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Abstract 
The latest version of the International Technology 

Roadmap for Semiconductors predicts that design reuse 
will be essential in the near future to face the constantly 
increasing design complexity. The concept comes from 
software engineering in which reuse is a fundamental 
technology. In order to provide libraries and applications 
to reuse in software development, some open-source 
initiatives (e.g. Linux, gcc, X, mysql) have appeared 
during the last decades.  The basic idea is to distribute the 
library or application source code (normally free-of-
charge) and allow any developer to use, modify, debug 
and improve it. Several initiatives have tried to port this 
idea to hardware development. The main goal of this 
paper is to develop a synthesizable platform described in 
SystemC from an open architecture. The platform includes 
a CPU (OpenRISC) and some basic peripherals. A set of 
software development tools (compiler, assembler, 
debugger) and RTOS (eCos) has also been developed. 
This work enables the evaluation of the advantages and 
disadvantages of the open-source model in electronic 
system design. 

1. Introduction1 

In order to allow the huge increase in design 
productivity that seems necessary to exploit the constantly 
increasing system and silicon complexities, a system level 
design methodology that allows reuse-based and platform-
based design in both HW and SW domains will be 
essential in the coming years [1]. This has created a new 
business segment (commerce in HW and SW IPs) in 
which a lot of IP-developments, IP-vendors and IP-
catalogs have appeared during recent years. However, to 
be practical, the reuse-based methodology must guarantee 
that the IP integration process is successful (satisfying 
specification and constraints, error-free and cheaper than 

homemade development) thus some proposals have been 
made with this objective. Firstly, some standards (e.g. 
VSIA standards [2]), specification languages and IP 
design rules (e.g. Reuse Methodology Manual [3]) were 
defined. Secondly, some electronics catalogs that facilitate 
core selection and transfer were developed (e.g. [4][5]). 
Finally, some CAD tools that provide the necessary 
infrastructure for IP-based design were proposed [6]. 

But even taking into account the previously 
commented techniques, reuse can doom a project to 
failure. This has forced a review of approaches (e.g. VSIA 
[7]) and an analysis of the main cost involved in reuse [8]. 
There are three primary metrics that can determine the 
magnitude of cost and saving via reuse: original 
development time, amount of design modification and 
verification effort. Verification is one of the main 
bottlenecks of system level design, thus it is also a 
problem in IP-based design [9]. 

Another problem is IP modifications. In theory, only 
the IP interface can be modified, but in practical cases 
some modifications have to be introduced in the IP to 
cover specifications and constraints. A core is not really 
reusable until it has been reused (and modified) several 
times [10]. Additionally, it is expensive to do forward-
looking design of a function or module; today it is easer 
and cheaper to solve very specific problems than 
anticipate demands of future projects. Thus, new projects 
sometimes require new features of existing cores that have 
to be implemented in the IP. The core provider can do 
these modifications (commercial solution) with a 
substantial increment of the core cost. Another possibility 
(ad-hoc solution) is to use open-source cores in order to 
create an internally developed core [8]. 

The open-source approach seems to have several 
advantages: the core is very cheap (normally free), the 
user can have source code access and there is a group of 
developers that provide know-how, maintain and improve 
the core. However, it may also have several disadvantages 
such as instability (the development group changes or 
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disappears), incomplete development, poor or no support 
of existing IP-reuse infrastructures and standards, poor 
documentation and verification methodology.  

The main goal of this paper is to explore the ad-hoc 
solution to enable reuse. Thus, a microprocessor (based 
on the open-source OpenRISC core [11]) and the basic 
HW (busses, memories, peripherals) and SW (compiler, 
debugger, RTOS) platform elements have been 
developed. The system has been described in SystemC 
and implemented within a FPGA.  

The quality of the open-source core will be analyzed 
in the next section. After this, the developed platform will 
be presented (section 3) and its main hardware (section 4) 
and software (section 5) components described. Section 6 
will comment the core verification methodology and 
environment. Finally, the simulation and synthesis results 
will be presented on section 7 and some conclusion will 
be provided on section 8. 

2. Open-Source IP Core Quality 

IP core quality assessment is an important issue in 
reuse-based design methodologies. Many metrics and 
techniques have been proposed for this objective, such as 
the VSIA Quality IP Metric (QIP)[2] or the 
Mentor&Synopsys OpenMORE [21]. In this work, we 
have used the OpenMORE quality assessment program to 
evaluate the open-source IP core. We have selected this 
program because it can be downloaded free, it has been 
used to qualify some commercial cores and it was donated 
to VSIA and integrated into QIP (currently under VSIA 
member review). 

The first step is to analyze the core distribution. The 
OpenRISC Team at OpenCores [11] has developed a first 
implementation: OpenRISC 1200 (OR1200). This soft 
core is a MIPS-based 32-bit scalar RISC with Harvard 
microarchitecture, 5-stage integer pipeline, virtual 
memory support (MMU) and basic DSP capabilities.  The 
core has been described in Verilog, verified with several 
functional tests and implemented into FPGAs and ASICs. 
The distribution also includes a complete Software 
Development Kit (SDK) based on GNU tools. It includes 
binary utilities (assembler, linker), C/C++ compiler, 
debugger and an architectural simulator.  There is also a 
port of the µClinux Operating System [13] and some 
groups are working to port other OS such as Linux, 
RTEMS [12] and eCos [19]. The OpenRISC Team has 
also developed a platform specification (OpenRISC 
Reference Platform, ORP) and a platform example 
(ORPSoC) that includes RTOS (µClinux) and  
bootstrapping monitor (ORPmon). There are also 
development boards and silicon implementations of this 

platform[11]. 

When the selected quality assessment program 
(openMORE) is applied to the previously described IP 
core, the first problem is that only the synthesizable RT 
model of the core is evaluated and the rest of the 
distribution (basically, the SDK) is ignored.  OpenMORE 
splits the soft-core evaluation into 3 main sections:  

• Macro Design Guidelines. The OpenCores project 
provides a HDL coding guideline document [22] that 
verifies most of the OpenMORE recommendations. 
Additionally, the main core developers are design-
company engineers that use standard industrial 
design practices. Thus, the overall coding-style 
quality of the OR1200 core is quite good (283 of 396 
points, that is an OpenMORE rating of 71%). The 
Macro Design Guidelines have three sections: 
System-Level Design Issues, RTL Coding and 
Synthesis Guidelines. Concerning “System Level 
Design Issues”, the core rating is very good (64 of 
70 points, rating of 91%). The weaker aspect of the 
core is the documentation of clocks. The rating of 
the RTL coding section is lower (158 of 218 points, 
a 71%), mainly because the naming and port 
conventions are different. The poorest rating is 
obtained in the synthesis section (61 of 108 points, 
51 %) because the distribution only includes a 
simple global synthesis script. 

• Verification Guidelines. The OpenCores IPs should 
fulfill the verification strategies defined in [23]. This 
draft is a preliminary version that defines the main 
verification procedures but it is poorer than up-to-
date approaches such as the VSIA functional 
verification deliverables [17]. Nevertheless, the 
verification rating of the open-source core is quite 
good (54 of 74 points, 73%). The rating of the macro 
verification section is very poor (11 of 22 points, 
50%) but the system level verification rating is very 
good (43 of 48 points, 89%). These results were 
surprising because it was thought that verification 
was one of the weaker aspects of the core. The 
reason could be the verification goals. The main goal 
of the OR1200 verification environment might be to 
enable the IP integrator to perform an acceptance test 
or even and integration test. However, in our work 
we needed a more complete verification environment 
that could validate source code modifications. 

• Deliverable Guidelines. The OpenRISC 
deliverables obtain a good rating: 74 of 104 points 
that is a 71.4%. The weaker part is related with the 
“verification files”. 



 

4.1. Integer Unit As conclusion, the overall quality of the open-source 
core is 411 of 570 points that is a rating of 73%. In 
OpenMORE, a rating greater than 60% usually means that 
the core is “good for reuse” thus we can conclude that the 
OpenRISC core has enough quality to be integrated in an 
industrial development. 

The pipeline of this unit has been optimized in order to 
improve the OR1200 performance. Several simulations of 
the proposed Integer Unit have shown that it takes about 
17% fewer cycles than the OpenRISC 1200 
implementation.  The SystemC description of this unit has 
4100 code lines. 3. Proposed OpenRISC Based Platform 

4.2. Data and instruction caches One of the requirements of this work was to develop 
in SystemC a platform that could be included in a low cost 
and high performance family of products. An OR1200-
based platform does not verify this requirement thus a 
new platform had to be developed. It includes a new 
microprocessor core (OpenRISC 1500) and the minimum 
set of elements needed to provide basic functionality (see 
Figure 1). Additionally, the platform should include an 
operating system with low memory-size requirements 
such as the open-source eCos RTOS.  

The degree of associativity was decided after several 
test-case simulations. The decision was to implement 2-
way associative caches. Cache size and data block size are 
parametrizable. Cache size can be set from 2 KB to 8 KB 
and the block size can be set to 16, 32 or 64 bytes. The 
LRU (Least Recently Used) replacement algorithm is 
used. The system integrator can choose between the two 
possible cache write policies: copy back and write through 
[15]. Finally, two additional techniques are used to 
improve performance: load through and write buffer [15].  
The data and instruction caches are described in 5900 
SystemC code lines. 
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Figure 1: Proposed Platform Structure 

4.3. Debug unit and development interface 

The debug unit is an optional facility that provides the 
ability to create hardware breakpoints and watchpoints 
based on complex comparison conditions with stored or 
loaded values, data and instruction memory addresses. It 
is very closely related to the development interface that 
allows complete in-system debugging. The development 
interface is accessed by the debugging software via a 
JTAG port. Through the development interface, the 
debugging software can analyze the status of the CPU, 
memory contents, trace information, etc. The debug and 
development interface description takes about 2600 
SystemC code lines. 

The basic communication channel of the platform is an 
OpenCores Wishbone Compatible Bus [14]. The bus 
master controller connects the CPU with the peripherals. 
Additionally, it provides peripheral access for in-circuit 
debugging. The platform also includes the slave 
controllers that manage the access to Flash and RAM 
memories and, optionally, it could include a 16550 
compatible UART. The synthesizable description of the 
CPU peripherals  (excluding the UART) takes about 2500 
SystemC code lines. 

4.4. Other units 

The exception management unit of this CPU can raise 
ten different types of exceptions that can be hardware-
caused or software-caused. This unit is described in about 
600 SystemC code lines. 

4. CPU Description 
The OpenRISC 1000 architecture only provides one 

line of external interrupt. Thus a programmable interrupt 
controller (PIC) has to be included when more interrupt 
lines are needed. Other interrupt sources are the tick timer 
(software oriented clock) and watchdog. These modules 
have been described in 466 SystemC lines. 

OR1500 is a 32-bit RISC processor that fulfils the 
OR1000 architecture and offers a lot of configuration 
possibilities and optional units that enable its use in a 
wide range of application. It is composed of eleven units 
(see figure 1) that will be next described in order to 
provide a system complexity overview. These units have 
been described in about 14500 SystemC code lines.  The performance counter unit keeps a count of the 



 

number of times that a certain event has occurred. These 
events are: instruction fetches, load and store accesses, 
cache misses and watch points. The programmer can 
obtain profiling information about the software executed 
by checking these counters. The performance counter unit 
has been described in 734 SystemC code lines. 

The power management unit can modify the system 
clock frequency, shut down modules or force the CPU to 
enter sleep mode in order to reduce the power 
consumption. The software can access all these features. 
The module description has only 138 code lines. 

5. Software Development Kit 

Our first idea was to re-use the set of software 
development tools (assembler, linker, C/C++ compiler, 
debugger and architectural simulator) that the OpenRISC 
distribution includes and focus our work on the eCos 
RTOS porting. However, those tools are neither very 
stable nor well-tested, and with daily use they prove to be 
prone to errors that are not acceptable for the development 
of an industrial application. In fact, even the Application 
Binary Interface (ABI) was not totally defined and some 
work with the OpenRISC Team was needed to fix it. In 
order to find a solution for these problems, a profound 
analysis of each of the tools has been made. The C/C++ 
compiler (GCC 2.95) seemed to have some errors because 
the OpenRISC port uses pieces of code borrowed from 
ports of other architectures, in an effort to obtain a 
working compiler in the shortest possible time. 
Additionally, many developers have been simultaneously 
working on the code without clear guidelines. The chosen 
solution was to rewrite the port, emphasizing on 
producing a clear and robust code. In order to develop a 
new port, both a set of target description macros (which 
summarize basic characteristics of target architecture) and 
a machine description file (that defines the way to 
translate from the parsed C/C++ code to OR1K assembly) 
need to be written (about 2000 code lines and 4 man-
month effort). This port is being integrated with the latest 
version of the OpenRISC port and included in the 
OpenRISC distribution. 

The available debugger (GDB) has a very limited 
functionality and it fails when complex tasks, such as 
stack backtrace or function identification, are performed. 
The reasons for these problems are an incomplete 
development status, stressed by a strong dependency on 
the previously commented unstable compiler. Therefore, a 
complete rewriting was carried out, synchronizing the 
debugger with the new compiler and integrating it within 
the new GDB multi-architecture framework[16]. 
Additionally, a software module to communicate the GDB 
with the in-circuit development interface has been 

developed. 

Existing binary utilities for OpenRISC (mainly 
assembler and linker) are in working status. Thus, the 
distribution version works correctly with the new 
compiler and debugger, and it is being used in our design 
flow. 

The simulator is a key element for both embedded 
application developers and platform designers. The 
former use it to verify the functionality of the application 
software, while the latter utilize it as a golden model of 
the platform. The simulator provided by the OpenRISC 
Team (or1ksim), is a classical Instruction Set Simulator 
(ISS) that lacks the ability to measure performance 
improvements gained by means of architectural 
modifications or to provide cycle-accurate information. In 
order to fix these problems, a cycle-accurate simulator has 
been developed (more than 10000 C code lines, including 
debugger support). 

The Embedded Configurable Operating System (eCos) 
[19] was chosen as embedded RTOS, mainly due to its 
small memory size which makes it an ideal choice for 
low-cost embedded systems. Additionally, the OpenRISC 
core configuration has been integrated within the eCos 
Configuration Tool environment, merging both tasks and 
avoiding misconfigurations between hardware and 
software. In order to port eCos to the OR1500 based 
platform, a new Hardware Abstraction Layer (HAL)[19] 
had to be developed (more than 2500 C and assembler 
code lines). This RTOS also include an important set of 
test benches that have allowed the verification of the port, 
the SDK and the complete hardware platform. 

6. Verification Methodology 

One of the most important aspects to guarantee the 
quality of an IP core is the verification methodology. As 
was previously commented, the OpenRISC verification 
methodology was too poor to validate the new core, thus a 
new verification environment had to be developed. Our 
verification methodology defines 3 verification levels. 

6.1. Block level verification 

 Every system component must have its own 
verification environment. Classical signal-oriented tests or 
transaction-based tests are used to verify the system 
blocks. The modeling style defined in the SystemC 
Verification Guide [20] has been used to generate the 
transaction-based tests. The use of transactors meant an 
important reduction of the test environment size, test 
documentation and modification, with the consequent 
reduction of the verification effort. Coverage metrics have 



 

been used to certify the test quality. In this project, the 
block test environments achieve 100% line coverage in all 
the blocks. The   GNU ‘gcov’ tool has been used to 
calculate this coverage. Table 1 shows the total number of 
block-level test bench lines, classified by module. 

Table 1: Block and module oriented tests 

Modules Number 
of Blocks 

Block Test 
Bench lines 

Module Test 
Bench lines 

Integer unit 11 2007 1056
Excep. unit 1 284 284
Data cache 3 171 903
Ins Cache 2 198 747
Debug unit 1 1930 1930
Dev. Interface 2 72 2044
Perf. Counters 1 359 359
Power Manag. 1 190 190
Tick Timer 1 135 135
Watchdog 1 99 99
PIC 1 120 120

 

6.2. Module level verification 

At module level, functional test benches and random 
tests have been used. These tests verify the block 
relationships and detect special corner cases. It is 
interesting to highlight that the transaction-based random 
tests [18] have detected more than 30 very specific corner 
cases with a simple test infrastructure. The SystemC 
Verification Library (SCV [20]) has allowed us to define 
very complex random tests (e.g. correct instruction 
sequences) very easily and with a low effort. At module 
level, the behavior of the RT-description is compared with 
the cycle-accuracy architectural simulator, providing an 
automatic checking of the RT core outputs. Thus, the 
simulator has been used as a golden model of the system. 
To increase the simulator confidence, different 
engineering teams have developed the simulator and the 
RT-model. Table 1 shows the total number of lines of the 
module-oriented verification environment. 

6.3. System level verification 

At this level, some test programs are used to verify the 
platform. Our verification environment includes two types 
of test programs: functional tests and application example 
programs. About 220 assembler functional test programs 
have been developed to validate particular aspects of the 
platform. Engineers, who were not involved in the CPU 
design, derived these tests from the system specification 
document. Additionally, a new test is included every time 
that a new bug is detected (regression test). The main 
application-example test is the complete set of eCos tests. 

It includes 154 tests that explore all the RTOS 
possibilities. These tests have also been used to verify the 
GDB interface with the development interface through 
JTAG core facilities. 

7. Results 

In this section several aspects of the developed 
platform will be analyzed. Firstly, the architectural design 
of the microprocessor is evaluated. The new 
microprocessor core (OR1500) needs on average 17% less 
clock cycles than OR1200 when it is configured without 
caches. With caches, the performance gain is close to 
40%. Considering that a 3-clock-cycle delay is needed to 
access the main memory, a 40MHz implementation of 
OR1500 will reach 34.6 MIPS. Without caches, the 
microprocessor reaches 6.2 MIPS. 

Secondly, the simulation performances of the core is 
commented.  As has been previously commented, two 
models have been developed: a functional model (that 
includes the architectural simulator, ISS, and functional 
models of other platform components) and a synthesizable 
RT-level model. The functional mode reaches about 
850000 instructions per second while the RT-level model 
reaches about 7400 instructions per second. Thus, the 
functional model is about 115 times faster than the RT-
level model although it maintains the cycle accuracy. 
These simulation results have been obtained in a 2GHz 
PC, with Linux OS. The SystemC RT-level simulation 
time is close to the Verilog simulation time (using the 
Synopsys VCS simulator) although the Verilog simulation 
could sometimes be up to 10% faster. The Verilog 
descriptions have been automatically generated from the 
SystemC code using the Synopsys SystemC Compiler. 

After the simulation performance analysis, the 
synthesis results of the platform are presented. The system 
has been described in about 14500 synthesizable SystemC 
code lines. This code was automatically translated to 
Verilog (as was previously commented) and synthesized 
with Synopsys tools. The target technology was a Xilinx 
Virtex2 FPGA with a medium speed grade (-5). Table 2 
shows the area   and critical paths of four configurations: 
Minimal (only the integer unit without multiplier), 
Minimal with multiplier (hardware resources for one-
cycle multiplication and MAC instructions are included), 
common (8Kbyte data and instruction caches are 
included) and maximum (all the optional modules, such as 
debug unit, development interface, performance counters, 
etc, with maximum configuration parameters are 
included).  Now, the platform is being implemented in a 
FPGA development board and verified in a real 
demonstrator. 



 

Table 2. Synthesis results 

Configuration Area (gates) Critical path
Minimal  67481 17.5 ns 
Minimal with multiplier 80619 19.2 ns 
Common  1166541 24.6 ns 
Maximum 1241016 24.6 ns 

 

Finally, some comments about the design effort. We 
have estimated that about 4.5 man-years have been spent 
in platform development. About 30% of the effort has 
been spent in the SDK and the rest (70%) in the hardware 
development. The software effort has been distributed 
between the simulator (30%), eCos port (28%), gcc port 
(22%) and gdb port (20%). The GDB port includes the 
communication with the in-circuit development interface. 
The hardware effort has been distributed between the 
platform design (48%), verification (42%) and synthesis 
(10%). We also estimated that the use of an open-source 
core has reduced the total development effort by 50% 
even although a huge modification has been performed. 

8. Conclusions 

A first conclusion of this work is that an open-source 
core (such as OpenRISC) has enough quality to be 
integrated in an industrial project and it is a very good 
way to develop modified cores that cover specific 
company requirements at low cost. Additionally, we think 
that an open-source core is not really reusable until at 
least two different implementations have been performed. 
Most of our problems have been a consequence of the fact 
that the original OpenRISC SDK source code has not 
been reviewed deeply enough and the core documentation 
has not been properly updated. After the profound 
revision and code improvements that this work has 
introduced in the open-source core, the distribution 
(especially the SDK) can be reused and modified with less 
effort.  

We have developed a new platform that covers most 
of the predefined requirements (low cost and high 
performance). This platform is based on a new 
microprocessor core, OR1500. This core, and in general 
any microprocessor IP, is not a “normal” core because it 
needs a complex software development kit to support it 
(compiler, debugger, RTOS, simulators, performance 
analysis tools, etc). Thus, this type of cores needs 
particular quality metrics and design reuse methodologies.  
The platform has been described in synthesizable 
SystemC code and implemented in an FPGA. The use of 
SystemC has had a very positive impact in the project, 
especially in the verification part. The integration of 
C/C++ programs (such as the architectural simulator) into 

the SystemC verification environment has been very easy, 
direct and efficient and the SystemC Verification Library 
(SCV) has allowed the reduction and clarification of all 
the test benches with an important decrease in the 
verification effort. 
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