
Synchronous Protocol Automata: A Framework for Modelling and Verification
of SoC Communication Architectures

Vijay D’silva
Indian Institute of Technology Bombay

vijay@cfdvs.iitb.ac.in

S. Ramesh
Indian Institute of Technology Bombay

ramesh@cse.iitb.ac.in

Arcot Sowmya
University of New South Wales, Sydney.

sowmya@cse.unsw.edu.au

Abstract

Plug-n-Play style Intellectual Property(IP) reuse in Sys-
tem on Chip(SoC) design is facilitated by the use of an
on-chip bus architecture. We present a synchronous, Finite
State Machine based framework for modelling communica-
tion aspects of such architectures. This formalism has been
developed via interaction with designers and the industry
and is intuitive and lightweight. We have developed cycle
accurate methods to formally specify protocol compatibil-
ity and component composition and show how our model
can be used for compatibility verification, interface synthe-
sis and model checking with automated specification. We
demonstrate the utility of our framework by modelling the
AMBA bus architecture including details such as pipelined
operation, burst and split transfers, the AHB-APB bridge
and arbitration features.

1. Introduction

The current VLSI design scenario is characterised by
high performance, complex functionality and short time-
to-market. A reuse-based methodology for SoC design has
become essential in order to meet these challenges. Typi-
cally, a SoC is an interconnection of different pre-verified
IP blocks which communicate using complex proto-
cols. Approaches adopted to facilitate plug-and-play
style IP reuse include the development of a few stan-
dard on-chip bus architectures such as CoreConnect[13]
from IBM, AMBA[2] from ARM among others and the
work of the VSI Alliance[1] and the OCP-IP[14] con-
sortium. Figure 1 illustrates a typical bus-based SoC
architecture. As IP blocks operate using different proto-
cols and clock speeds, wrappers and bridges are introduced
as shown to ensure inter-operability. Unfortunately, the vi-
sion of plug-n-play style assembly of SoCs is yet to be
realised[3] as IP cores are designed with disparate pro-
tocols. IP integration involves compatibility checking

Arbiter
On−Chip Bus

Bridge

Arbiter
Peripheral Bus

P
er

ip
he

ra
l B

us

W
ra

pp
er

2

Master

W
rapper1

Master Slave

Slave

Slave

H
ig

h
S

pe
ed

 B
us

Figure 1. System-On-Chip Bus Architecture

between the IP protocols, interface synthesis to resolve pro-
tocol mismatches, component composition and system
level verification. These additional steps increase the de-
signers’ effort and time required for chip design.

There have been research efforts towards modelling and
formal verification of bus architectures[7, 11, 19], auto-
mated synthesis and verification of interfaces between mis-
matched protocols[6, 18]. These efforts have been inde-
pendently motivated and the semantic disparity of the for-
malisms used impedes consolidation of solutions from the
different areas. We present a formalism called Synchronous
Protocol Automata which has been motivated by an exten-
sive study of SoC bus protocols and interaction with design-
ers and is capable of modelling complex protocol features
while maintaining syntactic simplicity. This formalism has
its foundation in the theory of synchronous languages[5, 16]
and unifies seemingly independent existing work in integra-
tion and verification of bus based SoC architectures.

We have used this framework to model commonly used
SoC bus protocols, to establish incompatibility and to syn-
thesise interfaces for a protocol mismatch problem faced in
the industry. Our experience has revealed that in contrast
to timing diagrams, our model is more conducive to rea-
soning about different sequences of behaviours that proto-
cols can exhibit. The modelling exercise also led to a con-

1530-1591/04 $20.00 (c) 2004 IEEE

cise and comprehensive documentation of the functional as-
pects of the protocols which can be used by designers.

1.1. Related Work and Overview
Different formalisms exist for modelling communi-

cating hardware. The formalisms of Interface[8] and
I/O automata[15] bear syntactic similarities to syn-
chronous protocol automata but significant differences
arise as we use a lower level of abstraction and syn-
chronous semantics. While actions in these models repre-
sent methods and procedure calls, we use actions to de-
scribe the behaviour of hardware signals at a clock tick.
Our automata consist of states which are either input en-
abled or input insensitive, an internal clock and control
and data channels, all motivated by a hardware spe-
cific model.

The models used in the literature on interface synthe-
sis [20, 17] are quite simplistic and informal and no crite-
ria have been identified for interface correctness. In con-
trast, synchronous languages provide a precise semantic
interpretation[4] for hardware behaviour and currently of-
fer sophisticated tool support. Using synchronous protocol
automata, we formalise various notions related to interface
synthesis and indicate algorithms which apply within this
framework.

There exists an independent body of exercises in formal
verification of bus protocols including PCI[7], AMBA[19]
and CoreConnect[11]. Such work involved using a model
checking tool to verify that a model of the bus system sat-
isfied a set of temporal logic specifications. Writing such
specifications is a tedious task and the models used did not
always capture all aspects of the protocols verified. As all
existing formalisms suffer various deficiencies we propose
a framework motivated by the requirements of the various
problems studied.

1.2. Paper Contributions

In this paper, we present an automata-based framework
for modelling all components of a bus architecture includ-
ing bridges, wrappers, arbiters and components operating
on multiple clocks. We provide a novel technique to estab-
lish compatibility of two SoC protocols, develop a method
to reason about component composition and formalise the
correctness criterion for interfaces used in IP integration.
Using minimal input from the designer we can generate for-
mal specifications and use them for system level verifica-
tion. Synchronous protocol automata can easily be trans-
lated into any synchronous language or HDL enabling the
designer to utilise the arsenal of tools available for these for-
mats.

Following the suggestions of designers, we present a
complete model and formal specification of the AMBA bus
architecture which can be used by system builders and re-
searchers. We are currently using this framework to gen-

erate concise documentations and formal specifications of
commonly used protocols[2, 13, 14].

The paper is organised as follows: Section 2 presents an
informal, complete overview of the proposed framework,
Section 3 contains the formalisation of synchronous pro-
tocol automata, notions of composition, protocol mismatch
and interface correctness and outlines the steps towards au-
tomated model checking. We illustrate the modelling and
verification features with the AMBA bus protocol in Sec-
tion 4 and conclude with discussions in Section 5.

2. Overview of Synchronous Protocol Au-
tomata

We illustrate this framework using a simple protocol
called Handshake shown in Figure 3(a). Handshake re-
ceives input from the control channels grant1, Ack and
Rdy, the data channel Data and can write to the con-
trol channels BReq1, Req and data channel Address.
All transitions are synchronised with the protocol’s clock������� . Handshake makes a request for the bus and tran-
sits to state � when it is granted. It transits to state � at
the next clock tick, raising a request (Req!1) and writ-
ing an address(Address!y) onto the bus. After an ac-
knowledgement is received the protocol awaits an indica-
tion(Rdy?1) that data will be available. In the next cycle,
the protocol may either read data and reach its final state,
which is shaded, or pipeline the next request with the data
read phase and transit directly to state � . The choice be-
tween the outgoing transitions from state 	 is made by an
internal condition which is not visible and makes the proto-
col appear non-deterministic. We call this kind of behaviour
weak determinism. It can be observed that states
 and � are
equivalent or bisimilar when their outgoing transitions are
compared. As the protocol would have had to perform at
least one data operation to reach state
 , we may infer that
one or more transfers has taken place. This feature of fi-
nal states plays a key role in defining protocol compatibility
even though a final state may be functionally redundant.

Figure 3(b) illustrates the protocol PipelineSlave which
can pipeline its address and data phases as seen in the
transition from state � to state � . Handshake and Pipeli-
neSlave can communicate and progress in a lock step fash-
ion. Once Handshake has been granted the bus, the states
of the two protocols would go through the sequence �
������� ,
��������� , ��������� , ��	������ , ��
���	�� . Since the two protocols are able
to communicate once the bus is granted, we call them a
matched protocol pair.

We now consider a protocol Peripheral in Figure 3(c)
which operates at half the speed of Handshake with a clock������� . The bridge in Figure 3(d) facilitates communication
between these protocols and Figure 3(e) is the system clock.
Such clock models can be constructed for systems with
clocks derived from a single source having arbitrary ratios

Protocol 1

Req

Address

BReq1

Address!y
Req!

Data?x Rdy?1

Ack?1

Ack

Req!1

Data

Rdy

Grant1?0
BReq1!1

Grant1?1

0

1

2

3

4

5

Address!y
Req!1

Address!y

Ack?0
Req!1

Req!1
Address!y
Data?x

Grant1

clk2

Rdy?0

(a) Handshake

Protocol 2

Req

clk2?

Address

Ack

Rdy

Data

0

Req?1

1

Ack!1

2

3

Req?1

Data!x4

Data!x

Rdy!1

Req?0

Address?y

Address?y
Req?1

Address?y

Req?0Req?0

(b) PipelineSlave

Peripheral

Req?1

Ack!1

Data!y

Req?0

0

12

Ack

Data
Req

clk1

(c) Peripheral

Bridge

0

1

Ack?1Rdy!1

Ack?0

Ack Rdy

clk2

(d) Bridge

Clock

clk2!
clk1!
clk2!

0

1

clk1

clk2

(e) Clock

Arbiter

BReq2?1
BReq1?1
BReq2?0

BReq1?1

BReq2?1

BReq2?1

BReq1?0

Grant2!1 Grant1!1

Grant1!1

0

12

3

Grant1Grant1Grant1

Grant2BReq2

BReq1

clk2

(f) Arbiter

to each other. Figure 3(f) is an example of a bus arbiter
which accepts only one request in a given cycle.

These automata describe a system with two masters and
a slave on a high speed bus, a slave on a low speed bus,
an arbiter and a bridge. Once all components in the sys-
tem have been modelled, compatibility checks can be en-
forced. Additional aspects of correctness can be checked
by translating the automata into the input language of a
model checker. Properties that the designer may wish to en-
sure include mutual exclusion in bus ownership specified
as ����� �����
	���

�������
	���
���� and liveness which includes
the specification ��� ���������
��� � � �"!#����	���
 � � . This live-
ness property will fail as the arbiter in this system may ig-
nore ���
	���
 � forever. As such properties would be required
to hold in all bus protocols, it is sufficient for the designer to
identify the grant, request and acknowledge signals to auto-
mate property generation. More complex specifications are
explored in sections 3 and 4.

3. Formal Definitions

Definition 1 A Synchronous Protocol Automaton $ is de-
fined as a tuple �&% �(' �() �(* �,+ �.- � �,/10�2 �,3.4��,365�� . % is a set
of control states, '879';:"<='?> and)@7A)B:"<C)B> are
sets of disjoint input and output control and data channels.
* is a set of internal variables with one for each data chan-
nel and + is the set of actions which can be performed.
- �ED %GFH/.0�2
I"FH+JFH% is the state transition relation. 3 4

and 3 5 are the initial and final states.

Channels are typed and unidirectional. Control channels
are usually boolean while the type of a data channel may
vary. An action K in + is of the form �B��LNMB�PO6O.OQ��RSLTMUR
where each ��V is a set of guards or blocking operations and
MWV is a set of nonblocking operations which can be per-
formed. Guards check for the value of a signal(denoted /6I.X)
or the absence of an event on a signal (high impedance), de-
noted /6Y on a control channel / . Nonblocking operations
are writes on control channels, denoted as /�Z X and reads
or writes on data channels, denoted as [\Z X��,[�I6] . ^ is the
empty action. Typical transitions in bus protocols would
have only one guard and response as seen in Figure 2. A
sequence of guards and responses occurs when signals are
exchanged using combinational logic. Such behaviour is ex-
hibited by zero-latency transfers as present in the Open Core
Protocol[14].

A transition is written as 3`_- � 3�a and a sequence of tran-
sitions as 3cb7edf3 a where gh7iK � �,K � O.O6O,Kkj . A transaction
run is a transition sequence 364 b7edl365 in which a trans-
fer is initiated and completed. Any path from state � to state

 in Handshake is a transition run.

The predicate m ��n�� �po ��q��r3�� is true in a state 3 if all out-
going transitions are guarded. 3 is non-blocking if all out-
going transitions are unguarded. When the automaton is in
a state, the transition whose guard evaluates to true is taken
at the clock tick. If more than one guard is true, a nonde-
terministic choice is made. We require that all states be ei-

ther blocking or nonblocking. Our focus is restricted to a
subclass of nondeterministic automata which are weakly de-
terministic like Handshake. A protocol is weakly determin-
istic if transitions to multiple target states are distinguish-
able by their output or lead via identical transitions to states
distinguishable in this manner. A state with two different
data transitions is non-deterministic but not weakly deter-
ministic. These restrictions reflect the general structure of
bus protocols and are unique to our formalism.

Definition 2 Two non-blocking states 3 � �Q3 � are output dis-

tinguishable if for any 3 a� �,3�a� �(K � �(K � � 3 �i_ �- � 3�a� �Q3 � _ �- � 3�a� ,
there exists at least one control channel / such that /�Z � K �
and / Z��� K � or vice versa.

Definition 3 A protocol is weakly deterministic if whenever

3 4 b7ed 3 � _
�
- � 3 a� and 3 4 b7ed`3 �8_

�
- � 3 a� and 3 ���7 3 � and

K � �7 Kk� then, 3 � and 3.� are output distinguishable.

3.1. Protocol Compatibility

Given models of the communicating components in a
SoC architecture, it is of great importance to ensure that data
is always transferred as required and that deadlocks do not
occur. Intuitively, at any clock tick, the actions that a pair
of protocols attempt to perform should permit both of them
to progress. We use the predicate permit and a transac-
tion relation defined below to formalise these notions.

Definition 4 A causal dependency graph between a pair of
actions K � and K � is constructed by adding a directed edge
from �#V to MUV if �#V L MUV � K � and from MUV to every �#a	 � K �
such that /�Z � MUV and /.I � �#aV where / is a control channel.

Definition 5
\����� o
��&K ���,Kk��� holds for a pair of actions
if their causal dependency graph is acyclic and for every
/.I��Q/1a Y � K � , /�Z � K � �Q/1a�Z
�� K � and vice versa where / is a
control or data channel.

Intuitively,
\����� o
��&K � �,Kk��� holds for a given pair of ac-
tions if for every read operation in one action, a write exists
in the other and vice versa. Causality cycles are eliminated
by using the causal graph. Using
\����� o
��&K � �(K � � we may
establish that two actions are compatible with each other. In
order to establish compatibility between two automata $ �
and $ � with final states � 5 and � 5 respectively, we define a
relation on their states.

Definition 6 A transaction relation is a symmetric binary
relation � D %U�"F %#� satisfying:

1. ��� 5 ��� 5�� � �
2. if ��� ��� � � � and �Pm ��n�� ��o ��q �r��� and �Pm ��n�� ��o ��q���� �

then, whenever � _
�
- � ��a and � _ �- � �Ta ,
\����� o
���K � �,K � �

holds and ����a ���Ta � ���
3. if ��� ��� � � � and �Pm ��n�� ��o ��q������ and m ��n�� ��o ��q���� �

then, whenever � _ �- � ��a there exists K � ���Ta � ��� _ �- � �Ta

and
\����� o
��&K � �,K � � � and for all such K � ���Ta � ��� a ���Ta � �
�

4. if ��� ��� � � � and m ��n�� ��o ��q������ and m ��n�� ��o ��q���� �
then, whenever � _ �- � � a and � _ �- � � a such that

\����� o
��&K � �(K � � , ��� a����Ta � ���

The first condition matches the final states of two pro-
tocols. The second condition ensures that if both protocols
perform only data operations they operate on the same chan-
nels and the third ensures that each guard in a transition in
one protocol is satisfied by some action of the other. The last
condition states that if both protocols have a default guard
which is true they should transit simultaneously to matched
states. This situation would be extremely rare in a real pro-
tocol but has been added for completeness.

Definition 7 A protocol pair $ � and $ � with initial states
�.4 and �T4 is said to match if there exists a transaction rela-
tion � such that ���64���� 4 � � � .

If such a relation does not exist, the protocol pair is mis-
matched and an interface has to be synthesised. An inter-
face can also be modelled as a synchronous protocol au-
tomaton � . � can be composed with either protocol, say $ �
to get a new automaton denoted ����� $ � where ��� is a syn-
chronous parallel composition operator. We formalise the
notion of interface correctness which applies to wrappers
and bridges as well.

Definition 8 An interface � between two mismatched pro-
tocols $ � and $ � is correct if there exists a transaction re-
lation � between the initial states of $ � and ��� � $ � .

Correctness can be defined equivalently in terms of $ � ��� �
and $ � . Interfaces can be synthesised using techniques pre-
sented in [6, 17, 20]. We present a synthesis technique
which is correct by construction in [10]. Synchronous par-
allel composition is defined below.

Definition 9 The synchronous parallel composition $ � � � $ �
of two synchronous protocol automata $ � and $ � with a
shared set of channels ! 7 �&' �#" '?���P< �&) �#")U��� is an
automaton defined as

$ %&% �(')' % � 7 %W�"F %#�
$ '?:% � ')' % � 7 �&'?:� < '?:� ��*+! , '?>% � ')' % � 7 �&'?>� < '?>� �,*�!
$)-% �.')' % � 7 ��) � <) � ��*+! , +/% �0')' % � 7 �r+ � < + � �,*�+/1
$ ���64���� 4 � is the initial state and ����5���� 5 � is the final state

$ - � % �0')' % � : given � _ �- � ��a and � _ �- � �Ta and actions
K a� �,K a� which are the projections of K � �,K � on +21 the
following rule defines - � % � ')' % �

� _ �- � ��a���� _ �- � �Ta��3
\����� o
���K a� �,K a� �
��� ��� � _�4- � ��� a ��� a �

where KP� 7 �W� L M � O K65 and Kk��7 �#��L MU� O K�7 and K98?7
� � < � � * +/1#LNM � < M � *�+/1 O K a8 and K a8 is defined in a
similar manner.

The communication infrastructure of the SoCs consid-
ered are completely synchronous and can be represented as� 0&2���� $ ��� � O.O6O � � $ R where

� 0�2 models the system clock and
$ V may be a master, slave, arbiter, slave, wrapper or bridge.
A more elaborate treatment of the formalism presented with
illustrative examples is available in[9].

3.2. Model Checking with Automated Prop-
erty Extraction

A set of synchronous protocol automata describing a
bus architecture can be translated into a set of concurrent
communicating processes described in languages used by a
model checker. As this framework is being applied to bus
protocols, we have identified properties which are routinely
verified and can generate them automatically based on in-
put from the designer and thereby alleviate the specification
effort required. In addition to properties of the kind shown
in Section 2, a few other templates can be written as well.
� , � and ! are well known temporal logic operators.

1. ��� �r���
	���
�V�� �"! �������
��� V � : Every request for the
bus should eventually be granted and vice versa. This
requirement is quite strong and may not always be sat-
isfied. The AMBA AHB protocol allows for a master
to be granted the bus without a preceding request.

2. �
	 o
�� �&���\	 o
��
	�m n ��
�� : All wait cycle sequences
should be finite and should be terminated either nor-
mally or by a transfer abort.

The designer will be required to identify signals in the
system based on their functionality and examples include
the signals for BusRequest, BusGrant, DataAc-
knowledge, BurstTransfer and Wait. These sig-
nals can be cast into templates to generate temporal logic
specifications. The specification and system model can then
be used for verification.

The methodology developed so far illustrates how this
framework can be used for modelling, automated verifica-
tion and to formalise notions of composition, compatibility,
and various notions of correctness.

4. The AMBA bus protocol

We now present a case study in modelling and verifi-
cation with the Advanced Microcontroller Bus Architec-
ture(AMBA) from ARM which is widely used in the in-
dustry.

The model was constructed through a study of the
AMBA specification document and discussions with de-
signers who had implemented it. Figure 3 is a frag-
ment of the AMBA High Speed Bus(AHB) protocol. The
sub-machine between states ��������	 and
 captures trans-
fers with incremental bursts of undefined length. The
protocol fragment also captures transfers of type NON-
SEQ(nonsequential), SEQ(sequential) and BUSY. States �

HREADY?1
HTRANS!BUSY
HWDATA!d(a)

HREADY?1
HADDR!a+4
HWDATA!d(a)

HREADY?0
HTRANS!SEQ
HADDR!a+4
HWDATA!d(a)

HREADY?0
HTRANS!SEQ
HADDR!a+4
HWDATA!d(a)

HADDR!a
HBURST!INCR
HTRANS!NONSEQ

HREADY?1
HTRANS!BUSY
HWDATA!d(a)

HREADY?1
HTRANS!SEQ

HREADY?1
HTRANS!NONSEQ

HREADY?1
HTRANS!NONSEQ

HADDR!a

HBURST!WRAP4
HADDR!a

HBURST!WRAP4

BUSREQ1!1

HGRANT1?1

HGRANT1?0 HMASTER?id

τ
0

1

2

3
4

5

6

Figure 3. AMBA Master for write transfers

PADDR!a
PWRITE!1
PSEL!1
PWDATA!d

PADDR!a

PSEL!1

PADDR!a
PWRITE!0
PSEL!1

PRDATA?d PENABLE!1

PWRITE!0

PADDR!a
PWRITE!1
PSEL!1
PWDATA!d

PENABLE!0PENABLE!0

PENABLE!1

0

12

Figure 4. APB Master

and
 are identical but have been drawn separately for pre-
sentation purposes. The transitions to state � indicate the
beginning of a 	 beat wrapping burst. The shaded tri-
angle indicates that the entire automaton has not been
drawn. While there are many transitions correspond-
ing to the different types of transfers and responses which
are possible, the general structure of the entire proto-
col resembles that shown in Figure 3. The state machine
had 18 states and 40 transitions. The automaton describ-
ing the AHB read transfers is smaller, as most transi-
tions are contingent on the behaviour of the slave which
is less varied than that of the master as it has fewer sig-
nals.

In contrast, AMBA Peripheral Bus(APB) shown in Fig-
ure 4 is extremely small with only three states as it has only

HWRITE?1
HADDR?y
HREADY!1

PSEL!1
PWRITE!1
PADDR!y
PWDATA!x

HWDATA?x
HREADY!1

PSEL!1
PADDR!y
PWDATA!x
PWRITE!1
PENABLE!1

1

2

3

0

Figure 5. AHB to APB bridge

two control signals and had no pipelined operation. Fig-
ure 5 models the bridge between the AHB and APB buses
for write transfers.

Using this model and requirements stated in the AMBA
specification[2], a formal specification of the protocol was
created. Some interesting properties are discussed below.
The page numbers refer to the AMBA specification.

$ ��� ���6� � �
� �p����
 � � ��� � � �
� ��� ��
��8� n ������	������ � :
Captures the requirement on page 46 that An incre-
menting burst can be of any length but .. must not cross
a 1kB boundary.

$ ��� ��� � 		�
������	
� ��� ��
 ����� 7 ��� : From page 53
that A slave must only sample the address and control
signals and HSELx when HREADY is high.

$ Certain specifications like : it is recommended,..,that
slaves do not insert more than 16 wait states led to
cumbersome formulae. It was easier to write proto-
col automata describing these properties. A single pro-
tocol automaton can be written to capture all prop-
erties pertaining to burst constraints. This automaton
can then be used to observe if the architecture satis-
fies a given property by composing it with the system
and checking to see if bad states are reachable. This
style of observer based verification is well known in
the synchronous language literature[12].

5. Conclusions

In this paper we used Synchronous Protocol Automata
to formalise the notions of protocol mismatch, interface cor-
rectness and component composition and showed how these
methods lend themselves to interface synthesis and model
checking. This formalism has been used to document and
formally specify the AMBA protocol. Complete documen-
tation and specifications of other bus architectures such as
the CoreConnect and the Open Core Protocol will be avail-
able soon. We have applied our framework successfully in
an industrial setting. This formalism has proved to have a
high utility value and we are currently focusing on provid-
ing tool support for the methods described here.

Acknowledgements
This work was partially supported by UNSW USRP

Grant 2003, NICTA, Sydney and CFDVS IIT Bombay. We
would like to thank Sri Parameswaran and his group for
their feedback and discussions.

References

[1] V. S. I. Alliance. http://www.vsi.org.
[2] ARM. Advanced micro-controller bus architecture specifi-

cation. http://www.arm.com/armtech/AMBA spec, 1999.
[3] R. A. Bergamaschi and W. R. Lee. Designing systems-on-

chip using cores. 37th Design Automation Conference, June
2000.

[4] G. Berry. A hardware implementation of pure esterel. Sad-
hana, Academy Proc. in Engineering Sciences, 1992.

[5] G. Berry. The foundations of esterel. Proof, Language and
Interaction: Essays in Honour of Robin Milner, 2000.

[6] G. Borriello, L. Lavagno, and R. B. Ortega. Interface syn-
thesis: a vertical slice from digital logic to software com-
ponents. Int’l Conf. of Computer-Aided Design, November
1998.

[7] P. Chauhan, E. Clarke, Y. Lu, and D. Wang. Verifying ip-
core based system-on-chip design. IEEE ASIC., September
1999.

[8] L. de Alfaro and T. A. Henzinger. Interface automata. Joint
8th ESEC and 9th ACM Symposium on FSE, 2001.

[9] V. D’silva, S. Ramesh, and A. Sowmya. Automated inter-
face synthesis. School of Computer Sci. and Eng., Technical
Report 0325, University of New South Wales 2003.

[10] V. D’silva, S. Ramesh, and A. Sowmya. Bridge over trou-
bled wrappers:automated interface synthesis. 17th IEEE Int’l
Conference of VLSI Design, January 2004.

[11] A. Goel and W. R. Lee. Formal verification of an ibm core-
connect processor local bus arbiter core. 37th Design Au-
tomation Conference, June 2000.

[12] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous
observers and the verification of reactive systems. Algebraic
Methodology and Software Technology, 1993.

[13] IBM. 32-bit processor local bus, architecture specifications.
http://www-3.ibm.com/chips/products/coreconnect/, Version
2.9.

[14] O. C. P. I. P. A. Inc. Open core protocol specification.
http://www.ocpip.org, Release 1.0, 2001.

[15] N. A. Lynch and M. Tuttle. Hierarchical correctness proofs
for distributed algorithms. 6th ACM Symposium on Princi-
ples of Distributed Computing, 1987.

[16] F. Maraninchi. Operational and compositional semantics of
synchronous automaton compositions. Int’l Conference on
Concurrency Theory, August 1992.

[17] R. Passerone, L. de Alfaro, T. A. Henzinger, and A. L.
Sangiovanni-Vincentelli. Convertibility verification and con-
verter synthesis: Two faces of the same coin. Int’l Conf. on
Computer-Aided Design, November 2002.

[18] A. Rajawat, M. Balakrishnan, and A. Kumar. Interface syn-
thesis: Issues and approaches. 13th Int’l Conf. on VLSI De-
sign, January 2000.

[19] A. Roychoudhury, T. Mitra, and S. R. Karri. Using formal
techniques to debug the amba system-on-chip bus protocol.
Design Automation and Test in Europe, March 2003.

[20] D. Shin and D. D. Gajski. Interface synthesis from protocol
specification. CECS Technical Report 02-13, April 2002.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

