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Abstract
Digital designs can be mapped to different implemen-

tations using diverse approaches, with varying cost crite-
ria. Post-processing transforms, such as transistor sizing
can drastically improve circuit performance, by optimizing
critical paths to meet timing specifications. However, most
transistor sizing tools have high execution times, and the
attainable circuit delay can be determined only after run-
ning the tool. In this paper, we present an approach for fast
transistor sizing that can enable a designer to choose one
among several functionally identical implementations. Our
algorithm computes the minimum achievable delay of a cir-
cuit with a maximum average error of 5.5% in less than a
second for even the largest benchmarks.

1 Introduction
Implementing a design involves synthesis (technology

independent optimizations and technology mapping), place-
ment and routing. In a final timing correction step, transis-
tors of logic gates are appropriately sized to speed up criti-
cal paths, thus incurring an area overhead for gains in circuit
speed. The importance of transistor sizing can be judged by
the amount of research carried out both in academia [1–4]
and in industry [5, 6]. However, these optimization tools
have large running times, and can take up to a few hours
to calculate the appropriate solution for an industry-sized
circuit. In this scenario, it is difficult for a designer to deter-
mine if an implementation will be able to meet performance
goals after transistor sizing, or which circuit out of multiple
different implementations for the same functionality should
be chosen for future detailed optimization.

Thedelayof a circuit is the maximum delay of all PI-to-
PO paths of the circuit. Transistor sizing is applied to the
circuit to reduce this delay, in order to meet design goals.
The smallest value of delay that can be obtained in this
manner is referred to as theminimum achievable delay. In
this paper, we present an approach that can quickly esti-
mate this minimum delay when transistor sizing is applied
to a mapped circuit. Gains due to this optimization vary ac-
cording to the circuit being sized, because of a number of
factors, such as which logic gates are used, how these gates
are connected, and how much load they drive. The mini-
mum achievable delay captures how amenable a circuit is
to transistor sizing. Thus, while circuits are rarely sized to
the minimum delay value (due to the associated high area
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overheads), it is a good measure of circuit quality. Using
our tool as afast estimator of the minimum achievable de-
lay, a designer can make early comparisons among different
solutions provided by placement and routing for the same
functionality, without incurring the cost of an actual sizing
step. Once the designer has chosen one of the candidate im-
plementations based on this metric, a more exact optimizer
can be used to obtain actual transistor sizes.

Our approach is inspired by logical effort [7,8], a method
well suited for estimating the minimum achievable delay of
a singlepath in a circuit, with a heuristic branching factor
used to account for multiple fanouts. However, the criti-
cal path of a circuit changes dynamically according to the
choice of distribution of capacitance over multiple fanouts.
An important contribution and differentiator of our algo-
rithm is a means of accurately determining the minimum
achievable delay of a circuit by simultaneously considering
all paths of the circuit.

2 Logical Effort
The starting point of our approach is the method of logi-

cal effort, which has been widely used in a variety of appli-
cation domains [9–12] as well as in industry standard EDA
synthesis tools [13, 14]. Using logical effort, the delay of a
gate with input capacitanceci is estimated by modeling it
as a linear function of the loadcl being driven as:

D = g × cl

ci
+ parasitic delay (1)

whereg is the logical effort,cl

ci
is the electrical effort and

the parasitic delay is the intrinsic delay of the gate.
As shown in [8], the above equation can be extended to

estimate the minimum delay,̂D, of apathof logic as

D̂ = NF
1
N + P (2)

whereF = GH is the path effort,P is the path parasitic
delay andN is the number of gates on the path under con-
sideration. The path logical effort,G and path electrical
effort, H are obtained as the product of the gate logical and
electrical efforts. The minimum delay of Equation (2) is ob-
tained by distributing the path effortF equally to each gate
on the path.

For realistic circuits, with gates having multiple fanouts,
the path effort is modified toF = GBH, whereB, the
path branching effort, is the product of the gate branching
efforts of all gates on the path being analyzed. The branch-
ing effort of a gate G,bG, is calculated asCtotal

Cuseful
, where
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Ctotal is the total load being driven by G, andCuseful is
the load contributed by the fanout on the path of interest.
Thus, the branching factor tries to capture the effect of off-
path fanouts. However, this definition compels non-critical
fanouts to contribute a load that scales in proportion to the
load of the fanout of interest, which is determinedonly by
gates on the path being analyzed. This has two disruptive
effects. First, the load on the path under consideration, and
hence its delay estimate, is larger than necessary, due to the
contribution of the non-critical fanouts. Second, assump-
tions of gate sizes on the path being analyzed affect the
loads on the other gates in the circuit. This may lead to the
delay of a different path becoming dominant. The branch-
ing factor does not capture this interaction among different
paths in a circuit. Analyzing every path, and the interactions
among all paths is not feasible, because of the exponential
number of such paths in a circuit. Thus, while the method
of logical effort is well suited to analyze single path delays,
it cannot be used directly when critical paths are not well
defined, or can change. In the following section, we present
an approach that can handle such scenarios.

3 Algorithm for Minimum Delay Estimation
Every gate has multiple sizes available, each of which

corresponds to an input capacitance,Cin. We defineCinG

to be the set of all possible values ofCin of a gate G. A gate
may drive multiple fanouts, and the load capacitance being
driven,cl, is the input capacitances of these fanouts, com-
bined with routing capacitances,cr. For a gate G drivingn
fanouts,F1,F2, · · ·Fn, the possible values of the load ca-
pacitance is described by the sum ofcr and the elements of
the setCLG , defined as

CLG =


n∑

j=1

cj : ∀cj ∈ CinFj
, j = 1 · · ·n

 (3)

With this terminology, we now present a dynamic pro-
gramming based approach for calculating the minimum
achievable delay of a circuit. The basic approach is to
traverse the circuit from primary outputs to primary in-
puts. For each size of a gate, we are interested in min-
imizing the maximum delay from the input of the gate
to any primary outputPO. This is achieved by comput-
ing a delay-Cin curve, each point of which is represented
by DG→PO[ci],∀ci ∈ CinG , defined as the maximum de-
lay from G, with sizeci, to any PO. This value is de-
termined by first calculating the delay of the gate (repre-
sented byDG[cini

][cl]) for each load value obtained by
cl = cj + cr, cj ∈ CLG , and then adding it to the delay
(corresponding to the load) from the fanout of the gate to
the primary outputs.

The details of our approach, which is provably optimal
for trees, are presented in the following subsections. We
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Figure 1. Delay- Cin Calculation and Propaga-
tion Across Multiple Fanouts

first present the calculation for gates with single fanouts,
and then show how this calculation can be extended to gates
with multiple fanouts. We use the circuit in figure 1 to illus-
trate the discussion.

Single Fanouts

The output of a gate having a single fanout can be connected
to a fixed load, such as at the primary output, or to another
gate, in which case the load being driven depends on the
size of the gate at the output. We present these two sce-
narios individually for ease of explanation; the fixed load
is actually a special case of the variable load with only one
load value.

1. Fixed Load: Consider gate1 G1 driving a load of
Cout1 at a primary output as an example of this case,
as shown in figure 1. Calculating the delay-Cin curve
is straightforward; each possible gate size corresponds
to a different value ofci ∈ CinG1 for the gate, and the
delay can be calculated using Equation (1). The delay
to the primary output is the same as the gate delay in
this case. Therefore,

DG1→PO[ci] = DG1[ci][cl] (4)

= [g × cl

ci
+ parasitic delay]G1

wherecl = Cout1

For different sizes of G1 in Figure 1, Plot I of Figure 2
presents the delay from the input of G1 to the primary
output. Since the load is fixed, we obtain monoton-
ically decreasing values of delay for increasing gate
sizes.

2. Variable Load: Next, consider gate G2 driving gate
G1. The load seen by G2 is not fixed, as in the previ-
ous case, but varies according to the size of G1. The

1In this discussion, all gates are shown as inverters for illustration pur-
poses only. The method applies directly to more complex gates, with ap-
propriate values for logical effort and parasitic delay.



delay-Cin curve for gate G1 has already been calcu-
lated. The delay-Cin curve for gate G2 is calculated
in a two-step procedure. First, for a particular gate
size of G2, corresponding to an input capacitance of
ci ∈ CinG2 , we examine all sizes of G1, and calculate
the delay as shown in equation (5). Here, the loadcl

driven by gate G2 is the input capacitance of gate G1,
and the parasitics of the wire connecting the output of
G2 to the input of G1. Since there is a single gate con-
nected to the output,CLG2 ≡ CinG1 .

DG2[ci][cl] =[g × cl

ci
+ parasitic delay]G2 (5)

DG2→PO[ci] = min
cj∈CLG2

{DG2[ci][cl]+

DG1→PO[cj ]} (6)

wherecl =cj + cr ∀cj ∈ CLG2

Next, the delay from the input of G2 to the pri-
mary output is obtained by combiningDG2[ci][cl] with
DG1→PO[cj ], which is the delay corresponding to the
size of G1 under consideration. Thus, the minimum
delay that we can obtain for the selected size of G2
is determined using Equation (6). Note that this size
of G1 that minimizesDG2→PO[ci] may be suboptimal
when G1 is considered in isolation, i.e., it may not be
the size that minimizes the delay from G1 to the pri-
mary output.
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Figure 2. Delay- Cin Curve Propagation
Across Gates G1 and G2 from figure 1

For a particular size of gate G2, the delay from G2 to
the primary output varies due to two factors changing
simultaneously, the load being driven by G2 (which

corresponds to different sizes of gate G1) and the cor-
responding delays of G1. Thus, for the selected size of
G2, there is a tradeoff between selecting larger sizes of
G1 (which reduce the delay of G1 but slow G2 down),
and smaller sizes of G1 (which have higher delays for
G1 but decrease the delay of G2).

Equations (5) and (6) calculate the best solution for the
selected size of gate G2. This calculation is repeated
for different sizes of G2, to obtain its complete delay-
Cin curve.

To illustrate this calculation, consider the smallest gate
size of G2. For this size, Plot II in figure 2 is the delay
from G2 to the output, for different sizes of G1, cor-
responding to different values of load capacitance for
gate G2. The minimum delay value of this set is at the
point labeled p1, and all other points that have higher
delay can be discarded, as they are suboptimal.

For different sizes of G2, the delay to the primary out-
put is as shown in Plot III of figure 2. Point p2 is the
delay for the smallest size of G2, and is obtained from
Plot II as described above. The remaining points in
Plot III are obtained by repeating this calculation for
all other sizes of G2.

Multiple Fanouts

The scenarios presented above are the most basic cases,
with a single fanout on a gate. We now consider the case
when a gate drives multiple fanouts, such as gate G4 in Fig-
ure 1. It is in our approach here that we differ the most with
respect to the method of logical effort, since we take into
account different values of delays and gate sizes oneach
fanout simultaneously. Depending on the sizes of the gates,
either of the paths through gate G2 and gate G3 may have
larger delays, and hence could be critical. Our formulation
explicitly accounts for this changing dynamic.

In Figure 1, assume the delay-Cin curves of gates G2
and G3 have been calculated. In this case,CLG4 ≡ CinG∈ ×
CinG3 . The load being driven by gate G4,cl, is the sum of
the input capacitances of gates G2 and G3, and the routing
capacitancecr. For a particular size of G4 (and a corre-
sponding value of input capacitanceci ∈ CinG4 ), we cal-
culate the delay of gate G4 for each value of this load as
shown in Equation (7).

DG4[ci][cl] = {g × cl

ci
+ parasitic delay}G4 (7)

DG4→PO[ci] = min
cj ,ck

{DG4[ci] + DOP→PO} (8)

whereDOP→PO = max{DG2→PO[cj ], DG3→PO[ck]}
andcl = cj + ck + cr ∀cj ∈ CinG2 , ck ∈ CinG3

Next, the delay to the primary output is calculated by com-
bining DG4[ci] with the maximum of the delays of each



fanout. In this scenario, the identity of the branch with the
maximum delay to a primary output can change according
to which branch has higher delay. For a particular size of
G4, one branch may determine the critical path, while the
other may be critical for another size of G4. The formula-
tion of Equation (8) automatically accounts for this. Thus,
for the selected size of G4, we can determine the optimal
size of each of its outputs, in order to obtain the minimum
delay. This procedure is repeated for all sizes of G4, to
compute the entire delay-Cin curve for G4.
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Figure 3. Combining Delay- Cin Curves at Mul-
tiple Fanouts

It may seem that the size of the setCLG
for a gate G with

multiple fanouts is proportional to the product of the num-
ber of sizes of the fanout gates. Assume gate G drives four
outputs, whose delay-Cin curves are represented byk1, k2,
k3 andk4, shown in Figure 3. If each fanout hasm sizes,
each curve hasm points, and the size ofCLG is m4. How-
ever, we can show that most of the values inCLG are redun-
dant. For example, consider the tupleT of the first points
t1, t2, t3 andt4 from each of the curves in figure 3. A tuple
T ′

of the pointt1 from curvek1 and any other point from
k2, k3 andk4 (say t

′

2, t
′

3 and t
′

4), is inferior to T for the
following reason. There are two values that are extracted
from T andT ′

, the maximum delay to a primary output,
and the sum of the input capacitances represented by these
combinations, which is used as the load in the delay calcu-
lation of gate G. The maximum delay is the same in tuples
T andT ′

, but the load presented byT ′
is greater than that

of T . Hence, the delay of G (calculated using Equation (7)),
and therefore the delay to a primary output (calculated using
Equation (8)) is larger in this case. Since we are interested
in minimizing the delay to a primary output, the solution
offered by tupleT ′

will never replace that calculated using
T .

The above discussion directly leads to a strategy for ef-

ficiently selecting useful values ofcl from the delay-Cin

curves of outputs. First, these curves are stored in order of
non-increasing delay (and hence increasing sizes). The first
cl is the routing capacitancecr plus the capacitance cor-
responding to the maximum-delay points from each curve,
as in tupleT . The next value is obtained by replacing the
point with maximum delay (e.g.,t1 of curvek1 in T ), with
the next point from the same curve (t

′

1). This effectively
ignores the combination oft1 with remaining points from
the other curves. This process is continued till the maxi-
mum delay point is the last point on its curve. Thus, the
total number of combinations is of the order of thesumof
number of points on each curve, rather than the product.

Algorithm

Algorithm 1 MDE: Minimum Delay Estimation

for each gateG whose outputs have been processeddo
// calculate the delay-Cin curves forG
for all ci ∈ CinG do

DG→PO[ci] = ∞
for everycj ∈ CLG that is not redundantdo

// G hasn fanoutsF1,F2, · · ·Fn

cl =
∑n

j=1 cj + cr

// determine the delay of gateG
DG[ci][cl] = [g × cl

ci
+ parasitic delay]G

// determine maximum delay from any fanoutF
// to anyPO, using the delay-Cin curves ofF
temp = DG[ci][cl] + maxj=1···n(DFj→PO[cj ])
DG→PO[ci] = min(temp,DG→PO[ci])

end for
end for

end for
Minimum Delay= max{minall PI’s{delay to PO}}

Algorithm 1, Minimum Delay Estimation
(MDE) , presents our algorithm for estimating the min-
imum achievable delay of a circuit. The calculation is
based on the delay-Cin curve computation presented in the
previous subsection. All gates are processed in topological
order, from POs to PIs. At each primary input, the data
point corresponding to the minimum delay is selected, the
maximum over all PIs is the desired minimum achievable
delay.

Assume that there arem sizes for each gate in a circuit
with N gates, and the maximum fanout on any gate is|FO|.
The innermostfor loop is executedO(m × |FO|) times,
as shown previously, and the cost of determining the maxi-
mum delay point isO(|FO|). The secondfor loop is ex-
ecutedm times, since we assumem sizes for each gate.
Finally, since there areN gates in the circuit, the outermost
for loop is executedN times. Thus, the running time of
algorithmMDEis O(N ·m ·m · |FO| · |FO|). However, note
that this is a very loose upper bound, since very few gates
actually have|FO| fanouts.



Algorithm MDEis optimal for trees. However, most cir-
cuits are DAGs, with reconvergent fanouts. The main prob-
lem with DAGs is that there are multiple paths from a par-
ticular gate to primary outputs, or between two gates. An
implicit assumption of our algorithm is that the delay-Cin

curves at multiple fanout points are independent, and that
we are free to choose the combination of output delays and
capacitances that best suit the current gate. However, with
reconvergent fanouts, these choices are not independent of
each other. Selecting a data point on one output restricts
the choices on the other, and determining the relation be-
tween different outputs is intractable for general circuits.
However, assuming independence is not unreasonable. If
the reconvergent paths are completely unbalanced, i.e., their
structure and logic is such that one always has smaller delay
than the other, no errors are introduced due to the manner
in which their delay-Cin curves are combined. The small-
estCin value will consistently be selected for the path with
smaller delay. An example of this situation is if the paths
correspond to curvesk1 andk4 in figure 3. On the other
hand, if the delays of the two paths are roughly of the same
order (e.g., if they correspond to curvesk1 andk2), our ap-
proach selects approximately similar values of input capaci-
tances. This may lead to small inaccuracies, since the actual
values of input capacitance may be slightly different. How-
ever, the error in delay estimation is limited, as shown by
the results.

Our approach can also be used to obtain actual sizes of
all gates in the circuit. In AlgorithmMDE, we can store the
value of the load of each output that induces the minimum
delay. This information can be used in a forward traversal of
the circuit, in order to generate sizes for every gate. A gate
with multiple fanins has multiple choices for its size, which
can be resolved by selecting the size imposed by the criti-
cal input. The effect on the non-critical inputs is that they
now have a load different from what was initially assumed.
However, the difference in the delays from the primary in-
puts to the critical and non-critical inputs can be used to
compensate for this. In fact, this difference can be usually
be used toreducethe sizes of the transitive fanin cone of
the non-critical inputs, as long as their delay does not be-
come larger than that of the critical input. Gate sizes de-
termined in this manner correspond to a circuit sized for
minimum delay. However, these sizes can also be used as
an initial feasible solution for an exact sizing tool, instead
of using the original unsized circuit. This can lead to a large
improvement in running times of the transistor sizing tool,
since a circuit sized using our approach is closer to the final
solution than the initial, unsized circuit.

4 Results
In order to validate our algorithm, we generated multiple

implementations of the ISCAS combinational benchmark
circuits using SIS [15], and a technology library consisting
of minimum sized inverter and two-input NAND, NOR and

XOR gates. This choice of gates was selected simply be-
cause they have been calibrated in order to obtain accurate
values of logical effort and parasitic delay with respect to
the models used in our implementation of TILOS2. Each
benchmark circuit was mapped using different scripts and
options, and randomly generated wire parasitics were added
to each mapped circuit, in order to simulate the effect of
placement and routing considerations. Finally, our imple-
mentation of TILOS was used to determine the minimum
delay that sizing could realize. This minimum delay was
compared with the estimates calculated by AlgorithmMDE.

Figure 4 presents the comparison of AlgorithmMDEwith
TILOS. For each implementation, the first bar represents
the delay of the unsized circuit. The second bar is the mini-
mum delay obtained when the mapped circuit is sized using
TILOS, and the last bar is the minimum achievable delay
estimated using AlgorithmMDE. As can be seen by the cor-
respondence between the last two bars for each implemen-
tation, our results agree with those obtained via TILOS. In
every case, the execution time for our algorithm was less
than a second, while our implementation of TILOS took
from a few seconds for C17 up to more than 1500 seconds
for C62883. The average error for each circuit over all im-
plementations is presented in table 1.

Another interesting point to note is that comparisons
based on unsized circuit delays can be misleading. Consider
implementations 9 and 14 of C5315. The unsized circuit
delay of implementation 9 is larger than that of implemen-
tation 14, whereas the sized circuit delay of implementation
14 is greater than that of 9. A naive approach to evalu-
ating implementations would have chosen implementation
14, and would have foregone the superior solution.

5 Conclusion and Future Directions
In this paper, we have presented an algorithm that

quickly and accurately estimates the performance improve-
ment that can be obtained in a circuit via transistor sizing.
Current placement tools try to provide a solution that is
delay-optimal, among other objectives. However, they ig-
nore the gains that may be obtained via sizing. Our ap-
proach can be used to guide the placement tool, in effect
making it “transistor-sizing aware,” so that the final solu-
tion is globally optimal.
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