

Platform based on Open-Source Cores for Industrial Applications
1

M. Bolado1, H. Posadas1, J. Castillo1, P. Huerta1, P. Sánchez1, C. Sánchez2, H. Fouren2, F. Blasco2
1University of Cantabria. Microelectronics Engineering Group. TEISA. Santander. Spain.

2Design of System on Silicon (DS2). Paterna. Valencia. Spain.

Abstract
The latest version of the International Technology

Roadmap for Semiconductors predicts that design reuse
will be essential in the near future to face the constantly
increasing design complexity. The concept comes from
software engineering in which reuse is a fundamental
technology. In order to provide libraries and applications
to reuse in software development, some open-source
initiatives (e.g. Linux, gcc, X, mysql) have appeared
during the last decades. The basic idea is to distribute the
library or application source code (normally free-of-
charge) and allow any developer to use, modify, debug
and improve it. Several initiatives have tried to port this
idea to hardware development. The main goal of this
paper is to develop a synthesizable platform described in
SystemC from an open architecture. The platform includes
a CPU (OpenRISC) and some basic peripherals. A set of
software development tools (compiler, assembler,
debugger) and RTOS (eCos) has also been developed.
This work enables the evaluation of the advantages and
disadvantages of the open-source model in electronic
system design.

1. Introduction1

In order to allow the huge increase in design
productivity that seems necessary to exploit the constantly
increasing system and silicon complexities, a system level
design methodology that allows reuse-based and platform-
based design in both HW and SW domains will be
essential in the coming years [1]. This has created a new
business segment (commerce in HW and SW IPs) in
which a lot of IP-developments, IP-vendors and IP-
catalogs have appeared during recent years. However, to
be practical, the reuse-based methodology must guarantee
that the IP integration process is successful (satisfying
specification and constraints, error-free and cheaper than

homemade development) thus some proposals have been
made with this objective. Firstly, some standards (e.g.
VSIA standards [2]), specification languages and IP
design rules (e.g. Reuse Methodology Manual [3]) were
defined. Secondly, some electronics catalogs that facilitate
core selection and transfer were developed (e.g. [4][5]).
Finally, some CAD tools that provide the necessary
infrastructure for IP-based design were proposed [6].

But even taking into account the previously
commented techniques, reuse can doom a project to
failure. This has forced a review of approaches (e.g. VSIA
[7]) and an analysis of the main cost involved in reuse [8].
There are three primary metrics that can determine the
magnitude of cost and saving via reuse: original
development time, amount of design modification and
verification effort. Verification is one of the main
bottlenecks of system level design, thus it is also a
problem in IP-based design [9].

Another problem is IP modifications. In theory, only
the IP interface can be modified, but in practical cases
some modifications have to be introduced in the IP to
cover specifications and constraints. A core is not really
reusable until it has been reused (and modified) several
times [10]. Additionally, it is expensive to do forward-
looking design of a function or module; today it is easer
and cheaper to solve very specific problems than
anticipate demands of future projects. Thus, new projects
sometimes require new features of existing cores that have
to be implemented in the IP. The core provider can do
these modifications (commercial solution) with a
substantial increment of the core cost. Another possibility
(ad-hoc solution) is to use open-source cores in order to
create an internally developed core [8].

The open-source approach seems to have several
advantages: the core is very cheap (normally free), the
user can have source code access and there is a group of
developers that provide know-how, maintain and improve
the core. However, it may also have several disadvantages
such as instability (the development group changes or

1 This work has been supported by the MEDEA+ A511 ToolIP

project and the Spanish MCYT through the TIC-2002-00660 project.

1530-1591/04 $20.00 (c) 2004 IEEE

disappears), incomplete development, poor or no support
of existing IP-reuse infrastructures and standards, poor
documentation and verification methodology.

The main goal of this paper is to explore the ad-hoc
solution to enable reuse. Thus, a microprocessor (based
on the open-source OpenRISC core [11]) and the basic
HW (busses, memories, peripherals) and SW (compiler,
debugger, RTOS) platform elements have been
developed. The system has been described in SystemC
and implemented within a FPGA.

The quality of the open-source core will be analyzed
in the next section. After this, the developed platform will
be presented (section 3) and its main hardware (section 4)
and software (section 5) components described. Section 6
will comment the core verification methodology and
environment. Finally, the simulation and synthesis results
will be presented on section 7 and some conclusion will
be provided on section 8.

2. Open-Source IP Core Quality

IP core quality assessment is an important issue in
reuse-based design methodologies. Many metrics and
techniques have been proposed for this objective, such as
the VSIA Quality IP Metric (QIP)[2] or the
Mentor&Synopsys OpenMORE [21]. In this work, we
have used the OpenMORE quality assessment program to
evaluate the open-source IP core. We have selected this
program because it can be downloaded free, it has been
used to qualify some commercial cores and it was donated
to VSIA and integrated into QIP (currently under VSIA
member review).

The first step is to analyze the core distribution. The
OpenRISC Team at OpenCores [11] has developed a first
implementation: OpenRISC 1200 (OR1200). This soft
core is a MIPS-based 32-bit scalar RISC with Harvard
microarchitecture, 5-stage integer pipeline, virtual
memory support (MMU) and basic DSP capabilities. The
core has been described in Verilog, verified with several
functional tests and implemented into FPGAs and ASICs.
The distribution also includes a complete Software
Development Kit (SDK) based on GNU tools. It includes
binary utilities (assembler, linker), C/C++ compiler,
debugger and an architectural simulator. There is also a
port of the µClinux Operating System [13] and some
groups are working to port other OS such as Linux,
RTEMS [12] and eCos [19]. The OpenRISC Team has
also developed a platform specification (OpenRISC
Reference Platform, ORP) and a platform example
(ORPSoC) that includes RTOS (µClinux) and
bootstrapping monitor (ORPmon). There are also
development boards and silicon implementations of this

platform[11].

When the selected quality assessment program
(openMORE) is applied to the previously described IP
core, the first problem is that only the synthesizable RT
model of the core is evaluated and the rest of the
distribution (basically, the SDK) is ignored. OpenMORE
splits the soft-core evaluation into 3 main sections:

• Macro Design Guidelines. The OpenCores project
provides a HDL coding guideline document [22] that
verifies most of the OpenMORE recommendations.
Additionally, the main core developers are design-
company engineers that use standard industrial
design practices. Thus, the overall coding-style
quality of the OR1200 core is quite good (283 of 396
points, that is an OpenMORE rating of 71%). The
Macro Design Guidelines have three sections:
System-Level Design Issues, RTL Coding and
Synthesis Guidelines. Concerning “System Level
Design Issues”, the core rating is very good (64 of
70 points, rating of 91%). The weaker aspect of the
core is the documentation of clocks. The rating of
the RTL coding section is lower (158 of 218 points,
a 71%), mainly because the naming and port
conventions are different. The poorest rating is
obtained in the synthesis section (61 of 108 points,
51 %) because the distribution only includes a
simple global synthesis script.

• Verification Guidelines. The OpenCores IPs should
fulfill the verification strategies defined in [23]. This
draft is a preliminary version that defines the main
verification procedures but it is poorer than up-to-
date approaches such as the VSIA functional
verification deliverables [17]. Nevertheless, the
verification rating of the open-source core is quite
good (54 of 74 points, 73%). The rating of the macro
verification section is very poor (11 of 22 points,
50%) but the system level verification rating is very
good (43 of 48 points, 89%). These results were
surprising because it was thought that verification
was one of the weaker aspects of the core. The
reason could be the verification goals. The main goal
of the OR1200 verification environment might be to
enable the IP integrator to perform an acceptance test
or even and integration test. However, in our work
we needed a more complete verification environment
that could validate source code modifications.

• Deliverable Guidelines. The OpenRISC
deliverables obtain a good rating: 74 of 104 points
that is a 71.4%. The weaker part is related with the
“verification files”.

4.1. Integer Unit As conclusion, the overall quality of the open-source
core is 411 of 570 points that is a rating of 73%. In
OpenMORE, a rating greater than 60% usually means that
the core is “good for reuse” thus we can conclude that the
OpenRISC core has enough quality to be integrated in an
industrial development.

The pipeline of this unit has been optimized in order to
improve the OR1200 performance. Several simulations of
the proposed Integer Unit have shown that it takes about
17% fewer cycles than the OpenRISC 1200
implementation. The SystemC description of this unit has
4100 code lines. 3. Proposed OpenRISC Based Platform

4.2. Data and instruction caches One of the requirements of this work was to develop
in SystemC a platform that could be included in a low cost
and high performance family of products. An OR1200-
based platform does not verify this requirement thus a
new platform had to be developed. It includes a new
microprocessor core (OpenRISC 1500) and the minimum
set of elements needed to provide basic functionality (see
Figure 1). Additionally, the platform should include an
operating system with low memory-size requirements
such as the open-source eCos RTOS.

The degree of associativity was decided after several
test-case simulations. The decision was to implement 2-
way associative caches. Cache size and data block size are
parametrizable. Cache size can be set from 2 KB to 8 KB
and the block size can be set to 16, 32 or 64 bytes. The
LRU (Least Recently Used) replacement algorithm is
used. The system integrator can choose between the two
possible cache write policies: copy back and write through
[15]. Finally, two additional techniques are used to
improve performance: load through and write buffer [15].
The data and instruction caches are described in 5900
SystemC code lines.

Bus controller

FLASH

RAM

UART

Wishbone bus

Ins.
Cache

Data.
Cache

INTEGER UNIT

Except

Unit

Timer

PIC

Watchd.

Power
manag.

Perf.
Count

Debug
Unit

Development
Interface

JTAG

CPU

Figure 1: Proposed Platform Structure

4.3. Debug unit and development interface

The debug unit is an optional facility that provides the
ability to create hardware breakpoints and watchpoints
based on complex comparison conditions with stored or
loaded values, data and instruction memory addresses. It
is very closely related to the development interface that
allows complete in-system debugging. The development
interface is accessed by the debugging software via a
JTAG port. Through the development interface, the
debugging software can analyze the status of the CPU,
memory contents, trace information, etc. The debug and
development interface description takes about 2600
SystemC code lines.

The basic communication channel of the platform is an
OpenCores Wishbone Compatible Bus [14]. The bus
master controller connects the CPU with the peripherals.
Additionally, it provides peripheral access for in-circuit
debugging. The platform also includes the slave
controllers that manage the access to Flash and RAM
memories and, optionally, it could include a 16550
compatible UART. The synthesizable description of the
CPU peripherals (excluding the UART) takes about 2500
SystemC code lines.

4.4. Other units

The exception management unit of this CPU can raise
ten different types of exceptions that can be hardware-
caused or software-caused. This unit is described in about
600 SystemC code lines.

4. CPU Description
The OpenRISC 1000 architecture only provides one

line of external interrupt. Thus a programmable interrupt
controller (PIC) has to be included when more interrupt
lines are needed. Other interrupt sources are the tick timer
(software oriented clock) and watchdog. These modules
have been described in 466 SystemC lines.

OR1500 is a 32-bit RISC processor that fulfils the
OR1000 architecture and offers a lot of configuration
possibilities and optional units that enable its use in a
wide range of application. It is composed of eleven units
(see figure 1) that will be next described in order to
provide a system complexity overview. These units have
been described in about 14500 SystemC code lines. The performance counter unit keeps a count of the

number of times that a certain event has occurred. These
events are: instruction fetches, load and store accesses,
cache misses and watch points. The programmer can
obtain profiling information about the software executed
by checking these counters. The performance counter unit
has been described in 734 SystemC code lines.

The power management unit can modify the system
clock frequency, shut down modules or force the CPU to
enter sleep mode in order to reduce the power
consumption. The software can access all these features.
The module description has only 138 code lines.

5. Software Development Kit

Our first idea was to re-use the set of software
development tools (assembler, linker, C/C++ compiler,
debugger and architectural simulator) that the OpenRISC
distribution includes and focus our work on the eCos
RTOS porting. However, those tools are neither very
stable nor well-tested, and with daily use they prove to be
prone to errors that are not acceptable for the development
of an industrial application. In fact, even the Application
Binary Interface (ABI) was not totally defined and some
work with the OpenRISC Team was needed to fix it. In
order to find a solution for these problems, a profound
analysis of each of the tools has been made. The C/C++
compiler (GCC 2.95) seemed to have some errors because
the OpenRISC port uses pieces of code borrowed from
ports of other architectures, in an effort to obtain a
working compiler in the shortest possible time.
Additionally, many developers have been simultaneously
working on the code without clear guidelines. The chosen
solution was to rewrite the port, emphasizing on
producing a clear and robust code. In order to develop a
new port, both a set of target description macros (which
summarize basic characteristics of target architecture) and
a machine description file (that defines the way to
translate from the parsed C/C++ code to OR1K assembly)
need to be written (about 2000 code lines and 4 man-
month effort). This port is being integrated with the latest
version of the OpenRISC port and included in the
OpenRISC distribution.

The available debugger (GDB) has a very limited
functionality and it fails when complex tasks, such as
stack backtrace or function identification, are performed.
The reasons for these problems are an incomplete
development status, stressed by a strong dependency on
the previously commented unstable compiler. Therefore, a
complete rewriting was carried out, synchronizing the
debugger with the new compiler and integrating it within
the new GDB multi-architecture framework[16].
Additionally, a software module to communicate the GDB
with the in-circuit development interface has been

developed.

Existing binary utilities for OpenRISC (mainly
assembler and linker) are in working status. Thus, the
distribution version works correctly with the new
compiler and debugger, and it is being used in our design
flow.

The simulator is a key element for both embedded
application developers and platform designers. The
former use it to verify the functionality of the application
software, while the latter utilize it as a golden model of
the platform. The simulator provided by the OpenRISC
Team (or1ksim), is a classical Instruction Set Simulator
(ISS) that lacks the ability to measure performance
improvements gained by means of architectural
modifications or to provide cycle-accurate information. In
order to fix these problems, a cycle-accurate simulator has
been developed (more than 10000 C code lines, including
debugger support).

The Embedded Configurable Operating System (eCos)
[19] was chosen as embedded RTOS, mainly due to its
small memory size which makes it an ideal choice for
low-cost embedded systems. Additionally, the OpenRISC
core configuration has been integrated within the eCos
Configuration Tool environment, merging both tasks and
avoiding misconfigurations between hardware and
software. In order to port eCos to the OR1500 based
platform, a new Hardware Abstraction Layer (HAL)[19]
had to be developed (more than 2500 C and assembler
code lines). This RTOS also include an important set of
test benches that have allowed the verification of the port,
the SDK and the complete hardware platform.

6. Verification Methodology

One of the most important aspects to guarantee the
quality of an IP core is the verification methodology. As
was previously commented, the OpenRISC verification
methodology was too poor to validate the new core, thus a
new verification environment had to be developed. Our
verification methodology defines 3 verification levels.

6.1. Block level verification

 Every system component must have its own
verification environment. Classical signal-oriented tests or
transaction-based tests are used to verify the system
blocks. The modeling style defined in the SystemC
Verification Guide [20] has been used to generate the
transaction-based tests. The use of transactors meant an
important reduction of the test environment size, test
documentation and modification, with the consequent
reduction of the verification effort. Coverage metrics have

been used to certify the test quality. In this project, the
block test environments achieve 100% line coverage in all
the blocks. The GNU ‘gcov’ tool has been used to
calculate this coverage. Table 1 shows the total number of
block-level test bench lines, classified by module.

Table 1: Block and module oriented tests

Modules Number
of Blocks

Block Test
Bench lines

Module Test
Bench lines

Integer unit 11 2007 1056
Excep. unit 1 284 284
Data cache 3 171 903
Ins Cache 2 198 747
Debug unit 1 1930 1930
Dev. Interface 2 72 2044
Perf. Counters 1 359 359
Power Manag. 1 190 190
Tick Timer 1 135 135
Watchdog 1 99 99
PIC 1 120 120

6.2. Module level verification

At module level, functional test benches and random
tests have been used. These tests verify the block
relationships and detect special corner cases. It is
interesting to highlight that the transaction-based random
tests [18] have detected more than 30 very specific corner
cases with a simple test infrastructure. The SystemC
Verification Library (SCV [20]) has allowed us to define
very complex random tests (e.g. correct instruction
sequences) very easily and with a low effort. At module
level, the behavior of the RT-description is compared with
the cycle-accuracy architectural simulator, providing an
automatic checking of the RT core outputs. Thus, the
simulator has been used as a golden model of the system.
To increase the simulator confidence, different
engineering teams have developed the simulator and the
RT-model. Table 1 shows the total number of lines of the
module-oriented verification environment.

6.3. System level verification

At this level, some test programs are used to verify the
platform. Our verification environment includes two types
of test programs: functional tests and application example
programs. About 220 assembler functional test programs
have been developed to validate particular aspects of the
platform. Engineers, who were not involved in the CPU
design, derived these tests from the system specification
document. Additionally, a new test is included every time
that a new bug is detected (regression test). The main
application-example test is the complete set of eCos tests.

It includes 154 tests that explore all the RTOS
possibilities. These tests have also been used to verify the
GDB interface with the development interface through
JTAG core facilities.

7. Results

In this section several aspects of the developed
platform will be analyzed. Firstly, the architectural design
of the microprocessor is evaluated. The new
microprocessor core (OR1500) needs on average 17% less
clock cycles than OR1200 when it is configured without
caches. With caches, the performance gain is close to
40%. Considering that a 3-clock-cycle delay is needed to
access the main memory, a 40MHz implementation of
OR1500 will reach 34.6 MIPS. Without caches, the
microprocessor reaches 6.2 MIPS.

Secondly, the simulation performances of the core is
commented. As has been previously commented, two
models have been developed: a functional model (that
includes the architectural simulator, ISS, and functional
models of other platform components) and a synthesizable
RT-level model. The functional mode reaches about
850000 instructions per second while the RT-level model
reaches about 7400 instructions per second. Thus, the
functional model is about 115 times faster than the RT-
level model although it maintains the cycle accuracy.
These simulation results have been obtained in a 2GHz
PC, with Linux OS. The SystemC RT-level simulation
time is close to the Verilog simulation time (using the
Synopsys VCS simulator) although the Verilog simulation
could sometimes be up to 10% faster. The Verilog
descriptions have been automatically generated from the
SystemC code using the Synopsys SystemC Compiler.

After the simulation performance analysis, the
synthesis results of the platform are presented. The system
has been described in about 14500 synthesizable SystemC
code lines. This code was automatically translated to
Verilog (as was previously commented) and synthesized
with Synopsys tools. The target technology was a Xilinx
Virtex2 FPGA with a medium speed grade (-5). Table 2
shows the area and critical paths of four configurations:
Minimal (only the integer unit without multiplier),
Minimal with multiplier (hardware resources for one-
cycle multiplication and MAC instructions are included),
common (8Kbyte data and instruction caches are
included) and maximum (all the optional modules, such as
debug unit, development interface, performance counters,
etc, with maximum configuration parameters are
included). Now, the platform is being implemented in a
FPGA development board and verified in a real
demonstrator.

Table 2. Synthesis results

Configuration Area (gates) Critical path
Minimal 67481 17.5 ns
Minimal with multiplier 80619 19.2 ns
Common 1166541 24.6 ns
Maximum 1241016 24.6 ns

Finally, some comments about the design effort. We
have estimated that about 4.5 man-years have been spent
in platform development. About 30% of the effort has
been spent in the SDK and the rest (70%) in the hardware
development. The software effort has been distributed
between the simulator (30%), eCos port (28%), gcc port
(22%) and gdb port (20%). The GDB port includes the
communication with the in-circuit development interface.
The hardware effort has been distributed between the
platform design (48%), verification (42%) and synthesis
(10%). We also estimated that the use of an open-source
core has reduced the total development effort by 50%
even although a huge modification has been performed.

8. Conclusions

A first conclusion of this work is that an open-source
core (such as OpenRISC) has enough quality to be
integrated in an industrial project and it is a very good
way to develop modified cores that cover specific
company requirements at low cost. Additionally, we think
that an open-source core is not really reusable until at
least two different implementations have been performed.
Most of our problems have been a consequence of the fact
that the original OpenRISC SDK source code has not
been reviewed deeply enough and the core documentation
has not been properly updated. After the profound
revision and code improvements that this work has
introduced in the open-source core, the distribution
(especially the SDK) can be reused and modified with less
effort.

We have developed a new platform that covers most
of the predefined requirements (low cost and high
performance). This platform is based on a new
microprocessor core, OR1500. This core, and in general
any microprocessor IP, is not a “normal” core because it
needs a complex software development kit to support it
(compiler, debugger, RTOS, simulators, performance
analysis tools, etc). Thus, this type of cores needs
particular quality metrics and design reuse methodologies.
The platform has been described in synthesizable
SystemC code and implemented in an FPGA. The use of
SystemC has had a very positive impact in the project,
especially in the verification part. The integration of
C/C++ programs (such as the architectural simulator) into

the SystemC verification environment has been very easy,
direct and efficient and the SystemC Verification Library
(SCV) has allowed the reduction and clarification of all
the test benches with an important decrease in the
verification effort.

9. References
[1] The International Technology Roadmap For Semiconductors. 2001

Edition. http://public.itrs.net/Files/2001ITRS/home.htm
[2] http://www.vsi.org/
[3] P. Bricaud, M. Keating. Reuse Methodology Manual. Kluwer

Academic Publisher. 1998.
[4] http://www.us.design-reuse.com/
[5] G. Saucier, T. Pfirst, M. Have, M. Radetzki, P. Neuman. IP

Transfer: a mapping problem. IP-Based SoC Design Workshop.
2002.

[6] W. Savage, J. Chilton, R. Camposano. IP Reuse in the System on
Chip Era. ISSS’00. 2000.

[7] D. Lammers. VSIA’s new leader has ‘revitalization’ plan.
Eedesign. March 17, 2003.

[8] A. Dey, J. Moudy. Cost Savings via Reuse. Electronic Design
Process Workshop (EDP), 2002

[9] G. Moretti. Your Core – My Problem? Integration and Verification
of IP. Panel of the 38th Design Automation Conference. DAC’01.
2001.

[10] J. Ganssle. The Failure of Reuse. Embedded.com. December 14,
2001.

[11] OPENCORES – Project: OpenRISC 1000.
http://www.opencores.org/projects/or1k/

[12] RTEMS. http://www.rtems.com/RTEMS/rtems.html
[13] uClinux – Embedded Linux Microcontroller Project – Home Page.

http://www.uclinux.org
[14] WISHBONE System-on-Chip (SoC) Interconnection Architecture

for Portable IP Cores. OpenCores, September 7, 2002
[15] J.L. Hennessy and D.A. Patterson. Computer Architecture. A

Quantitive Approach. Morgan Kaufmann Publishers, San Mateo,
CA, second edition, 1996

[16] Andrew Cagney. What is multi-arch. Cygnus Solutions, 1999.
Available:http://sources.redhat.com/gdb/papers/multi-
arch/whatis.html

[17] T. Anderson. A preview of VSIA Functional Verification
Deliverables. VSIA European Forum. March 3, 2003.

[18] J. Rose, S. Swan. SCV Randomization. August 13, 2003.
http://www.testbuilder.net/reports/scv_randomization.pdf

[19] Anthony J. Massa. Embedded Software Development with eCos.
Prentice Hall, 2002.

[20] SystemC Verification Standard Specification. December 8, 2002.
www.systemc.org.

[21] http://www.openmore.com/
[22] OpenCores Coding Guidelines. Rev 1.2. July 14, 2003.

http://www.opencores.org/tmp/cvsget_cache/common/opencores_c
oding_guidelines.pdf

[23] R. Usselmann. Verification Strategies. Rev 0.1. February 4, 2001.
http://www.opencores.org/tmp/cvsget_cache/common/ver_plan.pdf

http://www.us.design-reuse.com/
http://www.opencores.org/projects/or1k/
http://www.rtems.com/RTEMS/rtems.html
http://www.uclinux.org/
http://sources.redhat.com/gdb/papers/multi-arch/whatis.html
http://sources.redhat.com/gdb/papers/multi-arch/whatis.html
http://www.opencores.org/tmp/cvsget_cache/common/opencores_coding_guidelines.pdf
http://www.opencores.org/tmp/cvsget_cache/common/opencores_coding_guidelines.pdf

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

