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Abstract—This paper focuses on SIMD processor synthesis and
proposes a SIMD instruction set/functional unit synthesis algo-
rithm. Given an initial assembly code and a timing constraint, the
proposed algorithm synthesizes an area-optimized processor core
with optimal SIMD functional units. It also synthesizes a SIMD
instruction set. The input initial assembly code is assumed to run
on a full-resource SIMD processor (virtual processor) which has
all the possible SIMD functional units. In our algorithm, we in-
troduce the SIMD operation decomposition and apply it to the
initial assembly code and the full-resource SIMD processor. By
gradually reducing SIMD operations or decomposing SIMD oper-
ations, we can finally find a processor core with small area under
the given timing constraint. The promising experimental results
are also shown.

|. INTRODUCTION

Let us consider a b-bit functional unit. It can execute a
single b-bit operation. By modifying it slightly, it can also exe-
cute n-parallel b/n-bit sub-word operations. These operations
are called packed SMD type operations or SMD operations
[4],[71,[12]. A functional unit modified to execute SIMD op-
erationsiscalled aSIMD functional unit. For example, a32-bit
SIMD adder can execute a single 32-bit addition or 4-parallel
8-hit additions. A micro processor with SIMD functional units
is caled a SIMD processor. It can be effectively applied to
image processing.

Generally, a SIMD operation has very many parameters. We
can configure so many different SIMD operations and we can
have so many SIMD functional unit configurations. However,
a particular image application program often uses very limited
SIMD operations which leads to a limited number of SIMD
functional unit configurations. We consider that appropriate
configuration for aimage processor core is required depending
on application programs as well as hardware costs.

Processor synthesis or ASIP synthesis has been studied for
many years such as in [1],[3],[6],[9],[11],[17]. Tenslica
develops the Xtensa system for application-specific processor
synthesis[14]. All the systems proposed so far, however, focus
on conventional micro processor cores and/or DSP cores and
then they do not deal with automatic SIMD processor synthesis.

Now let us pick up asingle SIMD operation op. Itisusually
composed of several SIMD sub-operations, such as an arith-
metic sub-operation, a shift sub-operation, and a bit-saturation
sub-operation. We can consider the following two cases for

executing the SIMD operation by SIMD instructions:

Case 1: We can consider a single SIMD instruction 4 which
directly executes op in one clock cycle. A SIMD func-
tional unit executing < must be complex and may have a
large area and delay.

Case 2: We can aso consider a decomposed SIMD instruc-
tion set of {i1,iz,---,in} (n is the number of sub-
operations in op). op can be executed by a combination
of 41,42, -+, i,. A SIMD functional unit executing anin-
structions € {i1, iz, - - -, i, } must besimpleand may have
asmall areaand delay. A decomposed SIMD instruction
can be commonly used in several SIMD operations.

By introducing SIMD operation decomposition, we can have
a compact set of SIMD instructions. Our previous study on
SIMD processor synthesis is appeared in [13] but it does not
deal with SIMD instruction decomposition.

In this paper, we focus on SIMD processor synthesis and
propose a SIMD instruction set/functional unit synthesis a-
gorithm. The algorithm is based on [15]. Given an initial
assembly code and a timing constraint of execution time, the
proposed algorithm synthesizes an area-optimized processor
core with SIMD functional units. It also outputs a new as-
sembly code under a synthesized SIMD instruction set. The
input initial assembly codeis assumed to run on afull-resource
SIMD processor (virtual processor) which has al the possible
SIMD functional units. The initial assembly code includes
complex SIMD instructions. In our algorithm, we introduce
SIMD operation decomposition and apply it to the initia as-
sembly code and full-resource SIMD processor. By gradually
reducing SIMD operations or decomposing SIMD operations,
we can finally find a processor core with small area under the
given timing constraint. We expect that we can have a pro-
cessor core which has appropriate SIMD functional units for
running an input application program.

Il. PROCESSOR MODEL AND INSTRUCTION SET

Our processor architecture model is shown in Fig. 1 [8],
[10],[13],[16]. The model is composed of a processor kernel
and extra hardware units. A processor core is constructed by
adding several hardware units to a processor kernel.



RISC kernel
DSP kernel
Loop |« Inst [BEET SIMD
P X bus Reg File ALU
bus
Addr <» siMD | [ simMD le|p] SIMD
shifter | | ALU ALY
SIMD SIMD
Yous | yac || muL

Fig. 1. Processor kernels and hardware units.

A. Processor Kernels

A processor kernel is (i) a RISC-type kernel or (ii) a DSP-
type kernel. A RISC-type kernel has the five pipeline stages
(IF, 1D, EXE, MEM, and WB) as in the micro processor of
[2]. A DSP-type kernel has the three pipeline stages (IF, ID,
and EXE) as in the DSP processors of [5]. Each processor
kernel has Harvard architecture and consists of (c-i) a bus for
an instruction memory, (c-ii) a bus for an X data memory (X-
bus), (c-iii) a register file for general-purpose registers, and
(c-iv) an ALU and a barrel shifter. Data bus width of the
instruction memory and the X data memory can be changed
but their address bus width is fixed to 16 bits. The number of
registers and their bit width in the register file can be changed.
In our processor model, databuswidth of the X datamemory is
the same as the bit width of the register file. Data bus width of
the instruction memory is determined based on a synthesized
instruction set.

B. Hardware Units

Our processor core can have extrahardware units: (1) SIMD
functional units, (2) aY-busfor Y datamemory, (3) addressing
units, and (4) hardware loop units. In this section, we focus on
SIMD operations and SIMD functional units.

SIMD operation: Our SIMD processor executesfour classes
of SIMD operations: (a) SIMD arithmetic operations, (b)
SIMD shift operations, (¢) SIMD bit extend/extract operations,
and (d) data move operations.

Asan example of () SMD arithmetic operations, we show
two types of SIMD mulltiplications in Figs. 2 (a) and (b). In
Fig. 2(a), two four-packed data are multiplied and the four
results are packed into asingle register. In Fig. 2(b), the lower
two sub-words of two four-packed data are multiplied and the
two results are packed into a single register. Such a SIMD
arithmetic operation has the SMD parameters of (0) operation
type (see Tablel), (1) apacking number n, (2) whether the data
is signed or unsigned, (3) whether the saturation operation is
applied to the resultant data or not, (4) whether the bit-extend
operation is applied to the resultant data or not, and (5) how

TABLEI
SIMD OPERATION TYPES.

SIMD operation class SIMD operation type
(@ Arithmetic operation || Addition (ADD)
Subtraction (SUB)
Multiplication (MUL)
Multiply and Addition (MAC)
Arithmetic Right Shift (SRA)
Arithmetic Left Shift (SLa)
Logical Left Shift (SLL)
Bit Extend (EXTD)

(b) Shift operation

(c) Bit extend/extract

operation Bit Extract (EXTR)
(d) Datamove operation || DataMove (EXCH)
TABLEII
SIMD FUNCTIONAL UNIT AND ITS EXECUTING SIMD OPERATION TYPES.
SIMD functional SIMD operation
unit type types

SIMD Shifter (s ft) SRA, SLA, SLL
SIMD ALU (alu) ADD, SUB
SIMD Multiplier (mul) MUL
SIMD MAC unit (mac) MAC
SIMD Bit extractor/extender (ext) || EXTD, EXTR
SIMD Datamove unit (exch) EXCH

much the resultant datais shifted. A SMD shift operation has
the same parameters of SIMD arithmetic operations.

A SMD bit extend operation constructs n/2-packed data
from n-packed data (Fig. 3(8)). A SMD bit extract opera-
tion constructs 2 x n-packed data from n-packed data (Fig.
3(b)). A SSMD data move operation gives new n-packed data
by rearranging old n-packed data. They have similar SIMD
parameters as the SIMD arithmetic operations.

If wegiveaparticular valueto each SIMD parameter, we can
determine a particular SMD operation. For example, we can
consider a SIMD operation MUL_4 sr2s which shows that
four data are packed into one register, all the data are singed,
bit-extend operation is not applied, and each of four resultant
datais shifted to the right by two bits and saturation operation
is applied to it (multiplication, 4 packing data, signed, right
shift by 2 bits, and saturated).

SIMD functional unit: Our SIMD processor has six types
of SIMD functiona unitslisted in Tablell. Tablell aso shows
SIMD operation types which each functional unit can execute.

A SIMD functional unit can have one or more SIMD op-
erations. For example, let us consider a SIMD multiplier
mulo which has the SIMD operations of MUL_4 sr2s and
MUL_2 sr2s. mulg can execute one of the two SIMD op-
erations, MUL_4 sr2s and MUL_2 sr2s, inasingle clock

cycle.

C. Instruction Set

Basic Instructions and Parallel Instructions: Our synthe-
sized processor core has basic instructions such as ADD and
MUL and parallel instructions such as (2DD || ADD) and
(aDD || MUL). A paradlel instruction executes morethan one



basic instructions. All the combination of basic instructions
cannot be a parallel instruction. Our processor synthesizer
determines which basic instructions should be included in a
processor core and which combination of basic instructions
should be a parallel instruction.

SIMD Instructions Our SIMD processor has SIMD instruc-
tions. The description of a SIMD instruction is the same as a
SIMD operation. For example, our SIMD processor can havea
SIMD instruction of MUL_4 sr2s. Since there are too many
SIMD instruction instances, the proposed algorithm synthe-
sizes which SIMD instructions are included in an instruction
Set.

Note that a single SIMD operation is executed by a single
SIMD instruction or a sequence of SIMD instructions. For
example, the SIMD operation MUL_4 sr2s isexecuted by a
single SIMD instruction of “MUL_4 sr2s R1,R2,R3. It
is also executed by the sequence of SIMD instructions of:

MUL_4h s R1,R2,R3
MUL_41 s R1,R2,R4
EXTR_4_ sr2s R3,R4,R3

where Rz (x = 1,---) shows a general-purpose register. In
the latter case, the SIMD instructions sequentially execute the
SIMD operation of MUL_4 sr2s.! In this case, the SIMD
operation MUL_4 sr2s isdecomposed into three SIMD sub-
operations.

I11. AN INSTRUCTION SET AND FUNCTIONAL UNIT SYNTHESIS
ALGORITHM FOR SIMD PROCESSOR CORES

We have been developing a hardware/software cosynthesis
system for SIMD processor cores[8],[10],[13],[16].

The system is composed of Process 1: full-resource compil-
ing, Process 2; hardware/software partitioning, and Process 3:
hardware/software generation. Given an application program
in C and a set of its application data, our system synthesizes
a processor core description and generates an object code and
a software environment (compiler, assembler and simulator)
under the timing constraint. The objective is to minimize the
hardware area of a processor core.

In this section, we focus on Process 2 in our SIMD processor
synthesisand propose anew algorithmwithaSIMD instruction
set/functional unit synthesis.

A. Problem Déefinition

First we define our SIMD instruction set/functional unit syn-
thesis problem. Assumethat aSIMD processor core configura-
tion P and its corresponding instruction set I(P) isgiven. We
can have aclock period T'(P) for P [16]. When an application
program ap is compiled into an assembly code C,,,(P) under
I(P), we can aso have atotal clock cycle N,,(P) to run the

1In MUL _4h_s (or MUL 4l s), the higher (or lower) two sub-words of the
two four-packed data given by R1 and R2 are multiplied and the two results
are packed into asingle register R3 (or R4) asin Fig. 2(b). Then EXTR_4_sr2s
extracts appropriate bits of R3 and R4, shiftsthe resultant data, and packsthem
into R3.

application program on P. Then the execution time T,,(P) to
run the application program on P is expressed by:

Tap(P) = Nap(P) x T(P). @

The SIMD processor core configuration P has an area cost of
A(P), which is expressed by:

A(P) = Ak’emel(P) + Z A(u) %)

uweU(P)

where Agerner (P) isan areacost of the processor kernel of P,
U(P) isaset of hardware unitsin P, and A(u) isan area cost
for each hardware unit u € U (P).

A full-resource SIMD processor F'P is a virtual processor
core which has al the hardware units including SIMD func-
tional units with all possible SIMD operations. Each of the
SIMD instructionsin F' P executes acomplex SIMD operation
in a single clock cycle, i.e., al the SIMD operations are not
decomposed. Then, for an input application program ap, we
can construct an initial assembly code C.,, (F'P) which is run
on F'P.

Then our SIMD instruction set/functional unit synthesis
problem is defined as follows:

Definition 1 Given an initial assembly code C,,(FP) and
a timing constraint 7., find a new processor core config-
uration P, a new instruction set I(P), and a new assembly
code Cyp, (P), under the constraint of T, (P) < T4, SO8St0
minimize A(P).

B. The Algorithm

The proposed algorithm is an extended version of the al-
gorithm in [15] so that it can deal with SIMD instructions and
SIMD functional units. Our approach isheuristic but we expect
that it can find aglobally good solution in a practical time since
it simultaneously optimizes the numbers, types, and functions
of hardware unitsincluding SIMD functional units.

The algorithm is composed of Phase 1 and Phase 2.

B-I  Phase 1. Configure an Initial Processor Core P;

Phase 1 determines aninitial processor core P;. First, Let us
consider processor kernel parameters. A processor kernel type,
RISC or DSP, isnot determined in Phase 1 but thisisdetermined
in Phase 2. The basic bit width by, 7., Of a processor core is
given asinput and the bit width of aregister fileisset to by, fu.-
The number of registersin aregister fileisgiven asamaximum
number of registers appeared in an input assembly code. The
data bus width of an instruction memory is determined based
on the instructions used in an assembly code.

Next, let us consider hardware unit parameters. If an input
assembly codeincludesaninstruction using theY datamemory,
weaddtheY datamemory to aprocessor kernel. The number of
loop registers, the number of address registers, and the type of
addressing units are all determined by an input assembly code.
For example, if aninput assembly code usesthreeloop registers,
we add the hardware loop unit with three loop registers to a
processor kernel.

Finally, we must synthesize a set of SIMD functional units
in P; asfollows.
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Fig. 2, SIMD multiplications. (a) Four 8-bit multiplications. (b) Two 16-bit bit-extend multiplications.
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Initial SIMD functional unit synthesis: The configuraa  B-II Phase 2: Determine a SIMD instruction set and SIMD

tion of each SIMD functional unit is determined in the fol-
lowing way. For each SIMD functiona unit type ¢t €
{sft, alu, mul, mac, ext, exch}, let I; be a set of the SIMD
instructions in an input assembly code which can be executed
by a SIMD functional unit with type ¢. We construct a SIMD
functional unit withtypet sothat it hasall the SIMD operations
corresponding to ;.

Example 1 Let us assume that an input assembly code in-
cludes the SIMD instructions of MUL (norma 1-pack multipli-
cation), MUL_4 ur4s (multiplication for four-packed data), and
MUL_2 sr7w (multiplication for two-packed data). In this case,
we construct a SIMD multiplier which has SIMD operations of
MUL, MUL_4 ur4s, and MUL_2 sr7w. The SIMD multiplier
can execute each of the SIMD instructions MUL, MUL_4 ur4s, and
MUL 2 sr7winoneclock cycle. |

The number of each functional unit is determined in the fol-
lowing way. If a maximum of n; instructions are executed
concurrently for I; in an input assembly code, we add n; func-
tional units with the type of ¢ to a processor kernel.

Example 2 Assume that an input assembly code includes the par-
alel instruction as below:

MUL 4 ur4s R1,R2,R3 || MUL 2 sr7w R4,R5,R6

In this case, we add two SIMD multipliers whose configuration is
shown in Example 1 to aprocessor kernel. a

The constructed initial processor core P; may include re-
dundant SIMD operations in a SIMD functional unit but they
will be reduced in Phase 2. Since P; includes al the hardware
units required for an input assembly code, the initial assembly
code can be executed on P; and furthermore we expect that it
can satisfy the given timing constraint.

functional unit

Based on the parameters determined by Phase 1, Phase 2
determines a processor core configuration P, i.e., it determines
(2) a processor kernel type (RISC or DSP), (2) the number of
general-purpose registers, (3) whether the Y data memory is
actually added to a processor kernel or not, (4) the number of
address registers and types of addressing units, (5) the number
of loop registersin the hardware loop unit, and (6) SIMD func-
tional unit configuration, depending on an input assembly code
and timing constraint. Phase 2 also determines an instruction
set I(P) for P.

Firstly, we assume that a processor core has a RISC-type
kernel or a DSP-type kernel. Then, for each of kernels, we
reduce the parametersin (1)—(6) one by one whilethe processor
core sdtisfies the timing constraint. Finally, we pick up the
processor core with the smaller area. We can find a processor
core architecture which has a small area with satisfying the
timing constraint.

Fig. 4 shows our proposed algorithm. In the algorithm, Step
1 and Step 3 are discussed later. Step 4 istrivia. In Step 2,
Trate(w) for each hardware unit/register v is defined as:

T]_(u) — To

Trate (U) = m» (3)

where Ay and Ty refer to an area cost and execution time
of the processor core before eliminating «, and A;(u) and
T1(u) refer to an area cost and execution time of the processor
core after eliminating . All these values are computed by
the arealdelay estimator in [16]. Step 2 finds w,;, Which
givesminimum Tt (tmin ) @nd actually eliminatesw,,;,, from
a current processor core. By using the 7T;.4:.(u) value, we
can effectively reduce an area cost of a processor core with



Inputs: Assembly code C,,, (P;), initial processor core P;, and tim-
ing constraint T}, -

Outputs: New processor core P, new assembly code C,,(P), and
new instruction set 7(P)

Phase 2. For P;, we assume DSP-type kernel or RISC-type kernel.
For each of the kernels, let P — P; and execute Steps 1-4.
Between them, output the processor core with the smaller area,
its corresponding assembly code, and instruction set.

Step 1. For each v in the hardware unitsregisters in P, try to
eliminate v.

Evaluate the T, (u) value. FOr w,,;, which gives
the minimum T, qte (tmin ) Value satisfying Ty, (P’) <
Trnaz, €liminate w,,;, from P and update P to P’.

Step 3. Update the assembly code and instruction set according to
P

Let P «— P’. Whilethere exists a hardware unit/register
which satisfies Step 2, repeat Steps 1-3. Otherwisefinish.

Step 2.

Step 4.

Fig. 4. The agorithm of Phase 2.

satisfying atiming constraint. See[13] for discussion on 7.4
design.

In the following, we discuss Step 1 and Step 3 for SIMD
functiona units and SIMD operations.

SIMD operation reduction and assembly code/instruction
set update (Step 1 and Step 3): In Step 1 and Step 3, we
can try to reduce hardware units/registers other than SIMD
functional units in the same way asin [15]. For example, in
case a hardware loop unit is eliminated from a processor core,
we replace the instruction using the hardware loop unit with
anormal conditional jump instruction. Then we discuss here
how to try to eliminate aSIMD operationin a SIMD functional
unit.

Let FU(P) be a set of SIMD functional unitsin P. Let
OP(fu) beaset of SIMD operationsin fu € FU(P). Now
wetry to eliminate a SIMD operation op € OP(fu) from fu.
We can consider the two cases:

Case A: Thereis another functiona unit fu’ € FU(P) such
that op € OP(fu/).

Case B: Thereis no functional unit fu’ € FU(P) such that
op € OP(fu).

Case A: Inthiscase, the SIMD instruction corresponding to
op can be executed by fu’ instead of fu. Thus we simply
eliminate op from fu and construct a new processor core P’.

Case B: In this case, we eliminate op from fu by SSMD op-
eration decomposition. An arithmetic SIMD operation which
gives n-packed data from two n-packed data is called a full
SIMD operation. Fig. 2(a) shows an example of afull SIMD
operation. When the type of a full SIMD operation op is ad-
dition (ADD), subtraction (SUB), multiplication (MUL), or mul-
tiply and addition (MAC), op is called a decomposable SMD

operation. Wewill decompose only adecomposable SIMD op-
eration. Thenit will be executed by a sequence of decomposed
SIMD instructions.

Let op € OP(fu) for a SIMD functional unit fu be a
decomposable SIMD operation. Generaly op is composed
of (1) n-parallel SIMD arithmetic sub-operation followed by
(2) n-parallel SIMD shift sub-operation and bit-saturation sub-
operation. n-parallel SIMD arithmetic sub-operation isfurther
composed of two n/2-parallel SIMD arithmetic sub-operations
((1-1) and (1-2)). Then we can decompose the operation op
into:

(1-1) n/2-parallel arithmetic sub-operation for n /2 upper sub-
words,

(1-2) n/2-parallel arithmetic sub-operationfor n/2 lower sub-
words, and

(2) n-paradlel SIMD shift sub-operation and bit-saturation
sub-operation.

A SIMD functional unit executing n/2-parallel arithmetic sub-
operation has much smaller area cost than a SIMD functional
unit executing n-paralel arithmetic operation. Furthermore,
since the sub-operations of (1-1) and (1-2) do not have any
particular shift operations or hit-saturation operations, they can
be shared by many SIMD instructions. Overall we can reduce
a processor core area by decomposing a decomposable SIMD
operation in the above way.

Example 3 Let us consider a decomposable SIMD operation
MUL_2 ur4s. It can be executed by a single SIMD instruction
MUL_2 ur4s asshown in Fig. 5(a). Fig. 5(8) can be decomposed
into Fig. 5(b). First, MUL_2 ur4s is composed of 2-parallel 16-
bit multiplication followed by 2-paralel 4-hit right shift and bit-
saturation. The 2-parallel 16-bit multiplication can be further decom-
posed into two 1-parallel 16-bit multiplications, (1-1) MUL 2h u
and (1-2) MUL_21_ u for the upper sub-word and the lower sub-
word of the input two data, respectively. The 2-parallel 4-bit right
shift and bit-saturation operation is executed by (2) EXTR 2 ur4s
(Fig. 5(b)). Afterall, MUL_2 ur4s isdecomposed intoMUL_2h _u,
MUL_21 u, and EXTR_2 ur4s. Note that the intermediate results
in Fig. 5(b) must have 32-bit width to keep the correct results. |

According to SIMD operation decomposition, we update a
set FU(P) of SIMD functiona units, assembly code C,,(P),
and instruction set I(P). Assume that a decomposable SIMD
operation op € OP(fu) is decomposed into a set DOP =
{ops|ops is adecomposed sub-operation for op}.

FU(P) is updated as follows: We first eliminate op from
fu. For al of each SIMD sub-operation ops € DOP, if
there exists a SIMD functional unit fu’ € FU(P) such that
ops € OP(fu'), FU(P) isunchanged since fu’ can execute
ops. If there exists no such SIMD functional unit and there
exist a functiona unit fu” € FU(P) which has the same
operationtypeasops, thenweadd ops to fu”,i.e, OP(fu") —
OP(fu") U {ops}. Otherwise, we construct a new SIMD
functional unit fu.,e,, Which includes only ops and add it to
FU(P),i.e, FU(P) «— FU(P) U{funew}. According to a
new set of SIMD functional units, we update a processor core
PtoP.



[ 16 bits [ 16 bits | [ 16 bits [ 16 bits |

MUL_2_ uri4s

| 16bit multiplication | [ 16bit multiplication |

| 4bit right shift |

4bit right shift
saturation

saturation

[ 16 bits [ 16 bits |

@

[16 bits [ 16 bits | [ 16 bits | 16 bits |

MUL_2h u MUL_21 u

[ 16bit multiplication |||[ 16bit multiplication |

L] ¥

[ 32 bits | 32 bits |

EXTR 2_urds

’ 4bit right shift ‘ ’

4bit right shift
saturation

saturation

(b)

Fig. 5. Non-decomposed SIMD operation (a) and its decomposed SIMD
sub-operations (b).

Example 4 Assumethat theprocessor core P hasSIMD functional
unitsasin Fig. 6(a). If the SIMD operationMUL_2_ ur4s inmul; is
decomposed, wehavesub-operationsof MUL_2h_u, MUL_21 u,and
EXTR_2 ur4s. Since mul; has the SIMD operation MUL_2h u,
it is executed by mulz. Since mul; is a multiplier and it has the
same operation type as MUL_21_u, we add it into mul; as a new
SIMD operation. Since we do not havea SIMD bit extractor in P, we
add a SIMD bit extractor having EXTR_2_ur4s into P. Thus we
finally obtain a new processor core P’ as shown in Fig. 6(b). Since
areafor MUL_2 ur4s is much larger than that for the total area of
MUL 21 uandEXTR 2 ur4s, areacost of the new processor core
P’ can be reduced. O

Since a SIMD operation op is decomposed into DOP, a
SIMD instruction corresponding to op is eliminated from the
assembly code C,,,,(P) and instruction set I(P). Instead, each
ops € DOP is added to an instruction set. In the assembly
code, op is replaced with DOP. Figs. 6(a) and (b) show the
example of updating an assembly code. We may need extra
clock cycles for a new assembly code but can reduce an area
cost for a new processor core.

We try to eliminate each decomposable SIMD operation by
decomposing it, and then we actually decompose the decom-
posable SIMD operation if it givesminimum 7;.,. value among
other hardware unit/register reduction trials. By repeating this
process, we expect that we can have a compact SIMD instruc-
tion set and its corresponding SIMD functional units.

| Processor kernel |

v v

mul:z

muli

‘ MUL_2_urids ‘ ‘

MUL_21_w

MUL 2h_u ‘

MUL_2 ur4s RO,R1,R2 || MUL 2h u R3,R4,R5

MUL 21 w R6,R7,R8 || MUL_2h u R9,R10,R11
@

| Processor kernel |
mul: mul:z extr
‘ MUL_21_u ‘ ‘ MUL_2h_u ‘ ‘ EXTR_2_urds
MUL 21 w

MUL_2h u RO,R1,R12 || MUL_21 u RO,R1,R2

EXTR 2 _ur4s R12,R2,R2 || MUL_2h u R3,R4,R5

MUL 21 w R6,R7,R8 || MUL_2h u R9,R10,R11
(b)

Fig. 6. Processor core and assembly code before SIMD operation
decomposition (a) and after SIMD operation decomposition (b).

IV. EXPERIMENTAL RESULTS

The proposed SIMD instruction set/functional unit synthesis
algorithm has been incorporated into our SIMD processor syn-
thesis system. The algorithm was applied to the Alpha Blend
(image size of 640 x 480 pixels) and the Copying Machine Ap-
plication (image size of 640 x 480 pixels). The basic bit width
of aprocessor coreis set to be 32 bitsand the maximum number
of basic instructions and SIMD instructions executed concur-
rently is set to be four. In this experiment, we used an Intel
Pentium 111 (850MHz)-based PC with 256MB memory. Also,
we assumed the Hitachi VDEC libraries (0.35xm-CMOS) to
obtain processor area and speed. For comparison, the sys-
tem proposed in [15] is also applied to both applications. The
system proposed in [15] deals with a normal DSP processor
core.

Tables Il and IV show the experimental results. In the
tables, Consts showstiming constrains, Areashows synthesized
processor core area, Time shows execution time for running
an application program, and Hardware configuration shows
hardware configuration for synthesized processor cores. In the
tables, SIMD functional unit configurationisshown asfollows:
Assumethat asynthesized SIMD processor core hastwo SIMD
ALUs, alul and alu2, where alul and alu2 have three SIMD
ALU operations and four ALU operations, respectively. This
ALU configuration is shown as (23, 4]).

Thetablesindicatethat, our algorithm configures appropriate



TABLEIII
EXPERIMENTAL RESULTS (ALPHA BLEND).

Consts Area Time Hardware configuration CPU
‘ ‘ [ms] [wm?] ‘ [ms] | Kernel  #ALUs  #MULs  #MACs #Regs Addr unit HW Toop | time [sec]
[15] 200 | 17305942 | 28108 | DSP 2 2 3 8310 X[L2 YL Yes 0.84
40.0 7,524,999 33.730 DSP 2 1 1 (8,3,00 X[12],Y[12] No 321
60.0 6,882,647 59.330 DSP 1 1 1 (7,3,00 X[1,2],Y[12] No 4.54
80.0 | 6,790,695 | 73713 | DSP 1 1 1 (5,3,00  X[1,2],Y[12] No 5.19
1000 | 6,744,719 | 98883 | DSP 1 1 1 4,3,00  X[1,2],Y[12] No 553
120.0 6,698,743 | 104.277 DSP 1 1 1 (3,30 X[12],Y[12] No 6.03
Ours 4.0 3,345,320 4610 DSP 2] 111  3IL11] 8,31 X[12,Y[12 Yes 7.20
5.0 2,961,206 4.866 DSP 1[2] 3[1,1,1] 2[11] 8,31 X[12],Y[12] Yes 32.59
100 | 1,396,746 9791 | DSP 1[3] 1[2] 0 (11,3,00  X[12],Y[1,2] No 50.44
200 | 1,275,480 15131 | DSP 1[3] 1[2] 0 8,3,00 X[1,2],Y[12] No 56.67
30.0 1,213,906 21.140 DSP 1[3] 1[2] 0 (7,3,00 X[1,2],Y[12] No 68.44
400 | 1132862 | 36939 | DSP 1[3] 1[2] 0 (5,3,00  X[1,2],Y[12] No 92.85
TABLE IV
EXPERIMENTAL RESULTS (COPYING MACHINE).
Consts Area Time | Hardware configuraiion [ CPU

‘ ‘ [ms] [wm?] ‘ [ms] | Kernel #ALUs #MULs #Regs Addr unit HW Toop | time [sec]

[15] 50.0 | 8,976,039 50.295 | DSP ! 7z 69,6, 1) X[LZ],YI1.7 Yes 811

1000 | 4,271,449 99.520 | DSP 2 1 (64,6,0)  X[12],Y[1,2] No 118.98

200.0 | 2,694,991 | 197.947 DSP 2 1 (25,6,0) X[1,2], Y[1,2] No 360.32

300.0 | 2,331,193 | 286531 | DSP 2 1 (16,6,0)  X[12], Y[1,2] No 413.40

4000 | 2,088,661 | 398.082 | DSP 2 1 (10,6,0)  X[12], Y[1,2] No 442.25

450.0 | 2,048,239 | 444.014 DSP 2 1 (9,6,00 X[12],Y[12] No 443.49

Ours 5.0 | 6,985,419 5.543 DSP 44444 41111 (69,6, 1) X[12,Y[12 Yes 68.05

20.0 | 2843812 19.430 DSP 2[3.3] 1[1] (41,6,00 X[1,2],Y[1,2] No 1853.19

40.0 | 1,994,750 38.277 | DSP 2[3,3] 1[1] (20,6,0)  X[12],Y[1,2] No 2255.04

60.0 | 1,749,592 55.765 | DSP 2[3,3] 1[2] (15,6,0)  X[12], Y[1,2] No 1993.81

80.0 | 1,440,960 79.271 DSP 1[4] 1[2] (11,6,0) X[1,2], Y[1,2] No 2081.89

100.0 | 1,440,960 79.271 | DSP 1[4] 1[2] (11,6,0)  X[12],Y[1,2] No 2078.97

#ALUs for SIMD cores: #SIMD ALUS[#SIMD operationsin SIMD ALU1,.

Kernel.)

..] (one of the ALUs isinclude in

#MULsfor SIMD cores: #SIMD MULS#SIMD operationsin SIMD MUL1,. . ]

#MACsfor SIMD cores; #SIMD MACS[#SIMD operationsin SIMD MACL,. . ]

#Regs: (#General registers, #Address registers, #Loop registers)

Addr unit: Addressunit configuration. X[1,2] (or Y[1,2]) meansthat the X (or Y) datamemory hasthe addressing

unit with post increment operation.

Kernel includes a SIMD shifter, which just has minimum shift-related instructions.

SIMD functional units depending on the given application pro-
grams and timing constraints. If asimilar timing constraint is
giventoanon-SIMD processor core[15] and aSIMD processor
core (proposed algorithm), an area cost of a SIMD processor
core can be 1/10 compared with anon-SIMD processor core.

V. CONCLUSIONS

Thispaper proposed aninstruction set/functional unit synthe-
sis algorithm for SIMD processor cores. Experimental results
show the effectiveness of the proposed algorithm.

In the current system, our system considers only timing con-
straints but will incorporate constraints for power dissipation
aswell as specific configuration of hardware unitsin the future.
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