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Abstract—This paper focuses on SIMD processor synthesis and
proposes a SIMD instruction set/functional unit synthesis algo-
rithm. Given an initial assembly code and a timing constraint, the
proposed algorithm synthesizes an area-optimized processor core
with optimal SIMD functional units. It also synthesizes a SIMD
instruction set. The input initial assembly code is assumed to run
on a full-resource SIMD processor (virtual processor) which has
all the possible SIMD functional units. In our algorithm, we in-
troduce the SIMD operation decomposition and apply it to the
initial assembly code and the full-resource SIMD processor. By
gradually reducing SIMD operations or decomposing SIMD oper-
ations, we can finally find a processor core with small area under
the given timing constraint. The promising experimental results
are also shown.

I. INTRODUCTION

Let us consider a b-bit functional unit. It can execute a
single b-bit operation. By modifying it slightly, it can also exe-
cute n-parallel b/n-bit sub-word operations. These operations
are called packed SIMD type operations or SIMD operations
[4], [7], [12]. A functional unit modified to execute SIMD op-
erations is called a SIMD functional unit. For example, a 32-bit
SIMD adder can execute a single 32-bit addition or 4-parallel
8-bit additions. A micro processor with SIMD functional units
is called a SIMD processor. It can be effectively applied to
image processing.

Generally, a SIMD operation has very many parameters. We
can configure so many different SIMD operations and we can
have so many SIMD functional unit configurations. However,
a particular image application program often uses very limited
SIMD operations which leads to a limited number of SIMD
functional unit configurations. We consider that appropriate
configuration for a image processor core is required depending
on application programs as well as hardware costs.

Processor synthesis or ASIP synthesis has been studied for
many years such as in [1], [3], [6], [9], [11], [17]. Tensilica
develops the Xtensa system for application-specific processor
synthesis [14]. All the systems proposed so far, however, focus
on conventional micro processor cores and/or DSP cores and
then they do not deal with automatic SIMD processor synthesis.

Now let us pick up a single SIMD operation op. It is usually
composed of several SIMD sub-operations, such as an arith-
metic sub-operation, a shift sub-operation, and a bit-saturation
sub-operation. We can consider the following two cases for

executing the SIMD operation by SIMD instructions:

Case 1: We can consider a single SIMD instruction i which
directly executes op in one clock cycle. A SIMD func-
tional unit executing i must be complex and may have a
large area and delay.

Case 2: We can also consider a decomposed SIMD instruc-
tion set of {i1, i2, · · · , in} (n is the number of sub-
operations in op). op can be executed by a combination
of i1, i2, · · · , in. A SIMD functional unit executing an in-
struction i ∈ {i1, i2, · · · , in}must be simple and may have
a small area and delay. A decomposed SIMD instruction
can be commonly used in several SIMD operations.

By introducing SIMD operation decomposition, we can have
a compact set of SIMD instructions. Our previous study on
SIMD processor synthesis is appeared in [13] but it does not
deal with SIMD instruction decomposition.

In this paper, we focus on SIMD processor synthesis and
propose a SIMD instruction set/functional unit synthesis al-
gorithm. The algorithm is based on [15]. Given an initial
assembly code and a timing constraint of execution time, the
proposed algorithm synthesizes an area-optimized processor
core with SIMD functional units. It also outputs a new as-
sembly code under a synthesized SIMD instruction set. The
input initial assembly code is assumed to run on a full-resource
SIMD processor (virtual processor) which has all the possible
SIMD functional units. The initial assembly code includes
complex SIMD instructions. In our algorithm, we introduce
SIMD operation decomposition and apply it to the initial as-
sembly code and full-resource SIMD processor. By gradually
reducing SIMD operations or decomposing SIMD operations,
we can finally find a processor core with small area under the
given timing constraint. We expect that we can have a pro-
cessor core which has appropriate SIMD functional units for
running an input application program.

II. PROCESSOR MODEL AND INSTRUCTION SET

Our processor architecture model is shown in Fig. 1 [8],
[10], [13], [16]. The model is composed of a processor kernel
and extra hardware units. A processor core is constructed by
adding several hardware units to a processor kernel.
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Fig. 1. Processor kernels and hardware units.

A. Processor Kernels

A processor kernel is (i) a RISC-type kernel or (ii) a DSP-
type kernel. A RISC-type kernel has the five pipeline stages
(IF, ID, EXE, MEM, and WB) as in the micro processor of
[2]. A DSP-type kernel has the three pipeline stages (IF, ID,
and EXE) as in the DSP processors of [5]. Each processor
kernel has Harvard architecture and consists of (c-i) a bus for
an instruction memory, (c-ii) a bus for an X data memory (X-
bus), (c-iii) a register file for general-purpose registers, and
(c-iv) an ALU and a barrel shifter. Data bus width of the
instruction memory and the X data memory can be changed
but their address bus width is fixed to 16 bits. The number of
registers and their bit width in the register file can be changed.
In our processor model, data bus width of the X data memory is
the same as the bit width of the register file. Data bus width of
the instruction memory is determined based on a synthesized
instruction set.

B. Hardware Units

Our processor core can have extra hardware units: (1) SIMD
functional units, (2) a Y-bus for Y data memory, (3) addressing
units, and (4) hardware loop units. In this section, we focus on
SIMD operations and SIMD functional units.

SIMD operation: Our SIMD processor executes four classes
of SIMD operations: (a) SIMD arithmetic operations, (b)
SIMD shift operations, (c) SIMD bit extend/extract operations,
and (d) data move operations.

As an example of (a) SIMD arithmetic operations, we show
two types of SIMD multiplications in Figs. 2 (a) and (b). In
Fig. 2(a), two four-packed data are multiplied and the four
results are packed into a single register. In Fig. 2(b), the lower
two sub-words of two four-packed data are multiplied and the
two results are packed into a single register. Such a SIMD
arithmetic operation has the SIMD parameters of (0) operation
type (see Table I), (1) a packing number n, (2) whether the data
is signed or unsigned, (3) whether the saturation operation is
applied to the resultant data or not, (4) whether the bit-extend
operation is applied to the resultant data or not, and (5) how

TABLE I
SIMD OPERATION TYPES.

SIMD operation class SIMD operation type
(a) Arithmetic operation Addition (ADD)

Subtraction (SUB)
Multiplication (MUL)
Multiply and Addition (MAC)

(b) Shift operation Arithmetic Right Shift (SRA)
Arithmetic Left Shift (SLA)
Logical Left Shift (SLL)

(c) Bit extend/extract Bit Extend (EXTD)
operation Bit Extract (EXTR)
(d) Data move operation Data Move (EXCH)

TABLE II
SIMD FUNCTIONAL UNIT AND ITS EXECUTING SIMD OPERATION TYPES.

SIMD functional SIMD operation
unit type types

SIMD Shifter (sft) SRA, SLA, SLL
SIMD ALU (alu) ADD, SUB
SIMD Multiplier (mul) MUL
SIMD MAC unit (mac) MAC
SIMD Bit extractor/extender (ext) EXTD, EXTR
SIMD Data move unit (exch) EXCH

much the resultant data is shifted. A SIMD shift operation has
the same parameters of SIMD arithmetic operations.

A SIMD bit extend operation constructs n/2-packed data
from n-packed data (Fig. 3(a)). A SIMD bit extract opera-
tion constructs 2 × n-packed data from n-packed data (Fig.
3(b)). A SIMD data move operation gives new n-packed data
by rearranging old n-packed data. They have similar SIMD
parameters as the SIMD arithmetic operations.

If we give a particular value to each SIMD parameter, we can
determine a particular SIMD operation. For example, we can
consider a SIMD operation MUL_4_sr2s which shows that
four data are packed into one register, all the data are singed,
bit-extend operation is not applied, and each of four resultant
data is shifted to the right by two bits and saturation operation
is applied to it (multiplication, 4 packing data, signed, right
shift by 2 bits, and saturated).

SIMD functional unit: Our SIMD processor has six types
of SIMD functional units listed in Table II. Table II also shows
SIMD operation types which each functional unit can execute.

A SIMD functional unit can have one or more SIMD op-
erations. For example, let us consider a SIMD multiplier
mul0 which has the SIMD operations of MUL_4_sr2s and
MUL_2_sr2s. mul0 can execute one of the two SIMD op-
erations, MUL_4_sr2s and MUL_2_sr2s, in a single clock
cycle.

C. Instruction Set

Basic Instructions and Parallel Instructions: Our synthe-
sized processor core has basic instructions such as ADD and
MUL and parallel instructions such as (ADD || ADD) and
(ADD || MUL). A parallel instruction executes more than one



basic instructions. All the combination of basic instructions
cannot be a parallel instruction. Our processor synthesizer
determines which basic instructions should be included in a
processor core and which combination of basic instructions
should be a parallel instruction.

SIMD Instructions Our SIMD processor has SIMD instruc-
tions. The description of a SIMD instruction is the same as a
SIMD operation. For example, our SIMD processor can have a
SIMD instruction of MUL_4_sr2s. Since there are too many
SIMD instruction instances, the proposed algorithm synthe-
sizes which SIMD instructions are included in an instruction
set.

Note that a single SIMD operation is executed by a single
SIMD instruction or a sequence of SIMD instructions. For
example, the SIMD operation MUL_4_sr2s is executed by a
single SIMD instruction of “MUL_4_sr2s R1,R2,R3.” It
is also executed by the sequence of SIMD instructions of:

MUL_4h_s R1,R2,R3
MUL_4l_s R1,R2,R4
EXTR_4_sr2s R3,R4,R3

where Rx (x = 1, · · ·) shows a general-purpose register. In
the latter case, the SIMD instructions sequentially execute the
SIMD operation of MUL_4_sr2s.1 In this case, the SIMD
operation MUL_4_sr2s is decomposed into three SIMD sub-
operations.

III. AN INSTRUCTION SET AND FUNCTIONAL UNIT SYNTHESIS

ALGORITHM FOR SIMD PROCESSOR CORES

We have been developing a hardware/software cosynthesis
system for SIMD processor cores [8], [10], [13], [16].

The system is composed of Process 1: full-resource compil-
ing, Process 2: hardware/software partitioning, and Process 3:
hardware/software generation. Given an application program
in C and a set of its application data, our system synthesizes
a processor core description and generates an object code and
a software environment (compiler, assembler and simulator)
under the timing constraint. The objective is to minimize the
hardware area of a processor core.

In this section, we focus on Process 2 in our SIMD processor
synthesis and propose a new algorithm with a SIMD instruction
set/functional unit synthesis.

A. Problem Definition

First we define our SIMD instruction set/functional unit syn-
thesis problem. Assume that a SIMD processor core configura-
tion P and its corresponding instruction set I(P ) is given. We
can have a clock period T (P ) for P [16]. When an application
program ap is compiled into an assembly code Cap(P ) under
I(P ), we can also have a total clock cycle Nap(P ) to run the

1In MUL 4h s (or MUL 4l s), the higher (or lower) two sub-words of the
two four-packed data given by R1 and R2 are multiplied and the two results
are packed into a single register R3 (or R4) as in Fig. 2(b). Then EXTR 4 sr2s
extracts appropriate bits of R3 and R4, shifts the resultant data, and packs them
into R3.

application program on P . Then the execution time Tap(P ) to
run the application program on P is expressed by:

Tap(P ) = Nap(P )× T (P ). (1)

The SIMD processor core configuration P has an area cost of
A(P ), which is expressed by:

A(P ) = Akernel(P ) +
∑

u∈U(P )

A(u) (2)

where Akernel(P ) is an area cost of the processor kernel of P ,
U(P ) is a set of hardware units in P , and A(u) is an area cost
for each hardware unit u ∈ U(P ).

A full-resource SIMD processor FP is a virtual processor
core which has all the hardware units including SIMD func-
tional units with all possible SIMD operations. Each of the
SIMD instructions in FP executes a complex SIMD operation
in a single clock cycle, i.e., all the SIMD operations are not
decomposed. Then, for an input application program ap, we
can construct an initial assembly code Cap(FP ) which is run
on FP .

Then our SIMD instruction set/functional unit synthesis
problem is defined as follows:

Definition 1 Given an initial assembly code Cap(FP ) and
a timing constraint Tmax, find a new processor core config-
uration P , a new instruction set I(P ), and a new assembly
code Cap(P ), under the constraint of Tap(P ) ≤ Tmax so as to
minimize A(P ).

B. The Algorithm

The proposed algorithm is an extended version of the al-
gorithm in [15] so that it can deal with SIMD instructions and
SIMD functional units. Our approach is heuristic but we expect
that it can find a globally good solution in a practical time since
it simultaneously optimizes the numbers, types, and functions
of hardware units including SIMD functional units.

The algorithm is composed of Phase 1 and Phase 2.

B-I Phase 1. Configure an Initial Processor Core Pi

Phase 1 determines an initial processor core Pi. First, Let us
consider processor kernel parameters. A processor kernel type,
RISC or DSP, is not determined in Phase 1 but this is determined
in Phase 2. The basic bit width bknl,fu of a processor core is
given as input and the bit width of a register file is set to bknl,fu.
The number of registers in a register file is given as a maximum
number of registers appeared in an input assembly code. The
data bus width of an instruction memory is determined based
on the instructions used in an assembly code.

Next, let us consider hardware unit parameters. If an input
assembly code includes an instruction using the Y data memory,
we add the Y data memory to a processor kernel. The number of
loop registers, the number of address registers, and the type of
addressing units are all determined by an input assembly code.
For example, if an input assembly code uses three loop registers,
we add the hardware loop unit with three loop registers to a
processor kernel.

Finally, we must synthesize a set of SIMD functional units
in Pi as follows.
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Initial SIMD functional unit synthesis: The configura-
tion of each SIMD functional unit is determined in the fol-
lowing way. For each SIMD functional unit type t ∈
{sft, alu, mul, mac, ext, exch}, let It be a set of the SIMD
instructions in an input assembly code which can be executed
by a SIMD functional unit with type t. We construct a SIMD
functional unit with type t so that it has all the SIMD operations
corresponding to It.

Example 1 Let us assume that an input assembly code in-
cludes the SIMD instructions of MUL (normal 1-pack multipli-
cation), MUL_4_ur4s (multiplication for four-packed data), and
MUL_2_sr7w (multiplication for two-packed data). In this case,
we construct a SIMD multiplier which has SIMD operations of
MUL, MUL_4_ur4s, and MUL_2_sr7w. The SIMD multiplier
can execute each of the SIMD instructions MUL, MUL_4_ur4s, and
MUL_2_sr7w in one clock cycle. �

The number of each functional unit is determined in the fol-
lowing way. If a maximum of nt instructions are executed
concurrently for It in an input assembly code, we add nt func-
tional units with the type of t to a processor kernel.

Example 2 Assume that an input assembly code includes the par-
allel instruction as below:

MUL_4_ur4s R1,R2,R3 || MUL_2_sr7w R4,R5,R6

In this case, we add two SIMD multipliers whose configuration is
shown in Example 1 to a processor kernel. �

The constructed initial processor core Pi may include re-
dundant SIMD operations in a SIMD functional unit but they
will be reduced in Phase 2. Since Pi includes all the hardware
units required for an input assembly code, the initial assembly
code can be executed on Pi and furthermore we expect that it
can satisfy the given timing constraint.

B-II Phase 2: Determine a SIMD instruction set and SIMD
functional unit

Based on the parameters determined by Phase 1, Phase 2
determines a processor core configuration P , i.e., it determines
(1) a processor kernel type (RISC or DSP), (2) the number of
general-purpose registers, (3) whether the Y data memory is
actually added to a processor kernel or not, (4) the number of
address registers and types of addressing units, (5) the number
of loop registers in the hardware loop unit, and (6) SIMD func-
tional unit configuration, depending on an input assembly code
and timing constraint. Phase 2 also determines an instruction
set I(P ) for P .

Firstly, we assume that a processor core has a RISC-type
kernel or a DSP-type kernel. Then, for each of kernels, we
reduce the parameters in (1)–(6) one by one while the processor
core satisfies the timing constraint. Finally, we pick up the
processor core with the smaller area. We can find a processor
core architecture which has a small area with satisfying the
timing constraint.

Fig. 4 shows our proposed algorithm. In the algorithm, Step
1 and Step 3 are discussed later. Step 4 is trivial. In Step 2,
Trate(u) for each hardware unit/register u is defined as:

Trate(u) =
T1(u)− T0

A0 −A1(u)
, (3)

where A0 and T0 refer to an area cost and execution time
of the processor core before eliminating u, and A1(u) and
T1(u) refer to an area cost and execution time of the processor
core after eliminating u. All these values are computed by
the area/delay estimator in [16]. Step 2 finds umin which
gives minimum Trate(umin) and actually eliminates umin from
a current processor core. By using the Trate(u) value, we
can effectively reduce an area cost of a processor core with



Inputs: Assembly code Cap(Pi), initial processor core Pi, and tim-
ing constraint Tmax.

Outputs: New processor core P , new assembly code Cap(P ), and
new instruction set I(P )

Phase 2. For Pi, we assume DSP-type kernel or RISC-type kernel.
For each of the kernels, let P ← Pi and execute Steps 1–4.
Between them, output the processor core with the smaller area,
its corresponding assembly code, and instruction set.

Step 1. For each u in the hardware units/registers in P , try to
eliminate u.

Step 2. Evaluate the Trate(u) value. For umin which gives
the minimum Trate(umin) value satisfying Tap(P ′) ≤
Tmax, eliminate umin from P and update P to P ′.

Step 3. Update the assembly code and instruction set according to
P ′.

Step 4. Let P ← P ′. While there exists a hardware unit/register
which satisfies Step 2, repeat Steps 1–3. Otherwise finish.

Fig. 4. The algorithm of Phase 2.

satisfying a timing constraint. See [13] for discussion on Trate

design.
In the following, we discuss Step 1 and Step 3 for SIMD

functional units and SIMD operations.

SIMD operation reduction and assembly code/instruction
set update (Step 1 and Step 3): In Step 1 and Step 3, we
can try to reduce hardware units/registers other than SIMD
functional units in the same way as in [15]. For example, in
case a hardware loop unit is eliminated from a processor core,
we replace the instruction using the hardware loop unit with
a normal conditional jump instruction. Then we discuss here
how to try to eliminate a SIMD operation in a SIMD functional
unit.

Let FU(P ) be a set of SIMD functional units in P . Let
OP (fu) be a set of SIMD operations in fu ∈ FU(P ). Now
we try to eliminate a SIMD operation op ∈ OP (fu) from fu.
We can consider the two cases:

Case A: There is another functional unit fu′ ∈ FU(P ) such
that op ∈ OP (fu′).

Case B: There is no functional unit fu′ ∈ FU(P ) such that
op ∈ OP (fu′).

Case A: In this case, the SIMD instruction corresponding to
op can be executed by fu′ instead of fu. Thus we simply
eliminate op from fu and construct a new processor core P ′.

Case B: In this case, we eliminate op from fu by SIMD op-
eration decomposition. An arithmetic SIMD operation which
gives n-packed data from two n-packed data is called a full
SIMD operation. Fig. 2(a) shows an example of a full SIMD
operation. When the type of a full SIMD operation op is ad-
dition (ADD), subtraction (SUB), multiplication (MUL), or mul-
tiply and addition (MAC), op is called a decomposable SIMD

operation. We will decompose only a decomposable SIMD op-
eration. Then it will be executed by a sequence of decomposed
SIMD instructions.

Let op ∈ OP (fu) for a SIMD functional unit fu be a
decomposable SIMD operation. Generally op is composed
of (1) n-parallel SIMD arithmetic sub-operation followed by
(2) n-parallel SIMD shift sub-operation and bit-saturation sub-
operation. n-parallel SIMD arithmetic sub-operation is further
composed of two n/2-parallel SIMD arithmetic sub-operations
((1-1) and (1-2)). Then we can decompose the operation op
into:

(1-1) n/2-parallel arithmetic sub-operation for n/2 upper sub-
words,

(1-2) n/2-parallel arithmetic sub-operation for n/2 lower sub-
words, and

(2) n-parallel SIMD shift sub-operation and bit-saturation
sub-operation.

A SIMD functional unit executing n/2-parallel arithmetic sub-
operation has much smaller area cost than a SIMD functional
unit executing n-parallel arithmetic operation. Furthermore,
since the sub-operations of (1-1) and (1-2) do not have any
particular shift operations or bit-saturation operations, they can
be shared by many SIMD instructions. Overall we can reduce
a processor core area by decomposing a decomposable SIMD
operation in the above way.

Example 3 Let us consider a decomposable SIMD operation
MUL_2_ur4s. It can be executed by a single SIMD instruction
MUL_2_ur4s as shown in Fig. 5(a). Fig. 5(a) can be decomposed
into Fig. 5(b). First, MUL_2_ur4s is composed of 2-parallel 16-
bit multiplication followed by 2-parallel 4-bit right shift and bit-
saturation. The 2-parallel 16-bit multiplication can be further decom-
posed into two 1-parallel 16-bit multiplications, (1-1) MUL_2h_u
and (1-2) MUL_2l_u for the upper sub-word and the lower sub-
word of the input two data, respectively. The 2-parallel 4-bit right
shift and bit-saturation operation is executed by (2) EXTR_2_ur4s
(Fig. 5(b)). After all, MUL_2_ur4s is decomposed into MUL_2h_u,
MUL_2l_u, and EXTR_2_ur4s. Note that the intermediate results
in Fig. 5(b) must have 32-bit width to keep the correct results. �

According to SIMD operation decomposition, we update a
set FU(P ) of SIMD functional units, assembly code Cap(P ),
and instruction set I(P ). Assume that a decomposable SIMD
operation op ∈ OP (fu) is decomposed into a set DOP =
{ops|ops is a decomposed sub-operation for op}.

FU(P ) is updated as follows: We first eliminate op from
fu. For all of each SIMD sub-operation ops ∈ DOP , if
there exists a SIMD functional unit fu′ ∈ FU(P ) such that
ops ∈ OP (fu′), FU(P ) is unchanged since fu′ can execute
ops. If there exists no such SIMD functional unit and there
exist a functional unit fu′′ ∈ FU(P ) which has the same
operation type as ops, then we add ops to fu′′, i.e, OP (fu′′)←
OP (fu′′) ∪ {ops}. Otherwise, we construct a new SIMD
functional unit funew which includes only ops and add it to
FU(P ), i.e., FU(P ) ← FU(P ) ∪ {funew}. According to a
new set of SIMD functional units, we update a processor core
P to P ′.
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Fig. 5. Non-decomposed SIMD operation (a) and its decomposed SIMD
sub-operations (b).

Example 4 Assume that the processor core P has SIMD functional
units as in Fig. 6(a). If the SIMD operation MUL_2_ur4s in mul1 is
decomposed, we have sub-operationsofMUL_2h_u, MUL_2l_u, and
EXTR_2_ur4s. Since mul2 has the SIMD operation MUL_2h_u,
it is executed by mul2. Since mul1 is a multiplier and it has the
same operation type as MUL_2l_u, we add it into mul1 as a new
SIMD operation. Since we do not have a SIMD bit extractor in P , we
add a SIMD bit extractor having EXTR_2_ur4s into P . Thus we
finally obtain a new processor core P ′ as shown in Fig. 6(b). Since
area for MUL_2_ur4s is much larger than that for the total area of
MUL_2l_u and EXTR_2_ur4s, area cost of the new processor core
P ′ can be reduced. �

Since a SIMD operation op is decomposed into DOP , a
SIMD instruction corresponding to op is eliminated from the
assembly code Cap(P ) and instruction set I(P ). Instead, each
ops ∈ DOP is added to an instruction set. In the assembly
code, op is replaced with DOP . Figs. 6(a) and (b) show the
example of updating an assembly code. We may need extra
clock cycles for a new assembly code but can reduce an area
cost for a new processor core.

We try to eliminate each decomposable SIMD operation by
decomposing it, and then we actually decompose the decom-
posable SIMD operation if it gives minimum Trate value among
other hardware unit/register reduction trials. By repeating this
process, we expect that we can have a compact SIMD instruc-
tion set and its corresponding SIMD functional units.
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Fig. 6. Processor core and assembly code before SIMD operation
decomposition (a) and after SIMD operation decomposition (b).

IV. EXPERIMENTAL RESULTS

The proposed SIMD instruction set/functional unit synthesis
algorithm has been incorporated into our SIMD processor syn-
thesis system. The algorithm was applied to the Alpha Blend
(image size of 640×480 pixels) and the Copying Machine Ap-
plication (image size of 640× 480 pixels). The basic bit width
of a processor core is set to be 32 bits and the maximum number
of basic instructions and SIMD instructions executed concur-
rently is set to be four. In this experiment, we used an Intel
Pentium III (850MHz)-based PC with 256MB memory. Also,
we assumed the Hitachi VDEC libraries (0.35µm-CMOS) to
obtain processor area and speed. For comparison, the sys-
tem proposed in [15] is also applied to both applications. The
system proposed in [15] deals with a normal DSP processor
core.

Tables III and IV show the experimental results. In the
tables, Consts shows timing constrains, Area shows synthesized
processor core area, Time shows execution time for running
an application program, and Hardware configuration shows
hardware configuration for synthesized processor cores. In the
tables, SIMD functional unit configuration is shown as follows:
Assume that a synthesized SIMD processor core has two SIMD
ALUs, alu1 and alu2, where alu1 and alu2 have three SIMD
ALU operations and four ALU operations, respectively. This
ALU configuration is shown as (2[3, 4]).

The tables indicate that, our algorithm configures appropriate



TABLE III
EXPERIMENTAL RESULTS (ALPHA BLEND).

Consts Area Time Hardware configuration CPU
[ms] [µm2] [ms] Kernel #ALUs #MULs #MACs #Regs Addr unit HW loop time [sec]

[15] 20.0 17,305,942 28.108 DSP 2 2 3 (8, 3, 1) X[1,2], Y[1,2] Yes 0.84
40.0 7,524,999 33.730 DSP 2 1 1 (8, 3, 0) X[1,2], Y[1,2] No 3.21
60.0 6,882,647 59.330 DSP 1 1 1 (7, 3, 0) X[1,2], Y[1,2] No 4.54
80.0 6,790,695 73.713 DSP 1 1 1 (5, 3, 0) X[1,2], Y[1,2] No 5.19

100.0 6,744,719 98.883 DSP 1 1 1 (4, 3, 0) X[1,2], Y[1,2] No 5.53
120.0 6,698,743 104.277 DSP 1 1 1 (3, 3, 0) X[1,2], Y[1,2] No 6.03

Ours 4.0 3,345,320 4.610 DSP 1[2] 3[1,1,1] 3[1,1,1] (8, 3, 1) X[1,2], Y[1,2] Yes 7.20
5.0 2,961,206 4.866 DSP 1[2] 3[1,1,1] 2[1,1] (8, 3, 1) X[1,2], Y[1,2] Yes 32.59

10.0 1,396,746 9.791 DSP 1[3] 1[2] 0 (11, 3, 0) X[1,2], Y[1,2] No 59.44
20.0 1,275,480 15.131 DSP 1[3] 1[2] 0 (8, 3, 0) X[1,2], Y[1,2] No 56.67
30.0 1,213,906 21.140 DSP 1[3] 1[2] 0 (7, 3, 0) X[1,2], Y[1,2] No 68.44
40.0 1,132,862 36.939 DSP 1[3] 1[2] 0 (5, 3, 0) X[1,2], Y[1,2] No 92.85

TABLE IV
EXPERIMENTAL RESULTS (COPYING MACHINE).

Consts Area Time Hardware configuration CPU
[ms] [µm2] [ms] Kernel #ALUs #MULs #Regs Addr unit HW loop time [sec]

[15] 50.0 8,976,039 50.295 DSP 4 4 (69, 6, 1) X[1,2], Y[1,2] Yes 8.11
100.0 4,271,449 99.520 DSP 2 1 (64, 6, 0) X[1,2], Y[1,2] No 118.98
200.0 2,694,991 197.947 DSP 2 1 (25, 6, 0) X[1,2], Y[1,2] No 360.32
300.0 2,331,193 286.531 DSP 2 1 (16, 6, 0) X[1,2], Y[1,2] No 413.40
400.0 2,088,661 398.082 DSP 2 1 (10, 6, 0) X[1,2], Y[1,2] No 442.25
450.0 2,048,239 444.014 DSP 2 1 (9, 6, 0) X[1,2], Y[1,2] No 443.49

Ours 5.0 6,985,419 5.543 DSP 4[4,4,4,4] 4[1,1,1,1] (69, 6, 1) X[1,2], Y[1,2] Yes 68.05
20.0 2,843,812 19.430 DSP 2[3,3] 1[1] (41, 6, 0) X[1,2], Y[1,2] No 1853.19
40.0 1,994,750 38.277 DSP 2[3,3] 1[1] (20, 6, 0) X[1,2], Y[1,2] No 2255.04
60.0 1,749,592 55.765 DSP 2[3,3] 1[2] (15, 6, 0) X[1,2], Y[1,2] No 1993.81
80.0 1,440,960 79.271 DSP 1[4] 1[2] (11, 6, 0) X[1,2], Y[1,2] No 2081.89

100.0 1,440,960 79.271 DSP 1[4] 1[2] (11, 6, 0) X[1,2], Y[1,2] No 2078.97

#ALUs for SIMD cores: #SIMD ALUs[#SIMD operations in SIMD ALU1,. . .] (one of the ALUs is include in
Kernel.)
#MULs for SIMD cores: #SIMD MULs[#SIMD operations in SIMD MUL1,. . .]
#MACs for SIMD cores: #SIMD MACs[#SIMD operations in SIMD MAC1,. . .]
#Regs: (#General registers, #Address registers, #Loop registers)
Addr unit: Address unit configuration. X[1,2] (or Y[1,2]) means that the X (or Y) data memory has the addressing
unit with post increment operation.
Kernel includes a SIMD shifter, which just has minimum shift-related instructions.

SIMD functional units depending on the given application pro-
grams and timing constraints. If a similar timing constraint is
given to a non-SIMD processor core [15] and a SIMD processor
core (proposed algorithm), an area cost of a SIMD processor
core can be 1/10 compared with a non-SIMD processor core.

V. CONCLUSIONS

This paper proposed an instruction set/functional unit synthe-
sis algorithm for SIMD processor cores. Experimental results
show the effectiveness of the proposed algorithm.

In the current system, our system considers only timing con-
straints but will incorporate constraints for power dissipation
as well as specific configuration of hardware units in the future.
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