8.00% 7.10% 7.53%
p1=1, p2=0 472 255/262 28.35 471.87 3.50% -1.37% 14.60% -4.00%
p1=p2=0.5 461 238/264 27.50 212.80 0.44% 1.60% 11.90% -1.00%
p1=0, p2=1 461 238/264 27.50 210.17 0.44% 1.60% 11.90% -1.00%
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