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ABSTRACT
This paper proposes an innovative method for SPFD-based
rewiring in Look-Up-Table-based (LUT-based) FPGA cir-
cuits. The new method adds new input wires to two or more
LUT’s in order to remove or to replace a target wire. There
have been a few rewiring methods for FPGA circuits so far,
such as the original SPFD-based optimization sometimes
called Local Rewiring (LR), SPFD-based Global Rewiring
(GR) and SPFD-based Enhanced Rewiring (ER). However,
all of them replace one wire with other new input wire to
one LUT but not with those to two or more LUT’s. More-
over, the LR removes or replaces input wires with new one
to the same LUT only, and the GR and ER topologically
limit the LUT’s where new input wires are added. Our
new method, called One-to-Many Rewiring (OMR), loosens
such topological constraints for more flexible FPGA circuit
transformation so that it is easier to import constraints on
physical design to the logic optimization. The experimental
results show our OMR can transform FPGA circuits more
flexibly than the LR, GR and ER, by introducing the new
manipulation, wire addition. The OMR can rewire 1.2 times
as many wires as the existing methods, especially, the ER.
The computation time is as short as the existing methods.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Optimization; B.7.1
[Integrated Circuits]: Types and Design Styles—Gate
Arrays

General Terms
Algorithms, Design

Keywords
SPFD, Logic Optimization, One-to-Many Rewiring (OMR),
Global Rewiring (GR), Collaboration of Logic and Physical
Design
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1. INTRODUCTION
FPGA circuits have been used mainly for prototyping,

but now are often employed for practical implementations.
While their performance is still lower than full/semi-custom-
designed circuits’, the technology is adopted partially or
fully in circuit design and production due to its advanta-
geous feature, “reconfigurable”. This is expected to be the
key feature of new computer models in the future.

FPGA is classified into two types, Multiplexer-based (MUX-
based) and Look-Up-Table-based (LUT-based).

The former type of circuits consist of MUX’s and are de-
signed isomorphically to the binary decision diagrams (BDD’s)
for the functions to realize.

The latter type of circuits consist of logic blocks, called
LUT’s, and interconnections among them. Each LUT in
an FPGA circuit can realize any function with respect to a
specified number of variables. When the number is K, then
the FPGA circuit is said to be K-feasible and the function
stored inside of the LUT is called the internal function. In
such a K-feasible circuit, each LUT can work similarly to a
K-input gate. The function realized by the LUT is analo-
gous to the logic operations realized by the gate. Therefore,
logic optimization methods for gate networks have been ap-
plied or extended for LUT-based FPGA.

One of the most powerful logic optimization methods is
the Transduction Method [1], which is based on the concept
of permissible functions (PFs). This method utilizes the
concept of permissible functions (PFs) in order to trans-
form logic circuits, which can be represented by an directed
acyclic graph. A set of PFs (SPF) is expressed with an in-
completely specified function (ISF). The method was orig-
inally invented for NOR logic circuits and has been ex-
tended for more types of logic gate circuits [2] and LUT-
based FPGA logic optimization [7]. The biggest advantage
of the Transduction Method is to be easier to import con-
straints on physical design into logic design. Thus, while
the physical design like placement and routing is getting
more important for high-performance FPGA circuit design,
transformation-based logic optimizations, such as the Trans-
duction Method as well as ATPG (Automatic Test Pattern
Generation)-based ones [5] [6] [8] [9] [10] [11] [12], are also
getting more significant, since such optimization methods
can transform logic circuits so flexibly that the circuits sat-
isfy the specifications, such as the speed and area.

In the case of use for LUT-based FPGA, there is a great
advantage of logic flexibility utilized for logic optimization:
modification of the internal function. When SPF’s repre-
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Figure 1: A Dominator considered in GR and ER

sented as ISF’s are used in the logic optimization, the rep-
resentation takes an implicit undesired constraint that the
internal function is not changed when the procedure is ap-
plied to manipulation of input wires of LUT’s.

Sets of pairs of functions to be distinguished (SPFD’s)
were derived for optimization of LUT-based FPGA logic
networks [13] to take full advantage of the flexible change of
the internal function, and are a more generalized represen-
tation of functional permissibility than ISF’s. At each time
in the logic optimization, the original SPFD-based transfor-
mation is applied to one LUT as removal of input wires and
replacement of existing input wires with new ones to the
LUT. That is why this transformation is called SPFD-based
Local Rewiring (LR) also.

In order to take physical design into consideration during
logic design phase, SPFD-based Global Rewiring (GR) was
proposed in [14]. The GR assumes the following scenario:

1. Netlists are logically synthesized and optimized.

2. They are technology-mapped, placed and routed onto
a given LUT-based FPGA architecture. Then, delay
information of the designed circuit is obtained.

3. Based on the delay information, rewiring procedure is
applied to the netlists.

In order to explain the idea of GR in contrast to LR, we
think of an example shown in Fig. 1. Let the delay of a wire,
wt, be denoted by D(w). Suppose that D(wt) is critically
long. In this case, w is called the target wire. In the LR, w
is just removed or replaced with a new input wire to vt, if the
SPFD-based condition is satisfied. On the other hand, the
GR takes a trial-and-error-like strategy. Without any SPFD
calculation, w is removed temporarily at the first step of the
algorithm. As a consequence, the primary output functions
may be undesirably changed. In order to restore them, the
GR looks for a new wire added to vd called the dominator,
which is shown by wa in Fig. 1, and tries to modify the
internal function of vd. Thus, the GR is considered to be
1-to-1 rewiring. If D(wa) is far smaller than D(wt), then
the total delay of the circuit is expected to be reduced.

The enhanced SPFD-based rewiring (ER) was proposed
in [15] and inherits the transformation concept of the GR.
In order words, the ER is also 1-to-1 rewiring. The advan-
tage of the ER to the GR is that the function at vd can be
more flexibly changed, keeping the primary output functions
unchanged.

Compared with the traditional logic optimization meth-
ods, the GR and ER have the following undesirable con-
straints, which are explained by using Fig. 1:

1. The wires substituted for w are added to one of the
dominators, such as vd, only.

2. w is removed only, but not replaced with a new input
wire to vt with addition of wires to other LUT’s.
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Figure 2: Relaxation of Topological Constraints by
OMR

In order to loosen the constraints, we propose, in this pa-
per, an innovative method, SPFD-Based One-to-Many
(1-to-m) Rewiring (OMR), where m may be equal to or
larger than 2. The advantage of the OMR is illustrated in
Fig. 2. This OMR performs rewiring by adding two or more
wires for removal or replacement of the target wire. In the
case of the example in Fig. 1, w can be removed with ad-
dition of two or more of new input wires to vs1 , vs2 , vO1

and vO2 as well as vd, which are shown by ws1 , ws2 , wO1

and wO2 as well as wa in Fig. 2, respectively. Moreover, wt

is not only removed but also may be replaced with a new
input wire to vt. In other words, the constraints 1. and 2.
are loosened. That is advantages of our OMR over the LR,
GR and ER. Although the wire count is increased, if D(wt)
is smaller than any of the added wires, then the total delay
is expected to be reduced more than the LR, GR and ER.

In fact, wire addition to an LUT appears not to be helpful,
since the internal function of the LUT can ignore the new
variable for the added wire, i.e., the variable can regarded
as a dummy. However, there are several cases where wire
addition affects transformation of the FPGA circuit later
than the addition. In this paper, we present a sufficient
condition to be satisfied for the helpful wire addition.

The OMR exceeds the conventional rewiring with respect
to two points; one point is that any wire can be a can-
didate of rewiring independently of the topology and the
other point is that even if the wire can be a candidate of GR
or ER, the removal of the target wire can be compensated
for by addition of two or more new wires but of not only
one. The experimental results show the above advantages
over the LR, GR and ER, and that 1.2 times as many wires
as the ER can be removed or replaced by the OMR. With
respect to the computation time, the OMR copes with the
existing rewiring methods. This results show that compared
with the conventional methods, the OMR is enough useful
for the delay-reducing rewiring by utilizing the information
imported from the results of placement and routing.

This paper is organized as follows: Section 2 introduces
terminologies and notations to describe our OMR algorithm.
Section 3 describes the basic calculation method of the con-
ventional SPFD’s. Section 4 proposes our OMR algorithm
and conditions to perform the OMR efficiently with an ex-
ample to illustrate the effects. Section 5 shows experimental
results to claim our OMR algorithm’s benefit over GR and
ER. Section 6 concludes this paper.

2. TERMINOLOGIES AND NOTATIONS
This paper discusses an LUT-based (Look-Up-Table-based)

FPGA (Field Programmable Gate Array) network. It is
given n primary input variables, x1, x2, . . . , xn, but since
the function at any point is with respect to the variables,
they are always handled as a vector, x. A network consists
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Table 1: Functional Expression for an m-Pair SPFD
(hi,1, hi,0)

x i = 1 i = 2 · · · i = m
W

g

000 (0, 1) (0, 0) (0, 0) 1 a1

001 (0, 0) (1, 0) (0, 0) 1 a2

010 (0, 0) (0, 0) (0, 1) 1 am

011 (0, 0) (0, 0) (0, 0) 0 ∗
100 (0, 0) (0, 1) · · · (0, 0) 1 a2

101 (0, 0) (0, 0) (0, 0) 0 ∗
110 (1, 0) (0, 0) (0, 0) 1 a1

111 (0, 0) (0, 0) (1, 0) 1 am

“
W
” means

m_
i=1

(hi,1 ∨ hi,0)

of look-up-tables (LUT’s) which can realize any but only
one function with respect to a limited number of variables.
In this paper, the function is called the internal function
of the LUT. Although the number of input wires is changed
by logic optimization, the number of variables is supposed
to be K initially. Each of the K input wires are given an
ordinal number, 1, 2, . . . , K, and the corresponding variable
of the internal function is denoted by y1, y2, . . . , yK . The
function at each input wire of an LUT, v, with respect to
the primary input variables, x1, x2, . . . , xn, is denoted by
f1/v , f2/v, . . . , fK/v. The internal function is denoted by
u(y1, y2, . . . , yk), and the argument, (y1, y2, . . . , yK), is often
omitted. The function at the output of the LUT is denoted
by f0/v . The K variables, y1, y2, . . . , yK , is handled as a
vector, denoted as y.

In this paper, the logic AND, OR and NOT operations
are denoted as ∧, ∨ and an over-line, respectively. In the
case of AND, · also may be used as the operator. (For
example, the K-input OR internal function is represented
by u = y1 ∨ y2 ∨ . . . ∨ yK .) The constant function whose
value is 0 or 1 for any primary input vector, x, is denoted
as 0 or 1, respectively.

3. BASIC CALCULATION OF SPFD’S
An SPFD is the concept to represent a set of completely

specified functions (CSF’s), corresponding to an incompletely
specified function (ISF), which represents maximum/compatible
set of permissible functions (MSPF/CSPF) in the Transduc-
tion Method.

An ISF is expressed with a pair of CSF’s, for example,
the ON-set and OFF-set functions. Let an ISF be f . The
ON-set and OFF-set, fON and fOFF , are defined as follows:

• fON (x) = 1 only for every x such that f(x) = 1.

• fOFF (x) = 1 only for every x such that f(x) = 0.

• (fON (x) = fOFF (x) = 0 for every x such that f(x) =
∗ (don’t-care).)

Then, for every CSF, g, satisfying the ISF, f , the following
relationship holds:

fON ≤ g ≤ fOFF (1)

As an extension of ISF-form representation, an SPFD is
expressed in the following form:

{(h1,1, h1,0), (h2,1, h2,0), . . . , (hm,1, hm,0)}. (2)

where m is a non-negative integer, hi,1·hi,0 = 0, but hi,1 	= 0
and hi,0 	= 0 hold for every i = 1, 2, . . . , m. For each i,

the corresponding set consists of CSF’s, g’s, satisfying the
following condition:

hi,1 ≤ g ≤ hi,0 or hi,0 ≤ g ≤ hi,1 (3)

When this condition is satisfied, g is said to distinguish
hi,1 and hi,0. Moreover, if g distinguishes all the m pairs,
g is said to satisfy the SPFD. In the case of m = 1, the
SPFD is very similar to an ISF since h1,1 and h1,0 are re-
garded as the on-set and off-set functions of the ISF, respec-
tively. However, unlike in the ISF, they can be regarded
conversely. In other words, it represents a pair of ISF’s. If
(hi,1 ∨ hi,0)(hj,1 ∨ hj,0) = 0 holds for any (i, j) where i 	= j,
i = 1, . . . , m and j = 1, . . . , m, then the SPFD represents
2m ISF’s. The ISF’s can be represented a functional expres-
sion in Table 1 where 0 or 1 can be assigned to ai in g for
each i = 1, 2, . . . , m.

Like MSPF’s and CSPF’s in the Transduction Method,
SPFD’s are used to determine whether wires can be removed
or replaced. In the case of SPFD’s, this removal and re-
placement considers the modification of internal functions,
which are analogous to gate types, such as AND or OR.
Thus, SPFD’s can be utilized particularly for optimization
of LUT-based FPGA networks.

In this section, we introduce how to calculate and use
SPFD’s for the optimization.

3.1 SPFD Calculation at Input Wires
Let us consider how to calculate SPFD’s at all K in-

put wires of an LUT, v, which are denoted as SPFD1/v,
SPFD2/v, . . . , SPFDK/v. We suppose that SPFD at the
output of an LUT is obtained beforehand so as to consist
of only one pair, i.e., SPFD0/v = {(h1/v , h0/v)}, as will be
mentioned in Section 3.4. Then, the SPFD’s at the K input
wires, SPFD1/v, SPFD2/v, . . . , SPFDK/v, are computed
as follows:

3.1.1 Step 1:
For every (y1y2 . . . yk) = (00 . . . 0), . . . , (11 . . . 1), the fol-

lowing function is calculated:

hy/v = hy1y2...yk/v = (h1/v ∨ h0/v)
K̂

i=1

f̂i/v . (4)

where f̂i is a CSF defined for each i = 1, 2, . . . , K as follows:

f̂i/v =

�
fi/v if yi = 1
f i/v if yi = 0.

(5)

As a result, 2K functions are obtained in total.

3.1.2 Step 2:
Pairs of these CSF’s are made up to be contained in the

SPFD’s by constructing the following two sets,

HON/v = {hyON /v| hyON /v ≤ h1/v ,
hyON /v 	= 0}.

HOFF/v = {hyOFF /v| hyOFF /v ≤ h0/v ,
hyOFF /v 	= 0}.

(6)

and by calculating the direct product as follows:

Pv = HON/v × HOFF/v. (7)

where Pv is to be the union of all the SPFD’s at the input
wires to be computed in Step 3.
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Table 2: Example without Wire Addition

(a) Functions
fi/vs1

fi/vs2
fi/vt

i
x 1 2 0 1 2 0 1 2 3 0

000 0 0 0 0 0 1 0 0 0 0
001 1 0 1 0 0 1 1 0 0 0
010 1 1 0 1 1 1 0 0 1 1
011 1 1 0 0 1 0 1 1 1 1
100 0 0 0 1 0 0 1 0 1 0
101 1 0 1 1 0 0 1 1 0 0
110 0 1 1 0 1 0 0 0 1 1
111 0 1 1 1 1 1 1 1 1 1

(b) Expression of Functions Satisfying SPFD’s
gi/vs1

gi/vs2
gi/vt

i
x 1 2 0 1 2 0 1 2 3 0

000 a1 a2 0 a3 a4 1 a5 ∗ a7 0
001 a1 b2 1 a3 a4 1 b5 a6 ∗ 0

010 b1 b2 0 b3 b4 1 b5 ∗ a7 1
011 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
100 a1 a2 0 ∗ ∗ ∗ b5 a6 ∗ 0
101 ∗ ∗ ∗ a3 b4 0 b5 ∗ b7 0
110 b1 a2 1 b3 a4 0 b5 ∗ a7 1
111 b1 a2 1 b3 b4 1 a5 a6 b7 1

3.1.3 Step 3:
Each (hyON /v, hyOFF /v) ∈ Pv is assigned into SPFDj

such that

hyON /v ≤ fj/v ≤ hyOFF /v

or
hyOFF /v ≤ fj/v ≤ hyON /v.

(8)

holds. There may exist two or more j’s such that Eq.(8)
holds. In this case, one can be chosen from them, based on
the given priorities set up by heuristics. As a result of this
assignment for all the pairs, SPFDj/v is obtained for every
j = 1, 2, . . . , K.

3.2 Transformations based on SPFD’s at In-
put Wires

3.2.1 Removal of an input wire
The j-th input wire of an LUT, v, can be removed if the

following condition is satisfied:

SPFDj/v = ∅. (9)

3.2.2 Replacement of an input wire
Suppose that SPFDj is obtained as {(hyONi

, hyOFFi ) | i =
1, . . . , m} where hyONi

’s or hyOFFi ’s may be identical for
some of the i’s. Then, the j-th input wire can be replaced
with a new one from another LUT, v′, whose output func-
tion is f0/v′ with respect to x if the following condition is
satisfied:

hyONi/v ≤ f0/v′ ≤ hyOFFi/v

or hyOFFi/v ≤ f0/v′ ≤ hyONi/v

for every i = 1, . . . , m.

(10)

3.3 Internal Function Modification
The concept of SPFD assumes that the internal function

can be changed within a specified number of variables. Thus,
after input wires of an LUT, v, is removed or replaced, the
internal function must be changed, i.e., modified, in order
to keep all the primary output functions unchanged. In this
section, we show how to modify the internal function.

The modified internal function is obtained in a disjunctive
form (i.e., a sum of products). Assume that fi/v is replaced
with gi/v for each i = 1, 2, . . . , K by the FPGA circuit trans-
formation. Each term, Tj/v, in the form is obtained, corre-
sponding to hyONj /v ∈ HON/v for each j = 1, 2, . . . , p as

follows, when HON consists of p pairs containing hyON1 /v,
hyON2 /v, . . . , hyONp/v:

1. The term contains a literal yi if SPFDi/v contains a
pair with hyONj /v ∈ HON/v such that hyONj /v ≤ gi,

2. The term contains a literal yi if SPFDi/v contains a
pair with hyONj /v ∈ HON/v such that hyONj /v ≤ gi,

3. The term contains no literal if SPFDi/v contains no
pair with hyONj /v ∈ HON/v

After Tj/v’s are obtained for all j = 1, 2, . . . , p, the sum is
assigned as the modified internal function, u = T1/v ∨T2/v ∨
. . . ∨ Tp/v.

3.4 SPFD Calculation at the Output
Let us consider how to compute SPFD at the output of an

LUT, v, given SPFD’s at all its t output wires, SPFD01/v,
SPFD02/v, . . . , SPFD0t/v. First, the union of all the
SPFD’s is calculated as follows:

t[
i=1

SPFD0i/v (11)

However, the union is not used as SPFD at the output,
SPFD0/v, in the conventional calculation if the pairs in
the union are not disjoint. If the function at the output
of v were changed from f0/v to g0/v, then g0/v would have
to satisfy the union. In other words, all the pairs in the
union would have to be distinguished by g0/v. Although the
internal function would have to be modified so that each pair
is distinguished, v can realize only one internal function. If
the union consists of p pairs, the LUT would have to realze
at most p internal functions, but actually not. Hence, the
union is transformed into one-pair SPFD.

Suppose that the union consists of p pairs, (h1,1, h1,0),

(h2,1, h2,0), . . . , (hp,1, hp,0) where hi,1 ≤ f0/v ≤ hi,0 holds
for every i = 1, 2, . . . , p. SPFD at the output, SPFD0/v, is
calculated by using the following sum operations:

SPFD0/v =

( 
t_

i=1

hi,1,
t_

i=1

hi,0

!)

= {(h1/v , h0/v)}.
(12)

It is important to notice that (h1/v, h0/v), given in Section
3.1, is obtained by this calculation.

4. SPFD-BASED ONE-TO-MANY REWIRING
(OMR)

In this section, we show a condition for effective wire ad-
dition and an example of the application.

4.1 Condition for Effective Wire Addition
Let us consider the addition of an input wire from vi to vj .

The addition is possibly effective if the following condition
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Table 3: Example with Wire Addition

(a) Functions
fi/vs1

fi/vs2
fi/vt

i
x 1 2 3 0 1 2 3 0 1 2 3 0

000 0 0 1 0 0 0 0 1 0 0 0 0
001 1 0 0 1 0 0 1 1 1 0 0 0
010 1 1 1 0 1 1 1 1 0 0 1 1
011 1 1 1 0 0 1 0 0 1 1 1 1
100 0 0 0 0 1 0 1 0 1 0 1 0
101 1 0 0 1 1 0 0 0 1 1 0 0
110 0 1 0 1 0 1 0 0 0 0 1 1
111 0 1 1 1 1 1 1 1 1 1 1 1

(b) Expression of Functions Satisfying SPFD’s
gi/vs1

gi/vs2
gi/vt

i
x 1 2 3 0 1 2 3 0 1 2 3 0

000 a1 b2 b3 0 b4 a5 ∗ 1 ∗ ∗ a9 0

001 a1 ∗ c3 1 b4 ∗ a6 1 ∗ ∗ ∗ ∗
010 b1 ∗ c3 0 a4 ∗ b6 1 ∗ ∗ ∗ ∗
011 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
100 a1 a2 a3 0 ∗ ∗ ∗ ∗ a7 ∗ ∗ 0
101 ∗ ∗ ∗ ∗ b4 ∗ b6 0 ∗ ∗ ∗ ∗
110 b1 a2 b3 1 a4 a5 a6 0 a7 ∗ a9 1
111 b1 b2 a3 1 a4 ∗ b6 1 a7 ∗ a9 1
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Figure 3: An Example Network

is satisfied:

There is at least one hy such that
hy ≤ fvi or hy ≤ fvi

holds.
(13)

4.2 An Example
Let us consider an example network shown in Fig. 3 where

va1 or va2 is not a successor of any LUT’s, vs1 , vs2 and vt.
Assume that the delay of wt, which is the second input wire
of vt, causes long delay and that we have been obtained in-
formation on physical design that the delay of wa1,s1 and
wa2,s2 is likely to be shorter than the delay of wt. The
functions in the network is shown in the truth table in Ta-
ble 2 (a), where i is the pin number of LUT’s in Fig. 3.
SPFD’s at the outputs of vs1 and vs2 are obtained to repre-
sent the ISF’s in the columns, g0/vs1

and g0/vs2
, respectively,

in Tables 2 (b) and 3 (b), where 0 or 1 can be arbitrarily
assigned to ai, bi or ci for each i = 1, 2, . . . , 9 independently.

4.2.1 Without Wire Addition
When no wires are added to vs1 or vs2 , SPFD’s are ob-

tained to represent the functional expressions in Table 2 (b).,
where 0 or 1 can be independently assigned to each ai or bi

for i = 1, 2, . . . , 7. In this calculation of SPFD’s at the input
wires of vs1 and vs2 , we assign the priority to assign into
SPFD2/vs1

and SPFD2/vs2
, respectively, as few pairs as

possible. As shown in the column of gi/vt ’s for all i = 1, 2, 3,
no input wire of vt can be removed, since the expressions
mean that the none of SPFD’s is empty. Thus, w is not
disconnectable without wire addition.

4.2.2 Effects by Wire Addition
Table 3 illistrates an example of effective wire addition.

Suppose that f0/va1
and f0/va2

are equal to f3/vs1
and f3/vs2

in Table 3 (a), respectively. In the case of these functions,

the following relationships are satisfied:

h10/vs1
≤ f0/va1

, h11/vs1
≤ f0/va1

,

h01/vs2
≤ f0/va2

, h10/vs2
≤ f0/va2

, h11/vs2
≤ f0/va2

.
(14)

Hence, we determine that wire addition of wa1,s1 and wa2,s2

is likely to be effective.
As a result of the wire addition, the new wires become

the third inputs of vs1 and vs2 , as shown in Fig. 3 and
Table 3 (a). Based on these functions, we obtain SPFD’s
represented by expressions in Table 3 (b) where 0 or 1 can
be assigned independently to ai, bi or ci for i = 1, 2, . . . , 9.
The expression in the column g2/vt means that SPFD at wt,
which is the second input wire of vt, is empty and wt can
be removed. Thus, the wire addition of wa1,s1 and wa2,s2

makes wt redundant. Since the delay of these added wires is
shorter then the delay of the removed wire, the total delay
of this FPGA circuit is expected to be reduced, or even in
the worst case, to be kept unchanged.

As shown in this example, the condition in Eq.(13) is use-
ful to determine which new wires should be added for the
target wire to be redundant.

5. EXPERIMENTAL RESULTS
As described in the previous sections, our rewiring method,

OMR, allows to add two or more new wires substituted for
the target wire, and appears to be more powerful and flexible
than GR and ER.

In this section, we show the experimental results on MCNC
benchmark circuits [3]. The initial circuits are composed of
LUT’s so that each of them has five or fewer input wires,
by applying SIS commands developed at UCB [4]. This se-
quence of commands yields 5-LUT FPGA networks.

In order to compare our OMR with the LR, GR and ER,
we only counted successful rewirings, since a circuit may not
be placed and routed well even if its structure is compact
at the logic design level. Especially, it is theoretically clear
that the OMR and ER cover the LR and GR, respectively.
Therefore, we compared the rewiring counts by the OMR
and ER. The results are shown in Table 4, where “Init.”
means the number of wires in an initial benchmark circuit,
“ER” and “OMR” mean the numbers of target wires suc-
cessfully replaced with new ones and the computation time
is obtained as seconds for each target wire. In Table 4, al-
though the results for several benchmark circuits are not
shown, we present the average results.

As shown in Table 4, the OMR can replace about 1.2
times as many target wires as the ER can. Since the topo-
logical constraints on the ER are loosened, it is easier for
the OMR to replace target wires. It appears not to be fair
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Table 4: Experimental Results: Successful Rewiring
Counts

# of Successful RW Time/Wire
Circuit Init ER OMR Adv. ER OMR

C1908 429 88 84 29 0.76 1.13
C432 275 127 141 62 2.15 2.89
alu2 482 310 348 79 0.05 0.15
alu4 885 562 566 135 0.16 0.37
apex6 894 306 224 59 0.07 0.58
apex7 292 93 101 36 0.03 0.15
b9 159 20 37 27 0.01 0.05

example2 451 69 138 91 0.00 0.09
f51m 106 50 33 10 0.01 0.02
i7 511 36 40 4 0.00 0.09
i9 679 22 253 242 4.13 1.39

term1 303 198 205 36 0.02 0.16
ttt2 246 92 122 39 0.00 0.02
x2 56 21 14 4 0.00 0.01
x3 937 187 197 80 0.04 0.96
x4 598 177 275 101 0.02 0.43

(%) 100 30.1 36.0 15.1 100.0 82.45
Adv.: Target Wires that are replaced by using OMR but not by ER.

enough to compare the number of successful rewiring, since
the concepts of the OMR and ER are very different. The ER
once changes the primary output functions and finally tries
to restore them. On the other hand, the OMR always keeps
the primary output functions unchanged. In fact, compar-
ing the results on each target wire, 15% of all wires in the
initial circuits are successfully rewired by using the OMR
but cannot by using the ER. Since the ER and OMR rewire
about 30% and 36% successfully, the percentage, 15%, is
relatively large. Hence, we can conclude that the OMR is
another option for rewiring after the physical design, such
as placement and routing.

With respect to the computation time, the OMR takes
about 82% as long as the ER does. However, benchmark
circuits, ’C432’ and ’i9’, take very long time relatively to
the other ones. Without these circuits, the computation
time of the OMR is longer than that of the ER. Consider-
ing the procedures of the ER and OMR, both need SPFD
calculation once. Since the OMR looks for effectively added
wires, it is considered to need additional time proportional
to the number of LUT’s in a circuit. On the other hand, the
ER is applied only to dominators, which are considered to
be far fewer than the LUT’s in the circuit. Considering the
experimental results on the computation time, once the crit-
ically long target wire is determined, the computation time
of the OMR is practically short. Thus, when the ER cannot
modify the netlist well enough to satisfy the specifications,
the OMR is useful as a logic design level rewiring method
collaborating with the physical design.

6. CONCLUSION
This paper proposed an innovative method for SPFD-

based rewiring, the One-to-Many Rewiring (OMR).
Topological constraints are not imposed on our OMR, al-
though they are imposed on the existing methods, the LR,
GR and ER. Thus, the OMR provides with a more flexible
transformation than the existing methods. From our exper-
imental results, the OMR provides with 1.2 times as flexible
transformation as the existing rewiring methods presents.
By importing the results on the physical design, such as
placement and routing, this feature makes it easier to re-
move or replace wires causing long delay with shorter-delay
wires. The OMR is more useful for collaboration of logic

and physical design. We are implementing it to link with
placement and routing tools.
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