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ABSTRACT
In this paper, we study the relationship between netlist structure
and the efficiency of placers measured in terms of quality and
stability of results. We analyze three types of placers: analytic,
simulated-annealing-based and partition-based. We test the placers
on industrial and synthetic benchmarks. Based on the observations
and analyses of experimental results, we obtain several useful
conclusions about relationships between netlist structure and
placement efficiency of different types of placers.
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1. INTRODUCTION
Early logic synthesis, when little physical information is
available, has significant impact on the structure of logic
circuits. The structure remains unchanged during the
placement process. The quality of placement depends not only
on the placement algorithms but also on the structure of the
logic network. Consequently, physical and logic co-synthesis
have attracted a lot of research effort in the recent years.
Pedram and Bhat [16] developed a mapper which considered
layout area and wire delay during the technology-dependent
phase of logic synthesis. The same authors [17] presented
techniques to integrate interconnection optimization with logic
restructuring and technology decomposition phases of logic
synthesis. Kutzschebauch and Stok [15] proposed congestion-
aware algorithms for layout-driven decomposition and
technology mapping, two of the steps that have the most
significant impact on congestion during logic synthesis, to
effectively decrease wire length and improve congestion.
Kudva and Sullivan [14] observed that adhesion, a property of

network structure, can be linked to routing congestion. They
also provided a metric for adhesion and showed that it can be
used, in addition to literal count, to estimate and optimize post-
routing congestion early in the design flow. Though some
promising results have been shown in those works, we still
have not captured the whole picture of the relationship
between logic structure and placement efficiency. 

In [1], the major publicly available standard-cell placement
tools have been analyzed. The authors compared the half-
perimeter wire lengths achieved by the state-of-the-art
academic placers on different benchmark suites. From the
experimental data, the authors observed that different placers
usually have different placement efficiency on different
benchmark suites. For example, Dragon performs well on
IBM-Place benchmarks and mPL performs well on PEKO
benchmarks. Then, based on empirical analysis, the authors
stated that: (i) it may be difficult for an annealer (Dragon) to
place regular structures; (ii) analytic placer (KraftWerk) does
not work well on netlists with numerous multi-pin nets. The
comparison results in [1] reveal that netlist structure plays
different roles for different placers. Netlist structure friendly to
one placer may not be friendly to another placer. So to
understand the relationship between netlist structure and
placement efficiency, we need to consider different placers
individually.

In this paper, we study the relationship between netlist
structure and placement efficiency in different placement
tools. For placement efficiency, we consider both placement
quality and placement stability. We analyze three types of
placers: analytic, simulated-annealing-based and partition-
based. We experiment with industrial and synthetic
benchmarks. Based on our observation and analysis of
experimental results, we summarize several useful conclusions
on the relationship between netlist structure and placement
efficiency of different placers. 

The rest of this paper is organized as follows. In Section 2 we
introduce the placers and benchmarks used in our work. In
Section 3 we look into some global characteristics of netlist
structure and correlate them with the placement efficiency of
different placers. In Section 4 we study one class of special
benchmarks, the I-PEKO suite, which contain examples with
pre-known optimal results and whose net distribution statistics
mimic the IBM benchmarks. We conclude the paper in Section
5.

2. PLACERS AND BENCHMARKS
2.1 Placers
Current placement approaches can be grouped into three major
categories: analytic approaches (linear programming and
force-directed methods), simulated annealing, and
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partitioning-based. In this work, we experiment with four
placers, representatives from each category.

Capo [4][5] is a global fixed-die placer based on recursive min-cut
bisection. Min-cut hypergraph partitioning of netlists with over
200 cells is performed using the modular implementation [3] of
multilevel Fiduccia-Mattheyses (FM) heuristic [2][13]. A flat FM
heuristic [11] is used independently for instances with 35-200
cells. Smaller instances are solved optimally with the branch-and-
bound approach. In all the experiments reported in this paper, we
use Capo8.7 [23] version.

Dragon [21][22] performs a recursive min-cut partitioning using
hMetis [13]. At each partition level, the sub-circuit inside a global
bin is quadrisected into four smaller sub-circuits. The post-bin
swapping step minimizes the overall wire length. This process
continues until each global bin contains 3-7 cells. Then a simulated
annealing-based refinement is applied on the global placement,
followed by detailed placement.

mPL [6][7] first coarsens the netlist by performing recursively
edge-separability clustering [6] or first-choice clustering [7]. Once
the cell cardinality has been reduced to about 1000, a nonlinear
program is solved by a customized interior-point method. Slot
assignment and discrete refinement are then performed to improve
the continuous approximation results. Finally, recursive de-
clustering and refinement are applied to map the results back to the
fine-grain solution. Quadratic relaxation on noncontagious subsets,
together with algebraic multigrid interpolation and multiple V-
cycle iterations are used in [7] to improve the solution. We
experiment with the mPL2.1 version from [23].

Gold is a simulated annealing-based placer implemented in the
FPI [12] framework. It follows the two-stage global and detailed
placement flow [18]. We set a very slow annealing schedule during
the global placement stage to guarantee good placement results.
We refer to the placement results generated by the Gold placer as
Gold solutions.

2.2 Benchmarks
IBM-Place [21] are industrial benchmarks. Several variants of
these benchmarks are available on-line. We use the original
suite released in the year 2000. In the following, we refer to
this particular suite as the IBM suite.

PEKO benchmarks [8][9] are synthetic benchmarks with pre-
known optimal solutions. All nets in PEKO benchmarks are
local. We implemented a PEKO benchmark generator based on

the algorithm described in [8][9] to produce PEKO
benchmarks with different net degree distributions.

Syn benchmarks are also synthetic benchmarks with different
Rent’s exponents generated by the gnl [19] tool. Those
benchmarks are built by recursive bottom-up clustering
according to the Rent’s rule. We obtained the gnl1.1.1 program
from [24].

3. GLOBAL CHARACTERISTICS OF 
NETLISTS AND THEIR IMPACT ON 
PLACEMENT EFFICIENCY

Due to the heuristic nature of placement algorithms, they produce
only sub-optimal solutions. In this section we study the global
characteristics of netlist structures and try to correlate them with
the placement efficiency of different placers.

3.1 Net degree distribution
We use a PEKO netlist generator to build three benchmark
suites with different net degree distributions. Benchmarks in
suite1 have only 2-pin nets. Benchmarks in suite2 have 2-pin
and 3-pin nets in 4:1 ratio. Benchmarks in suite3 have 2-pin, 3-
pin and 4-pin nets in 7:2:1 ratio. We place those benchmarks
by Gold, Capo and mPL. The data are shown in Table 1 and are
expressed as ratios r of the sum-of-half-bounding-boxes of
nets in the placed and known optimal results:

(EQ1)

In each of the suites 1, 2 and 3 the benchmark test01 has
10,000 cells, test02 has 20,000 cells, and so on, up to 90,000
cells in test09. In these three suites the total net number in each
circuit is 1.2 times the cell number. For example, test01 has
12,000 nets. 

For each test case in Table 1, the three corresponding
benchmarks in those suites have the same number of nets but
different total pin numbers. From Table 1, we observe that
increasing the count of multi-pin nets degrades the quality of
placement produced by Capo and Gold on PEKO benchmarks.
Or we can say that the net degree distribution has a significant
impact on placement efficiency of Capo and Gold placers.
Such impact is much smaller in the case of mPL.

We define rn as a ratio of the average lengths of nets with
degree n in the placed and optimal results:

Table 1.  PEKO suites with fixed net number and varying net degree distribution

Bench
Capo Gold mPL

Suite1 Suite2 Suite3 Suite1 Suite2 Suite3 Suite1 Suite2 Suite3

test01 1.406 1.527 1.660 1.307 1.366 1.436 N/A 1.268 1.299

test02 1.445 1.619 1.768 1.329 1.458 1.529 1.331 1.290 1.337

test03 1.404 1.608 1.768 1.298 1.455 1.540 1.359 1.338 1.382

test04 1.438 1.611 1.740 1.318 1.438 1.519 1.332 1.270 1.321

test05 1.433 1.609 1.791 1.314 1.455 1.555 1.421 1.374 1.428

test06 1.450 1.658 1.830 1.341 1.508 1.591 1.383 1.362 1.365

test07 1.442 1.633 1.791 1.328 1.470 1.563 1.465 1.469 1.435

test08 1.444 1.649 1.828 1.326 1.483 1.587 1.435 1.369 1.397

test09 1.451 1.638 1.897 1.335 1.464 1.648 1.413 1.382 1.357

Ave 1.435 1.617 1.786 1.322 1.455 1.552 1.392 1.347 1.369

�
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 (EQ2)

In the above equation, AveLn is the average length of n-pin nets
in the placement. The OptLn is the average length of n-pin nets
in the optimal solution. To examine further the impact of net
degree distribution on the placement efficiency of Capo and
Gold, we show the optimal ratios of nets with degrees 2, 3 and
4 in benchmark suite3. These data are shown in Table 2. We
observe that in the placement results generated by Capo and
Gold, nets with larger degrees usually have a larger optimal
ratio. 

From the above discussion, we note that compared with 2-pin
nets, multi-pin nets are more difficult to optimize by partition-
based placer Capo and simulated-annealing-based placer Gold.
Net degree distribution of a netlist is an important factor which
significantly affects the placement efficiency of these two
placers. Meanwhile the placement efficiency of the analytic
placer mPL is relatively insensitive to the net degree
distribution.

3.2 Net count
In this section, we experiment with a different PEKO
benchmark suite which is composed of only 2-pin nets.
Circuits in this suite each have 30,000 cells, but a different
number of nets. In Table 3 we compare placement results
obtained by Capo, Gold and mPL, and report them relative to
the optimal placement. We plot these data in Figure 1.

In Table 3, the number in parenthesis next to the benchmark
name denotes the ratio between the net and cell count in the
circuit. Analyzing Table 3 and Figure 1, we note: (i) Gold and
mPL obtain better placement results than Capo in all cases; (ii)
With the increase of net count, placement efficiency of Capo
and Gold decrease significantly at the beginning and saturate
after the net count has passed a certain threshold; (iii)
Placement efficiency of mPL is relatively insensitive to the net
count.

3.3 Rent’s exponent
The average number of terminals required to connect the gates
in a module to the rest of the circuit and its exterior can be
expressed by the following equation:

(EQ3)

Various interpretations of this power law, also known as
Rent’s rule, exist. The coefficient t and exponent p are referred
to as the Rent coefficient and the Rent exponent. There is a
good correlation between the Rent’s exponent and interconnect
complexity of circuits. Most of the real circuits have their
Rent’s exponents in the range of 0.2-0.8.

We use gnl to build eight benchmarks with Rent’s exponent
0.2 through 0.8. All these benchmarks have 40,000 cells and
the same number of nets. Then we place these benchmarks by
Capo, Dragon and mPL. The results, as shown in Table 4, are
normalized to Capo. In the first row of the table, p denotes
Rent’s exponent of the circuit. The same data are plotted in
Figure 2.
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Table 2. Optimal ratio of nets with degree 2, 3, 4 in 
benchmark suite3

bench

Capo Gold

2 3 4 2 3 4

test01 1.49 1.66 2.26 1.34 1.42 1.82

test02 1.56 1.79 2.46 1.40 1.51 2.00

test03 1.56 1.79 2.45 1.41 1.53 2.02

test04 1.55 1.75 2.39 1.40 1.51 1.96

test05 1.58 1.82 2.48 1.43 1.54 2.03

test06 1.61 1.85 2.57 1.45 1.58 2.12

test07 1.57 1.82 2.51 1.42 1.55 2.08

test08 1.60 1.85 2.58 1.44 1.58 2.12

test09 1.64 1.95 2.70 1.47 1.66 2.25

Ave 1.57 1.81 2.49 1.42 1.54 2.04

Table 3. PEKO benchmarks with different net count

Bench Capo Gold mPL

test_1(1.2) 1.406 1.304 1.359

test_2(1.3) 1.523 1.411 1.420

test_3(1.4) 1.608 1.476 1.462

test_4(1.5) 1.686 1.549 1.425

test_5(1.6) 1.804 1.636 1.466

test_6(1.7) 1.837 1.667 1.431

test_7(1.8) 1.886 1.696 1.440

test_8(1.9) 1.897 1.687 1.434

test_9(2.0) 1.855 1.619 1.457

test_10(2.1) 1.880 1.660 1.447

Figure 1: Net number VS Placement efficiency
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Table 4. Placement results of circuits with Rent’s exponent 
from 0.2 to 0.8

p 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Capo 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Dragon 1.242 1.161 1.089 1.030 0.975 0.946 0.931

mPL 0.948 0.962 0.972 0.983 1.014 0.969 0.992

Figure 2: Placement efficiency on circuits with different p
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From the experimental results we conclude that: (i) Dragon
works very poorly on low Rent’s exponent circuits. When
Rent’s exponent reaches 0.6 or is larger, Dragon outperforms
the other two placers. In the final stage of global placement,
Dragon uses simulated annealing to refine placement quality.
The layout is partitioned into grids with preset grid size, and
cells are snapped into grids. In Dragon, the average number of
cells in one grid location is 3-7. During the annealing process
(swapping or moving the cells between grids), the wire length
estimation is made based on the assumption that all the cells
are in the grid centers. As a result, the estimated wire length
will have some errors. For low Rent's exponent circuits, the
number of errors can become very large, because in such
circuits many nets are short. The wire-length estimation error
implies wrong decisions on cell-swapping or move-acceptance
during simulated annealing. This in turn causes poor placement
results after legalization (overlap elimination). To support this
claim, in Table 5 we compare the estimated total wire length
before legalization to the actual total wire length after
legalization. All data are extracted from the Dragon's standard
output.

In Table 5, b_legal denotes the estimated total wire length
before legalization and a_legal denotes the actual total wire
length after legalization. err is the wire length estimation error
calculated as err = (a_legal-b_legal)/a_legal. We show only
the two lowest and two highest Rent’s exponent benchmarks.
These data demonstrate that wire length estimation is very
inaccurate for low Rent’s exponent circuits. The same
argument can explain why Dragon works poorly on Grids and
PEKO benchmarks. These two benchmark suites are extreme
because all nets are local in optimal solutions. When Dragon
places such circuits, it encounters many wire length estimation
errors that imply wrong decisions in the simulated annealing
stage, which in turn lead to poor placement quality. When we
adjusted the grid sizes in our Gold placer, it produced good
placement results on both benchmark suites. 

(ii) mPL works well on low Rent’s exponent circuits. Analytic
placers put much effort on eliminating overlaps between cells.
This legalization process degrades placement quality. Since
higher Rent’s exponent circuits have more global nets than
lower Rent’s exponent circuits, high Rent exponent circuits
have a natural tendency to produce more overlaps to be
resolved. For this reason mPL works well on low Rent’s
exponent circuits. Similarly, this can explain why mPL works
well on Grids and PEKO benchmarks. Those circuits have only
local nets in their optimal solutions. We will return to this
problem in our later discussion.

In [18], the authors showed that increasing grid size in
simulated annealing-based global placement could reduce the
solution space of placement problem. However, our
experimental results presented in the previous section suggest
that larger grid sizes may introduce a larger wire-length
estimation error, which in turn may compromise the placement
quality.To choose the grid size for best placement quality, we
need to consider these two contradictory factors

simultaneously. In [18], the authors tried different grid size in
a quick annealing schedule and chose the one with the best
placement result. Here, we look into the problem of grid size
choice in simulated annealing-based global placement.

We use gnl to generate nine benchmark suites, suite01 through
suite09. Each suite consists of eight benchmarks with Rent's
exponent ranging from 0.2 to 0.8 and having the same number
of cells and nets. Benchmarks in suite01 have 10,000 cells and
10,000 nets. Benchmarks in suite02 have 20,000 cells and
20,000 nets, and so on. Then we place those examples using
our purely simulated-annealing-based placer Gold. We adjust
the grid size during global placement and list the results in
Table 6. 

In the table, the first column corresponds to grid size measured
in area of average cells. The best grid size is the grid size that
gives the best placement result. Data for each grid size have
been normalized to those of grid size 1. All data are the
averages of all benchmarks in a particular suite. We note that
the best grid size increases when Rent's exponent of the placed
circuit increases. This so because for a fixed grid size and
increasing Rent's exponent, the error of wire-length estimation
during global placement decreases. For a sufficiently large
Rent's exponent, the benefit of increasing the grid size to
reduce the solution space begins to dominate the placement
quality. We don't consider the cell size variations in the above
experiments. We assume that all cells in the circuits have the
same size. Under this assumption, each swap during simulated
annealing is legal. For circuits with mixed cell sizes that would
not be the case so we should consider the relationship between
the grid size and optimization flexibility. This explains why in
Table 6 it looks as if the annealing placer favors small grid
sizes.

4. PEKO BENCHMARKS EXTRACTED 
FROM IBM BENCHMARKS

In this section, we look into a special class of low Rent's
exponent circuits, the PEKO benchmarks. We will experiment
with the PEKO benchmarks published in [8][9]. Those circuits
have the same number of nets and net degree distribution as the
circuits in the IBM benchmark suite. As before, all nets in the
examples in PEKO suite are local. The authors of [8][9]
applied different placers on PEKO benchmarks and computed
the ratios of the placed and optimal results. Based on those
results, they concluded that the current placers produce
solutions far below the optimum possible. In this section, we
look into the intrinsic characteristics of PEKO benchmarks and
compare them to the real-circuit benchmarks. In the following
sub-sections, we denote the PEKO benchmark suite extracted

Table 5. Comparing the estimated total wire lengths in global 
placement with actual total wire length after legalization

p 0.2 0.3 0.7 0.8

b_legal 4.05e+06 4.75e+06 1.85e+07 2.21e+07

b_legal 4.05e+06 4.75e+06 1.85e+07 2.21e+07

err 39% 35% 9.8% 7.9%

Table 6. Rent’s exponent vs. grid size choice

p 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.070 1.054 1.034 1.019 0.996 0.995 0.993

3 1.115 1.081 1.053 1.027 1.012 0.991 0.989

4 1.158 1.121 1.080 1.044 1.018 1.000 0.988

5 1.231 1.171 1.116 1.071 1.037 1.009 0.994

6 1.303 1.227 1.154 1.092 1.056 1.021 1.008

7 1.346 1.272 1.185 1.113 1.067 1.029 1.010

8 1.410 1.311 1.229 1.136 1.080 1.035 1.016
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from the IBM benchmarks as I-PEKO to distinguish it from the
PEKO benchmark suites we used in Section 3.

First we will show that although I-PEKO benchmarks have
exactly the same net degree distribution as IBM benchmarks,
that doesn’t mean that they have similar interconnect
complexities which can be characterized by the Rent’s
exponent. In Table 7 we compare the Rent’s exponents of IBM
benchmarks to the corresponding I-PEKO benchmarks.

It is evident that the I-PEKO benchmarks have much smaller
Rent’s exponents compared to their corresponding IBM
benchmarks. Even though we don’t know what would be the
optimal solution for the IBM benchmarks, we can conclude
that such solutions will have much larger sum-of-net length
than the optimal solutions of their counterparts in the I-PEKO
suite.

We define good solutions as solutions near the optimum
solution. Each I-PEKO benchmark has only local nets. In the
optimum solution, cells connected by a net are ideally packed
together. It is apparent that such benchmarks with only local
nets should have a smaller space for good solutions than other
benchmarks have.

We build a PEKO circuit and a random circuit, each with 9
cells. So each circuit has 9! possible placements. Then we
randomly generate ten thousand placement configurations for
each circuit. The placement quality distributions are shown in
Table 8.

In the above table, the first row gives the placement quality in
terms of total wire length. The second column opt gives the
number of optimum solutions. <=n represents solutions with
total wire length smaller or equal to optimal value plus n pitch
size.

This small experiment shows that PEKO benchmarks have
indeed a smaller good solution space than the random
benchmarks have.

We use the Gold placer to refine the Capo and Dragon
placement solutions on I-PEKO and IBM benchmarks. The
results are shown in Table 9.

In Table 9 all the values are normalized with respect to Gold
solutions. The numbers are the averages taken over all 18
benchmarks in the corresponding suite. The results indicate
that the simulated-annealing-based refinement can improve the
solutions of I-PEKO benchmarks generated by Capo and
Dragon more than it can improve the solutions of IBM
benchmarks.

Quadratic placer determines the placement solution by solving
the following linear equation system

                                                                       (EQ4)

In this equation, C is the connectivity matrix, p is the cell
location vector, and f is the force vector generated by the fixed
points (pads). Since such a solution in the equilibrium state
does not consider overlaps, we need to eliminate them to get a
legal solution. The traditional approaches to eliminate overlaps
include density-induced force [10] and successive partitions
[20].

Our quadratic placer consists of two steps. (i) Solve the linear
equation system and get the equilibrium solution with
overlaps. (ii) Apply simulated annealing to eliminate overlaps
to get a legal placement. Since we use simulated annealing to
find the legal placement, this quadratic placer only works well
on benchmarks which need a small effort to eliminate overlaps.
That is the reason why we do not experiment with it in Section
2.1. Discussion in the Section 3.3 shows that circuits with a
large portion of local nets need minimal effort to eliminate
overlap. The I-PEKO benchmarks have only local nets, so our
quadratic placer can determine very good solutions for them.
The results are shown in Table 10. The I-PEKO benchmark
suite here has external pads, just as PEKO suite3 does in [8].

In Table 10, Opt denotes the interconnect length ratio in
optimal and placed results, and playout denotes layout Rent’s
exponent of the corresponding placement. From these data we
conclude that even compared to gold solutions, the quadratic

Table 7. Rent’s exponent of I-PEKO benchmarks and corresponding IBM benchmarks

Bench 09 10 11 12 13 14 15 16 17 18

I-PEKO 0.398 0.393 0.384 0.397 0.372 0.392 0.401 0.400 0.406 0.420

IBM 0.617 0.665 0.648 0.690 0.666 0.685 0.648 0.659 0.700 0.676

Table 8. “good solution” distribution

Twl opt <=+
1

<=+
2

<=+
3

<=+
4

<=+
5

<=+
6

<=+
7

random 1 13 85 236 669 1480 2670 4244

PEKO 1 6 26 82 191 435 944 1779

Table 9. Placement quality improvement

Benchmark I-PEKO IBM

Gold 1.0 1.0

Capo 1.261 1.151

Dragon 1.377 1.061

� � +× ��=

Table 10. Placement obtained by Quadratic and Gold

Bench

Gold Quadratic

Opt Playout Opt Playout

PEKO09 1.61 0.524 1.12 0.509

PEKO10 1.59 0.521 1.12 0.514

PEKO11 1.50 0.517 1.12 0.512

PEKO12 1.74 0.540 1.13 0.511

PEKO13 1.72 0.528 1.12 0.510

PEKO14 1.72 0.522 1.13 0.508

PEKO15 1.61 0.515 1.12 0.505

PEKO16 1.78 0.521 1.12 0.504

PEKO17 1.61 0.516 1.13 0.504

PEKO18 1.54 0.508 1.13 0.505

Ave 1.64 0.521 1.12 0.508
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placer gives very good placement results, which are already
very near to the optimal solutions. 

The equilibrium solution for PEKO01 is shown in Figure 3(a).
It is clear that we need only a small additional effort to
eliminate the overlaps. In [9], the authors introduce some
randomly generated, non-local nets to the PEKO benchmark
suite to mimic the effect of global nets. With a preset non-local
ratio , for i-pin nets,  (  is the number of i-pin nets)
nets are generated by randomly connecting i cells. The
remaining nets are added as regular local nets. We build the G-
PEKO01 circuit with the non-local ratio of 10% in the same
way. The equilibrium solution of G-PEKO01 is shown in
Figure 3(b). We observe that the more global nets we have the
greater the effort needed to eliminate overlaps. This again
confirms our discussion on analytic placers in Section 3.3.

5. CONCLUSIONS
In this paper, we have reported our study of the relationships
between netlist structure and placement efficiency of different
placement tools. For placement efficiency, we considered both
placement quality and placement stability. We took three kinds
of placement tools into account: analytic placer, simulated-
annealing-based placer and partition-based placer. We used
both real benchmarks and synthetic benchmarks to test these
placers. Based on the observations and analyses of
experimental results, we summarize several useful conclusions
about relationships between the netlist structure and placement
efficiency of placers: (i) Different placers favor netlists with
different structural characteristics and show different
sensitivity to the same characteristics. (ii) Placement
efficiency correlates with interconnection complexity of
circuits. (iii) Global nets increase the effort to eliminate
overlaps of cells and degrade the placement quality of an
analytic placer. 

Future work will entail: (i) placement efficiency analysis of
netlists with uneven interconnection complexity distribution;
(ii) netlist restructuring targeting placement efficiency.
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Figure 3: Impact of global nets on efficiency of quadratic placer 
(a) (b)
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