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ABSTRACT
Main goal of the paper is introducing a dynamic branch pre-
diction scheme suitable for energy-aware VLIW (Very Long
Instruction Word) processors. The proposed technique is
based on a compiler hint mechanism to filter the accesses to
the branch predictor blocks. Experimental results have been
carried out on Lx/ST200, an industrial 4-issue VLIW archi-
tecture. We gathered two sets of results: First, by introduc-
ing the proposed low-power branch prediction technique in
the Lx processor, which features fully static branch predic-
tion, a significant improvement of the energy-delay metric
has been observed. Second, we evaluated filtering efficacy
of the proposed method and we found that it gets an ac-
cess reduction to the branch prediction unit of 93% with
respect to a processor directly derived from Lx, featuring
cycle-by-cycle prediction, corresponding to an average 9%
energy reduction of the whole processor power budget.
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C.1.0 [Processor Architectures]: General

General Terms
Design, Performance
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1. INTRODUCTION
Control dependencies between instructions prevent pipeli-

ned processors from meeting maximum performance. Specif-
ically for pipelined ILP (Instruction Level Parallelism) pro-
cessors, as the amount of parallelism grows, control depen-
dencies become one of the limiting factors to increase the
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system performance. Branch prediction techniques can re-
duce performance degradation due to branch instructions.

In general, power dissipation can be considered as im-
portant as performance in the design of pipelined proces-
sors. When dealing with ILP pipelined processors, stati-
cally scheduled VLIW processors require simple hardware
implementations, better matching the low-power require-
ments with respect to superscalar processors, characterized
by complex hardware to implement dynamic scheduling. The-
refore, the problem of branch prediction in pipelined pro-
cessors must be afforded from the power/performance com-
bined perspective, particularly in the case of low-power em-
bedded VLIW processors.

The main goal of the present paper is to propose a low-
power branch prediction architecture suitable for VLIW pro-
cessors. In the paper, we propose a compiler-assisted dy-
namic branch prediction technique that can be efficiently
adopted by VLIW processors to obtain low energy consump-
tion, while preserving performance, at the expense of a quite
limited area overhead. The basic idea consists of the intro-
duction of Hint Instructions (HIs) in the compiled code to
statically move up some information, related to the branch,
to the control unit. The HIs inform the processor that a
branch is coming and, therefore, the branch prediction unit
will be activated only when a branch occurs, thus reducing
the number of accesses to the branch predictor and conse-
quently the related power dissipation.

The paper is organized as follows. Section 2 introduces
some previous works. The proposed low-power branch pre-
diction technique based on Hint Instructions is presented in
Section 3. The target architecture and the related set of
experimental results are shown in Section 4. Finally some
concluding remarks and future evolutions of the work are
reported in Section 5.

2. BACKGROUND
Many works have been targeted at reducing the perfor-

mance degradation due to control dependencies, proposing
several branch prediction techniques [1] [2]. Branch pre-
diction can be static or dynamic. Static branch predic-
tion associates with each branch a fixed prediction that
is used once the branch instruction is met in the stream.
Dynamic branch prediction associates a variable prediction
with each branch, that is updated based on a specific pol-
icy. A dynamic branch prediction technique is usually com-
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posed of two interacting hardware modules [2]: a Branch
Outcome Predictor and a Branch Target Predictor. The
branch outcome predictor is used to forecast the direction
of the branch, i.e., taken or not taken, while the branch tar-
get predictor (usually implemeted as a Branch Target Buffer
(BTB) [2]), computes the taken address of the branch. Ho-
ogerbrugge [3] compares the typical dynamic branch pre-
diction techniques for superscalar processors against ad hoc
techniques for VLIW architectures showing that branch pre-
diction techniques designed ad hoc for VLIW processors can
reduce the misprediction rate significantly.

Microarchitectural power reduction techniques are usu-
ally combined with technology-level transformations to ob-
tain circuits with reduced energy dissipation and leading-
edge performance [4]. Research on branch prediction and
power/performance exploration appeared only recently in
the literature. In [5], the authors analyze several branch
prediction organizations for superscalar processors from the
power/performance perspective. The authors propose also
a simple module, namely Prediction Probe Detector-PPD,
that uses some pre-decoded bits to eliminate unnecessary
accesses to predictor and BTB. A similar work has been
presented in [6], where the authors introduce a branch pre-
diction scheme for a low-power VLIW processor. Aim of this
technique is filtering the accesses to the branch prediction
block for the no-branch instructions. In order to reduce the
number of accesses, the authors implement a module, called
Hardware Branch Detector (HWBD), to predecode and to
detect branch instructions.

The present paper represents a further step on the way of
designing low-power dynamic branch prediction techniques
in a VLIW architecture, exploiting a compiler assisted pre-
dictor.

3. LOW-POWER OPTIMIZATION
Branch prediction can improve processor performance at

the cost of added hardware, and related power necessary for
the prediction. Branch predictors are like small caches and
they are accessed every processor cycle, so their power con-
sumption could become significant, up to 10% of the whole
processor power consumption [6].

An effective technique to obtain good power-performance
trade-offs consists of reducing predictor lookups by avoid-
ing no-branch instructions to access the branch prediction
unit [6] [5]. The crucial point is that, in order to avoid a
predictor access for no-branch instructions, it is necessary to
know whether the fetched instruction will be a branch, while,
at this time, the undecoded instruction is still in cache, so
either we rely on a predecoded bits stored in cache, or we
wait for the branch is fetched and then we decode it.

The solution we are proposing in this paper exploits the
capability of an optimizing compiler to insert a Hint In-
struction (HI ) anticipating to the processor that a branch
instruction follows, and adding static prediction informa-
tion. The HIs move up to the processor some information
related to the next branch instruction, basically enabling
the processor control logic to activate the branch prediction
unit. Moreover predictor modules accesses are saved by us-
ing static information stored in the HI. In fact, the following
information can also be included in the HIs, at compile time:
Branch Target Address, if the branch is of immediate type,
since its target address is known by the compiler; Direc-
tion Bit, in case the branch is a static one (unconditional

branch), since its outcome does not depend on dynamic be-
havior. HIs inform the processor that a branch is coming
and, therefore, the branch prediction unit will be activated
only when a branch occurs. Other static information help
to save additional predictor accesses. The moving up of the
target will save Target Predictor lookups, while, if direction
is available as well, no predictor will be accessed at all, and
yet branch instructions will be predicted correctly. In this
way, depending on the type of the branch, only the necessary
predictor modules are activated.

We propose to extend the instruction set with a hint in-
struction with the following format:
hint offset[, target ][, direction]

where the offset field indicates how many cycles to wait
for the branch, and the optional target field and direction

field contain the additional static information.
The only additional hardware needed by this technique is

decode logic for the HI. This logic performs HI predecoding,
as soon as the HI is fetched. It triggers the branch predictor
modules and manages target and direction fields, if they
are encoded in the HI.

Peculiar VLIW code features can be exploited to make the
HI insertion really efficient. Usually a VLIW compiler can-
not fill every long instruction (namely, bundle) with useful
operations [2]. Thus, the maximum number of parallel op-
erations is hardly ever sent to the processor. The bundle is
filled up with NOPs requiring often code compression tech-
niques. Our proposal is to enable the compiler to insert a HI
in an existing bundle by substituting a NOP instruction. To
do this, every basic block is analyzed: if there is a bundle be-
fore the bundle containing the branch including NOPs, the
HI is substituted in one of these NOPs. Otherwise, instead
of generating a new bundle only to insert the HI, we prefer
not to insert the HI at all to avoid increasing bundles count
and, therefore, execution time, actually destroying the ad-
vantage of a correct prediction. In this way, it is not always
possible to add a compiler hint for each branch.

4. EXPERIMENTAL RESULTS
In this section, we present the results obtained by in-

troducing the proposed branch filtering mechanism into an
industrial VLIW processor executing a set of multimedia
benchmarks (on average 20M instructions executed for each
benchmark) taken from the Mediabench Suite [7].

Our target architecture has been directly derived from the
Lx processor, a scalable and customizable 4-issue (VLIW)
pipeline architecture, whose implementations are the CPUs
of the ST210/ST220 cores family for embedded systems (by
STMicroelectronics and Helwett-Packard Labs) [8]. Lx ar-
chitecture is a ‘pure’ VLIW with a very short pipeline, only
six stages. The original Lx architecture has only a static
branch prediction policy, always not taken. Branch instruc-
tions are early solved in the decode stage (second stage), so
the misprediction penalty is only one cycle stall.

In the present paper, we consider several extensions to the
original Lx architecture: The Lx-BP architecture, obtained
by substituting the original Lx static branch predictor with
a configurable dynamic branch prediction unit accessed in
parallel with Instruction Cache; Lx with PPD or HWBD or
HI-based, obtained by enhancing Lx-BP with the PPD or
HWBD or HI-based low-power technique respectively.

Since every analyzed filtering method misses some bran-
ches, we assume that, when a branch is not detected, it is

441



Table 1: Performance of branch prediction filtering methods for the selected set of multimedia benchmarks

Benchmark Branches Misprediction Predictor Hinted Miss Rate Miss Rate
[%] Rate [%] Saved Accesses [%] Branches without with

HWBD PPD HI-based HWBD PPD HI-based [%] hints [%] hints [%]

adpcmenc 14.172 12.063 11.73 0.7147 87.354 86.823 93.797 85.051 1.20 1.33
adpcmdec 13.774 1.0378 0.39091 1.0872 87.86 87.049 99.723 42.593 1.82 1.91
gsmenc 10.051 8.7913 6.7143 5.5038 91.299 90.804 95.206 84.683 9.54 10.00
gsmdec 9.7331 7.9546 6.7955 3.479 91.191 90.927 94.271 92.332 5.99 6.39
jpegenc 23.339 19.867 6.9001 28.082 84.002 79.82 87.398 70.586 4.23 4.78
jpegdec 16.889 17.091 4.6609 19.524 87.776 85.239 93.476 58.479 18.40 18.99
pegwitenc 14.748 8.7217 6.1443 11.033 86.713 86.927 91.838 84.713 1.66 1.85
pegwitdec 14.405 8.3684 5.9297 10.242 87.303 86.52 90.312 84.55 2.46 2.73

Average 14.639 10.487 6.1582 9.958 87.937 86.764 93.253 75.37 5.66 6.00

predicted as not-taken, accordingly to the static prediction
policy of Lx.

Several branch outcome predictors have been explored
in terms of their related parameters. With respect to the
branch target predictor, during the simulation we used a 256
entries 2-way Branch Target Buffer (BTB), with 14 tag-bits.
The branch outcome predictors chosen for the validation
of the methodology, with the relative configuration of the
parameters, are: Bimodal predictor (64B), GShare (256B,
1KB, 4KB, 16KB), PAs (192B, 640B, 2.2KB, 4.1KB), Hy-
brid1 Bimodal/PAs (1.3KB), Hybrid2 GShare/PAs (1.8KB).

The experimental results are obtained by using an in-
house custom trace-driven tool called BPSIM (Branch Pre-
diction SIMulator). The power models for the configurable
branch predictor and detector schemes derived from Cacti [9]
and Wattch models [10], configured for a 0.25µm implemen-
tation running at 250MHz, have been plugged in BPSIM.

In this framework, we plugged in an Lx Instruction Set
Simulator, with an instruction-accurate timing estimation
module containing the power models of the core [11].

We show two different sets of results: First, analysis of the
impact of the proposed low-power optimized branch predic-
tion technique (HI-based) on performance and energy con-
sumption of the Lx processor. Second, analysis of the ef-
ficacy of HI-based with respect to cycle-by-cycle dynamic
prediction. Through our analysis we compare our proposal
with PPD and HWBD techniques.

The overall results, obtained by applying the branch selec-
tion method that we propose (HI-based) to the Lx processor,
are shown in Figure 1, where there is the two dimensional
scatter plot of the average energy and average delay for the
different simulated configurations. Dynamic branch predic-
tion causes significant performance improvements with re-
spect to the original Lx architecture. This is because dy-
namic prediction improves significantly the prediction accu-
racy with respect to the original Lx static policy. From the
point of view of energy dissipation, the results strongly de-
pend on the adopted low-power method. As it can be seen,
data relative to Lx with branch prediction can be easily
grouped into four different clusters. The first cluster repre-
sents the Lx-BP architecture (that is, cycle-by-cycle access
to the predictor, without filtering accesses to the branch
predictor). The other three clusters are characterized by
different techniques used to filter the access to the branch
predictor: PPD, HWBD and HI-based.

Lx-BP and PPD approaches result to be really performan-
ce-effective, but, since these methods require cycle-by-cycle
access to memory structures (respectively the predictor it-
self and the PPD), they feature large energy consumption.

HI-based and HWBD obtain low energy dissipation, because
the only hardware added to the original architecture is de-
code logic. On the other hand, these approaches get lim-
ited delay speedup with respect to the original Lx architec-
ture, since some branches can’t be detected. The HI-based
method is the technique which achieves the lowest energy
consumption, since the static prediction component makes
many predictions be correctly accomplished without predic-
tor modules activation. It can be observed that a signifi-
cant performance speedup of the Lx architecture enhanced
by HI-based dynamic branch prediction with respect to the
original Lx architecture is achieved. We measured, on the
selected set of simulated benchmarks, a speedup of 4.4% on
average and 7.2% at maximum.

Furthermore, we want to evaluate the efficacy of the HI-
based method; that is, how many accesses to the branch
predictor modules can be saved with respect to the accesses
performed by traditional cycle-by-cycle dynamic prediction.
So, we compare the architecture enhanced with dynamic
prediction and HI-based, with the Lx-BP architecture.

Table 1 shows the results of the branch predictor filter-
access techniques in terms of Misprediction Rate and Pre-
dictor Saved Accesses for the simulated benchmarks. The
Misprediction Rate is an index of the accuracy of the branch
unit. Its value is determined as the fraction of mispredicted
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Figure 1: Energy-Delay Scatter Plot for the simu-
lated architectural configurations by varying branch
predictor parameters and low-power optimizations
(PPD, HWBD and HI-based)
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branches out of total executed branches. It is important
to note that in the mispredicted branches are taken into ac-
count the not-detected taken-branch instructions too, which
are statically predicted not-taken. The column Predictor
Saved Accesses represents the saved accesses to predictor
by the filtering techniques with respect to cycle-by-cycle ac-
cesses performed by the Lx-BP architecture.

We can observe in Table 1 that the most accurate method
in terms of misprediction rate is the PPD. In fact accuracy
loss is only due to the effectively mispredicted branches and
not to the misdetected branches. Table 1 shows that also
the higher value for the fraction of Predictor Saved Accesses
is related to the proposed HI-based (on average 93%). This
characteristic and the limited energy cost overhead (similar
to NOP instructions) due to the HI introduction are the
motivations for the high reduction in terms of energy shown
in Figure 1.

Table 1 shows also the percentage of hinted branches out
of the total number of executed branches and the Instruc-
tion Cache (IC) miss rate behavior when hints are inserted,
for each benchmark. The first set of these data (Hinted
Branches) indicates how many branches are effectively de-
tected by using HI-based approach. The number of the exe-
cuted branches is split into two groups: the hinted branches,
which are predicted through hint activation, and the oth-
ers, statically predicted not-taken by the original proces-
sor policy. The percentage of hinted branches depends on
the specific application, ranging from 43% to 92%, making
a smaller or larger fraction of branches be predicted stat-
ically not-taken. How the not-taken prediction component
impacts prediction accuracy depends on the specific bench-
mark structure. It can lead to low misprediction rate as for
ADPCMDEC (featuring only 42% of hinted branches and
1% misprediction rate) or to a lot of mispredicted branches
as for JPEGENC and JPEGDEC (see Table 1).

Since the HI-based technique does not require the inser-
tion of extra bundles, the total number of NOPs is reduced
and that implies a less compressed VLIW code and a higher
Instruction Cache miss rate. However, the last two columns
of Table 1 shows that, for all the benchmarks, we can note
only a slight increment of the miss rate, due to hints inser-
tion.

Figure 2 shows the energy reduction and the performance
speed-up for the proposed technique, HI-based, with respect
to the Lx-BP architecture for each selected benchmark. The
figure shows approximately the same trend in energy reduc-
tion for all the benchmarks we analyzed. The energy re-
duction ranges from 4% (in JPEGENC benchmark by using
the Bimodal predictor) to 12% (in ADPCMENC benchmark
by using GShare predictor). Concerning the performance
speedup, JPEGDEC and JPEGENC benchmarks show the
worst behavior (-4.2% and -2.4% respectively). This be-
havior can be correlated with the misprediction rate shown
in Table 1, that is 28.08% and 19.52% for JPEGDEC and
JPEGENC respectively. In particular, JPEGENC bench-
mark features a larger fraction of indirect branches (10%
out of the total executed branches), which are harder to be
dynamically predicted. The fraction of indirect branches in
all the other benchmarks is less than 3%.

5. CONCLUSIONS AND FUTURE WORK
In this paper, a low-power branch prediction methodol-

ogy for VLIW processors has been proposed. The proposed
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Figure 2: Energy reduction and performance speed-
up of HI-based technique for each benchmark, with
respect to the Lx-BP architecture, for a set of
branch predictor schemes (Bimodal, GShare, PAs,
Hybrid1 and Hybrid2)

technique uses hint instructions to filter the accesses to the
branch predictor. The combined effects of both static and
dynamic information to predict a branch provide a signif-
icant energy reduction. Experimental results have shown
that this technique can achieve an average access saving to
the branch predictor of 93% with respect to a cycle-by-cycle
access, which corresponds to 9% total processor energy re-
duction at the cost of 1% average performance loss. When
HI-based technique is adopted in the Lx processor to en-
hance the original architecture with dynamic branch predic-
tion, it gets a significant improvement of the energy-delay
metric.

As future evolutions of the present work we are evaluat-
ing other architectures and related simulation environments,
as well as compiler-based techniques to extensively support
low-power dynamic branch prediction techniques.
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