
Characterization of Logic Circuit Techniques for
High Leakage CMOS Technologies

Phillip Chin, Charles A. Zukowski
Columbia Integrated Systems Laboratory

Columbia University, New York, NY
pchin@cisl.columbia.edu, caz@columbia.edu

George D. Gristede, Stephen Kosonocky
IBM T.J. Watson Research Center

Yorktown Heights, NY
gristede@us.ibm.com, stevekos@us.ibm.com

ABSTRACT
Channel subthreshold and gate leakage currents are predicted
by many to become much more significant in advanced CMOS
technologies and are expected to have a substantial impact on
logic circuit design strategies. To reduce static power, tech-
niques such as the use of monotonic logic and management
of various evaluation and idle modes within logic stages may
become important options in circuit optimization. In this pa-
per, we present a general, multilevel model for logic blocks
consisting of logic gates that include a wide range of options
for static power reduction, in both the domains of topology
and timing. Existing circuit techniques are classified within
this framework and experiments are presented showing how
aspects of performance might vary across this range in a hy-
pothetical technology. The framework also allows exploration
of optimal mixing of techniques.

Categories and Subject Descriptors:
B.7.1 [Integrated Circuits]: Types and Design Styles - VLSI

General Terms:
Design, Experimentation, Performance.

Keywords:
Monotonic logic, leakage current, low power.

1. INTRODUCTION
Power dissipation has become an extremely important

constraint in modern microprocessor design as CMOS tech-
nologies continues to advance. This power issue is driven by
concerns about circuit reliability, packaging costs, and the
proliferation of mobile devices dependent on battery life.
Historically, power dissipation in CMOS circuits has pri-

marily been the result of the charging and discharging of
load capacitances, referred to as dynamic power dissipa-
tion. However, as we begin to enter the realm of sub-100 nm
technology, static power consumption is expected to become
much more important. The maximum number of transistors
on chips will increase dramatically. Supply voltages will con-
tinue to scale to reduce dynamic power, and threshold volt-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’04, April 26–28, 2004, Boston, Massachusetts, USA
Copyright 2004 ACM 1-58113-853-9/04/0004 ...$5.00.

ages will decrease to maintain transistor switching speeds.
This will result in an increase in subthreshold current con-
duction. Also, decreasing gate oxide thicknesses will reach
the 1.2-1.5 nm regime, where direct tunneling current will
become significant. This combination of subthreshold and
gate leakage will have a substantial impact on idle-state leak-
age currents, and greatly increase the standby leakage power
of highly integrated circuits [1]. The International Technol-
ogy Roadmap for Semiconductors predicts an exponential
increase in leakage current over time as scaling continues [2].
These scaling issues will require consideration of both static
and dynamic power in future circuit designs [3–6].
The potential impact of subthreshold and gate leakage

currents must be well understood, either to deal with this
growing problem or to evaluate the technology tradeoffs in-
volved in avoiding it. A number of specific circuit tech-
niques have been proposed that might help deal with this
issue. Previous work in leakage resistant circuit topologies
can be placed into two categories, critical path and non-
critical path techniques. Non-critical path techniques that
reduce leakage current at the expense of increased circuit de-
lay include transistor sizing, transistor stacking [7–9], higher
threshold voltages [10], lower supply voltage, and thicker
oxides: collectively, these techniques have been referred to
as statically-selected slow transistors (SSSTs). In critical
paths, idle portions of circuits with fast, leaky devices are
deactiveated with techniques such as body biasing [11], in-
put vector control [12], and sleep transistors [10]: these
techniques have been collectively referred to as dynamically-
deactivated fast transistors (DDFTs) [13]. However, the en-
tire spectrum of circuit options has not been fully explored
yet, and the potential for mixing techniques has received
little attention. Furthermore, studies have often been lim-
ited to technologies that are not too different than current
ones, and have focused primarily on subthreshold conduc-
tion alone.
In this paper, we present a general model in Section 2 that

includes likely topology and timing approaches for restoring
logic circuit design. A framework is introduced to allow op-
timal mixing of circuit techniques. A key contribution is the
inclusion of monotonic logic in its basic form, based on ob-
servations that it has some key advantages for high leakage
technologies. Section 3 presents examples of how some spe-
cific circuit techniques can be viewed as a special instance
of the model. Preliminary experiments are presented in Sec-
tion 4, showing how our design framework can be used to
produce a partially monotonic circuit that optimizes circuit
characteristics.

230

2. GENERAL MODEL
To construct a very general logic circuit model, we must

allow the use of either a static or dynamic approach for each
logic gate, or even some combination of the two. Currently,
entire CMOS logic blocks are often assumed to be either
exclusively static or dynamic (e.g. domino), or have a well
defined partition between static and dynamic portions. But
in the future, the distinctions between static and domino
logic may fade somewhat. As technologies scale, noise con-
straints may lead to the addition of static loads in domino
circuits. In the other direction, power issues may lead to
static logic with clocking to reduce power during idle phases
of the clock cycle. Our model reflects the existence of a more
continuous spectrum between the two as shown in Figure 1.

PDN

Clock

Inputs

Output

HVT

LVT

Clock HVT

Inputs Output

PUN

PDN

Clock

control

Inputs

(a) (b)

(c)

signals General Merged
Logic Gate

Figure 1: Example (a) static, (b) domino, and
(c) general merged logic gate

The key attractive feature of domino logic for static power
reduction is the asymmetry in signal transitions. Since only
the pullup or pulldown is in the critical evaluation path in
each stage, the fastest and leakiest switches can always be
placed in series with slower and less leaky ones. This advan-
tage arises, however, from the necessary monotonic property
of the logic synthesis, and not from the dynamic nature of
the circuit. Static logic can also avoid particularly leaky
static paths if it has a similar monotonic property and a
reset capability [14]. In addition, monotonicity can poten-
tially reduce dynamic power by eliminating glitching. So in
our model, we separate out the issue of monotonicity and
the static vs dynamic choice. Even the reset option and
technique can be a distinct question for each gate.
In general, monotonic logic circuits require monotonic in-

put signals, and their gate count overhead increases with
logic depth. As a result, it is natural to consider the use of
monotonic logic in the initial stages of a logic block, and at
some point (when the overhead becomes too large) transi-
tion to more general logic. If the transition is at the very
beginning, the circuit would not be monotonic at all and
would be completely general. In the other extreme, if the
transition point were at the outputs, the logic would be com-
pletely monotonic. Our model allows circuits to cover this

entire spectrum in search of an optimum. Within the mono-
tonic portion of a logic block, static or domino techniques
can be used, but outside, a purely domino approach cannot
due to potential signal glitching.

2.1 Monotonicity
As a first step, monotonic logic must be defined more

carefully as in [14] and [15].
In a random logic network, logic gates are not usually

skewed to favor a certain switching direction since outputs
can either switch high or low during evaluation. However, in
a monotonic network, logic gates can be severely skewed to
favor a certain switching direction by sizing up devices or us-
ing low Vt devices to speed up evaluation. High-skewed (HS)
gates have monotonically rising outputs, and low-skewed
(LS) gates have monotonically falling outputs.
In a logic network, a gate can be guaranteed to switch in

only one direction during evaluation by enforcing the mono-
tonicity rule: a monotonic gate must have all inputs coming
from a monotonic gate of the opposite type. We can ensure
that every other gate output in a path is either monotoni-
cally rising or falling.
However, we end up with a switching direction of a gate

that is slow. Reset/precharge and evaluation phases are of-
ten required to take full advantage of monotonic logic. Dur-
ing reset, all monotonic gates are set to their initial state.
During evaluation, each gate output either stays in its ini-
tial state or monotonically transitions. Figure 2 demon-
strates LS and HS gates and their evaluation phases. The
clock/reset control into the PDN and PUN may be necessary
to help prevent short circuit currents during reset, depend-
ing on the status of the input signals at that time.

PUN

PDN

Inputs Output

Monotonically Rising output

t

Output
V

Precharge LOW

PUN

PDN

Output

Monotonically Falling output

t

Output
V

Precharge HIGH

clk

clk

(a) (b)

Inputs

reset

reset

(optional)

(optional)

Figure 2: Example (a) low and (b) high skew gates

Resetting of monotonic logic increases the circuit over-
head, but it can vastly improve the circuit performance. In
general, it may be best to only directly reset the first level
or strategically selected gates throughout, and let the logic
propagate initial values [16, 17]. It is even possible that
portions of a static, monotonic circuit would not warrant
resetting at all.
To implement a monotonic circuit, the logic network must

be unate, and all trapped inverters must be pushed out to

231

network boundaries. Binate to unate algorithms have been
developed to remove trapped inversions and optimize net-
works [18]. Each monotonic gate is limited to a single type
of input signal (i.e. either monotonically falling or mono-
tonically rising). If both polarities of a signal are required
(i.e. a trapped inversion), logic duplication is necessary to
remove the inversion and provide both signal polarities with
the same type. Logic duplication will at most double the
amount of original logic while maintaining the same logic
depth [14,15].

2.2 Logic Block Level of Model
Our logic model begins with a generalized logic partition-

ing involving monotonic and non-monotonic logic stages. A
general way to look at the impact of static leakage power is
to see how it may affect the optimal location of this bound-
ary as a function of technology characteristics as shown in
Figure 3. Historically, the boundary has often been thought
of as being between domino and static logic, but when leak-
age becomes significant, we expect that such an association
will become less clear. The more important issue will be the
monotonicity, where the monotonic logic might usually be
standard static CMOS with dual threshold devices.

Generalized
Logic Stage

Generalized
Logic Stage

Generalized
Logic Stage

Generalized
Logic Stage

Generalized
Logic Stage

Generalized
Logic Stage

OptimizationMonotonic

Non -Monotonic

Figure 3: General Logic Partitioning

2.3 Logic Stage Level of Model
Shown in Figure 4 is a generalized logic stage that spans a

wide range of circuit techniques, dynamic or static or mixed.
Each box in this logic stage represents an optional variable
conductance designed for specific tasks, whether for pull up
or pull down, precharge high or precharge low, or for a com-
plex keeper circuit to maintain noise margins of a dynamic
node. The clocks in Figure 4 refer to general timing con-
trol signals which could range from a simple global clock
to asynchronous handshake signals. It is a general model,
where not all conductance boxes are required for a partic-
ular gate. Inclusion of conductance boxes depends on the
context of the circuit. A static gate would have just P and
N networks and may not use any clock inputs. A domino
gate would have a keeper, but the P network may just be
precharge.
Through general timing control inputs, a wide range of

timing options are possible for either static or dynamic gates.
In general, logic circuits only perform evaluation during
small time windows when waves of activity pass by, as il-
lustrated in Figure 5, where circuit mode is graphed as a
function of time and logic depth. In between evaluations, a

Clocks
P control

Data

General
Keeper

Clocks
Control

Output
Control

PUN

PDN

Clocks
N control

Data

Output

Figure 4: Generalized Logic Stage

logic stage could require a reset (e.g. a dynamic precharge),
or might benefit from one (e.g. in monotonic static logic).
Resets can occur all at once as shown in Figure 5 for sim-
plicity, or pass through logic blocks in waves ahead of or
behind evaluations (e.g. by using timing chains, self timed
logic, or self resetting logic). In the period before and after
evaluation, there is the potential for placing logic stages in
some kind of lower power sleep state, particularly if no eval-
uation is required for long periods (e.g. many clock cycles
in a synchronous system). Through the careful design of the
time varying conductances pictured in Figure 4, each logic
gate could potentially be kept in low power configurations as
much as possible without significantly degrading other as-
pects of performance. Although the model contains general
timing control inputs, there is of course overhead and un-
certainty associated with producing these inputs that must
be estimated or accounted for in some manner during opti-
mizations.

Wait

Hold

P
o

ss
ib

le
 R

es
et

Evaluate

L
o

g
ic

 D
ep

th

time Sleep

Clock Evaluate Cycle

Sleep

P
o

ss
ib

le
 R

es
et

Wait

Hold

Evaluate

Sleep

Sleep

Evaluate Cycle

Figure 5: Example Spatial Cycle Time Window

3. APPLICATIONS
One of the applications of our general model for logic

blocks constructed from leaky devices is to facilitate a sys-
tematic exploration of the design space. A first step is to
classify existing techniques and measure their performance
in a general environment. Some circuit techniques that have
been proposed for universal logic families may not turn out
to be very useful for that purpose, but might be advanta-
geous for certain individual logic gates within a larger logic
network. This section contains a few examples.
Our first example in Figure 6 illustrates a variable conduc-

tance in the pull down network of a particular gate. Shown is
a standard domino gate with an alternative clocking scheme

232

PDN

Clock

Inputs

Evaluate
Signal

Output

HVT

HVT

LVT

Standard
Keeper

HVT

Input

Clock

Evaluate
Signal

Dynamic
Node

Output

Figure 6: Example Study: Footer Device Control

for the evaluate footer device to create a time varying con-
ductance. The footer is clocked with a short pulse that is
long enough for the dynamic node to discharge, but short
enough to reduce significant subthreshold leakage currents
through the low Vt devices in the pull down network. For
most of the cycle, the evaluate device is OFF in a lower leak-
age state. This technique is not limited to dynamic logic.
Some simple domino test structures designed with exist-

ing 0.13µm technologies were used to test this footer pulse
technique by varying the duration of the evaluate signal.
Preliminary simulations have shown potential average power
savings up to 20% when the footer pulse was of the mini-
mum duration to allow evaluation. As subthreshold leak-
age becomes more significant in future technologies, the po-
tential savings may increase. Prior work involving similar
techniques have been used in self resetting logic, where the
evaluate signal is produced by some feedback to disable the
footer device as soon as the gate has finished evaluating and
the logic is no longer needed [19].
Figure 7 is a special case called a conditional keeper [20]

that attempts to implement a time varying keeper conduc-
tance whose strength depends on whether or not the dy-
namic node discharges. There is a strong keeper and a
weak keeper, with a total strength equivalent to a standard
keeper. In this technique, the dynamic node is NANDed
with a delayed clock to conditionally turn on the strong
keeper only when the dynamic node remains HIGH. If the
dynamic node discharges, the pulldown network only has
to fight the weak keeper during evaluation. Only the weak
keeper is on during the transition phase as seen in the fig-
ure, and the strong keeper turns on conditionally only if
there is no transition. As shown in [20], this technique has
the potential to reduce contention and maintain voltage lev-
els specifically for circuits with very wide fanins. It may also
be limited to logic where the evaluation wave is early in the
clock cycle since the clock delay in the conditional keeper
requires accurate timing. Thus, it may be natural to use
this technique in conjunction with others to take advantage
of their leakage control capabilities.
Our final example is a static and non-monotonic circuit

technique called Output Prediction Logic (OPL) [21]. OPL
potentially combines the speed of dynamic logic with the
noise margins of static CMOS. Figure 8 shows a chain of
static inverters combined with dynamic precharge and eval-
uate devices for performance improvements. The worst case
behavior of a critical path is reduced by precharging all
gates to a logic one, tristating them, and limiting evalua-
tion through N trees only. However, this technique is highly
dependent upon clock arrival because of the gates’ inverting

Wide PDN

Evaluate

Clock

Inputs

Clock

Strong
Keeper

Weak
Keeper

Delay

Output

SK

WKHVT

LVT

HVT
(Optional)

T_keeper

Clock

Dynamic Node

Input

T_keeper

Weak Keeper Strong Keeper if output High
No Keeper if output Low

(Tclk/2) - T_keeper
Transition Window

Tclk/2

Figure 7: Special Case: Conditional Keeper

nature and the time required for inputs to stabilize. If the in-
put is HIGH, CLK2 must not arrive until OUT1 is stable, or
else significant glitching may occur. Previous work with this
technique in [21] was mainly from a speed perspective, with
simulations showing speedups of approximately 2.5X com-
pared to conventional static CMOS. However, if glitching is
minimized, OPL may have promising low power character-
istics. Essentially, when a gate is not evaluating, we want a
gate to maintain a low power configuration, and OPL dis-
ables the pulldown network before and after evaluation for a
static gate. Hybrid techniques, combining static logic with
precharging as found in dynamic techniques, may be helpful
in order to reduce leakage but also maintain performance in
the future.

IN1

CLK1 CLK2

OUT1 IN2 OUT2

Figure 8: Example Non-monotonic technique:
Chain of Output Prediction Logic Static Inverters

These three example techniques are all encompassed by
our general abstract model. Many other techniques that
have been proposed are as well. We propose characterizing
these techniques within this general environment, assuming
they could be combined in an optimal manner, with the
optimum depending on technology characteristics and per-
formance cost functions.

4. EXPERIMENTS
Our preliminary investigation explores the boundary be-

tween monotonic and non-monotonic logic blocks. By map-
ping portions of the logic network to monotonic circuits, we
can determine if an optimal boundary exists and how de-
pendent it is on technology characteristics.
Figure 9 shows a simple example test circuit that is mapped

to a monotonic circuit. We first begin with a unate non-
monotonic static circuit in (a) that is assumed to have been

233

70 nm model 130 nm model
Monotonic Levels � transistors Avg Power Evaluation Delay Avg Power Evaluation Delay

none (non-monotonic) 102 199.0 µW 221.0 ps 437.4 µW 708.2 ps
2 Levels 125 192.5 µW 149.9 ps 415.8 µW 486.8 ps
3 Levels 129 194.1 µW 147.8 ps 423.3 µW 493.1 ps
4 Levels 157 209.8 µW 191.0 ps 439.8 µW 638.9 ps

Table 1: Preliminary Simulation Results

a
bc

d
e
f
g
h
i
j

S0

S1

HS

HS

LS

LS

LS

LS

HS

a
bc

d
e
f
g
h
i
j

S0

S1

HS

HS

LS

LS

LS

LS

HS
LS

LS

LS

a
bc

d
e
f
g
h
i
j

S0

S1

HS
a
b

HS

HS

LS

LS

LS

LS

HS
LS

HS

LS

LS

HS

a
bc

d
e
f
g
h
i
j

S0

S1

HS
a
b

HS

HS

LS

g
h
i
j

(a) (b)

(c) (d)

Figure 9: Mapping to Monotonic Circuits

optimized but with two trapped inverters. Example unate
mapping algorithms can be found in [14,22]. Other assump-
tions are that all inputs (a-j) are freely available, including
their complements, and ideal latches force inputs high or low
to provide the correct signals during evaluation and reset.
Beginning with the first level of logic, the gates can be

made either HS or LS, depending on the circuit. The re-
quirement for monotonicity is that all LS gates must have
inputs from HS gates and all HS gates must have inputs
from LS gates. In (b), the first level of gates is made LS
and the second level is HS. The rest of the logic is left non-
monotonic. At this point, there is not much overhead. In
the third logic level, there is a trapped inverter that causes a
conflict. The path through the inverter creates a conflicting
LS signal into the next NAND gate. To alleviate the prob-
lem, we must duplicate the logic that precedes the inverter
using DeMorgan’s Theorem and provide the correct signal
polarity, which results in (c). Another trapped inverter ex-
ists when trying to map the fourth level of logic. We must
duplicate three more gates to provide the correct signal, re-
sulting in (d), which is a completely monotonic circuit with
alternating low skew and high skew gates. As the example
shows, the overhead of using monotonic circuits can signifi-
cantly increase with depth.
A simple ISCAS benchmark circuit (rd53) was synthe-

sized with the above described monotonic mapping. Syn-
opsys Design Compiler was used to create the initial unate
non-monotonic circuit using 2-input AND gates, 2-input OR
gates, and inverters. Using a similar algorithm as in [14], the
circuit was then mapped to static NAND, NOR, and inverter

gates as shown in Figure 9(a). Following the above exam-
ple, each level of logic was made successively monotonic.
The input signals were randomly generated and identical for
each monotonic iteration, except that precharge and evalu-
ate cycles were required once part of the circuit was made
monotonic.
Two Berkeley Predictive Technology Models (http://www-

device.eecs.berkeley.edu/∼ptm) were used to simulate the
circuit: a 70 nm and 130 nm BPTM model with supply
voltages of 0.9 V and 1.3 V respectively. These two models
predict subthreshold leakage in future technology genera-
tions but they do not model gate leakage.
All gates (monotonic and non-monotonic) were sized with

effective channel widths of 1.5µm for the PMOS pull up net-
work and 0.5µm for the NMOS pull down network. Precharge
transistors were added to force gates to monotonically tran-
sition during evaluation as shown in Figure 2 and sized ac-
cordingly as stated above.
The overhead of a monotonic circuit increases with depth

as the number of devices rises. Also included in the overhead
is the time required for precharge. Whether the precharge
time is important completely depends on the context of the
circuit and may or may not result in penalties in perfor-
mance. For this example, we focus only on evaluation time.
Making a circuit partially monotonic can improve perfor-

mance in some cases, even if resizing is not done to take
advantage of the asymmetry. Table 1 shows our preliminary
simulation results for the benchmark circuit. The circuit
has a total of five logic levels, with monotonic mapping be-
ginning with the first two. As the depth of monotonic gates
increases, there is an optimal boundary between the second
and third logic levels with respect to power and delay of
the longest path. For these technologies, the 70 nm and
130 nm models, our results show improvements of approxi-
mately 3.3% and 5% for average power and 32% and 31% for
evaluation delays, respectively, compared to the initial com-
pletely non-monotonic static case. As the circuit is mono-
tonically mapped beyond the second level, the average power
and evaluation delays begin to degrade due to the overhead.
Logic duplication and clock loading increases power, and it
also increases the loads on some gates, reducing their drive
strength and increasing evaluation delays.
The preceding experiment illustrates the optimization of

the monotonic/non-monotonic boundary, but does not show
all of the potential advantages of monotonicity. The mono-
tonic gates were not sized to evaluate faster in one direction,
so there is capacity for even more improvement in delay.
Also, the assumed technologies did not include any gate
leakage currents and did not have multiple device choices
(e.g. fast and leaky vs slower and less leaky). For technolo-
gies that have these, carefully designed sleep/reset states for
monotonic stages could also lead to significant reduction in
static power.

234

5. CONCLUSIONS
In this paper, we proposed a general model and frame-

work to allow optimal mixing of circuit techniques as leak-
age currents continue to increase. A key issue is the use
of monotonic logic, based on its asymmetric properties and
the advantages it can hold in high leakage technologies. Sev-
eral existing circuit techniques were presented that fit well
into our logic model framework. Our preliminary experi-
ments show that an optimal boundary between monotonic
and non-monotonic logic blocks may exist that optimizes
circuit characteristics such as power and evaluation delay.
Our general logic model provides a framework for exploring
a wide range of circuit techniques and finding optimal mixes
for future high speed and low power circuit designs.

6. ACKNOWLEDGMENTS
This work was funded in part by IBM and the New York

State Office of Science, Technology, and Academic Research
(NYSTAR) , through the Microelectronics Design Center
(MDC).

7. REFERENCES
[1] S. Borkar, “Design challenges of technology scaling,”

IEEE MICRO, vol. 19, no. 4, 1999.

[2] International Technology Roadmap for Semiconductors
(ITRS), 2002, (http://public.itrs.net/).

[3] J. A. Butts and G. S. Sohi, “A static power model for
architects,” in Proc. of the 33rd Annual
IEEE-MICRO, pp. 223–234, 2000.

[4] D. Duarte, N. Vijaykrishnan, M. Irwin, H.-S. Kim,
and G. McFarland, “Impact of scaling on the
effectiveness of dynamic power reduction schemes,” in
Proc. IEEE Int. Conference on Computer Design,
pp. 382–387, September 2002.

[5] R. S. Guindi and F. N. Najm, “Design techniques for
gate-leakage reduction in CMOS circuits,” in IEEE
International Symposium on Quality Electronic
Design, pp. 61–65, March 2003.

[6] D. Lee, W. Kwong, D. Blaauw, and D. Sylvester,
“Analysis and minimization techniques for total
leakage considering gate oxide leakage,” in Proc. of the
Design Automation Conference, pp. 175–180, June
2003.

[7] T. Kawahara, M. Horiguchi, Y. Kawajiri,
G. Kitsukawa, T. Kure, and M. Aoki, “Subthreshold
current reduction for decoded-driver by self-reverse
biasing,” IEEE Journal of Solid State Circuits,
vol. 28, pp. 1136–1144, November 1993.

[8] M. C. Johnson, D. Somasekhar, L.-Y. Chiou, and
K. Roy, “Leakage control with efficient use of
transistor stacks in single threshold CMOS,” IEEE
Transactions on VLSI Systems, vol. 10, no. 1, 2002.

[9] S. Mukhopadhyay and K. Roy, “Accurate modeling of
transistor stacks to effectively reduce total standby

leakage in nano-scale CMOS circuits,” in International
Symposium on VLSI Circuits, pp. 53–56, June 2003.

[10] J. T. Kao and A. P. Chandrakasan, “Dual-threshold
voltage techniques for low-power digital circuits,”
IEEE Journal of Solid-State Circuits, vol. 35, no. 7,
2000.

[11] S. V. Kosonocky, M. Immediato, P. Cottrell, T. Hook,
R. Mann, and J. Brown, “Enhanced multi-threshold
(MTCMOS) circuits using variable well bias,” in Proc.
of Int. Sym. on Low Power Electronics and Design,
pp. 165–169, August 2001.

[12] A. Abdollahi, F. Fallah, and M. Pedram, “Runtime
mechanisms for leakage current reduction in CMOS
VLSI circuits,” in Proc. of Int. Sym. on Low Power
Electronics and Design, pp. 213–218, August 2002.

[13] S. Heo, K. Barr, M. Hampton, and K. Asanovic,
“Dynamic fine-grain leakage reduction using
leakage-biased bitlines,” in Proc. of IEEE Int. Sym.
on Computer Architecture, pp. 137–147, May 2002.

[14] T. Thorp, G. Yee, and C. Sechen, “Design and
synthesis of dynamic circuits,” IEEE Transactions on
VLSI Systems, vol. 11, pp. 141–149, February 2003.

[15] D. Harris, “Skew-tolerant circuit design,” in Ph.D.
Thesis, Stanford University, Stanford, CA 1999.

[16] N. Sirisantana and K. Roy, “Selectively clocked CMOS
logic style for low-power noise-immune operations in
scaled technologies,” in IEEE Proc. of the Design,
Automation, and Test in Europe Conference and
Exhibition, pp. 11160–11161, March 2003.

[17] A. Solomatnikov, D. Somasekhar, and K. Roy,
“Skewed CMOS: Noise-tolerant high-performance
low-power static circuit family,” IEEE Transactions
on VLSI Systems, vol. 10, no. 4, 2002.

[18] R. Puri, A. Bjorksten, and T. E. Rosser, “Logic
optimization by output phase assignment in dynamic
logic synthesis,” in Proc. IEEE/ACM Int. Conference
on Computer Aided Design, pp. 2–8, November 1996.

[19] Y. W. Li, G. Patounakis, A. Jose, K. L. Shepard, and
S. M. Nowick, “Asynchronous datapath with
software-controlled on-chip adaptive voltage scaling
for multirate signal processing applications,” in Proc.
of Int. Sym. on Asynchronous Circuits and Systems,
pp. 216–225, May 2003.

[20] A. Alvandpour, R. Krishnamurthy, K. Soumyanath,
and S. Borkar, “A conditional keeper technique for
sub-0.13µm wide dynamic gates,” in International
Symposium on VLSI Circuits, pp. 29–30, 2001.

[21] L. McMurchie, S. Kio, G. Yee, T. Thorp, and
C. Sechen, “Output prediction logic: a high
performance CMOS design technique,” in Proc. IEEE
Int. Conference on Computer Design, pp. 247–256,
September 2000.

[22] K.-W. Kim, C. Liu, and S.-M. Kang, “Implication
graph based domino logic synthesis,” in Proc.
IEEE/ACM Int. Conference on Computer Aided
Design, pp. 111–114, November 1999.

235

	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index

