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 Abstract 
This paper presents an efficient method to analyze power 
distribution networks in the time-domain. Instead of 
directly analyzing the integration approximated 
power/ground networks at each time step as previous 
methods did, the new method first builds the equivalent 
models for many series RLC-current chains based on their 
Norton’s form companion models in the original networks, 
and then the Precondition Conjugate Gradient (PCG) 
based iterative method is used to solve the reduced 
networks. The solutions of the original networks then are 
back solved from that of the reduced networks. Our 
contribution is the introduction of an efficiency algorithm 
for reducing RLC power/ground network complexities by 
exploitation of the regularities in the power/ground 
networks. Experimental results show that the complexities 
of reduced networks are typically significantly smaller 
than that of the original circuits, which makes the new 
algorithm extremely fast. For instance, power/ground 
networks with more than one million branches can be 
solved in a few minutes on modern Sun workstations. 

1. Introduction 
Signal integrity in the power/ground (P/G) bus is 

emerging as a limiting factor in the nano-regime VLSI chip 
designs. As P/G grids experience the largest current flows 
in a chip, they are more susceptible to current-induced 
reliability and functional failures. Efficient transient 
analysis techniques of P/G grids are required to precisely 
capture the dynamic voltage fluctuations on the P/G wires 
for guiding the designs of a reliable and robust P/G 
networks. As millions of devices are integrated into a 
single chip, transient analysis of a power/ground network 
becomes a challenging task due to the increasing sizes of 
the networks. The traditional circuit simulators like SPICE 
are no longer able to meet the formidable tasks of 
analyzing P/G circuits with millions of extracted RLKC 
elements in a timely manner.  

Due to the increasing importance of P/G integrity issues 
such as excessive IR drops, Ldi/dt noise, electro-migration 
and resonance issues, significant research efforts have been 

carried out to find efficient simulation approaches to P/G 
grid analysis [1-9] in the past. Among them, multi-grid 
method [8], hierarchical method [10], preconditioned 
conjugate gradient (PCG) [2], hierarchical model order 
reduction [3], and frequency domain analysis [1] are the 
latest methods proposed. Although significant 
improvements have been made to analyze large P/G grids 
by those proposed methods, the naturally regular physical 
structures of a P/G network is not fully explored to 
speedup transient analysis of networks.  

Recently tree-mesh structured P/G circuits are analyzed 
in [10]. The tree portions of the P/G network are reduced 
via model order reduction method PRIMA[16] to obtain 
the equivalent circuits of RLC tree circuits. But some 
errors will be introduced. The methods in [4, 11] fully 
explore the naturally regular structures of a P/G network to 
reduce the P/G network complexities in an error-free 
fashion. But they can only be applied for DC analysis of 
resistor-only P/G networks. 
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Fig.1.  A P/G network of Standard Cell based ASIC 

layout  
In this paper, we propose a new approach to the 

transient analysis of large P/G grids. Our new method is 
based on the observation that P/G grids, especially those 
used in many cell-based layout ASIC applications, consist 
of any series RLC chains [11-13] as shown in Fig. 2. We 
show that a compact equivalent model can be built for the 
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RLC chain circuit in each time step of approximate 
integration. With the equivalent chain models, the original 
networks can be reduced significantly and efficient 
transient analyses of vary large P/G networks become 
possible. As only resistors and constant current sources are 
present in the reduced P/G networks in each time step, the 
resulting circuit matrix of the network is symmetric 
positive definite (the voltage sources are also modeled by 
Norton equivalent circuits), preconditioned conjugate 
gradient based iterative method [14] can be used to solve 
the resulting circuit matrix very efficiently. Our 
contribution is the introduction of an efficiency algorithm 
for reducing RLC P/G network complexities in error-free 
manner by exploitation of the regularities in the 
power/ground networks. Experimental results show that at 
least two-order of magnitude speed up over SPICE is 
observed for large P/G networks. 

This paper is organized as follows. Section II presents 
how equivalent circuit models are constructed for RLC 
chain circuits in P/G networks. Section III gives the 
general flow of the proposed algorithm. Experimental 
results are described in Section IV. Section V concludes 
the paper.  

2. Construction of Equivalent Circuit Models 
The P/G networks are typically mesh-structured in 

today’s VLSI technology and consist of many cascaded 
RLC sections extracted from chip layouts as shown in 
Fig. 2 for a power network.  
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Fig. 2.  A series RLC chain in a P/G network 

 
Here Ri, Ci, Li, denote, respectively, the resistance, 

capacitance, and inductance at P/G wire segment i. 
Capacitance Ci includes both the parasitic capacitances of 
the P/G wire i and the decoupling capacitances around. ei is 
a time-varying current source that captures the dynamic 
current consumptions of circuit cells.N1 and NN+1 are  
called cross nodes and rest of the nodes are called 
intermediate nodes. Our goal is to suppress all the 
intermediate nodes in this series RLC chain circuit and 
replace them by an electrically equivalent circuit that 
consists of only the cross nodes in each integration time 
step of transient analysis.  
 

A. Integration Approximation In Norton’s Form  
Let h be the time step used at simulation step k+1 as 

shown in Fig.3. For the capacitors and inductors, 
trapezoidal companion models of Norton’s form are used. 

In this way, we will not introduce any extra nodes. 
Specifically, the current across a capacitor at k+1 step is:  

1 1

2 2
( )c k c k c k c k

C C
I V V I

h h, + , + , ,= − + ,                              (1)     

where 
1 1c k c k c k c kV I V I, , , + , +, , ,  denote the branch voltage and 

branch current of the capacitor on step k and step k+1 
respectively and C is the value of the capacitor.  

Similarly the current through an inductor at step k+1 is:  

1 1 ( )
2 2L k L k L k L k

h h
I V V I

L L, + , + , ,= + + ,                                      (2)     

where 
1 1L k L k L k L kV I V I, , , + , +, , ,  denote the branch voltage and 

branch current of the inductor at step k and step k+1 
respectively  and L is the value of the inductor.  

Let’s go back to the series RLC chain and mark each 
capacitor and inductor with the integration time step index 
at k+1 step, the RLC chain between two cross nodes N1 
and  NN+1  in Fig.3 become Fig.4. When all the capacitors 
and inductors are replaced by their companion models at 
time step k+1, 

1i kE , +
 denotes the current flowing into node 

i from node i+1 on step k+1.  
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Fig. 3. The RLC chain circuit at time step k+1 
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Fig. 4. The RLC chain circuit in terms of companion 

models at time step k + 1 
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Fig. 5. Merge two resistors in a RLC section 

Next, we merge two floating resistors for each RLC 
section as shown in Fig. 5 using Norton theory. Then we 
have:  

2i i iR L h R∗ = / + ,                                    (3) 

1

2

2 2
i

i k L i k L i k
i i i

L hh
el V I

L L h R

 
 
 , + , , , ,  
 

/= + ⋅ ,
/ +

                        (4) 

where L i kV , ,  and L i kI , ,  are the branch voltage and branch 

current of iL  at step k  respectively. They can be 

represented with node voltages and branch currents.  
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L i k i kI E, , ,= , 
1( )L i k i k i k i k iV V V E R, , + , , ,= − − .  

We then combine two grounded current sources, one is 
coming from the independent current source and another is 
coming from capacitor’s companion model, into one 

current source 1i kec , +  for each RLC section:  

1 1

2 i
i k i k i k i k

C
ec e V I

h

 
 
 , + , + , , 
 

= − + ,                                             (5) 

and rename the resistor from Ci’s companion model as 

2 i

h
i Cr = . So the circuit in Fig. 4 can be simplified to the 

following circuit shown in Fig. 6, which is more ready for 
further reduction to be explained in the next subsection.  
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Fig.6. Simplified RLC chain circuit 

 

B. Transformation From Y Model to π  Model  
In this subsection, we show how a RLC chain circuit 

shown in Fig.6 can be further reduced by an equivalent 
circuit consisting of only the cross nodes. This is done by 
repeatedly transforming a Y model circuit to a π  model 
circuit as shown in Fig. 7:  
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Fig.7. Y model circuit to π  model circuit 

In Fig. 7, aE  and bE  are the currents inflowing into node 

a  and node b  respectively, and the corresponding 
arrowheads show the current directions. To compute the 
equivalent currents and resistances shown in the right-hand 
side of Fig. 7, we first look at node a  and we have:  

b aV V− = ( )a a aR E I− ( )( )a a a a

c

V R E I
b a c bRR E I I+ −+ + + +  

= ( )a b

c

R R
a b a b c b bRR R E R I R I+ + + + b a b

c c

R R R
a a a aR RV R I I+ − − .  

 
We define the following equivalent resistors:  

a b a c b c
ab

c

R R R R R R
R

R

+ += ,                                                 (6) 

a b a c b c
ac

b

R R R R R R
R

R

+ += ,                                                  (7) 

a b a c b c
bc

a

R R R R R R
R

R

+ += .                                              (8) 

As a result, we have   

b a a a a b b c c a a
a

ab ac ab ab ac ac

V V V R I R I R I R I
E

R R R R R R

   −= − + − − −   
   

 

Similar result can be obtained for node b :  
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We further define the following equivalent currents:  
a a b b

ab
ab ab

R I R I
I

R R
= − ,  (9) 

c c a a
ac

ac ac

R I R I
I

R R
= − ,  (10) 

c c b b
bc

bc bc

R I R I
I

R R
= − .  (11) 

 

Finally we can represent aE  and bE  in terms of the those 

equivalent currents and resistances as follows:  
b a a

a ab ac
ab ac

V V V
E I I

R R

−= − + − ,  (12) 

a b b
b ab bc

ab bc

V V V
E I I

R R

−= − − − .  (13) 

Equations (12) and (13) essentially gives us the π  model 
representation of the same circuit as shown in the right-
hand side of Fig. 7.  
 
C. Construction and Back Solving Algorithms for the 
Equivalent Circuits  

By repeatedly applying the Y model to π  model 

transformation starting from node 1N  until we reach node 

1nN + , the whole chain circuit in Fig. 6 can be reduced into 

an equivalent circuit shown in Fig. 8:   
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Fig. 8. The equivalent chain circuit model 

The algorithm for computing 1
equivR , 1

equiv
nR + , 1 1

equiv
nR , + , 

1 1
equiv

kI , + , 1 1
equiv
n kI + , + , and 1 1 1

equiv
n kI , + , +  from the circuit in Fig. 6 is 

shown in Fig.9.   
Once the reduced network has been solved, all the 

intermediate nodes of original circuits can be back solved 
using the superposition principle. As shown in Fig.6, for 

voltage 1, +kiV
 
at the node i, when the current flowing 

through the resistor *
iR  is obtained, the voltage 1,1 ++ kiV

 
at 

node i+1 is equal to 1, +kiV  plus the voltage drop on *
iR .  

The current flowing through the resistor *
1+iR  can be 

computed simply with KCL law. The detailed algorithm for 
commuting all the node voltages of intermediate nodes 
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Vj,k+1 (j∈[2,N] )is shown in Fig. 10. 

3. OVERALL ALGORITHM 
A. Algorithms Description 

After the reduced network is obtained at each time step, 
preconditioned conjugate gradient (PCG) based iterative 
method [14] is used for the solutions as the resulting circuit 
matrix is symmetric positive definite and the circuit 
consists of only resistors and constant current sources. 
Assume initial node voltages are known and the number of 
RLC sections in a P/G network is M. The overall 
simulation algorithm is shown in Fig. 11: 
Construct Equivalent Circuit Model 
EQVCKT-CONSTRUCT() 
{ 

∞=equivR1
; 01,1 =+

equiv
kI ;  ∞=+1nr ; 01,1 =++ knec ;   

*
1RRa = ; 

2rRc = ; 
1,1 += ka elI ; 

1,2 += kc ecI ; 

j=2; 
While j<=n do 
{ 
    *

jb RR = ; 
1, +−= kjb elI ; 

Compute
bcacab RRR ,,  based on (6)-(8); 

Compute
bcacab III ,,    based on (9)-(11); 

j=j+1; 

aba RR = ; 
cR =

bcR |
jr ; 

ac
equivequiv RRR |11 =  

aba II = ; 
cI =

1, ++ kjbc ecI ; 
ac

equiv
k

equiv
k III += ++ 1,11,1

; 

} 

c
equiv
n RR =+1

;  
c

equiv
kn II =++ 1,1

;  
a

equiv
n RR =+1,1

;  
a

equiv
kn II =++ 1,1,1

; 

} 
Fig.9. Algorithm for constructing equivalent circuit 

model 
 
Back Solve for the Intermediate Node Voltages 
BACK-SOLVER() 
{ 
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V
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} 
} 

Fig.10. Algorithm for back solving intermediate node 
voltages. 

 
Overall Simulation Algorithm 
PG-Solver() 

{ 
Initiate 

iii rRV ,, *  for i∈[1,M]; 

for k=1 to nstep do 
{ 

RENEW(
kiki elec ,, , ); 

For all RLC chains EQVCKT-CONSTRUCT(); 
PCG- SOLVER () ; 
For all RLC chains BACK - SOLVER ();  

} 
} 

Fig.11. Overall simulation algorithm 
nstep is the number of time steps used in the simulation. 

RENEW(eci,k, eli,k) is to compute the combined current 
sources from previous simulation results according to (4) 
and (5). EQVCKT-CONSTRUCT constructs the 
equivalent circuits for all the RLC chains as shown in 
Fig.9.  PCG-SOLVER is the linear solver based on PCG 
algorithm for the solutions of the reduced network.. 
BACK-SOLVER back solves the node voltage of all 
intermediate nodes shown in Fig.10. 

 
B.  Time Complexity Analysis  

Suppose a P/G network with N nodes, among them, Ncross  
is the number of cross nodes and Nmid is intermediate nodes 
and N= Ncross + Nmid.  Typically Ncross is far less than N in 
standard cell based P/G networks of ASICs.  

From previous subsection, we notice that EQVCKT-
CONSTRUCT and BACK-SOLVER are of linear 
complexity.  For the PCG-SOLVER, it was shown in 
[2,13] that it practically shows linear time or close to linear 
time complexity for many practical P/G networks due to 
sparsity of those circuits. As a result, given Ncross is far less 
than Nmid , the whole algorithm which consists of PCG-
SOLVER(Ncross),  EQVCKT-CONSTRUCT(N) and 
BACK-SOLVER(Nmid), is of linear  or close to linear time 
complexity. This is illustrated in Fig. 12.  
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Fig.12. Time complexity comparison 

 
In Fig. 12, we define β= N/ Ncross, which reflects the 

0-7695-2093-6/04 $20.00  2004 IEEE 



reduction ratio between original P/G grid and reduced P/G 
grid, and draw CPU time v.s number of circuit nodes 
curves for pure PCG and new method. Four networks with 
different β are solved for each total number of nodes. The 
CPU time for the Pure PCG method (no node reduction is 
performed) is  the average time used for the four circuits as 
the CPU time of Pure PCG method does not change with β 
significantly. It is shown that the CPU time used by new 
algorithm grows almost linearly when β≥ 10. Also, as more 
reduction become possible with larger β ,  the increase rate 
of the CPU time with the number of nodes decreases.  
 

4. Experimental Results 
The proposed simulation algorithm is implemented in C 

and C++. All the experimental results are obtained on SUN 
UltraSparc workstation with 750MHz CPU and 1GB 
memory. The number of time steps, nstep is assigned 120 for 
a clock cycle according to the requirement of accuracy for 
both new algorithm and SPICE [8]. 

We tested our program on a number of P/G networks 
with complexities ranging from 2500 nodes to 1 million 
nodes. The statistics of those P/G circuits are shown in 
Table I. 

First, we compare our method with that of SPICE in 
terms of accuracy. Both programs are used to solve a 
50*50*51 P/G network. The results are shown in Fig.13. 
The two waveforms are essentially same. The maximum 
error is just 0.00289%. 

Next, we compare our new simulation method with the 
SPICE and the Pure PCG algorithm. The effectiveness of 
equivalent circuit modeling is shown in Table I where the 
number of nodes after node reduction and the reduction 
ratio for each circuit are shown in column 3 and 4. It can 
be seen that complexities of the P/G network can be 
significantly reduced. On the other hand, we notice that the 
topologies of P/G grids do have impacts on the 
performance of the new algorithm. 
     Table I and Table II show that the pure PCG can’t deal 
with much large P/G networks. This is because PCG will 
become memory expensive when large circuits are loaded. 
On the other hand, the new algorithm is much more 
memory efficient and powerful than the Pure PCG method.  

From Table II, it is seen that the new algorithm is one 
order of magnitude faster than the pure preconditioned 
conjugate gradient method (PCG) and two orders of 
magnitude faster (50X-233X) than SPICE. The speedup of 
the new algorithm is comparable with the recently 
proposed P/G simulation algorithm in [3]. The capability 
of the new algorithm is also significantly improved 

                                                 
1 x*x*y p/g network has x strips, y trunks and each strap has x+1 
cell nodes. 

compared with the pure PCG as shown in Table II. The 
maximum P/G networks can be solved by the PCG method 
is 800*800 with 640k nodes and it takes 13102.46 seconds 
to solve the circuits, while the new algorithm can easily 
solve 1000*1000 P/G network in 687.50 seconds. For the 
circuit 800*800, the PCG-SOLVER takes 181.73 seconds 
(which is the total time minus the times of EQVCKT-
CONSTRUCT and BACK-SOLVER shown in the table), 
which implies that PCG-SOLVER only contributes 41.75% 
time cost of our algorithm. As SPICE bails out on very 
small circuits, we expect more Speedup will be seen on 
large circuits given the super-linear time complexity of 
SPICE. 
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Fig.13. Accuracy comparison with SPICE 

 
TableI  Statistics on the original and reduced nets 

 
Node Seen By PCG P/G Grids 

Pure PCG Our 
method 

Reduction 
Ratio (X) 

50*50*10 2551 501 5 
100*100*10 10101 1001 10 
200*200*10 40201 2001 20 
400*400*10 160401 4001 40 
600*600*10 360601 6001 60 
800*800*10 640801 8001 80 
1000*1000*10 1001001 10001 100 

 
We notice that is our new reduction method is a special 

form of Gaussian elimination process. But we exploit the 
regularities of P/G grids to follows the best order (such that 
no fill-ins are generated) for ladder circuits. While finding 
the best reduction order in Gaussian elimination process is 
a NP-hard problem in general [14].  

5. Conclusion and Future Work 
This paper proposes an efficient technique for analysis 

of RLC power distribution networks of deep sub-micron 
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VLSI systems in time-domain. At each time step, after 
integration approximation by Norton-form companion 
models, equivalent circuit models are built for many RLC 
chain circuits to reduce the P/G network complexities. 
Then precondition conjugate gradient (PCG) based 
iterative method is used to solve the reduced resistor-only 
networks. Experimental results demonstrate that the node 
reduction technique contributes at least one order of 
magnitude speedup over methods without node reduction 
and the resulting new algorithm is two order of magnitude 
faster than SPICE at almost no accuracy loss for many 
standard cell based P/G networks. The new algorithm takes 
687.5 seconds to solve a P/G networks with more than 1 
million nodes on a 750Mhz Sun workstation. Also the 
method can be easily extended to deal with tree-mesh 
structured P/G networks.  This makes our algorithm a 
serious contender for attacking real industry P/G networks. 
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TableII Comparison results on CPU times 
CPU time (sec.) Speedup over 

Our New Method 
P/G Grids 

SPICE Pure PCG 

EQVCKT- 
CONSTRUCT 

BACK- 
SOLVER 

Total 
time 

SPICE Pure 
PCG 

50*50*10 49.08 4.48 0.15 0.17 0.98 50.08 4.57 
100*100*10 762.74 28.47 0.62 0.55 3.26 233.97 8.73 
200*200*10 N/A 143.88 6.86 6.33 24.97 N/A 5.76 
400*400*10 N/A 1391.55 34.87 30.40 115.82 N/A 12.04 
600*600*10 N/A 3874.67 88.33 66.91 250.70 N/A 15.46 
800*800*10 N/A 13102.46 135.68 117.85 435.26 N/A 30.10 

1000*1000*10 N/A N/A 211.13 190.37 687.50 N/A N/A 
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