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ABSTRACT
Based on a new reformulation of the extended Euclidean al-
gorithm, systolic architectures suitable for VLSI implemen-
tations are proposed for finite field inversion and division
in this paper. The architectures proposed in this paper can
achieve O(m2) area-time complexity, O(m) latency, and crit-
ical path delays of two logic gates. These architectures show
improved performances when compared with previously pro-
posed architectures.

Categories and Subject Descriptors
B.2.4 [ARITHMETIC AND LOGIC STRUCTURES]:
High-Speed Arithmetic

General Terms
Algorithms, Design

Keywords
Finite field arithmetic, Galois field, Reed-Solomon codes,
cryptography

1. INTRODUCTION
Finite fields have found applications in areas such as cryp-

tography, digital signal processing, and error-control codes.
Hence, efficient architectures for finite field arithmetics are
important to the performances of the VLSI implementation
of these applications. Inversion and division are the most
complicated finite field arithmetics, and various algorithms
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and architectures (see, for example, [1, 2][4]-[7] and the ref-
erences therein) have been proposed based on different ap-
proaches such as recursive construction approaches, the ex-
tended Euclidean algorithm (EEA), the extended Stein al-
gorithm (ESA), Fermat’s theorem, or solving linear equation
systems. In this paper, we focus on inversion/division ar-
chitectures based on the EEA. Recently, Yan and Sarwate
[6] proposed systolic inversion/division architectures based
on a modified Euclidean algorithm, which can achieve criti-
cal path delays1 (CPDs) as small as two logic gates. Their
architectures have some other advantages when compared
with previously proposed architectures. Interested readers
are referred to [6] for details. The architectures in [6] are
referred to as the YS architectures henceforth.

In this paper, based on a different reformulation of the
EEA, we propose new systolic architectures for inversions
and divisions in GF (2m). Compared to the YS architec-
tures, the new architectures proposed in this paper have
similar structures and achieve the same area-time (AT) com-
plexity2, throughput, critical path delay, and latency. Fur-
thermore, the algorithmic reformulation explained below re-
sults in smaller hardware costs: the new architectures have
less inter-cell connections and fewer latches than the YS ar-
chitectures. Detailed performance comparisons are provided
in the paper.

For all our architectures, we propose to compute a divi-
sion B/A by first inverting A and then multiplying by B.
This allows our division architectures to still achieve the
same CPDs as the component inversion architectures while
maintaining O(m2) AT complexity and O(m) latency.

2. REFORMULATION OF THE EXTENDED
EUCLIDEAN ALGORITHM

Let g(x) be an irreducible polynomial of degree m over
GF (2). The field GF (2m) can be viewed as the set of bi-
nary polynomials of degree less than m with addition and
multiplication modulo g(x). The inverse of a(x) modulo
g(x) is the unique polynomial â(x) that satisfies

a(x) · â(x) ≡ 1 (mod g(x)).

1The terminology of this paper mostly follows Parhi [3].
2The AT complexity of an architecture is simply the product
of the respective orders of the gate count and the number of
cycles between successive outputs.
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The extended Euclidean algorithm can be used to compute
â(x). There are certain drawbacks for architectures based on
direct implementation of the extended Euclidean algorithm
(see, for example, [1]), and our implementations are based
on a new reformulation of the EEA that is more suitable for
VLSI implementations:
The Reformulated Euclidean (RE) Algorithm

1. Set ε ← 0, u(x) ← g(x), v(x) ← a(x), s(x) ← xm,
and t(x)← 0.

2. Repeat 2m times:

(a) set v(x)← xv(x), t(x)← t(x)/x, and ε← ε− 1.

(b) if vm = 1 and ε < 0,
set ε← −ε and swap u ↔ v and s ↔ t.

(c) if vm = 1, set

v(x) ← v(x) + u(x),

s(x) ← s(x) + t(x).

3. Output â(x) = t(x).

The details of the reformulation have been omitted here
due to the limitation of space. Note that the operations
in each iteration of the reformulated algorithm are shifting,
swapping, or addition, all of which are easy to implement.

3. IMPLEMENTATION ISSUES
The RE algorithm above keeps track of four binary poly-

nomials, u(x), v(x), s(x), and t(x). These four polynomials
can be stored in four (m+1)-bit registers since their degrees
are no more than m. To simplify the notation, the bits of
the registers u, v, s, and t are numbered from left to right
as m, m− 1, · · · , 0.

Some further improvements are made to the RE algo-
rithm. It can be shown that the last iteration of the RE
algorithm simply shifts the t register by one position, and
hence can be omitted. Also, in order to eliminate the prece-
dence between Steps 2(a) and 2(b) and hence reduce the
path delay, the operation ε ← ε − 1 in Step 2(a) of each
iteration is incorporated into the previous iteration, and ε
is initialized to −1 instead of 0. Finally, the operations in
2(a), 2(b), and 2(c) of the RE algorithm are serial, which
lead to a longer critical path delay if implemented directly.
It turns out that these operations can be carried out in par-
allel. These improvements result in the following algorithm,
presented in a more hardware-oriented manner:
Algorithm I

1. Initialization:
u

(0)
i = gi−1, v

(0)
i = ai−1, s

(0)
i = 0 for i = 1, · · · , m;

t
(0)
i = 0 for i = 0, · · · , m; u

(0)
0 = 0, v

(0)
0 = 0,

s
(0)
0 = 1, t

(0)
−1 = 0, v

(0)
−1 = 0, and ε(0) = −1.

2. For j = 1, 2, · · · , 2m− 1 do

compute the control signals C1
def
= v

(j−1)
m

and C2
def
= C1 ∧ (ε(j−1) < 0), and

for i = 0, 1, · · · , m, compute

v
(j)
i =

(
v
(j−1)
i−1 if C1 = 0

v
(j−1)
i−1 + u

(j−1)
i if C1 = 1

(1)

s
(j)
i =

(
s
(j−1)
i if C1 = 0

s
(j−1)
i + t

(j−1)
i−1 if C1 = 1

(2)

�
u

(j)
i , t

(j)
i

�
=

8<
:
�
u

(j−1)
i , t

(j−1)
i−1

�
if C2 = 0�

v
(j−1)
i−1 , s

(j−1)
i

�
if C2 = 1

(3)

ε(j) =

�
ε(j−1) − 1 if C2 = 0

−ε(j−1) − 1 if C2 = 1
(4)

3. Output âi = t
(2m−1)
m−1−i , for i = 0, · · · , m− 1.

Note that the updates in Equations (1)-(3) in Algorithm I
are different from those in Equations (1) and (2) in [6]. In

particular, the updates of u
(j)
i , v

(j)
i , s

(j)
i , and t

(j)
i in Equa-

tions (1) and (2) of [6] depend on eight values: u
(j−1)
i , v

(j−1)
i ,

s
(j−1)
i , t

(j−1)
i , u

(j−1)
i−1 , v

(j−1)
i−1 , s

(j−1)
i−1 , and t

(j−1)
i−1 , whereas

the updates of u
(j)
i , v

(j)
i , s

(j)
i , and t

(j)
i in Equations (1)-

(3) above depend on only four values: u
(j−1)
i , v

(j−1)
i−1 , s

(j−1)
i ,

t
(j−1)
i−1 . This difference leads to fewer inter-cell connections

and latches in the implementation based on Algorithm I. On
the other hand, the control signals and the computation of ε
and the control signals in Algorithm I are exactly the same
as those in the modified Euclidean algorithm in [6]. Thus,
the circuitry of control mechanisms in the new systolic ar-
chitectures is the same as that in the YS architectures.

4. NEW SYSTOLIC PIPELINED
ARCHITECTURES

The new systolic pipelined architectures that implement
Algorithm I above have similar structures as the YS archi-
tectures in [6], all consisting of two-dimensional arrays of
control and computing cells. Hence, there is a natural corre-
spondence between the new systolic architectures and their
component cells proposed herein and those in [6]. For conve-
nience of comparison, all the computing and control cells in
this paper are given the same names as their corresponding
cells in [6]. For the reasons given above, the control cells
in the new architectures are the same as their correspond-
ing cells in the YS architectures, whereas the computing
cells and the inter-cell connections for the new architectures
proposed in this paper are different from those in the YS
architectures.

The updates of ε in Equation (4) can be implemented
using either adders or, as explained in [6], ring counters.
Furthermore, it was pointed out in [6] that the ring counters
can be distributed to the computing cells leading to modular
architectures wherein the control cell and the critical path
delay are completely independent of the size of the field. As
explained above, these discussions about the control mech-
anisms are applicable to the new architectures proposed in
this paper. As in [6], we present the architectures according
to their control mechanisms.

4.1 Architectures with Centralized Control
An example (m = 2) of the new systolic division archi-

tecture with centralized control is shown in Figure 1. The
architecture consists of (2m−1) rows of (m+1) type-1 com-
puting cells with each row controlled by one type-2 control
cell and an m×m array of type-3 cells. Despite their sim-
ilar structures, the number of the inter-cell connections for
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the architecture shown in Figure 1 is obviously smaller than
that for the YS architecture shown in [6, Figure 1]. The cir-
cuitry for the type-1 is shown in Figures 2. The type-2 and
type-3 cells are the same as the corresponding cells in [6];
two possible implementations of the type-2 cell are shown
in [6, Figure 2(c)] and [6, Figure 2(d)] respectively and the
circuitry of the type-3 cell is depicted in [6, Figure 2(b)].
The new type-1 cell uses the same number of gates as that
shown in [6, Figure 2(a)], but the number of inputs of the
new type-1 cell is six instead of ten for the type-1 cell shown
in [6, Figure 2(a)].

The m×m array of type-3 cells is needed only for the ar-
chitectures for divisions and should be removed for inversion
architectures. Similar to the approach in [6], the division
B/A is implemented as the concatenation of an inversion
and a multiplication, B · (A−1), since the modifications nec-
essary to directly compute divisions B/A increase the criti-
cal path delay. As noted in [6], computing B/A as B · (A−1)
allows us to achieve higher speed for division architectures
at the expense of more hardware and a longer latency.
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Figure 1: The pipelined architecture for division
d(x) = b(x)/a(x) (mod g(x)) in GF (22)

For continuous inputs, the architecture shown in Figure 1
produces one result per clock cycle after an initial latency
of 5m− 2 and 7m− 3 clock cycles for inversion and division
respectively. Obviously, the AT complexity of this architec-
ture is O(m2). The CPD of the architecture in Figure 1 is
given by tcp = max {tcp1, tcp2, tcp3} where tcp1, tcp2, and tcp3

are the CPDs of the type-1, type-2, and type-3 cells respec-
tively. Due to the correspondence between the cells of the
new architecture and the YS architectures, the CPD of the
architecture shown in Figure 1 is exactly the same as that
of the architecture shown in [6, Figure 1].

4.2 Architectures with Distributed Control
An example (m = 2) of the new systolic division archi-

tecture with distributed control is shown in Figure 3. The
architecture consists of (2m−1) rows of (m+1) type-4 com-
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Figure 2: The architecture for the type-1 cells

puting cells with each row controlled by one type-5 control
cell. Again the number of the connections for the architec-
ture shown in Figure 3 is smaller than that for the architec-
ture in [6, Figure 3]. The circuitry for the type-4 computing
cell is shown in Figures 4. The type-5 control cell is the same
as the corresponding cell shown in [6, Figure 4(b)]. The new
type-4 computing cell uses the same number of gates as that
shown in [6, Figure 4(a)], but the number of inputs of the
new type-4 cell is nine instead of thirteen for the type-4 cell
shown in [6, Figure 4(a)].
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Figure 3: The pipelined architecture with dis-
tributed control for inversion in GF (22)

The throughput, latency, and AT complexity of the ar-
chitecture in Figure 3 are the same as the architecture in
Figure 1. The CPD of the architecture shown in Figure 3
is tXOR + tAND where tAND and tXOR denote the delays of
2-input AND and XOR gates respectively. Note that this
is exactly the same as the CPD of the corresponding YS
architecture shown in [6, Figure 3]. Furthermore, this criti-
cal path delay is, as pointed out for the YS architecture in
Figure 3 of [6], truly independent of m since all its cells are
of small and fixed sizes independent of m. The small fixed
sizes of all cells also lead to better systolic architectures.
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Figure 4: The architecture for the type-3 cells

5. PERFORMANCE COMPARISONS
In this section, the new systolic pipelined architectures

are explicitly compared only with the YS architectures for
the following reasons. The YS architectures are the best
pipelined architectures based on the EEA known to us. Re-
call the one-to-one correspondence between the new archi-
tectures proposed in this paper and the YS architectures in
[6] and note that the performances between the correspond-
ing architectures are easily related. Since the YS architec-
tures are compared with pipelined architectures proposed in
[2] and [5] in Tables 1 and 2 of [6], comparisons between the
new architectures and those in [2] and [5] are easily obtained
through the correspondence between the new architectures
in this paper and the YS architectures.
Throughput, Critical Path Delay, and Latency
The throughput of all the new architectures and the YS
architectures in [6] are 1. For each of the new architectures
proposed in this paper, the critical path delay and latency
are the same as those of the corresponding YS architecture
in [6] respectively.
Gate Counts and Total Hardware Costs
Each of the new systolic architectures uses 4m2 fewer latches
and, if all the connections are counted equally, 8m2 fewer
inter-cell connections than its corresponding YS architecture
in [6]. The numbers of all the other gates used by each of
the new systolic architectures are the same as those of the
corresponding YS architecture. Hence, the hardware costs
of the new systolic architectures we propose in this paper are
clearly less than those of the corresponding YS architectures.

In summary, the new systolic architectures proposed in
this paper use less hardware than the architectures in [6],
while maintaining the same CPDs, throughputs, and laten-
cies. As shown in Tables 1 and 2 of [6], the YS architectures
achieve improved CPDs and hardware savings over the ar-
chitectures in [2] and [5]. Hence, the new systolic archi-
tectures presented in this paper achieve the same improved
CPDs and even greater hardware savings over the architec-
tures in [2] and [5].

6. REFERENCES
[1] K. Araki, I. Fujita, and M. Morisue, “Fast Inverters

over Finite Field Based on Euclid’s Algorithm,” Trans.
of IEICE, vol. 72E, no. 11, pp. 1230–1234, November
1989.

[2] J.-H. Guo and C.-L. Wang, “Hardware-efficient Systolic
Architecture for Inversion and Division in GF(2m),” in
IEE Proceedings on Computers and Digital Techniques,
1998, pp. 272–278.

[3] K. K. Parhi, VLSI Digital Signal Processing Systems,
John Wiley and Sons, New York, 1999.

[4] Y. Watanabe, N. Takagi, and K. Takagi, “A VLSI
Algorithm for Division in GF(2m) Based on Extended
Binary GCD Algorithm,” IEICE Transactions on
Fundamentals of Electronics, Communications and
Computer Sciences, vol. E85-A, no. 5, pp. 994–999,
May 2002.

[5] C. H. Wu, C. M. Wu, M. D. Shieh, and Y. T. Wang,
“Systolic VLSI Realization of a Novel Iterative Division
Algorithm over GF (2m): a High-Speed,
Low-Complexity Design,” in Proceedings of ISCAS’01,
2001, pp. 33–36.

[6] Z. Yan and D. V. Sarwate, “New systolic architectures
for inversion and division in GF (2m),” IEEE
Transactions on Computers, vol. 42, pp. 1515–1520,
November 2003.

[7] Z. Yan and D. V. Sarwate, “Systolic Architectures for
Finite Field Inversion and Division,” in Proceedings of
ISCAS’02, 2002, pp. 789–792.

465


	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index




