
A Memory Aware Behavioral Synthesis Tool for Real-Time
VLSI Circuits

Gwénolé Corre
gwenole.corre@univ-ubs.fr

Eric Senn
eric.senn@univ-ubs.fr

Nathalie Julien
nathalie.julien@univ-ubs.fr

Eric Martin
eric.martin@univ-ubs.fr

LESTER / University of South Brittany
BP92116, 56321 LORIENT cedex, France

ABSTRACT
We introduce a new approach to take into account the mem-
ory architecture and the memory mapping in the Behav-
ioral Synthesis of Real-Time VLSI circuits. We formalize
the memory mapping as a set of constraints for the syn-
thesis, and defined a Memory Constraint Graph and an ac-
cessibility criterion to be used in the scheduling step. We
use a memory mapping file to include those memory con-
straints in our HLS tool GAUT. Our scheduling algorithm
exhibits a relatively low complexity that permits to tackle
complex designs in a reasonable time. Several experiments
are performed to demonstrate the efficiency of our method,
and to compare GAUT with an industrial behavioral syn-
thesis tool. We finally show how to explore, with the help
of GAUT, a wide range of solutions, and to reach a good
tradeoff between time, power-consumption, and area.

Categories and Subject Descriptors
B.5 [RTL Implementation]: Design Aids

General Terms
Design, Algorithms, Theory, Experimentation

Keywords
Memory aware, Behavioral synthesis, VLSI circuits

1. INTRODUCTION
In 2011, 90 % of the SoC area will be dedicated to the

memory. Applications are becoming more and more com-
plex, and memory now appears as a terrific bottleneck in
real-time systems. Performances are highly dependent on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’04, April 26–28, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-853-9/04/0004 ...$5.00.

the memory architecture (hierarchy, number of banks) to-
gether with the way data are placed and transferred. The de-
sign of the memory in a system has also a very great impact
on the power consumption, which is a so critical feature in
embedded applications. To tackle the complexity of memory
design, we consider as essential to take into account memory
accesses directly during the behavioral synthesis, assuming
that a reasonable trade-off between the design time and the
quality of the results is reached. In the context of HLS,
several scheduling techniques actually include memory is-
sues. Among them, most try to reduce the memory cost by
estimating the needs in terms of number of registers for a
given scheduling, but work only with scalars [2, 7]. Some
of them really schedule the memory accesses [6, 5]. They
include precise temporal models of those accesses, and try
to improve performances without considering the possibility
of simultaneous accesses which would ease the subsequent
task of register and memory allocation. Works in [1] include
the memory during HLS, but is dedicated to control inten-
sive applications. In [8], a first scheduling (force directed) is
performed on a Data Flow Graph (DFG); the memory ac-
cesses are then rescheduled after the selection and memory
allocation to reduce the overall memory cost. The complex-
ity of this scheduling algorithm, however, does not allow
to target realistic applications in a reasonable time. In [1],
memory accesses are represented as multi-cycle operations in
a Control and Data Flow Graph (CDFG). Memory vertices
are scheduled as operative vertices by considering conflicts
among data accesses. This technique is used in some indus-
trial HLS tools that include memory mapping in their design
flow (Monet, Behavioral Compiler) [4]. Memory accesses are
regarded as Input/Output. The I/O behavior and number
of control step are managed in function of the scheduling
mode [3]. In practice, the number of nodes in their input
specifications must be limited, to obtain a realistic and satis-
fying architectural solution. This limitation is again mainly
due to the complexity of the algorithms which are used for
the scheduling.

In this paper, we propose a new and simple technique to
take into account the memory mapping in the architectural
synthesis. Indeed, our aim is to produce a simple algorithm
to achieve the synthesis of even complex designs in a rea-
sonable time. Section 2 we introduce an original scheduling
technique in the synthesis flow with the formalism to resolve

82

scheduling under memory constraint. Experimental results
are discussed in section 3.

2. MEMORY AWARE SYNTHESIS
We introduce memory synthesis in the standard HLS de-

sign flow. A Signal Flow Graph (SFG) is first generated
from the algorithmic specification. This SFG is parsed and
a memory table is created. This memory table is then com-
pleted by the designer who can select the variable imple-
mentation (memory or register) and place the variable in
the memory hierarchy (which bank). The resulting table is
the memory mapping that will be used in the synthesis. In
the standard flow, the processing unit is synthesized with-
out any knowledge on the memory mapping. The memory
architecture is designed afterward and a lot of optimization
opportunities are definitely lost.

The memory mapping file contains information about ev-
ery data structure in the algorithm (mainly arrays in DSP
applications) and its allocation in memory (bank number
and physical address). Scalars can also be defined. This
memory table represents all data vertices extracted from
the SFG. This data distribution can be static or dynamic.
In the case of a static placement, the data stay at the same
place during the whole execution. If the placement is dy-
namic, data can be transferred between different levels in the
memory hierarchy. Thus, several data can share the same
location in the circuit memory. The memory mapping file
explicitly describes the data transfers to occur during the
algorithm execution. Direct Memory Address (DMA) di-
rectives will be added to the code to achieve these transfers.
The definition of the memory architecture will be performed
in the first step of the overall design flow. To achieve this
task, advanced compilers such as Rice HPF compiler, Illinois
Polaris or Stanford SUIF could be used. Indeed, these com-
pilers automatically perform data distribution across banks,
determine which access goes to which bank, and then sched-
ule to avoid bank conflicts. The Data Transfer and Storage
Exploration (DTSE) method from IMEC and the associated
tools (ATOMIUM, ADOPT) are also a good mean to deter-
mine a convenient data mapping.

The input of our HLS tool is an algorithmic description
specifies the circuit’s functionality at the behavioral level,
disregarding any potential implementation solutions. This
initial description is compiled in order to obtain an interme-
diate representation: the Signal Flow Graph (SFG). A Sig-
nal Flow Graph is a directed polar graph SFG(V, E) where
the set of vertices V = {v0, ..., vn} represents the opera-
tions, v0 and vn are respectively the source vertex and the
sink vertex. The set of edges E = {(vi, vj)} represents the
dependencies between the operations vertices. The Signal
Flow Graph contains |V | = n + 1 vertices. A vertex rep-
resents one of the following operations: arithmetic, logical,
data or delay. The difference between a Signal Flow Graph
and Data Flow Graph resides in the introduction of delay
operators (z−1). These operators are necessary to express
the use of data whose value was computed in a preceding
iteration of the algorithm. An edge Ei, j = (vi, vj) repre-
sents a data dependence between operations vi and vj such
as for any iteration of the SFG, operation vi must start its
execution before that of vj. For the data dependencies, the
execution of vj can start only after the completion of oper-
ation vi.

Once the memory table extracted from the SFG, the de-

signer can choose the place of every data and defines a
memory mapping. For every memory in the memory ta-
ble, we construct a weighted Memory Constraint Graph
(MCG). It represents conflicts and scheduling possibilities
between all nodes placed in this memory. The MCG is con-
structed from the SFG and the memory mapping file. It will
be used during the scheduling step of the synthesis. Defi-
nition : a Memory Constraint Graph is a cyclic directed
polar graph MCG(V ′, E′, W ′) where V ′ = {v′0, ..., v′n} is
the set of data vertices placed in memory. A memory Con-
straint Graph contains |V ′| = n+1 vertices which represent
the memory size, in term of memory elements. The set of
edges E′ = {(v′i, v′j)} represents the precedence between
the memory vertices, and W’ is a function that represents
the access delay between two data nodes. W’ has only two
possible values: Wseq (sequential) for an adjacent memory
access in memory, or Wrand (randomize) for a non adja-
cent memory access. Weight depends on the data place-
ment defined in the memory file. Fig. 1 shows a memory
constraint graph for the LMS filter with two simple port
memory banks. The input samples x(i) are placed consec-
utively in one bank. The filter coefficients h(i) are placed
consecutively in one another bank (dotted edges represent
edges where W = Wseq).

x0

x1

x2

x3

h3

h2

h1

h0

Figure 1: Memory constraint graph for a 4 points
LMS

The classical list scheduling algorithm relies on heuristics
in which ready operations (operations to be scheduled) are
listed by priority order. In our tool, an early scheduling is
performed. In this scheduling, the priority function depends
on the mobility criterion. This mobility is computed, for
each cycle, as the difference, in number of cycles, between
the current cycle and the operation deadline. Whenever two
ready operations need to access the same resource (this is a
so called resource conflict), the operation with the lower mo-
bility has the highest priority and is scheduled. The other
is postponed. To perform a scheduling under memory con-
straint, we introduce fictive memory access operators and
add an accessibility criterion based on the MCG. A memory
has as much access operators as access ports. The mem-
ory is declared accessible if one of its fictive memory ac-
cess operators is idle. Several operations can try to access
the same memory in the same cycle; accessibility is used
to determine which operations are really executable. Fic-
tive memory access operators are represented by tokens on
the MCG. There are as many tokens in the MCG as ports
(R/W) in the memory. These tokens are used to compute
the accessibility of the memory. The list of ready operations
is still organized according to the mobility criterion, but all
the operations that do not match the accessibility condition
are removed from this list. To schedule an operation that
involves an access to the memory, we check if the data is not
in a busy memory bank. If a memory bank is not available,

83

every operation that needs to access this memory will not
be scheduled, no matter its priority level.

3. RESULTS
Several syntheses were performed, both with GAUT and

the industrial behavioral synthesis tool Monet. We chose
the elliptic and the Kalman filters which are the biggest
applications in the HLSynth’92 benchmarks, and two classi-
cal digital algorithms: a FIR filter and an echo cancellation
algorithm, the LMS. Table 1, indicates the synthesis time
in seconds and the architecture’s latency in number of cy-
cles (the same real-time constraint was given to the tools,
the clock cycle is 10ns). Required hardware resources are
also indicated: the number of registers (Reg), of multiplex-
ers (Mux), demultiplexers (Demux), of glue logic elements
(which are tri-states in GAUT), and the number of RAM
and ROM memories. The two last columns give the number
of read and write in those memories. Single port SRAM
were used to store data. Syntheses were executed on SUN
Blade 2000 workstations.

Hardware resources are always lower in architectures syn-
thesized with GAUT, although the same number of arith-
metic operators is needed. The latency, which is the delay
between the input of the first data and the first result on the
output, is also lower with GAUT. It is necessary to distin-
guish three sorts of data in a signal processing application.
First, there are the signals, which are the input and out-
put flows of the applications. A mono-dimensional signal
x is a vector of size n, if n values of x are needed to com-
pute the result. Every cycle, a new value for x (x[n + 1])
is sampled on the input, and the oldest value of x (x[0])
is discarded. We called x an ageing, or maturing, vector or
data. Second, there are the static coefficients, whose value is
never changed. We chose to store these coefficients in ROM
with GAUT, whereas they are wired with Monet. That ex-
plains why a ROM is needed with GAUT for the FIR filter,
and not with Monet. Third, we consider the dynamic co-
efficients, whose value is changed during the execution of
the algorithm, which is the case for an adaptative filtering
like the LMS. Dynamic coefficients and ageing vectors are
stored in RAM. In Monet, the new value of a signal is always
written at the same address in memory, at the end of the
vector in the case of a 1D signal for instance. That involves
to shift every other values of the signal in the memory to
free the place for the new value. This shifting necessitates
n reads and n writes in the memory (and this is really time
and power consuming). In GAUT, the new value is stored
at the address of the oldest one in the vector. Only one
write is needed. Obviously, the address generation is more
difficult in this case, because the addresses of the samples
called in the algorithm change from on cycle to the other.
We have developed a new methodology to resolve the syn-
thesis of these address generators. The advantage is a lower
latency, since we avoid n reads and writes of the ageing vec-
tor, and a resulting lower power consumption. Indeed, the
power consumption of a memory increases with the number
of accesses.

The synthesis time, together with the reduction of hard-
ware resources and memory accesses, exhibit the efficiency of
our scheduling technique. In fact, the difference between the
synthesis time with GAUT and with a behavioral synthesizer
like Monet increases with the complexity of the application.
We have measured the synthesis times for the FIR and the

LMS filters, with an increasing complexity. Table 2 presents
the results for the LMS for 16, 32, 64, 128, 256, 512, and
1024 points. It can be observed that, even if the difference
between the synthesis time with GAUT and Monet is rel-
atively small for small designs, it becomes enormous when
the design’s complexity increases. Indeed, it becomes hours,
then days or weeks for the FIR 1024 and the LMS 512 and
1024. In fact, every memory access is a node to be schedule
in Monet, and the scheduling algorithm has a strong com-
plexity. The difference in latency is comparatively stable:
the latency with Monet varies from about 2 to 3 times the
latency with GAUT.

Table 2: Synthesis of the LMS filter
LMS tool cycles reads writes time
32 Monet 132 128 64 6s

Gaut 100 128 33 1.4s

64 Monet 260 256 128 14s
Gaut 196 256 65 1.9s

128 Monet 516 512 256 7mn30s
Gaut 388 512 129 2.6s

256 Monet 1028 1024 512 3h30mn
Gaut 772 1024 257 5.3

512 Monet 2052 2048 1027 ... days
Gaut 1540 2048 513 9.6

1024 Monet 4010 4096 2048 ... weeks
Gaut 3076 4096 1025 64

With the help of GAUT, it is easy to find the minimum
number of operators and memory banks to satisfy the ap-
plication’s timing constraint. The results for a 32 points
FFT are presented on Fig. 2. The application’s data rate is
given to the tool as the input data stream delay. When the
data rate decreases, the number of simultaneous memory
accesses, and so the number of memory banks, increases, as
well as the number of operators. Given a number of banks,
it is thus possible to find the minimum data rate, which is
reached when the scheduling generates more simultaneous
memory accesses than available memory access operators.
In this case, the number of operating resources is also the
biggest.

0

1

2

3

4

5

6

7

 0.89
1.02

 1.21
 1.38

 1.5
 1.98

 2.74
2.93

5.81
7.66

ALU

MULT

Number of resources

Data
Rate
(µs)

8banks 4banks 2 banks 1bank

Figure 2: Resource number vs. Data rate

Once found the required number of operators, one can try
different numbers of memory banks as well as several data

84

Table 1: GAUT vs Monet
time lat. (cycles) Reg Mux Demux Tri Glue RAM ROM reads writes

elliptic Monet 1s 20 19 16 15 – 27 – – – –
Gaut 1s 20 12 6 9 24 – – – – –

Kalman Monet 1s 600 36 12 20 – 34 – – – –
Gaut 1s 60 14 11 10 29 – – – – –

FIR Monet 2s 48 4 6 2 – 7 1 – 32 16
16 Gaut 1.4s 19 4 2 1 1 – 1 1 32 1

LMS Monet 6s 132 38 28 18 – 25 2 – 128 64
32 Gaut 1.4s 100 19 3 3 23 – 2 – 128 33

mappings, and evaluate their impact on the final applica-
tion’s performance and power consumption. In our exam-
ple, for a data rate equals to 7.66s, we decide to allocate one
multiplier and two ALU, and to share the memory in two
banks.

We then apply several memory mappings to the synthesis
process, and observe the impact on the resulting circuit’s
power consumption. The circuit is a FPGA Xilinx Virtex
XC400. Its consumption is computed with the Xilinx tool:
XPower. One memory unit is generated for each mem-
ory mapping. The memory unit power consumption Pmu
is provided in Table 3, together with the overall consump-
tion Ptot, and the processing unit consumption Ppu. In the
map2 16 mapping, the first sixteen real and imaginary FFT
samples are mapped in the first bank, the remaining sixteen
samples are in the second bank. In the map2 8, map2 4,
and map2 2 mappings, samples are mapped respectively 8
by 8, 4 by 4, and 2 by 2, in the first and second memory
banks. In the map2 1 mapping, even samples are in the first
bank, odd samples in the second.

Table 3: Power consumption
Power (mW) Pmu Ppu Ptot ∆ Ptot %

map2 16 (2banks) 12.71 34.35 47.06 ...
map2 8 (2banks) 12.83 21.85 34.68 -26
map2 4 (2banks) 12.9 17.77 30.67 -35
map2 2 (2banks) 12.99 21.63 34.62 -26
map2 1 (2banks) 12.87 19.26 32.13 -31

Every memory unit invariably contains 2 RAM, and 4
FSM to drive the write and read accesses between the busses
and the RAM. As a result, and because the number of mem-
ory accesses is also constant, there are very few variations on
the memory unit power consumption (less than 2.5%, only
due to small changes in I/O signals commutations and some
logic blocs). Variations of the processing unit consumption
are much more important, for they represent from 58% to
64.1% of the overall power consumption. The lowest over-
all consumption is obtained with the map2 4 mapping (35%
lower than the map2 16), even if the memory unit consump-
tion is slightly higher in this case (1.5%) than the lowest one.

4. CONCLUSION
In this paper, we present a new strategy to take into ac-

count the memory architecture and the memory mapping in
High-Level Synthesis. We define the memory mapping con-
straint and include it in the synthesis design flow. We intro-

duce Memory Constraint Graphs, and an accessibility crite-
rion to enhance the scheduling algorithm. Our method was
included in GAUT, the HLS tool developed in the LESTER
Laboratory. Several experiments were made, to explore the
efficiency of our approach. The comparison with an indus-
trial behavioral synthesis tool exhibits several advantages
for GAUT. It appears firstly that GAUT uses less hardware
resources, and reduces the count of memory accesses, which
lead to a lower latency and a lower power consumption. Sec-
ondly, GAUT is able to tackle complex designs, and to per-
form the synthesis in a reasonable time. Memory aware
synthesis and GAUT appear very efficient for exploring the
design space and for balancing optimizations between the
processing unit and the memory unit. It permits to deter-
mine the best memory architecture, i.e. the best number
of memory banks, as well as the best memory mapping, to
meet the application constraints.

5. REFERENCES
[1] P. Ellervee. High-Level Synthesis of Control and

Memory Intensive Applications. PhD thesis, Royal
Institut of Technology, Jan. 2000.

[2] C. Gebotys. Low energy memory and register allocation
using network flow. In Proc. Design Automation
Conference DAC’97, pages 435–440, June 1997.

[3] D. Knapp, T. Lyand, et al. Behavioral synthesis
methodology for HDL-based specification and
validation. In Proc. Design Automation Conference
DAC’95, June 1995.

[4] H. Ly, D. Knapp, R. Miller, and D. McMillen.
Scheduling using behavioral templates. In Proc. Design
Automation Conference DAC’95, pages 101–106, June
1995.

[5] A. Nicolau and S. Novack. Trailblazing a hierarchical
approach to percolation scheduling. In Proc. ICPP’93,
pages 120–124, 1993.

[6] N. Passos, E. Sha, and L.-F. Chao. Multi-dimensional
interleaving for time-and-memory design optimization.
In Proc. IEEE Int. Conf. On Computer Design
ICCD’95, pages 440–445, Oct. 1995.

[7] R. Saied and C. Chakrabarti. Scheduling for
minimizing the number of memory accesses in low
power applications. In Proc. VLSI Signal Processing,
pages 169–178, Oct. 1996.

[8] J. Seo, T. Kim, and P. Panda. An integrated algorithm
for memory allocation and assignment in high-level
synthesis. In Proc. Design Automation Conference
DAC’01, pages 608–611, June 2001.

85

	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index

