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ABSTRACT
An interconnect break is a break that occurs in the inter-
connect wiring, which results in logic gate inputs being dis-
connected from the drivers and causes the wire to float. In-
terconnect breaks are the most common types of breaks in
modern CMOS integrated circuits, so testing and detecting
these breaks has become very important. This paper pro-
poses a model by which standard tests for stuck-at-faults
can be used to detect interconnect breaks in a circuit. We
do a worst-case analysis of the detection of these breaks
and calculate the minimum number of test vectors required
to detect breaks with a specified confidence level, using n-
detection principles. To enhance the understanding of the
breaks in the circuit, we present a statistical model based on
the length distribution of the wires surrounding the floating
wire where the break occurs. From the model we compute
the detection probabilities of such breaks and show that the
worst case of detection is when the bias voltage is the same
as the logic threshold voltage.

Categories and Subject Descriptors: B.8.1 [Logic De-
sign]: Reliability, Testing and Fault-Tolerance

General Terms: Reliability

Keywords: Break fault, interconnect open, stuck-at test

1. INTRODUCTION
The three classes of defects that can occur during the man-

ufacturing process of an integrated circuit (IC) are bridge
defects, break (open circuit) defects, and parametric delay
defects [4]. This paper is concerned with defects of the sec-
ond type (i.e., breaks). They are caused by breaks in the
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conducting material of a circuit layout due to spot defects,
either by lithography-related errors [8], masking errors or
fabrication errors. Based on their locations in different parts
of a circuit, breaks can be categorized as: (1) interconnect
break, which occurs in the interconnect wiring, resulting in
logic gate inputs being disconnected from their drivers and
causing the wire to float, (2) network break, which occurs in-
side a CMOS cell, affecting the connection between the tran-
sistor drain and source, (3) a break inside a CMOS cell that
can affect the connection between the bulk of a n-channel
transistor and Gnd, or the bulk of a p-channel transistor and
Vdd, and (4) a break that can disconnect a single transistor
gate and its driver [12, 2, 6].

In modern ICs, as the number of layers of metal have
increased so has the interconnect wiring, which results in a
higher probability of interconnect breaks. The number of
vias far exceed the number of transistors and these vias are
particularly susceptible to opens [16]. This makes testing
and detection of interconnect breaks all the more important.
This paper addresses interconnect breaks.

Konuk [6] described a fault simulation algorithm for de-
tecting interconnect opens. Konuk’s algorithm took into
account the capacitance between the floating wire (FW)
and surrounding wires, Miller (gate/drain, gate/source) ca-
pacitances to the FW, charge collector diodes, and trapped
charge deposited on the FW during fabrication. These fac-
tors are used by his algorithm to calculate trapped charge in-
tervals on the FW, for a set of stuck-at tests. The fault sim-
ulation algorithm computes the maximum trapped charge
on the FW with which the given test set can detect the
open as a stuck-at-0 fault (i.e. Qmax,sa0), and the mini-
mum trapped charge on the FW with which the given test
set can detect the open as a s-a-1 fault (i.e. Qmin,sa1). If
the fault simulator determines that Qmax,sa0 > Qmin,sa1,
then the interconnect break would have been detected and
the fault dropped.

Konuk deals with the detection intervals for trapped charge,
but mentions that it would be ideal to consider the detec-
tion probabilities instead. Konuk’s fault simulator required
knowing the logic value on each wire adjacent to the FW.
This paper presents a method that uses the probability of
detecting interconnect breaks while applying randomly se-
lected n stuck-at-zero and n stuck-at-one tests for each fault
location in the circuit, and proposes a statistical model that
uses the length distribution of the surrounding wires instead
of their logic values. Length distributions estimates of in-
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Figure 1: A symbolic CMOS circuit showing the
location of the three possible classes of interconnect
opens.
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terconnect wiring are often available from the circuit design
of modern VLSI circuits [3, 14], which our approach can use
directly.

As mentioned earlier, interconnect opens cause floating
gates. Such opens can be categorized as: (1) opens that
cause floating gates affecting only the subcircuit consisting
of p-transistors (p-subcircuit), annotated as 1 in Figure 1,
(2) opens that cause floating gates affecting only the subcir-
cuit consisting of n-transistors (n-subcircuit), annotated as
2 in Figure 1, or (3) opens that cause floating gates affecting
both the p-subcircuit and the n-subcircuit, annotated as 3
in Figure 1 [18].

Maly [9] observed that an interconnect open affecting ei-
ther the p-subcircuit or the n-subcircuit does not hinder the
functional behavior of the circuit, except for some changes
in the circuit delay. However, an open affecting both the
p-subcircuit and the n-subcircuit affects the whole charging
and discharging path between the ground and Vdd planes and
thus changes the logic function of the circuit. Furthermore,
since the wiring length is so great, type 3 open defects are by
far the most common. Therefore, in this paper we consider
the latter type of interconnect open, which causes floating
gates that affect both the p-subcircuit and the n-subcircuit.

The organization of the remaining sections is as follows.
Section 2 models the conditions required for stuck-at tests
to detect interconnect breaks in a circuit. Section 3 does
a worst-case analysis of the detection of these breaks and
calculates the minimum length of a test vector required to
detect such defects with a specified confidence level, us-
ing n-detection principles. Section 4 introduces a statisti-
cal model with certain simplifying assumptions, based on
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Figure 3: Important capacitances in an Inverter
with FW

the length distribution of the wires surrounding the floating
wire. We compute the detection probabilities of such breaks
using this model and show that the worst case of detec-
tion is when the bias voltage is the logic threshold voltage.
Section 5 describes and analyses the mathematical model
introduced in the previous section, and uses length distri-
bution of surrounding wires to compute the probability of
a break. Finally, section 6 summarizes the conclusions that
can be drawn from this paper.

2. MODELING BREAKS USING STUCK-AT
TESTS

In the following model, we will consider only complete
non-resistive breaks. Assuming that we have a CMOS cir-
cuit with high quality gate oxide, the input impedance of
the gate is very high. The leakage current time constant is
also high, generally in the order of hours. Since test applica-
tion time is in the order of seconds, there will be negligible
leakage current during testing. In our model, we are there-
fore assuming the trapped charge on a floating wire to be
constant.

In Figure 2 the trapped charge on the FW (Qtrapped)
equals the charge on the wiring (Qwire) plus the charge on
the gates of the transistors that the FW is connected to
(Qgate), i.e. Qtrapped = Qwire + Qgate. Qgate determines
the logic value of the output of the gate. Since trapped
charge is a constant, if more charge resides in the wiring,
then less charge is present on the gate, resulting in a certain
logic value at the output. If the charge was distributed in
the opposite way, then the logic value on the output could
be different. Thus given a value of Qtrapped, the logic value
of the output of a gate with a floating input depends on
Qwire.

Qwire depends on the capacitance and voltage on the sur-
rounding wires, which are either at Vdd or Gnd in digital
circuits. In Figure 3, Cin,Vdd and Cin,Gnd are the total ca-
pacitances of the FW to the surrounding signal wires at
logic one and logic zero respectively, while Cgs,p and Cgd,p

are the capacitances of the gate to the source and gate to
the drain of the p-transistor, respectively. Cgs,n and Cgd,n

are analogous for the n-transistor.
In this analysis, we will make the following assumptions:

1. The interconnect open is assumed to be open-circuit
with infinite resistance.

2. In considering the effect of the surrounding wires, we
actually consider the capacitive coupling effect due to
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only the wires adjacent to the FW. This is a reason-
able assumption, considering the fact that wires not
adjacent to the floating wire would not have a signifi-
cant effect compared to the effect due to the adjacent
wires, as capacitance falls off quickly with distance and
increased shielding.

3. Cgs,p and Cgd,p are small compared to Cin,Vdd and
Cin,Gnd. This is because as the sizes of transistor gates
are decreasing and interconnect wiring capacitance is
increasing, gate capacitances are becoming negligible
compared to surrounding wire capacitances. In our
model, we have made the simplifying assumption of
neglecting Cgs,p and Cgd,p. The same assumptions are
made for Cgs,n and Cgd,n.

4. All adjacent wires are equidistant from the FW, as is
usually the case with most routers.

5. The threshold voltage VTH is the same for all gates,
and is approximately equal to VDD

2
.

6. The capacitance per unit length of the adjacent wires
is constant, based on the assumption that all wires
adjacent to the floating wire are equidistant from it.
We can say that capacitance is directly proportional
to the length. By length of an adjacent wire we mean
the length of a wire that is adjacent to the FW.

In this model, we are considering a single logic threshold
for the gate output. In general, CMOS circuits are modeled
as having two logic thresholds, one for logic zero and the
other for logic one. But that is generally due to process
variation, which gives different threshold values for different
gates in the circuit, so that a consistent model has to have
a maximum and a minimum threshold to depict the range
of different gate thresholds in the circuit. However, each
individual gate has a single threshold and the output of the
gate is driven by succeeding gates to a single logic value.

From the above assumptions, if a test results in more sur-
rounding wire lengths at logic zero than at logic one, then
Cin,Gnd will be greater than Cin,Vdd . This will attract posi-
tive charge to the wire ( Qwire increases), which pulls charge
away from the gates ( Qgate decreases) and as a result the
p-transistor may be turned on, while the n-transistor may
be turned off. This would make the output logic value of
the affected gate a logic one. If the test also results in a
sensitized path from the gate’s output to a primary output,
this is a test for the FW sa0. By similar logic, if there are
more surrounding wires at logic one and a sensitized path
from the gate to a primary output, then it is a test for the
FW sa1.

This is true for any fully-complementary CMOS gate when
the other inputs of the circuit, other than the FW, sensitizes
the output of the gate to the value on the FW. This is a
necessary condition for all stuck-at tests. 1

3. DETECTION PROBABILITIES
Let P (detected|sa0 test) = α denote the probability of

detecting the break by applying a randomly selected sa0

1Note that interconnect opens causing floating gates are dif-
ferent from the stuck-open, which is a high-impedance state
caused by a faulty pull-up or pull-down transistor network
in a CMOS gate [17, 9, 11, 12, 5].

test, P (detected|sa1 test) = β be the probability of detecting
the break by applying a randomly selected sa1 test. So
the probability of not detecting the break by applying a
randomly selected sa0 test is P (not detected|sa0 test) =
1−α = α′, and the probability of not detecting the break by
applying a randomly selected sa1 test is P (not detected|sa1
test) = 1 − β = β′.

We assume that the logic values of the wires during one
test are independent of the values of the wires during an-
other test. Thus, the distribution of logic values on the
wires is independent of whether a sa0 or a sa1 test is ap-
plied. With this simplifying assumption, α + β = 1 (we will
shortly discuss the case when this is not true). Then P (not
detected|sa1 test) = β′ = α and P (not detected|sa0 test)
= α′ = β. This is true because the same length of adjacent
wires needs to be at a logic 0 for the FW to be at logic 0 so
that we can detect the FW as a sa0 fault as cause it to not
be detected as a sa1 fault. If a break is not detected by a set
of one sa0 and one sa1 test, then the test for the sa0 and the
sa1 test must have both failed (i.e. not detected the break).
Let the probability of not detecting the break by applying
a randomly selected sa0 test and one randomly selected sa1
test be P (not detect break | 1 sa0 ∧ 1 sa1). Assuming that
the values on the wires during one test are independent of
the values on the wires during another test, and considering
α + β = 1, we get:

P (not detect break|1 sa0 ∧ 1 sa1) = β′ · α′ = α − α2

This probability is maximum when P (detected|sa0 test) =
1
2
. Now, if we apply n sa0 tests and n sa1 tests (n-detection)

[7, 10], then the probability of not detecting the break falls
off as (αβ)n. We can explain this as follows. Each of the n
sa1 tests has a P (not detected|sa1 test) = α and each of the
n sa0 tests has a P (not detected|sa0 test) = β. Assuming
all tests are independent, the total P (not detect break |n
sa0 ∧n sa1) = (αβ)n. Thus, with n sa0 and n sa1 tests,
the probability of detecting the break approaches one as
n increases. If instead, we apply n sa1 tests and m sa0
tests, then using differential calculus we can say that P (not
detect break | n sa0 ∧ m sa1) = (αnβm) is maximum for
α = ( n

n+m
).

Under certain conditions, the assumption that α + β = 1
and consequently α′ + β′ = 1 might not be true. Due to
dependencies between logic values in different wires, α′ + β′

might deviate slightly from 1. We illustrate one situation in
which this kind of dependency may arise. Consider Figure 4,
where we have the floating wire FW connected to the output
of an OR-gate. Without dependencies between wires, that
is, without capacitive coupling between adjacent wires, by
previous assumption, we have β′ = 1 − α′. Let α′ = x.
Therefore, β′ = (1−x). Now to test the FW with a sa0 test,
we will have to put a 1 on one of the input wires i.e on either
a or b. The possible input combinations are 10,01,11. Thus
we see that 2

3
of the time, the input wire b will have a 1 on it.

If wire b is adjacent to the FW, then there will be capacitive
coupling as shown in Figure 4. When b has a 1 on it, then
the voltage on the FW will increase 2

3
of the time. Thus

in this case the sa0 test is more likely to fail in detecting
the break due to tendency of wire b having a one on it and
increasing the voltage on the FW. This implies that P (FW
= 1|sa0 test) ≡ P (not detected|sa0 test) = α′ increases by
an amount say δ, where 0 < δ < 1. Therefore, α′ = x + δ.
Again, to test the FW with a sa1 test, we will have to put a
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Figure 4: FW as output of OR gate, with effective
capacitance shown

0 on both the input wires i.e on a and b. Now, when b has
a 0 on it, then due to capacitive coupling between adjacent
wires, the FW will tend to have a 0 on it [Figure 4]. Thus
in this case the sa1 test is more likely to fail in detecting
the break which implies that P (not detect¡ed|sa1 test) = β′

increases by an amount say ε, where 0 < ε < 1. Therefore,
β′ = (1−x)+ ε. Hence in this case α′ + β′ = 1+ δ + ε = k2,
where k2 > 1. With similar logic we can argue that there
are cases in which α′ + β′ = k1, where k1 < 1. Thus, taking
dependency into account we can have α′ + β′ �= 1. To solve
the problem of finding the worst-case detection probability
when α′ + β′ �= 1, we find the maximum value of P (not
detect break | 1 sa0 ∧ 1 sa1)= α′β′ = z (say), subject to
the constraint equation k1 < (α′ +β′) < k2, where k1 < 1 <
k2. It can be shown by straightforward calculation that the
optimal solution of this constrained optimization problem is
α′ = β′ = k2/2.

Now if df
n is the n-step detection probability [1] that we

detect a break f (at least once) by applying n sa0 and n
sa1 tests with P (not detected | sa0 test) = α′ and P (not
detected | sa1 test) = β′, then df

n = 1 − (α′β′)n. The de-
tection quality dn of a test sequence is the lowest n-step
detection probability among the stuck-at faults in the cir-
cuit. Therefore, dn = minf df

n = 1 − [(α′β′)max]n. This
formula determines the detection quality of the tests.

To determine the number of sa0 and sa1 tests, n, required
to achieve a level of confidence of at least c in detecting a
break, choose n to satisfy dn ≥ c. This is justified because
the test length that is long enough to detect the most dif-
ficult break with probability c will detect any other break
f with df

n ≥ c [1]. Therefore, ((α′β′)max)n ≤ 1 − c. This
implies that the lowest value of n required to achieve a con-
fidence level of at least c in detecting a break is:

nl =

�
ln(1 − c)

ln((α′β′)max)

�
(1)

Now consider F breaks in the circuit under test, with prob-
ability of not being detected by a sa0 and a sa1 test equal
to ((α′β′)max). It can be shown using the above result that
the lowest value of n required to achieve a confidence level
of at least c in detecting all the F breaks is:

nmin =

�
ln(1 − c

1
F )

ln((α′β′)max)

�
(2)

EXAMPLE 1: If ((α′β′)max) = 0.5 × 0.5 = 0.25 and c =
0.99, then, from Equation 1, nl = 4. Thus in this case, when
the worst case probability of the break being not detected
with a sa0 and a sa1 test is 0.25, we need minimum 4 sa0

and 4 sa1 tests to detect the break with a confidence level
of 0.99.

EXAMPLE 2: If there are 100 nodes in the circuit that
may have breaks, i.e if F = 100 and if the probability of not
detecting each of the breaks i.e ((α′β′)max) = 0.5 × 0.5 =
0.25 and c = 0.99, then, from Equation 2, nmin = 7. Thus
in this case, when the worst case probability of the most
difficult to detect break being not detected with a sa0 and
a sa1 test is 0.25, we need minimum 7 sa0 and 7 sa1 tests
to detect each break in the circuit with a confidence level
of 0.99. Note that this is a very pessimistic bound, since in
practice α and β values will be in general not equal to the
worst-case value of 0.5.

The above examples show that the understanding of the
detection of interconnect opens must be refined from the cur-
rent worst-case analysis to obtain more useful lower bounds
on the number of stuck-at tests needed for their detection.

4. ESTIMATION OF PROBABILITIES
To enhance the understanding of the faulty behavior of

the circuit, we use the fact that capacitance is proportional
to length and construct a length distribution model, using
independence of values on the wires. To get an estimate of
α and β from our model, we would like to estimate:

1.Probability

�
Cin,Vdd

Cin,Gnd
< 1

�
, to calculate α

2.Probability

�
Cin,Vdd

Cin,Gnd
> 1

�
, to calculate β

From the assumptions made in this paper, capacitance is
directly proportional to the wire length. Thus we can es-
timate the probability of detecting an interconnect break
with stuck-at tests by using the probability distribution of
the ratio of total length of surrounding wires at logic one
(Tl1) to the total length of all surrounding wires (Tl). Such
wirelength distributions are available for CMOS circuits [14,
15, 3]. Here we consider a simplified discrete wirelength dis-
tribution model for illustrating the concepts.

The voltage on the floating wire without capacitance from
the signal wires is important in determining α and β. We
call this the bias voltage. How far the bias voltage is from
the threshold voltage is a function of the trapped charge on
the floating wire, the transistor capacitances and the FW’s
capacitance to the ground and Vdd planes.

We assume the worst case, that the bias voltage is the
logic threshold voltage, which means the trapped charge is
small [6]. This being the worst case can be easily understood
by noting that the presence of trapped charge would either
increase P (detected|sa0 test) or P (detected|sa1 test), in ei-
ther case causing P (not detect break | 1 sa0 ∧ 1 sa1) to move
away from the worst case of detection i.e from α = β = 0.5.

5. ANALYSIS OF THE MODEL
Let there be n signal wires that can affect the charge on

the FW. Let each of the n wires have individual lengths. Out
of these n wires, let k wires be at logic one. The probability
distribution of k is binomial. This is because we assume
that the logic value of any of the wires is independent of the
other wires’ logic values and we can randomly choose a wire
from the set of n wires and add it to the set of k wires if it
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is at logic one. So this is a series of Bernoulli trials, which
gives a binomial distribution.

In order to find the probability P (Tl1), of k wires at logic
1 adding up to a total length Tl1, we see that the total
probability of wires at logic one adding up to Tl1 is

P (Tl1) =

n�
i=0

P (k = i) · P (i wires add to Tl1)

=
n�

k=0

�
Bk(n, p) · P

�
k�

i=1

li = Tl1

��
,

where li is the length of the ith wire, Bk(n, p) = n!
k!(n−k)!

pk(1−
p)n−k, and p equals the probability that a wire chosen at
random from n wires is at logic 1. Now, taking discrete
convolutions,

P

�
k�

i=1

li = Tl1

�
=

lmax�
a1=lmin

. . .

lmax�
ak−1=lmin

P (l1 = a1) . . .

. . . P (lk−1 = ak−1) · P (lk = Tl1 − a1 − . . . − ak−1) (3)

where lmin is the smallest possible length of a wire and lmax

is the largest possible length of an interconnect wire. Note
that the probability values and parameters like lmin and
lmax in the above equation are available from the wirelength
estimates [15]. We can also similarly find the distribution
of total lengths of wires at logic zero (Tl0). To get an idea
about the distribution of the total lengths of all surrounding
wires (Tl) we use the fact that l1 + l2 + . . . + ln = Tl to get:

P

�
n�

i=1

li = Tl

�
=

lmax�
a1=lmin

. . .

lmax�
an−1=lmin

P (l1 = a1) . . .

. . . P (ln−1 = an−1) · P (ln = Tl − a1 − . . . − an−1)

This gives us an idea about the total lengths possible, though
it does not tell us anything about the actual total lengths
permitted given specific values for Tl1. Because of this we
need to derive the probability of the ratio (Tl1/Tl), where
(Tl1 ≤ Tl).

5.1 Derivation of Probability of Length Ratio
To arrive at the probability distribution for (Tl1/Tl), where

(Tl1 ≤ Tl), we calculate the probability for (Tl1/Tl) = λ as
follows:

We see that we can have certain cases, where there are no
wires at logic one, that is, all wires are at logic zero. Hence,
we have two cases for λ.

Case 1 (λ = 0): When λ = 0, we have to calculate the
probability of Tl1 = 0 for all values of Tl. For this degenerate
case, the resulting probability is:

P

	
Tl1

Tl
= λ



= P (Tl1 = 0)

Case 2 (λ �= 0): When λ �= 0, we calculate the probability
for each value of Tl1 = m (lmin ≤ m ≤ nlmax) and the
corresponding value for Tl = 1

λ
m, given Tl ≥ Tl1 i.e. λ ≤ 1;

Using the chain rule of conditional probability and Bayes’
Theorem [13], it can be shown that:

P

	
Tl1

Tl
= λ



=

nlmax�
m=lmin

P (Tl1 = m, Tl0 = (1/λ − 1)m)

P (λ ≤ 1)
(4)
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Figure 5: Probability distribution for Tl1 from Equa-
tion 5.

Now, to find P (Tl1 = m,Tl0 = (1/λ − 1)m), we see that
this is the joint probability distribution for Tl1 and Tl0. We
look at the problem this way: out of n wires, for k wires
to be at logic one, the probability is Bk(n, p) (as explained
Section 5). Now the lengths of the k wires have to add up
to m, while the lengths of the (n − k) wires have to add up
to (1/λ − 1)m. Without loss of generality, let us take the
k wires out of n that are at logic 1 and index them from 1
to k. Also the (n − k) wires that are at logic 0, are indexed
from (k + 1) to n. Therefore, the numerator in Eqn. 4 is:

P (Tl1 = m,Tl0 = (1/λ − 1)m) =
n�

k=1

[P (
k�

i=1

li = m) ·

P (

n�
i=k+1

li = (1/λ − 1)m) · Bk(n, p)] (5)

Using the discrete convolution calculation of Equation 3 in

Equation 5, we can finally compute the value of P

	
Tl1

Tl
= λ



from Equation 4. Note that in this derivation we have con-
sidered the length distribution to be discrete and hence we
have performed discrete convolutions. If the length distri-
bution is continuous, then we do continuous convolutions.

5.2 Example
Let us compute the total probability distribution for the

ratio (Tl1/Tl) in the following example. Let there be two
wires (n = 2) with possible lengths of one, two and three,
with probability of occurring of 1

3
, 1

3
, and 1

3
, respectively.

For this case, if we compute the distribution for Tl1, using
Equations 3 and 5 in Section 5, we would get the graph in
Figure 5.

The probability distribution for the ratio of (Tl1/Tl) is
shown in Figure 6. From Figure 6, we see that P (λ = 0) =
0.25 = P (λ = 1) is greater than all other P (λ) values, as
expected.

When we plot the curve of P (λ) vs. λ, the sum of the
probabilities of (Tl1/Tl), when λ > 1/2, equals P (detected|sa1
test). The sum of the probabilities of (Tl1/Tl), when λ <
1/2, equals P (detected|sa0 test).

From Figure 6, we see that P (λ) = 1
6

for λ = 1
2
. Now,

due to noise in the circuit, we can say that half of the
time, λ = 1

2
will contribute to P (detected|sa1 test), while

half of the time, λ = 1
2

will contribute to P (detected|sa0
test). Hence in the case of this example we can say that
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Figure 6: Probability distribution for example in
Section 5.2.

λ P (Tl1
Tl

= λ)

0 1/4
1/4 1/18
1/3 1/18
2/5 1/18
1/2 1/6
3/5 1/18
2/3 1/18
3/4 1/18
1 1/4�

P (Tl1
Tl

= λ) = 1

Table 1: Table showing the permitted values for λ
and their associated probabilities.

P (detected|sa0 test) = α = 1
4

+ 1
18

+ 1
18

+ 1
18

+ 1
2
× 1

6
= 0.5.

Thus, P (detected|sa1 test) = β = 0.5 also. Now, we showed
earlier that when the logic values on the surrounding wires
during one test are independent of the logic values on the
wires during another test, i.e when α = (1 − β), as in the
case of this model, then we have the worst case of detection
when α = β = 0.5. The primary assumption in this model
was that the bias voltage is the logic threshold voltage and
from that the model gives us the worst case of detection.

6. SUMMARY AND CONCLUSIONS
This paper provides an initial framework for the inves-

tigation of detecting interconnect break defects. We first
modeled the conditions required for a stuck-at test to de-
tect interconnect breaks in a circuit and presented an argu-
ment showing that it is likely that floating nodes’ voltages
would be close to the logic threshold of the circuit, which
is the worst case condition for detection by logic tests. We
then presented an analysis of the probability of detecting a
fault taking into consideration both independence and de-
pendence of the logic values on the wires. Using n-detection
principles, we calculated the minimum number of test vec-
tors required to detect all breaks in the circuit with a spec-
ified confidence level, given worst-case values for α and β.

Using the worst case assumptions, the number of times a
node must be tested to guarantee detection of all breaks in
the circuit with a high confidence level is quite high. Since
ICs are considerably more reliable than the predicted given
worst-case values for α and β, in most cases we will not meet
the worst case conditions.

To enhance the understanding of the faulty behavior of

the circuit, we constructed a detailed probabilistic model
based on the length distribution of the wires surrounding
the floating wire. With certain simplifying assumptions, we
used this model to compute the detection probabilities of
the break using stuck-at-0 and stuck-at-1 tests. From this
model we showed that we have the worst case of detection
when the bias voltage is the logic threshold voltage.
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