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Abstract

Precise operation of real-time systems depends on furalyocorrect computations
that are delivered within imposed timing constraints. Etesnporal requirements are
often modelled and verified assumiagriori knowledge of th&Vorst-Case Execution
Time(WCET) of each task. Due to complexities resolvingdlctual WCET, estimates
normally suffice. These estimates should be safe, so as wmontpromise temporal
correctness, and accurate, in order to maximise the ofieitelii system resources.
The aim ofWCET analysiss to therefore compute a WCET estimate that is the actual
WCET.

To date, the predominant research direction has keit analysiswhich builds
both program and processor models, and can therefore progdurous proofs re-
garding safety. However, the real-time sector is beingtrafiéd by more advanced
processors that complicate processor modelling suffigiesd that simplfying as-
sumptions are needed. Such assumptions lead to varyingetegf overestimation,
depending on processor configuration. On the other hantgrtend-to-end testing
practices - most often employed in industry - do not target WE€&imation and could
therefore underestimate unless the longest path is teggerhis is further compli-
cated by advanced processors as the WCET can depend on a taeaceqf events
at the architectural level, and not necessarily on the inpusing the greatest number
of operations.

In this thesis, we combine the relative strengths of testimd)static analysis through
aHybrid Measurement-BasdtiMB) framework based on a new program model, the
Instrumentation Point Grap{iPG). We present an algorithm to construct the IPG from
a reducible CFG* - an augmented Control Flow Graph (CFG) - suahalbitrary
irreducible IPG loops are identified on the fly. Using thesacttral properties, we
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show how to map loop bounds obtained through static anabygsthe IPG and also
how to extract observed loop bounds frdming traces

However, since the IPG does not provide a meagsseto compute WCET esti-
mates, we remodel two common calculation techniques sthtbapertain to arbitrary
IPGs. For the purposes of tree-based calculations, we grasealgorithm that de-
composes the IPG into a new hierarchical form, the Itree; la@ present the timing
schema used to drive the calculation over the Itree. Howewesshow that the Itree
representation must make a space/precision trade-off wiggtelling arbitrary irre-
ducible IPGs, ultimately resulting in a margin of overesttran. As a consequence,
we rework the Implicit Path Enumeration Technique (IPET}tsat it applies to the
IPG.

All these techniques have been implemented in a prototygentbich takes a dis-
assembled program and a number of timing traces as inpugiréting the relative
ease in which our HMB framework can be retargetted as neéhmocessor model
nor user interaction is required. We use this prototype to@valuate a large-scale
industrial application.
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1 Introduction

In today’s society, the dependability of computer-conélsystems manifests itself
to a larger degree due to an increasing reliance on theieciofunctionality. These
embeddedsystems are seldom visible to the naked eye since they aadlyusom-
ponents of a larger system or machine. The modern worldtésdd with numerous
pervasive examples, including: washing machines, psntaobile phones, the Anti-
lock Breaking System (ABS), and flight control systems for ifessand aircratft.

Embedded systems for which precise operation also depentisimg constraints
are calledreal-time systems A failure in some aspect of the temporal domain has
a wide range of possible consequences, depending on theotyggeplication. For
instance, a jittery video streaming application is perHags of an inconvenience than
the delayed release of an airbag after a high-speed impaistthlerefore critical —
sometimes evegafety-critical— that some analytical process has been undertaken to
verify the temporal properties of a real-time system beftsreventual dispatch into
the real world.

The design of a real-time system revolves heavily around @efianown as dask
schedule which allots computational resources to executing tasks, programs.
Many differentscheduling algorithm$ave been invented, all of which depend on
a set of temporal properties relevant to each task. One swugeny is theWorst-
Case Execution Time(WCET), intuitively described as the longest possible execu-
tion time. This is clearly essential in designing and venifyafeasibletask schedule
so that each task can be allocated a portion of CPU time. Hayweégtermining the
WCET is not trivial because execution times vary as a conseguehunderlying
software and hardware properties. On the one hand, differpuat vectors cause de-
viations in the path followed through the software. On tHeeohand, the time taken
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for each instruction to complete depends largely on thevaarel architecture. Due to
these characteristic/ CET estimatesare sought in which a typical requirementis to
bound the actual WCET so that neither the task schedule noetiifecation process
are compromised. Yet, simply providingsafeupper bound is tempered by the desire
for accuracy because embedded resources are restricteeattb be maximised ac-
cordingly. The epitome ofVCET analysisis to therefore compute a WCET estimate
that is the actual WCET.

1.1 Motivation

Mainstream industrial approaches for obtaining WCET estsaémain predomi-
nantly ad hoc This is because the WCET is taken to be the longest obsenedo-
endexecution time during functional testing [117], using atjgatar kind of coverage
criteria, such as Modified Condition/Decision Coverage (MC/[X3]. Sometimes,
through sheer lack of confidence in the measured WCET, the \@zséme is fac-
tored in an attempt to bypass any optimism. However, thisiges no guarantee of
safety as the factoring scale is usually based on engirge@isdom, which might not
sufficiently bound the actual WCET. On the other hand, if the@dVCET has been
captured, the factoring is likely to lead to a very pessimi{CET estimate.

Drawing motivation from this deficiencystatic Analysis (SA) emerged towards
the end of the 1980s [94], which models the software and harelimstead of execut-
ing the program; a WCET estimate is then computed from theseeisiodhe most
appealing aspect of SA is that it provides the framework éomfial proofs — due to
the properties of these models — that demonstrate the safédtg computed WCET
estimate. Moreover, the embedded market has traditiohaltyn dominated by simple
andpredictableprocessors (4-, 8-, and 16-bit), a trend which is due in papiiver
consumption and cost issues [100]. This considerably easmgate and safe pro-
cessor modelling since the effect of the CPU on the execuitio@ of instructions is
easily determined. However, processor modelling retamsaber of undesirable fea-
tures that are snowballing with the prevalence of signitigaadvanced CPU designs
within the real-time sector.
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First, there is an intrinsic SA requirement fpredictability at each stage of the
analysis, which is jeopardised in the presence of more a@ehprocessors that in-
clude caches, dynamic branch predictors, and out-of-axiecution units. Evidence
suggests that the uptake of these processors within thedeletbenarket is escalat-
ing [44], especially because core industries (e.g., therwiand the automotive) re-
guest increased performance. This point is illustratechieyldane departure warning
system implemented by Hella [24]; they specifically use Btaée Semiconductor’s
32-bit MPC5200 microprocessor due to its computational poWweoducingprecise
models of such processors quickly becomes intractableisecz the degree of unpre-
dictability introduced. Especially significant is the hilglvel of interference between
operations of disparate units; for example, an incorrembtin prediction pollutes the
cache. The typical workaround is to decompose the analyggisspecific speed-up
features and merge the results together at some subsetpgmtidowever, some pes-
simism is inherent in such an analysis simply because thmalanode of processing
encompasses concurrent operation of all features. Worsehye type of decom-
position could yield unsafe WCET estimates becausgnahg anomalie§79, 123]
whereby local worst-case behaviour, such as a cache miss, it necessarily lead
to the global WCET.

The second issue with SA ties in with the seemingly relestilesrease in transistor
density, and hence the advent of gstem on a Chi(50C). These systems can pack
a mixture of one or more mircocontrollers, microprocessorsDigital Signal Pro-
cessor (DSP) cores — together with different memory storagdiums (e.g. ROM,
RAM, Flash) — onto a single chip. A prime example is the TriC8tarchitecture
produced by Infineon, which is a single core 32-bit microoalfgr-DSP architecture
that provides configurable memory in the size and type diiessIn these cases, it
is not sufficient to build a model of the CPU because of the taghupling between
peripheral units. For instance, the worst scenario coufztedé on the relative bus
speed between the CPU and the on-chip memory. Following desidecomposition
strategy to that of processor modelling leads to yet morsipasm.

The third problem that accompanies hardware modellingasehance on the pro-
cessor manufacturer to publish details of internal openaéind implementation. In
many cases, such sensitive information is withheld becatigatellectual property
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and competition. This is also true of any hardware synthesiformed by the manu-
facturer, e.g. using VHDL. However, even when manuals avdyred, they are often
error strewn [37], and this challenges the validity of anydelooriginating from this
source.

The final bugbear of SA hardware modelling concerns the memuah effort re-
quired, which is highlighted by each of the above three pointithout question,
undertaking this for high-end processors occupies sigmficesources, both in terms
of time and money. For companies operating under strict-toamarket pressures, or
for those with limited budgets, this could prove a decisaetdr. This is more notable
because state-of-the-art SA modelling techniques lagndetutting-edge processor
design [93]. Moreover, replacing or upgrading from one pesor to another demands
a fresh redesign of the model, incurring similar costs.

1.2 Contribution

This thesis contends that, in order to compute accurate WCH&haes — and not
necessarily bounds thereof —Hybrid Measurement-Based (HMB) framework
should be employed rather than a pure end-to-end or SA agiprda particular, we
believe that there are a myriad wiission-critical systems for which absolute upper
bounds cause vast underutilisation of system resourcdsgsasuch would be ignored
by the industrial sector due to the margin of pessimism. &titse real-time systems
are governed by self-checking and recovery mechanismssa tte actual WCET
ever exceeds the computed estimate.

This thesis is based upon two points of contention. Firsireasingly complex
processors are emerging in the mission-critical sectohefembedded market, and
building processor models requires predictable hardw&emputation of WCET
estimates by SA techniques is therefore closely dependetiteoaccuracy of these
models, whereas we argue that the most suitable model tysanel the processor
itself.

Second, existing end-to-end techniques rely on finding tteah worst-case test
vector, thus thdongest pathcould be missed. This is accentuated even further by
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higher-performance processors because the longest gatdegpends on the architec-

tural state. Therefore, the accuracy of such estimatesrigsically tied to the quality

of test data and the percentage of coverage achieved, butreg&e remain insufficient

as they solely target functional properties.
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Figure 1.1. Overview of our WCET Toolchain
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To prove the thesis, we develop a HMB framework to compute WC&Eimates,

a schematic overview of which is presented in Figure 1.1. seeace, we measure

the execution times of program segments thromgtrumentation points? (ipoints).

Upon execution during testing, these ipoints generate dpuoftiming traces of ex-

ecution through the program. The static analysis part oboatysis then recombines

1Although we use the term "instrumentation points”, we engi$mthat these are are notional points
in the program which doaot always require software probes. There are often altematigans by
which timing traces can be extracted — namely, through harewlebug interfaces — even if in
practice the software solution proves to be the most ddsirab
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the measured execution times by means of a novel programintieeéstrumenta-
tion Point Graph (IPG). To realise this, the timing traces are first parseddento
extract the basic unit of computation and, if required, lbopinds. The calculation
engine then uses either a tree-based approach or the nijaiti Enumeration Tech-
nique (IPET) — in both cases operating on the IPG — to compM#CET estimate.

In developing this framework, the following key contributis are provided:

e A new program model: Chapter 3 motivates and presents the IPG, in which
the atomic unit of computation is the transition among ip®ims opposed to
the more traditional basic block. We show how the IPG is aqoicgtd from a
CFG* — which is basically an intermediate form similar to the Coh&low
Graph (CFG) — through two algorithms. The first of these is w&#myple but its
weakness is that it requires support from state-of-théeatiniques to identify
loops in the IPG. We show that these often fail due to the rantitess of IPG
irreducibility [3, 83]. Our solution is a more complex algorithm that instea
uses the.oop-Nesting Tree(LNT) of the CFG* during construction, and hence
identifies all such loops on the fly.

This chapter also describes usage of the IPG in the contexterprodecu-

ral analysis. We describe a virtual inlining techniqueyaster ipoint inlining,
which avoids duplication of the callee’s IPG at each ca# #it the caller and
produces one IPG per procedure. We show how to use the seGsfifPcon-
junction with thecall graph to parse the trace file so as to extract WCET data on
a per context basis. In particular, we show how to extraceéntesl loop bounds
using properties of IPG loops. The final contribution of tbiapter describes
how to use the call graph and the set of IPG loops in order tgpoena final
WCET estimate.

e A new tree-based calculation engineChapter 4 presents a new hierarchical
form — theltree — to facilitate tree-based calculations on the IPG. To this
end, we present an algorithm to decomposaréitrary irreducibleIPG into an
Itree, as well as theming schemathat drives the WCET computation.

We show how to use thdominancerelations to detecBingle-Entry, Single-
Exit (SESE) Single-Entry, Multiple-Exit (SEME), andMultiple-Entry, Single-
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Exit (MESE) regions in acyclic IPGs. In particular, we show hoesth proper-
ties prevent redundant traversals of acyclic IPGs (whildting a hierarchical
representation) and how this results ifoeest of Itreesanlforest.

We show that, when modelling cyclic IPGs in Itree form, imetbility is gener-
ally the biggest contributing factor to overestimationhie talculation engine.

e Remodelling of the IPET: Chapter 5 describes how to remodel the IPET, a
calculation technique that constructs an Integer Lineagfam (ILP), so that it
applies to arbitrary irreducible IPGs. We show that, in casitto the Itree, the
IPET does not cause any undue overestimation in the caloulan the IPG.

e A prototype tool: Chapter 6 describes the prototype tool developed to support
HMB WCET calculations, which takes a disassembled programedrate file
as input. We use the prototype tool to evaluate the techeiguesented with
a large-scale industrial application that existing SA tegbhes cannot analyse
due to the non-disclosure of fundamental system propestigsparticular, both
program source and processor configuration are withheld.

We compare the WCET estimate that our HMB framework computésend-

to-end measurements. Our results indicate that our treeebealculation en-
gine can be competitive with the remodelled IPET, that asialgf execution
contexts is essential to the quality of the WCET estimate wherlRG is the
program model, and that computation of the WCET estimate $sdessitive to
the amount of coverage achieved than end-to-end estimates.

In addition to these main chapters, a thorough account afeglwork is provided
in Chapter 2, which also discusses our key assumptions tiegandw timing traces
are extracted and how testing is implemented. Chapter 7 dyawsral conclusions
and indicates future directions of work. Appendix A reviesgge terminology and
notation used throughout the thesis, with particular @¢@agraphs, trees, and control
flow analysis. It is recommended that the reader familiara@geeself with the material
in the appendix before embarking on Chapters 3 through 5.






2 Background and Related Work

The central topic of this thesis is Hybrid Measurement-Bdsi#dB) WCET analysis.
Section 2.1 begins by reviewing core material in real-tiygtesms in order to provide
the setting for WCET analysis research. This leads to Sect@mwich is devoted
to a survey of techniques used to generate WCET estimatesttioybar, this section
examines in detail the program and processor models usedalig Bnalysis (SA)
and the testing techniques used by existing end-to-endurezasnts. An overview of
the tool support available for WCET analysis from commeraial academic horizons
is also presented. We conclude with a summary of the chaptection 2.3.

2.1 Real-Time Systems

Chapter 1 provided an intuitive distinction between embddatel real-time systems.
Rather than rephrase previous definitions in the search fordiism, we present the
following as provided by Laplante [64]:

A real-time systemis one whose logical correctness is based on both the
correctness of the outputs and their timeliness.

The diversity implicated in this definition is mirrored byetlextensive range of
systems to which it applies: multimedia hand-held devitesgrt pacemakers, and
aircraft control systems, to name but a few. Clearly, the ebftilure of such systems
differs enormously, but when loss of life is a possibilitycbusystems are branded
safety-critical. Other systems for which correct functionality is vital keetfulfilment
of its goal are coinedhission-critical, although the differences between them are not
always abundantly transparent.
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2.1.1 Scheduling

In reasoning about the temporal requirements of a real-sysgem, i.e. whether they
can be satisfied or not, a model of the computations perfoiednstructed. Each
sequential computation is referred to as a task, and theatv set of computations
as atask sef = {11, T2,..., T }. For each task, a task instance is a fresh invocation of
that task, the regularity of which provides a categoriseéie follows:

e Periodic if these arrive with a constant period,
e Aperiodic if these arrive irregularly,
e Sporadic if there is a minimum interarrival time betweernvais.

Each periodic task; has several associated parameters that are assumed known:
e The release tim&, is the time at which the task becomes ready for execution.
e The periodP, is the regularity at which a new instance®fs initiated.

e The deadlind; is the time at which the computation should have completed.

e The worst-case execution tirgis the time needed for the processor to perform
uninterrupted execution of the task.

Given the task model, a scheduleis an assignment of tasks to the processor,
so that each task is executed until completion [21]. Schegddlgorithms retain a
number of characteristics that facilitate their categdits. First, the actual selection
policy of which task to execute can be decided on-line ofin&: On-line mechanisms
choose the task during run-time, whereas off-line onesdéebefore the system is
ever run. Second, how the scheduling decision is deterndepdnds either on fixed
priorities or on dynamic priorities of the task set. Fixetbpgty schemes assume that
particular parameters remain fixed to determine a priontieong of tasks statically.
On the other hand, dynamic policies permit such parameiexisange at run-time and
utilise these dynamic values to determine the priority orgde Third, the scheduler
can operate a pre-emptive or a non-pre-emptive approadahdiag to the priority of
tasks. A pre-emptive algorithm permits a higher priorigkt#éo interrupt the execution
of a lower priority task. In comparison, a non-pre-emptilgoathm forces the lower
priority task to finish before invoking that of the higherqonty.
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Three classical scheduling policies are:

e Rate monotonic [76]: A pre-emptive, fixed priority policy irhwh tasks with
shorter periods between instances are given higher priokier those with
longer periods.

e Deadline monotonic [67]: A pre-emptive, fixed priority pofiin which tasks
with shorter deadlines are given higher priority over thogh longer deadlines.

e Earliest Deadline First (EDF) [76]: A pre-emptive, dynarpitority policy in
which the task with the earliest deadline is assigned thbedsgpriority. The
difference between EDF and deadline monotonic is that tlease times of
tasks are modified during execution, and hence prioritiel/eytherefore, EDF
decides using these modified priorities.

Figure 2.1. Example Task Schedule using the Deadline Monotonic Algorithm.

Task | Release time Period| WCET
11 1 6 3
T2 0 5 2

(a) The task set and associated parameters.

- -

1

» lime

I ] w ]
0 5 10
(b) The task schedule in which arrows represent an invocation of each respec-
tive task. Task 1> has a higher priority than 11 since its deadline is shorter.

To illustrate a sample task schedule using the deadline tapiwoalgorithm, con-
sider an example task set, the respective parameters oftasichand the resultant
schedule in Figure 2.1. The task set consists of two periadikst, and 1, in which
the deadline is assumed to be equal to the pergdias a shorter deadline thap,
thus it is deemed of a higher priority. The schedule in Figuidgb) is over discrete
time units whereby invocations of tasks is represented byna. Note thatr; does
not pre-empt at its release time due to the priority ordering. Howevetpiés com-
mence execution onae has finished.



12 2.2 Worst-Case Execution Time Analysis

When a task set can be scheduled in accordance with specifisttaats, e.g. all
periodic tasks meet their deadline, it is termed feasibleorddver, the task set is
schedulable if there exists at least one scheduling pdfiayis feasible. Aschedu-
lability test determines whether the task set is feasible for a particdaeduling
algorithm.

Liu and Layland [76] provided a schedulability test for tlater monotonic algo-

rithm:
n

;ﬁ <n(21/”—1> (2.1)

In this inequality, the left-hand side represents the tptatessor utilisation and
the right-hand side is the utilisation bound, which conesrgpwards 0.69. This is a
sufficient schedulability test but not a necessary one lsecauest set could fail the
test yet still be schedulable according to the rate monotalgiorithm. Note that this is
also a schedulability test for the deadline monotonic aligor under the assumption
that, for each taskg = D;.

Liu and Layland [76] also provided a sufficient and necessengdulability test for

EDF:

G
— <1 2.2
P = (2.2)

™M=

2.2 Worst-Case Execution Time Analysis

In the previous section, the task model built in the desighaarification of real-time
systems was discussed. This model provides the framewoskh@duling algorithms
and their schedulability tests in which a fundamental aggiom is that the WCET
of each task is available arfiked This is evident in the schedulability tests of the
rate monotonic and EDF scheduling algorithms shown abo\@.i) and (2.2), re-
spectively. However, in spite of the increased interestireduling theory during the
1970s and 1980s, research in WCET analysis surprisingly resdalormant until the
seminal paper by Puschner and Koza [94] aroused interestgBle¢ great pioneers
of WCET analysis, a reminder of their definition of a WCET estimsaiea order:
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The Calculated Maximum Execution TimglAX Tc)! of a program is the
least upper bound for the Application Specific Maximum ExeguTime
(MAXT,) that can be derived from the task’s program code. MiAeX Ty
of a program is the time it maximally takes to perform its fiimcality in
the given application context, provided that all neededusses are avail-
able, the program is not interrupted and the performanceehardware
is known.

We crucially note the term “least upper bound”, which indésathat merely pro-
viding an upper bound has never been the specific aim of WCEysisalBesides
presenting this definition, several key properties of the W@Edblem were noted,
namely:

e Providing a WCET estimate for an arbitrary program reducesi¢oHalting
problem. Therefore, to ensure that the WCET problem is del@dalminimal
set of restrictions must be supplied. In particular, thegel@op bounds and
maximal depth of recursive procedures.

e The timing behaviour of all hardware components should lbergenistic since
execution times are hardware dependant.

e WCET estimates do not typically account for the interferemoelpced by back-
ground activities, such as dynamic RAM refresh, nor that pced by pre-
empting tasks.

Broadly speaking, the computation of WCET estimates is eitblkiesed through
SA or end-to-end testing techniques. Due to the conceptgairement that a WCET
estimate should be an upper bound on the actual WCET, SA swdutvere the first
to impact the literature. These techniques typically coraldata derived from two
disparate modelsprogram modelsthat we review in Section 2.2.1; anulocessor
modelsthat we review in Section 2.2.2. However, these models alioneot provide
sufficient information to compute a WCET estimate becauseeoH#lting problem,
as discussed above. Calculable WCET estimates are therefreedrbyflow anal-
ysis which computes path-related properties of the programd, aae discussed in

1As an historical aside, although they provided the semimgep on WCET analysis, the name
“MAXT” was (unjustly) modified to “WCET” by native English-sgaking authors.
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Section 2.2.3.

As this thesis develops a HMB framework, we also survey destited and cov-
erage techniques to compute WCET estimates in Section 2.idlly-tool support
for generating WCET estimates is an almost essential reqaimgrsome of which
have successfully evolved from academic prototypes inllg-fledged commercial
toolsets. Tools having the greatest impact on the field aserthed in Section 2.2.5.

2.2.1 Program Models and WCET Calculations

In general terms, a program model represents the set ofstallg feasible execution
paths without considering the semantics of the code. From aT\&D&lysis perspec-
tive, the ultimate application of the program model is toiekethe longest path by
means of an appropriate calculation technique; how thigifopmed depends on the
type of model. Th&€ontrol Flow Graph (CFG) and théA\bstract Syntax Tree (AST)
are thede factomodels since they are often a by-product of program comgiatn
both the AST and the CFG, the atomic unit of computation id&c block which

is a sequence of consecutive functional instructions Gaisembly/object code level)
in which flow of control enters at the beginning and leaveatdand [3, 83]. Typi-
cally, the WCET of each basic block is deduced from either agssar model or from
measurements.

Path-Based Calculations and the IPET

Both path-basedapproaches and thmplicit Path Enumeration Technique (IPET)
to calculate WCET estimates require a graph-based progranelmddhe standard
model is the CFG, which is a flow graph of basic blocks in whiche=drepresent
the control flow relation between them. The graph-based mealoyed in our
HMB framework is the IPG (see Chapter 3), thus these calauagichniques are also
applicable to the IPG — Chapter 5 considers remodelling ofi €T towards the
IPG.

The simplest way to implement a path-based approach is tmerate each path
through the graph and then select the longest amongst thehe-eldar benefit is that
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there is no pessimism in the calculation. However, becatsgrams inevitably con-
tain loops, this is not applicable in any practical settisgpath enumeration causes
exponential growth in the number of paths, e.g. a loop withrngln containing a
uniquei f - t hen- el se construct has 2paths. To limit the complexity, therefore,
the enumeration of paths should be restricted to sectiossraifht-line code [105],
such as within a loop body. In this way, calculations becooralised (in a manner
similar to that of a tree-based approach) and integratingajlflow analysis data is
compromised. However, a path-based approach working dbtipeboundary level
can virtually unroll paths and thus select a different patheach individual itera-
tion [50].

To ensure a more precise analysis, the calculation musbalsevare of infeasible
paths. In [106], an algorithm was presented that itergticemputes a longest path
until it finds a feasible execution path. This is basicallyedoy rewriting the graph
— inserting additional vertices and edges so that the iitfespath is not structurally
feasible in the modified graph. (Their algorithm also acd¢sdar pipeline effects.)
Instead of rewriting the graph, infeasible path data cannicided directly in the
calculation [109]. In this approach, infeasibility date @erived for the acyclic region
of each loop, which basically link edges (with branch vesias sources) that cannot
execute in sequence. Armed with this knowledge, the cdionlangine then traverses
the loop body in reverse topological order and propagatesotigest path up to the
loop header, discounting infeasible paths along the wayweyer, their approach is
not yet able to handle cross-loop or interprocedural cairgs.

The general weakness of path-based approaches is thatden tor incorporate
global flow analysis data, the unit of analysis must be exd¢drid complete execution
paths. Any form of unrolling or graph rewriting provides afga solution but can be
quite costly. The alternative is to model feasible execupiaths as a constraint model
on the graph: this is how the IPET [73, 95] operates. The kegniation to the IPET
is that it generates bounds on the execution count of theiatonit of computation,
e.g. basic blocks, without explicitly enumerating all ga#nd can thus incorporate
global flow analysis data. This is achieved by producindgndeger Linear Program
(ILP) or aConstraint Program (CP). In both cases, an objective function needs to
be maximised subject to a set of constraints expressing filavmation. We defer a
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detailed examination of this calculation technique untiaGter 5.

One weakness of the basic constraint model of the IPET istthiaply provides a
bound on the execution count of each variable. This meanstitennot sufficiently
capture more detailed flow information, e.g. that a basiclbis never executed on
the first 20 iterations of a loop. The IPET has since beengetad towards a scope
graph [40], which is a CFG partitioned into regions, i.e. ®0p Every scope is
essentially a hierarchical component of the program, ssel@op or a procedure, and
carries a set of flow facts (derived from SA) that describdytsamic properties. Flow
facts can span across scopes. From the set of flow facts aséttbéscopes, virtual
scopes are created, which are basically duplicated scop&shich linear constraints
can correctly bound the execution count of variables agogrid the flow facts. These
duplicated scopes can be seen as “mini” constraint modaisuinen pieced together,
give a complete description of flow through the CFG.

The long-standing issue with the IPET is that, in the worseg¢aolutions to ILPs (or
CPs) have exponential time complexity [30]. This is parteiyl an issue when inte-
grating global flow data into the constraint model becauesravise, the problem can
be reduced to the network flow problem [73] for which therelkarewn polynomial-
time solutions [30]. For this reason, a so-called cluste@dulation [42] has been
explored, which attempts to avoid the creation of a singtébal constraint model.
This again uses the scope graph and the set of flow facts. Bgsiloav facts deter-
mine the smallest unit of analysis (in the graph) to whichaalised calculation can
be confined, either using the IPET or an existing path-bappdoach. However, as
the authors acknowledge, if flow data span the entire CFG,lzagtmnstraint model
is the only option.

Tree-Based Calculations

A tree-based approach to calculating a WCET estimate was fopbped in the sem-
inal paper on WCET analysis [94]. The original calculationiaegperated at the
source level of a program on its AST representation. Thisaated by parsing pro-
gram source and identifying sequence, selective, andiitereonstructs. Each inter-
nal vertex of an AST is one of these constructs and leavesgreesces of statements,
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i.e. basic blocks.

The calculation engine operates by traversing the AST botip whilst concep-
tually collapsing each construct according to a partictifaing rule, collectively re-
ferred to as théiming schema[88]. The original timing rules are shown in Table 2.1
in which: Sis a basic block or an interior verteg;is a conditional expression;is an
upper bound on the number of loop iterations.

| Language construct | Timing rule |
SequenceS,S..., S, S, WCET(S)
Alternative: i f Cthen S el se S | WCET(C)+maxWCET(S),WCET(S))
Iteration: whi l e Cdo S WCET(C) + (WCET(C) +WCET(S)) *n

Table 2.1. Timing Schema for Tree-Based Calculations

However, the most poignant shortcoming of the original ignéchema was its in-
ability to account for the effect of hardware features, sin@ssumed fixed execution
times of basic blocks. The timing schema has since been aedieto account for
the effects of pipelines and instruction caches on RISC &ctuires [75]. Colin and
Puaut [28] proposed a data structure to represent the gionul@sults obtained from
pipeline, cache, and branch prediction modelling in a maxdwlay during the tree-
based calculation.

There are also issues with the actual hierarchical reprasem. First, the timing
schema impose localised calculations, and thus more carfiple analysis data, e.g.
relating to infeasible paths or non-rectangular loops ¢(&tiee number of iterations
of an inner loop depends on the number of iterations of anr dog), cannot be in-
tegrated into the calculation. The WCET estimate is thus |Iessge. This deficiency
motivated the work in [25], which introduces a scope tree ki@ similar properties
to those of the AST. The scope tree can handle more compilate analysis data
by duplicating sub-trees.

Second, tree-based calculations are only suitable forstelttured programs whereby
hierarchical relations hold. This essentially preclud®g grograms containing high-
level statements that abruptly redirect flow of control tafeecent region, e.ggot o,
br eak, andcont i nue. Furthermore, there has to be a clear mapping between the
source-level constructs in the AST and the compiled codbeatritermediate level.
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This is because processor models determine the WCETSs of Haskspand these
must then be transferred onto the AST for the calculatiorwél@r, as more complex
hardware architectures prevail so too does the role of agtign compilers, which
vastly complicate the mapping. The crux of the problem is tha AST should be
created from the graph-based model, i.e. the CFG, in ordes tmmpatible with the
information extracted at the intermediate code level. §Téimain reason that usage of
the CFG is significantly more widespread as it can handlerarliprogram structure,
including aggressively optimised code.)

In Chapter 4, we present an algorithm that does constructrarbiécal data struc-
ture, theltree, from a graph-based program model (i.e. the IPG). As the IBEfi
is derived from a program model similar to the CFG (as disaisseChapter 3),
this means that the Itree is able to support more controtsires, e.g.br eak and
cont i nue statements, than those associated with well-structuregr@ams. The
Itree also models arbitrary irreducible loops in the IP@@lgh we show that these
unstructured sections of code are the principal cause oturacies in the resultant
WCET estimate.

It might appear that tree-based approaches are inherentiyeak that their study
does not warrant further investigation. However, one céelMantage of a tree-based
approach is that it allows computation pfobabilistic WCET estimates, these can
subsequently be used in schedulability analyses [20, 3&Jabsume execution times
as probability distributions. This has motivated the idtrotion of a probabilistic tim-
ing schema [15, 16] which combines Execution Time ProfileREihstead of integer
values. Each ETP represents the frequency of executios fona particular code se-
guence (normally basic blocks), which are usually obtain@eh measurements. The
algebra is then able to combine dependent ETPs arising femehware effects that
have not been captured in the measurement stage.

Interprocedural Analysis and Contexts

The calculation techniques described above typicallyateayn a per procedure basis,
but there is clearly a need to drive calculations acrossquho® boundaries.

Interprocedural analysis is often aided by tt&l graph in which procedures are



2.2 Worst-Case Execution Time Analysis 19

vertices and the procedure calls are modelled by its edgesachiieve maximum
precision in the calculation, it is not sufficient to consitieat the WCET of each call
from a procedurd to a procedurg is the same at every call site. This neglects the
context of the call and can be a major source of pessimism. For exartifgdoop
bounds in a callee could be parametrised by the argumenpiietiin the procedure
call, thus simply assuming the maximum bound leads to otiearaBon across all calls

to that callee.

Interprocedural analysis within the scope of the IPET hanlvesearched by Theil-
ing [113], which includes support for recursion. They cdesia context to be a call
stack state — a so-called call string. In order to manage oty the length of the
call string can be constrained by a parameter, i.e. it detesrhow far back to go in
the execution history.

In Chapter 3 we describe our interprocedural analysis tecfeniising the IPG. The
main difference between our work and that of Theiling is tivatdiscover contexts
from timing traces. Furthermore, our calculation enginedlularised, which means
that either a tree-based approach, a path-based approte&hIBET can be chosen to
calculate the WCET of each individual context.

A different approach to context-sensitive analysis is faresent the WCET of a
piece of code as an algebraic expression, more widely sxfeils asparametric
analysis[14, 25, 120]. This is especially useful for code that is liganput-data
dependent, such as an image processing application. In2@l4the formulae are
constructed at the source level and a computational algsistam like Mathematica
or Maple is used to simplify and evaluate these expressittmyvever, parametric
analysis is sometimes performed at run time when the paemsbecome available
in order to make dynamic scheduling decisions [120]. In stages, it is unrealistic
to assume such a computational algebra system is availRhtaer, the formulae are
much simpler so that the WCET can quickly be evaluated.
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2.2.2 Processor Models

Although this thesis is not concerned with processor mouglla picture of WCET

analysis would not be complete without reviewing this aréaesearch, especially
because most work has been concentrated here. Moreoverinhe motivation for

the development of a HMB framework is that there are a numbelebciencies in

existing processor modelling techniques; thus, it is wwehtte reviewing the state of
the art to support this claim.

A processor model synthesises the functional and tempeta\iour of an actual
processor, which SA uses to compute the WCET of basic blocksuitexecuting
the software on the target hardware. The intricacy involvegroviding a safe yet
accurate model largely depends on the speed-up featursenprim the processor.
Pipelinesandcacheshave both been comprehensively studied. The former is widel
used in contemporary embedded systems due to low impletr@ntast and power
consumption. The latter has the greatest effect on the WCETe[)6 Some embed-
ded systems wish to speed up memory accesses without thélimpdemplexity of
caches:scratchpadsprovide an elegant workaround. Interesbimnch prediction
and out-of-order execution has only recently emerged, mainly because these fea-
tures are reserved for processors striving for aggresssteuiction throughput, which
is a less common requirement in embedded systems. Theseaotheapced features
proliferate the presence tilning anomalies which potentially invalidate traditional
divide-and-conquer strategies. We survey the state of ihie @ach of these tech-
niques.

Pipelines

Pipelining permits multiple instructions to be in flight sittaneously by exploiting
the fact that an instruction must pass through multipleestadg complete execution.
This idea contrasts with a non-pipelined architecture whgrthe execution of an
instruction only begins on completion of the previous instion.

A pipeline thus consists of a number of stages — its depth —h @astruction
must pass through and allows several instructions to ocrw@pendent stages. Each
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instruction normally progresses to the next stage on eveckcycle, although each
instruction does not need to pass through each stage. Tedten latency is the
number of cycles taken to pass through the pipeline. Thdisgehlatency of an
instruction is the pipeline depth, but this is hindered byards.

To obtain a safe and accurate WCET estimate in the presencpedings, the tim-
ing effect over basic block boundaries must be contemplaiede the effect within
the basic block is quite easily determined using resemdébles [86]. In many cases,
there is a relative speed-up in the execution time (of cartsexbasic blocks), in com-
parison to their individual execution, due to the inherergrapping of the pipeline.
However, hazards between basic blocks can produce an secie@xecution time, a
so-calledpositive timing effect

The first contribution in this area was to account for the agebetween adjacent
basic blocks [86]. However, this is insufficient in the gexlerase because the ef-
fects of pipelines can reach much farther [39]; for examibbdating-point instructions
occupy functional units much longer than do integer indtoms. An alternative to
capture such effects is trace-driven simulation [39, 3%)imch a trace of a program
for a fixed input is recorded and then simulatettis is performed for sequences of
basic blocks.

The effect of a pipeline on the WCET can also be analyseddsgract interpre-
tation [31]. This is the approach taken in [101] in order to model $uperSPARC |
superscalar pipeline, whereby the abstract state of tledipgis updated at each basic
block until a fixed point solution is reached. However, st&tplosion must be man-
aged by merging abstract states at selected (merge) wenmidhe CFG; this makes
the analysis more conservative, and ultimately transiatesa loss of accuracy in the
WCET estimation.

Caches and Scratchpads

For fast CPUs, a severe performance penalty would be incifitveth instructions and
data were continually fetched from main memory, since tleesg time is relatively
much slower and CPU execution would stall. A cache is an op-etf@mory — thus

2Comparatively, execution-driven simulation dynamicatiterprets instructions for variable input.
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providing significantly faster access times — whose costsnbset the next lower
level of memory, resulting in a memory hierarchy. Caches a@artain instructions

(instruction caches), data (data caches), or a mixturetbf(omified caches). General-
purpose faster processors typically contain two-levelsaahe, normally configured
with separate on-chip instruction and data caches at leve(lol), and a unified on-
chip/off-chip cache at level two (L2) [56].

When the requested data resides in the cache then a cachsuese®therwise, it
is a cache miss and a penalty is accrued whilst a fixed-siz# data, termed a cache
line, is retrieved from the next lower level in the memoryrhrehy. The location in
which the incoming line is placed depends on the configunafollows [53]:

¢ In a direct-mapped scheme, the block is placed in a specdatitmn, usually as

a function of its address.

e In a set-associative scheme, the cache is split between harurhsets. The
block is then mapped onto a set, as a function of its addresksplaced any-
where within that set.

¢ In a fully-associative scheme, the block can reside anysvimethe cache.

For set-associative and fully-associative configuratiarache miss forces a block
resident in cache to be displaced in order to accommodatiacbeing block. There
are typically three block replacement strategies:

1. The Least Recently Used (LRU) approach removes the blatkts not been
used for the longest time. To determine the exact LRU itemet@\acted re-
quires a number of status bits to track when each block wassaed, which
becomes expensive when the number of blocks in each segés leastead, the
pseudo-LRU approximates the LRU item, which is a very goqar@amation
of LRU [81].

2. The First In, First Out (FIFO) strategy removes the bldk has been resident
for the longest duration.

3. The random approach arbitrarily chooses the block to ineved.

Note that direct-mapped caches do not require a cache espéatt strategy since
there is a unique location for each block. In serving a caciss,ithe CPU stalls until
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the entire block has been transferred. A wrap-around fili¢at word first [53]) devi-
ates from such behaviour by transferring the requested firsténd freeing the CPU
to continue execution as soon as the data is available,tvitvdransfer completes in
parallel.

Scratchpads provide on-chip memory with predictable actasncies which are
comparable to those of caches. The contents of a scratcipalagped into the ad-
dress space of the processor and, unlike a cache, are npaiattated at compile
time. Therefore, when the CPU requests data that falls wiki@mange of the scratch-
pad, it fetches from the scratchpad; otherwise, it mushfetam the appropriate level
in the memory hierarchy.

Caches significantly complicate WCET analysis because of thieutly in deter-
mining which instructions and data reside in cache at aqudati program point: their
presence usually equates to a faster exectitiotherwise a cache miss occurs and
the associated penalty must be considered. Simply assumif@m cache misses,
or disabling the cache to force predictability, is likelyléad to gross overestimation
and an underutilisation of processor resources. In genaedicting the caching be-
haviour of instructions is more straightforward than itos lata because the addresses
of instructions are fixed and known at compile time. Compeeatj determining ab-
solute data addresses at compile time is complicated bygxample, pointers. It is
further aggravated by unique instructions whose data aatiferent memory loca-
tions at run time, e.g. load/store instructions. Scratdspan the other hand, are often
a desirable alternative because of their predictability.

One of the first techniques to emerge for WCET cache analysisStedie Cache
Simulation [6, 85, 125, 126], which effectively simulates the effectevkery path
through the program on the state of the cache.

More specifically, static cache simulation is foundeddata-flow analysis[3] and
represents thébstract Cache State(ACS) at each point in the program (that is,
in its CFG). The ACS holds the program lines thaayreside in cache if execution
reaches that particular point, as opposed toGoacrete Cache Statg CCS) that
would otherwise represent thexactprogram lines resident in cache. The ACS at

3Due to timing anomalies, this might not always be the case.
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each vertex is computed by taking the union of the outpuestaf each immediate
predecessor and simulating the effect of the instructiordata in that vertex on the
state of the cache. The ACSs are propagated across the pragm@ungh iteration
until a fixpoint solution has been reached, which is a setadflestACSs. Termination
Is guaranteed by the properties of the underlying data-ftaméwork.

Having computed ACSs, the next step is to determine if eadiuictton or data
reference will either be a cache hit or a cache miss duringrpro execution. It is not
always possible, however, to categorise a reference asoa &iiss, so instructions
are instead categorised as follows:

e Always miss: the instruction is not guaranteed to be in cache

Always hit: the instruction is guaranteed to be in cache.

First miss: the first access will miss but all subsequentssaewill hit.

First hit: the first access will hit but all subsequent acessgill miss.

Unknown: the caching behaviour of an instruction cannotdiegorised. This

is handled as always miss.

Static cache simulation has been extended to handle swtiai$se caches assum-
ing perfect LRU [85, 125], multi-level caches [84], data lves [125, 126], and in-
struction caches employing a wrap-around fill mechanisné][1Blowever, it has the
following limitations:

e At merge vertices in the CFG, cache states of all immediatdgmesssors must
be unioned together to limit the complexity of the analysikith would oth-
erwise grow exponentially because all paths would effettibe simulated). If
the cache states are very different then the model beconssspstic. This
can be particularly problematic for loops (unless the firstation is virtually
unrolled) because no distinction is made between the fesitibn of the loop
and all other iterations.

e Replacement policies other than perfect LRU, e.g. pseudo,ldduise unpre-
dictability and force the analysis to be more conservateeahise the analysis
should reflect the worst possible state of the cache at eatdxve
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e Analysis overheads can be considerable, both in terms &f @énad space. The
underlying iterative data-flow framework is known to havexdratic time com-
plexity in the worst case because it must make several pagsethe CFG until
the cache states become stable from the initial cache stiaddl (nvalid lines).
On each pass, set unions must be performed at each vertesh ara typically
guite slow especially when sets are not sparse as in the tassaohe model.

A similar way to categorise the caching behaviour of ingtains and data is through
abstract interpretation [43, 114], which combines ACS thtoa join function. In this
work, three different types of analyses are performed:

1. Must analysis: determines which lines are always in catlaearticular vertex
in the CFG. The join function is effectively a set intersectad the ACSs.

2. May analysis: determines which lines are never in cacheobyputing the set
of lines that may be in cache. The join function is effectvalset union of the
ACSs.

3. Persistence analysis: determines which lines are almagache once loaded.
The join function is effectively a set union of the ACSs.

After these analyses, memory accesses can be classifiatiegs &it, always miss,
persistent, or not classified in a similar manner to the caisgtions proposed by
static cache simulation. Likewise, it also suffers from éiv@ve mentioned problems.

Bounding the worst-case performance of data caches wasalhgstudied in [60],
which proposed two techniques. The first reduces the nunfderad/store instruc-
tions that are incorrectly classified as dynamic load/storstructions; this is done by
using data-flow analysis on the base register of such ingingc The second deter-
mines the maximum number of cache misses for array acceskaspis by using the
pigeonhole principle. The approach, however, is limiteditect-mapped caches in
which the entire loops fits in cache.

In a similar vein, data memory accesses can be classifiecedgfable or unpre-
dictable [107]. Predictable accesses are those produceddtgr variables and pre-
defined array accesses; otherwise, they are unpredictdbke.impact of an unpre-
dictable memory access on the current cache state, angdpisateve number of cache
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misses, are both bounded by observing that at most one béwckeevicted from the
cache due to that access.

However, effective modelling of data caches is impeded ypitesence of point-
ers because addresses are not known at compile time. Indhsss, it is possible to
compute a conservative set of memory locations that eadttgraieferences during
program execution using pointer analysis techniques [§8]s leads to more over-
estimation, which is especially problematic given that Coafer-driven language,
largely dominates the embedded sector.

Branch Prediction

In general, program execution does not proceed for longouitevaluating a branch
instruction that can alter the flow of control. Either the flofvcontrol is always
redirected (unconditional branch) or else it is decidediatime (conditional branch).
Both types of branches can cause pipeline stalls because thel@#3 not know the
target of successive instructions. A Branch Target Buffer (B$®yes the targets
of unconditional and conditional branches. However, inpiie@ipelined processors
where stalls seriously degrade instruction throughputaadh prediction mechanism
is inevitable, which tries to guess the outcome of condéidmanches and hence keep
the pipeline full.

A static branch prediction scheme is a compile-time divedtnat assigns a predic-
tion to each conditional so that it is always predicted thaesavay during execution.
However, to reach near optimal branch prediction accurdggamic schemes are
mandatory. In its simplest form, a single-level predictatexes a Branch History Ta-
ble (BHT) with the low-order bits of the branch address. Eathyeof the BHT maps
to either a one- or two-bit counter, which returns the prieoic

The first dynamic branch predictor studied was the [RtdPentiuniR) architec-
ture [54]. The idea was to bound the number of mispredictemsng through the
BTB [27] by defining branch instructions either as historegicted if it is the BTB
at prediction time, or default-predicted otherwise. Thasinitions allow branches to
be classified as follows:
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e Always default-predicted: the branch is always predictettaken.

e First default-predicted: the branch is default-prediabedthe first prediction,
and history-predicted thereafter.

e First unknown: the branch is either default-predicted stdry-predicted on the
first prediction, and history-predicted thereafter.

e Always unknown: the branch prediction is never known.

In terms of BHTS, a global history register has been modetiadhich each entry
indexes a one-bit counter, although it can be extended tdl@amno-bit counters [82].
The number of mispredictions for each branch is incorpdrait the IPET through
additional linear constraints. Following this directidhe idea was extended in order
to model the interaction between cache and instructionecaghmaking changes to
the cache conflict graph [68].

Engblom has quantified the effects of dynamic branch predicin WCET analy-
sis by investigating the behaviour of the Ir@Pentiun®) 11l and 4 [54], the AMD
Athlon™ [5], and Sun UltraSparc Il and Il [80] architectures [38]hése proces-
sors use the most sophisticated branch prediction mechaaisvo-level predictor in
which a history register tracks the outcome of the most riebeEamches and indexes
the BHT. Englom concludes that these predictors are nottdeitar SA because, for
example, there are cases where executing more iteratioadamfp takes less time
than executing fewer iterations. However, this countéuiive behaviour has since
been explained with a theorem that bounds the number of edggions for nested
loops [10].

One severe limitation of these WCET analysis techniques ttysadranch pre-
dictors is that they assume an absence of aliasing in the BHASIAg describes the
situation whereby branches compete for the same entry dapatce restrictions in
the BHT. Constructive aliasing is beneficial as branches ctiyrepdate the predic-
tion for each branch mapping to that entry. However, destrei@liasing — where
branches with different run-time behaviour result in morispredictions — is much
more common and is the largest limiting factor on predictaouracy [127]. In the
worst case, therefore, the presence of destructive ajjasould force static analysis
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into assuming a misprediction on each prediction, and hamoech more conserva-
tive analysis.

Out-of-Order Execution

To achieve the highest instruction throughput in a pipeteguires out-of-order ex-
ecution, which permits instructions to be issued and exetint a different order to
that ordained by the program. This prevents unnecessdty stased by in-order
execution because an instruction can be dispatched to efuidctional unit once its
operands are available. In theory, a processor employibhgfeorder execution rep-
resents the most challenging aspect of CPU modelling sieagpiration depends on
the support of other microarchitectural features, suchraisdh prediction, and hence
introduces the greatest amount of unpredictability. Theaue is that there has been
very little effort in this area.

A technique to bound the WCET of each basic block when operatitigout-of-
order resources has been proposed [69]. To this end, eactbhask has an execution
graph in which there is a vertex for each instruction and Ipipestage, and edges
represent dependencies, e.g. data or resource. Everylasicwas considered in
isolation. However, their approach is only applicable urelaumber of simplifying
architectural assumptions [36], e.g. a single-issue pipeh 4-entry instruction buffer
and a 8-entry reorder buffer. Furthermore, although theastclaim to account for
execution context of surrounding basic blocks in later Wa@fK, they have not proven
the absence of long-running timing effects in their modé&[[9

A possible way to handle out-of-order execution is to makevare more pre-
dictable [98]. This means incorporating additional lodwattdecides if the instruc-
tions of a basic block can enter the pipeline. The decisigedds on whether these
instructions will be stalled by a structural or data haza@lssed by some previous in-
struction. In this way, the execution of each basic blockdependent from all others
and long-running timing effects can never arise.



2.2 Worst-Case Execution Time Analysis 29

Timing Anomalies

Modern architectural trends complicate processor maugtiue to the parallelism ex-
isting between units and the interference between themingt@ance, a branch mispre-
diction can result in instructions of the wrong path beinglied in cache. To handle
the complexity, SA has adopted the traditional divide-andguer mindset: provide

a WCET model of each unit and combine their effects in some suigse analysis.
However, this could yieldinsafeWCET estimates because of the presence of timing
anomalies [78], which Wenzelt al. have succinctly summarised as follows [123]:

A timing anomaly is the unexpected deviation of real hareéwaghaviour
contrasted with the modelled one, namely in the sense tlealiqtiions
from models become wrong. This unexpected behaviour caad to
erroneous calculation results by WCET analysis when actuadple-
mented. Thus, the concept of timing anomalies rather ietatthe WCET
analysis modelling process and does not denote malicioigviur at
runtime.

Timing anomalies were first reported by Lundgvist and Sténs{79]. In particu-
lar, they outlined three types:

1. Data cache hits, as opposed to misses, can lead to the WCET.

2. Cache miss penalties can be larger than expected due tgeshamthe instruc-
tion schedule.

3. The increase in cache miss penalties is not always boumgladconstant, but
can be proportional to the length of the program.

They also claimed that timing anomalies were absent in gsmrs that had exclu-
sive in-order resources. However, an example was presan{&@@3] that disproved
this claim, since timing anomalies can incur in processatk multiple in-order re-
sources serving the same instructions. They instead prilnvagdorocessors that do
not allow resource allocations, i.e. assigning instruddito a given functional unit,
are free of timing anomalies. Dynamic branch predictorsadse subject to timing
anomalous behaviour [11]. In particular, a lower number r@inich mispredictions
does not necessarily result in a lower WCET.
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Improving the WCET

Traditional compiler optimisation has targeted averagsecperformance given that
certain paths are more frequently executed. However, satimiques can be tweaked
so that minimising the WCET is the primary goal. This has becameactive area
of research because of the belief that static modelling&adly too complex, or that,
with new generations of processors on the horizon, thisseitin be the case [18].

Minimisation of the WCET can be achieved through one of thewaihg:

e Controlling the contents of instruction caches [92]. Theai@eto divide the
program into regions at which the cache is to be reloaded.c®htents at each
reload point are determined by calculating the longest path selecting in-
structions according to their execution frequencies. mygrogram execution,
the cache replacement strategy is disabled so that it istivéy locked.

e Statically predicting the outcome of branches [18, 19]. sTdenerally works
by initially assuming all branches are mispredicted andjagsy predictions to
these branches until a stable longest path is found.

e Determining the contents of data scratchpads, either ®etitire lifetime of
execution [108], or including dynamic updates [34]. Forsthapproaches, the
variables on the longest path are assigned to the scratalgpagl linear pro-

gramming techniques.
e Optimising the code [128] through one of three methods:

1. Superblock creation: this is a duplicate sequence otHascks on the
worst-case path. The basic blocks (of the superblock) anégrmus in
memory so that penalties due to conditional branches arenglted.

2. Path duplication: the superblock path in a loop can beiclageld to elimi-
nate more penalties associated with conditional branches.

3. Loop unrolling: the entire body of a loop is duplicated apased to just

the longest path.

Each of the these approaches must be aware of the stabithg tdngest path since
it can possibly switch to a different path because of thensigitions. Normally, this
is handled through a re-evaluation mechanism until thedehgath becomes stable.
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2.2.3 Flow Analysis

In order to compute WCET estimates statically, additional flofermation is re-
quired to bound the iterative or recursive components obgnam. Flow information
pertains to any dynamic property of the program not captimethe static model,
including knowledge of infeasible paths. The challeng®iglean sufficient flow in-
formation to enable safe and precise WCET computations. Hemvewicial to this
process is the level at which these properties are derivadh®©one hand, it is often
more practical to assume the software developer undertiaikdask at the source code
level by including manual annotations in some specialigetex. This is based on the
hunch that the developer has detailed insight of softwametfanality. On the other
hand, the final calculation stage operates at the objed-ley@l, and therefore after
program compilation. The consequence is that the entiregssomust be mindful of
compiler transformations and optimisations to ensure tes@tcespondence between
flow information at the various levels. This is more widelyoln as the mapping
problem [62].

Manual Annotations

Manual annotations were first presented in the seminal pap@&/CET analysis [94].

Additional constructs were incorporated into an extendadion of C — the MARS-

C language. This thread has been pursued further by dexgltipe wcetC language,
which is a superset of a subset of ANSI C [62]. The value of #proach is that
annotations are mapped simultaneously — and transpateritlg user — into object
code during compilation, thus overcoming the mapping bl

In a similar vein, Park [87] presented the Information Dgsmn Language (IDL),
which supports quite sophisticated path-related infoilonaespecially interprocedu-
ral relations between high-level statements; for exanijgkatement A in procedure
f 0o is always executed whenever statement B in procedareis executed”. An-
notations can also be added to SPARK Ada (a subset of the Adadae) programs
through standard comment lines [22].
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Automatic Analysis

Many researchers argue that annotations are error pramepttentially invalidating
subsequent calculations. Indeed, Park [87] legislateddfective annotations (sup-
plied through the IDL) by verifying them with assertionabgram logic. However,
this is not a complete remedy due to the mapping problemgstompiler optimi-
sations could still affect, for example, the number of lotgrations. Another prob-
lem highlighted by the IDL is that developers must sometiteasn new languages,
clearly at additional cost to the project. Maintaining #esnotations during suc-
cessive project iterations is tedious, especially when aewifferent engineers are
introduced. Instead, flow information can be derived autarally without user inter-
vention, typically through SA.

Abstract execution is a way to simulate the program in thdérabisdomain [41,
46, 47]. This is a technique founded on abstract interpogtatvhich has abstract
values for program variables, i.e. interval ranges for nieneriables, and abstract
versions of the program operators. An example is an assighoperation, which
calculates a new interval range instead of a unique valuee artalysis of interval
values at selected program points then enables loop bomaddsf@asible paths to be
deduced; for example, analysing the interval range of a tmamter variable at loop
termination. However, potential state explosion must beagad by merging abstract
states at merge points in the program. The effect of mergihgpise loop bounds and
the inability to uncover infeasible paths, although thelysia remains safe.

In fact, abstract execution is a form of symbolic executtbe,latter which executes
programswithoutinput data. When a branch is encountered that contains aiaria
with an unknown value, the execution simulates both patttem that path-merging
must also be employed in the context of loops to prevent pgifosion [78].

Data-flow analysis [83] is also a popular method to obtaimplbounds, especially
since it can be integrated within a compiler framework. 1t,[52] three variations
of loops are supported: those with multiple exits; those Imclv the exit condition
is decided in relation to a non-constant loop-invarianialae; those in which the
number of iterations of an inner loop depends on the conaméble of an outer loop
(non-rectangular loops).
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One limitation of automatic static analyses is that theyncammlways provide pre-
cise bounds for all loops due to the Halting problem [62]. utscases, the user is
expected to bridge the knowledge gap, but as we noted aliogsesqually unreason-
able to expect a user to obtain such information from a sinmgieection of the code.
Even if a user can supply relative loop bound, i.e. relative to the next outer loop
nesting level, it is typically much more difficult to provida accurate bound on the
actual number of executions due to non-rectangular loops.

In Chapter 3, we describe an alternative automatic flow arsalyishin the scope of
trace parsing. The key difference between our techniqueotrets described above
is that we derive flow information from observations (in timgitraces). This allows
our HMB tool to operate without user interaction. In partasuwe show how to use
properties of the IPG to extract relative loop bounds, wlagh needed in both tree-
based calculations and the IPET. In addition to determimeigtive loops bounds,
our trace parser also counts the overall frequency of eimtuoff loop bodies, and
therefore, the analysis becomes more precise (providéddas good enough).

Recently, an approach that is similar to our work has beeroexgl[9]. They de-
termine loop bounds through a combination of testing andhinaclearning. Their
approach is able to deduce bounds relative to a particudprihesting level, including
those common to non-rectangular loops. Our approach sliffea number of ways.
First, we use properties of the IPG to obtain the loop bourfisreas they use pattern
matching techniques. Second, they have not considereddoltdin traces of execu-
tion. We show that this actually affects the accuracy of thenal. In both cases, the
accuracy of the derived bounds relies heavily on good tegtbv® which we discuss
further in the next section.

2.2.4 Measuement-Based Techniques

Interest in measurement-based approaches has been dffootleasing attention in
recent years. The main motivation for these techniquesatsptocessor modelling is
either too complex, too time-consuming, or plainly and dymmwt possible.
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Testing and Coverage Criteria

A myriad of testing techniques have been put forward witlpeesto functional be-
haviour. The main purpose of such techniques is to uncoverssibut because these
have no bearing on WCET analysis, here we focus on the issuestofg that HMB
frameworks must be mindful of.

Typically, testing takes places at the procedural level pf@gram. The idea of
white box techniques is to utilise the structural properté the CFG to construct
test vectors In order to measure the quality of testirgpverage criteria[129] are
required. Some criteria are more stringent than others, ttieisubsumes relationship
offers a comparison between different coverage criteri@riterion A subsumes a
criterionB if, and only if, every test vector that satisfidslso satisfie® [23].

Statement coverage ensures that all statements in theapnogne exercised, and
is clearly subsumed by basic block coverage. Full staterm@rgrage can never be
achieved in the presence of unreachable code. Branch ceveragires each edge of
the CFG to be traversed, which also subsumes statement gevetflawever, safety-
critical systems require more stringent criteria, suchhad provided by Modified
Condition/Decision Coverage (MC/DC). In this metric, a coruditis a boolean ex-
pression containing no boolean operators, whereas a decsshn outcome of a (com-
posite) boolean valued statement in a high-level langud§&/DC is satisfied when
every condition in a decision has been exercised, and eaxttion has been shown
to independently affect the decision’s outcome [23]. Patrecage is the most strin-
gent but the least practical as programs generally contaipsl and thus the number
of paths grows exponentially.

End-to-end testing techniques and coverage criteria #nget WCET estimation
have not been extensively researched due to lack of congdenthe measured ex-
ecution time. One approach is to use evolutionary algosthongenerate test vec-
tors [121]. Initially, a random population of test vectossgenerated, and the exe-
cution time is measured. Test vectors generating long éxectimes obtain high
fitness values. New generations of test datum are bred thrihheggcombination and
mutation mechanisms of evolutionary computation. Thispdure continues until a
particular stopping criterion has been met, usually wheartam number of genera-
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tions have evolved. The accuracy of evolutionary testing th@&n compared with a
SA method [122]. Results showed that the WCET estimates wetesercproximity
to those obtained by SA, but that there was an underestimatisome cases.

This latter observation highlights the long-standing éssuth end-to-end tech-
niques in that they cannot guarantee a bound on the actual WItEdo so would
not only require full path coverage but also full state cager at the architectural
level; these are clearly intractable requirements. Rekeaas thus digressed into
HMB approaches in an attempt to combine the best featurestbf BA and end-
to-end measurements. The key feature of such approachest isieasurements for
program segments are collected via the testing phase andebembined using the
calculation techniques described in Section 2.2.1.

Instrumentation and Trace Generation

In order to collect measurements of program segmergsumentation points (ipoints)
are required. Once triggered during program executionh gaaint emits atrace
identifier and is timestamped accordingly, resulting in a timing traicexecution.

Definition 1. A (timing) trace is a sequence of tuplg$,t) in which i is the trace
identifier of an ipoint and t the time of observation.

Therefore, testing the program with a set of test vectordymres multiple traces that
are collated into @race file. It is from this file thattrace parsing extracts both the
WCETs of ipoint transitions and observed loop bounds, bothtotlware explained
further in Chapter 3.

How ipoints are inserted and how timing traces are geneeatdextracted depends
on the mechanism available. Trace generation methods carally be categorised
as follows:

e Simulation: Cycle-accurate simulators, e.g. SimpleSd&lamllow individual
instructions to be traced (through the program counter)rathethe simulator
provides the time stamp. However, because a simulator iscwiase model,
this method encounters problems associated with SA asided@above.
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e Software: Ipoints are inserted into the source code vialagg extensions, and
are thus compiled into the executable. When an ipoint is hinduexecution,
it is time stamped on target; traces are stored internally nmemory buffer to
be downloaded on test completion. The advantage of thisappris that port-
ing to new architectures is relatively straightforward. wéver, the additional
ipoint routine incurs a timing penalty and increases ovexale size, which is
commonly referred to as th@obe effect

e Software/Hardware: This is similar to software only instentation, except
that execution of an ipoint writes its trace identifier to &b port of the target.
The port is monitored by a logic analyser, which both timesia ipoints off
target as they are produced and stores timing traces. Rsnadisociated with
the probe effect are thus minimised. However, the target mmage available
and accessible pins to emit the data, which is not alwaygipehavith more
advanced processors.

e Hardware: On-chip debug interfaces, such as Nexus [1] dEthieedded Trace
Macrocell [33], allow programs to be traced without inteeigce. In these cases,
the trace data are either written to an on-chip trace budfies@ibsequent down-
load, or exported directly in real time through an externaitp In order to
limit the size of traces, only the program flow discontirestare monitored, i.e.
conditional and unconditional jumps. However, bandwidimains the major
technical obstacle because the port or debugger must keeppth the rate at
which trace data are produced; otherwiskckouts arise in which parts of a
timing trace are overwritten and essentially lost.

There is clearly a trade-off in using any of the above traceegetion methods.
On the one hand, source-level instrumentation providestgrdlexibility, but this is
inhibited by the probe effect. On the other hand, less inteusstrumentation requires
more technical support.

Clarification 1. In this thesis, we embrace a more abstract view of how tracegem-
erated by considering an ipoint simply as a program point aiciwta (timestamped)
observation occurs. This could be intrusively by calls toaeing library, or com-
pletely transparently through a hardware debug interface n§amuently, we do not
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guantify the impact of the probe effect on WCET estimates hW¢edssume, without
loss of generality, that there exists a suitable mechansgenerate and download
traces.

Given the freedom to select the locations of ipoints, vagiostrumentation pro-
files have been proposed, normally with functional coverageiosetr profiling in
mind. The main goal of [2] is to select the fewest number ofdbcks (edges) to
instrument so that basic block (branch) coverage can beureghby observing the
number of ipoints hit. Tikir and Hollingsworth [116] detad an approach that dy-
namically inserts and remove ipoints in order to reduce timetime overhead of code
coverage, as opposed to instrumenting statically. Insntation is only inserted into
a procedure when executed for the first time during prograecwon; it is subse-
guently removed when it does not provide any additional cye information. A
widely-adopted instrumentation profile has been proposeBail and Larus [8, 65]
in which a minimum number of ipoints are inserted such thatehtire traversed path
through a program can be reconstructed from a trace. We t@gchiastrumentation
profilespath reconstructible. In subsequent chapters, we will observe that this prop-
erty impacts the accuracy of WCET estimates computed on the@tBg@am model.

Despite these novel techniques, the instrumentation psafimodern HMB frame-
works largely remain arbitrary. The archetypical case igma-user inserting ipoints
in an ad hocfashion at the source level. However, arbitrary in this semgers to
instrumentation that is not program specific. Typicallgrthcould be an upper bound
on the permissible number of ipoints due to trace generatioblems, e.g. blackouts,
or because of the probe effect. Indeed, when a program osndaiarge number of
procedures, it might only be possible to implement boundetyumentation in which
only the beginning and end of each procedure is instrumented

Evidently, the instrumentation profile adopted impactsaime®unt of coverage sought
in the testing phase of the HMB framework. During testing, filicus is to trigger the
WCET of ipoint transitions, otherwise the final calculatiorultbbe compromised.
In essence, smaller program segments, e.g. comprising blasks, between ipoint
transitions require less stringent coverage because Hreskenown to have a small
number of different execution times [26]. On the other hgmdgram segments in-
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corporating nested loops require greater coverage to etisatrall paths are exercised
and that the WCET is indeed captured. This is further comg@dhy the influence of
the hardware architecture on the amount of coverage soRghdtively simple archi-
tectures with shallow, in-order pipelines result in smal&riations of execution times
between ipoints. In comparison, state-of-the-art pramsswith multi-level caches,
dynamic branch prediction, and out-of-order executiohjlaka greater variability in
execution time between ipoints due to, for example, caclssesiand branch mispre-
dictions.

Furthermore, as we noted in Section 2.2.3, we often wish taimlnore than the
WCETSs of transitions from timing traces. For example, detemg loop bounds
allows our HMB framework to operate automatically withoseuinteraction, but this
places a larger burden on the test phase as bounds need tubatac

Clarification 2. How to stress any non-functional property of a program isshieject

of WCET coveragd17]. Consequently, we do not make any assumptions regarding
the way in which testing is conducted nor the amount of covesatpeved. This

is considered beyond the scope of this thesis and we thus assumiform testing
strategy provided by, for example, functional testing téghes.

For this reason, when discussing the percentage of pessimigra WCET estimate
(computed through the IPG program model), we assume thangestgood enough,
and therefore, the raw timing data provided are sufficierglyresentative of the worst
case. Observe that existing SA techniques make a similamgg®n as any error
— either in the WCETSs of basic blocks due to incorrect progessmelling or be-
cause the loop bound provided by a user is an underestimatav/atidates the entire
analysis.

Hybrid Measurement-Based Approaches

The idea of a HMB framework is not a novel contribution of tkesis as it was
first proposed elsewhere [90, 89]. Their work identifies paththe CFG that must
be exercised during testing. However, because of the patiplexity problem, the
CFG is manually split into measurement blocks, with the figeahularity being the
basic block. Before executing each measurement block, camhients and other
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hardware units are flushed so that history effects of otheasonement blocks are
isolated. The flushing mechanism clearly translates in&sipgsm in the WCET
estimate as measurements blocks will not operate in isolaliring execution.

The closest related work to our approach is the HMB framewoodposed in [26].
In particular, they use timing traces generated by the SiSqgalar toolsuite [7] to
extract the WCETSs of basic blocks, from which a WCET estimate msprged using
the standard timing schema of an AST. The crucial differdreteveen their work and
ours is that we allow for arbitrary instrumentation and eoggghe IPG program model
in the calculation phase.

However, the main focus of their work was to quantify the eteof modern speed-
up features on the WCET by using various processor configmsatioat the Sim-
pleScalar framework allows. Their experiments demoretfame interesting as-
pects relating the disabling/enabling of hardware featts@VCET estimates. In par-
ticular, they showed that caches have the biggest impaetincing the actual WCET,
i.e. without instruction or data caches, the WCET is very laFggthermore, the level
of overestimation normally outweighs the loss of perforoeoaused by disabling of
the advanced speed-up features. This latter point reie$otite main motivation of
HMB analysis in that we should not impose predictability la¢ hardware level to
force easier analysis as it is detrimental to the entireesyst

More recent work [63, 124] has approached the HMB problemnfacslightly dif-
ferent angle by focusing more on test vector generation for We€&imation. In
particular, they partition the CFG into program segmentsguisistrumentation. This
is conceptually similar to the approach of [90, 89] desaibbove, except that the
partitioning criterion depends on the number of acyclichpatrough the segment.
They force execution of each path in the program segmengusst vectors gener-
ated by a model checker. Paths through the program segmeshbmacyclic to avoid
the high computational complexity that is associated witddel checking.



40 2.2 Worst-Case Execution Time Analysis

2.2.5 WCET Tools

The dominance of SA is best reflected by the number of acadtis that have
emerged from this field. Following is a selection of the masihpinent:

e Cinderella from the University of PrincetofThis was originally developed to
support the IPET, including modelling of cache constraints

e Heptane from the Univergtde RennesThis has the capacity to analyse four
different architectures: Pentium I, H8/300, StrongARM, amidPS. There is a
cache analysis unit supporting the LRU replacement poticyhich the size,
the block size, and the associativity of the cache can begqumefi. It supports
source- and assembly-level analysis through the AST andthE respectively.

e Chronos from the University of Singapoighe user can configure the processor
model (pipeline, cache, branch prediction) with the helghaf SimpleScalar
toolset [7]. It produces WCET estimates through the IPET.

e SWEET from the University of Mlardalen This is integrated with an ANSI
C compiler so that flow analysis can operate at the internediade level. It
supports timing analysis on both the ARM9 and NECV850E pramssand can
produce WCET estimates through either a path-based appro#uoh IFPET.

Industry has increasingly become aware of the importan®8Q@ET analysis. This
has inspired two spin-off companies from affiliated uniitezs:

e Absint [45] was founded from research at the University cdu&and and first
produced a WCET analyser, aiT, based on SA. Their processacelimgptech-
niques are founded on Al and they currently support the Woig architec-
tures: ARM7, HCS12/STAR12, PPC 555/565/755, C16x/ST10, TME320
TriCore 1796, and i386. They can analyse programs contanmecgrsive pro-
cedures and the calculations are based on the IPET.

e Rapita Systems [77] was founded from research at the Uniyeskivork and
their WCET tool, RapiTime, is based on HMB analysis. In particuhey use a
probabilistic tree-based approach to compute the WCET, wduofbines ETPs
that are collected during testing.
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2.3 Summary

This chapter has contextualized WCET analysis and descrimedtate-of-the-art

techniques to produce WCET estimates that derive from statddwB analyses. A

deluge of research has emerged to support processor nmgglejét certain opera-

tional assumptions are still required to ensure safe aisalggany of which are not

practically feasible. Prime examples are assuming pekfett cache replacement or
the absence of destructive aliasing in a branch historetaldloreover, and perhaps
more crucially, no techniques satisfactorily model therapenal interaction between
processor speed-up featussiultaneouslylndeed, timing anomalies vastly compli-
cate this task. A further observation is that the models oolysider the activities of

the CPU and disregard the impact of peripheral devices.

Complexities modelling the processor has led some resaartthpromote usage of
more predictable hardware. However, industry continuehtmse off-the-shelf pro-
cessors in line with its requirements, e.g. cost, and tiseme evidence to suggest that
processor manufacturers will alter future designs witldtability in mind. Indeed,
processors are much more likely to increase in complexityaassistor size decreases
and multi-core CPUs become prevalent.

In industry, end-to-end measurements remain the dominaaineiby which the
WCET is estimated, but this truism is yet to fully impact resbarThis means that
WCET estimates are normally computed using testing techaignd coverage met-
rics that target functionality. This is not sufficient, hoxge as more complex hard-
ware infiltrates the real-time sector.

In response to this, HMB techniques are emerging, whichudes some form of
instrumentation. However, the biggest drawback so farasftiey require very spe-
cific ipoint placement. This not only limits the type of ingtnentation employed, i.e.
software, but also prevents state-of-the-art instruntemta@rofiles from being consid-
ered. The remainder of this thesis is devoted to an analytemamework to compute
WCET estimates givearbitrary instrumentation, under the assumption that there is a
suitable test phase in place.






3 Instrumentation Point Graphs

Chapter 2 explored the program and processor models useatencporary WCET
techniques. In particular, we noted that the baseline pragnodel is either thAb-
stract Syntax Tree (AST) or theControl Flow Graph (CFG). More important, how-
ever, is that the calculation engine operating on thesestiatetures requires as input
the WCET of basic blocks since these aredhamic units For these purposes, static
analysis constructs a processor model which attempts tocothe execution time of
each basic block. Comparatively, curréhgbrid Measurement-Based(HMB) ap-
proaches derive observed WCETSs during testing after insintingethe beginning of
each basic block.

However, a severe shortcoming of these program models,dridiviB angle, is that
they necessitate particular instrumentation profiles tidas pessimistic WCET esti-
mate. This is best illustrated by considering a contriveathgale shown in Figure 3.1.
The CFG in Figure 3.1(a) is a simplé - t hen- el se construct withinstrumenta-
tion points (ipoints) inserted in basic blocks A, B, and D; note that C isinetru-
mented and that the ipoint in D is misaligned with respechtsé in A and B since it
is not inserted at the beginning of the basic block. The tabkgure 3.1(b) exhibits
the observed WCETSs of these ipoint transitions. In order tolspenthese data in the
calculation stage using the CFG (or indeed the AST), the WCEDasit blocks must
be derived from these measurements. Common practice assah#éss value is the
maximum observed WCET amongst the ipoint transitions on whiblasic block is
executed; in this example, these WCETs are shown in Figure)3.However, the
instrumentation employed causes overestimation of evasicliblock. The WCET of
B is overestimated because transitior-23 also executes D as a result of the mis-
alignment of ipoints. Likewise, the WCETSs of A, C, and D are ostireated because
of both the missing ipoint in C and the misalignment of ipsirA simple path-based
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approach on the CFG with these WCETs would deduceAhatC — D is the worst

path, resulting in a WCET estimate of 2825+ 25 = 75. Clearly, this a threefold
overestimation since the actual WCET of the path- C — D is 25, which occurs
when transition - 3 is followed.

Figure 3.1. Pessimism Intrinsic to the WCET Calculation Stage when using
Sparse Instrumentation.

Ipoint 1
A

N

Ipoint 2
B C

N

D
Ipoint 3

(a) A CFG with ipoints at the beginning of basic blocks A and B, and at the end
of basic block D. However, basic block C is not instrumented.

Ipoint transition| Observed WCET Basu;\block W§5E T
1—-2 5
B 11
2—3 11
1—3 25 c 25
D 25

(b) Observed WCETSs of ipoint tran-

sitions during testing. (c) Overestimated

WCETs of basic
blocks.

The general problem is that there is little leeway in the @y@d instrumentation
profile for these program models: either each basic blocki®umly instrumented
or an overestimation in their WCETSs occurs (see Clarification €hapter 2). It is
obvious that the overestimation becomes more problemadiiicogarser instrumenta-
tion profiles [2, 8, 65, 116], many of which are widely adoptedunctional testing
environments to limit the size of timing traces. This is usiteble as we want our
HMB framework to integrate seamlessly with contemporasy arnesses so that it is
applicable in an industrial setting.
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In this chapter, we propose a novel program model —tis&rumentation Point
Graph (IPG) — in which the atomic unit of computation is the traimitamong
ipoints instead of basic blocks. This forcible modificatessentially circumvents the
pessimism associated with CFGs and ASTs when waibirary instrumentation.

The remainder of this chapter is organised as follows. 8e@il begins by in-
troducing an intermediate form similar to the CFG — the CFG* —iahhs used
to construct and analyse properties of the IPG. Followirag,tthe section contin-
ues with a presentation of the IPG and its properties thatedexant in our HMB
framework. Section 3.2 formulates the IPG constructiorbjem as a data-flow prob-
lem [83], which leads to a simpliéerative algorithm[29, 58, 59] that constructs the
IPG independent of CFG* reducibility. However, merely counsting the IPG is gen-
erally not sufficient for it to be used as a program model (in WG@EBlysis) because
of the problem ofirreducibility . Section 3.3 demonstrates that irreducibility is es-
pecially prevalent in the IPG, that it often encompasseshmiaiger subgraphs than
canonical cases of CFG irreducibility, and consequentlgt Htate-of-the-art tech-
niques [49, 96, 97, 104] inevitably fail. We therefore detamechanism to identify
all IPG loops — irrespective of irreducibility — using th@op-Nesting Tree(LNT)
of a reducible CFG*. This result forms the basis of a more cemplgorithm, pre-
sented in Section 3.4, which constructs the IPG and idesit#ielPG loops on the

fly.

Following that, we consider usage of the IPG in the contexttefprocedural anal-
ysis in Section 3.5. We describe a virtual inlining mechanis- master ipoint in-
lining — which provides visibility to procedure calls without wiglly inlining the
entire IPG of each callee. This results in one IPG per prosednd essentially black
boxes procedure calls. We subsequently demonstrate haavée pming traces using
the set of IPGs and their properties. In particular, we show to extract (observed)
loop bounds and how to detemtntextsdynamically so that the timing data retrieved
applies to each context as opposed to each procedurejmgsnla more precise anal-
ysis. We then show how the call graph controls the calculagiven the set of IPGs
and the trace data. Finally, we conclude the chapter withransary in Section 3.6.
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3.1 The CFG* and the IPG

The program model in our HMB framework is the IPG, which balycarranges the
transitions among ipoints into structural form. In ordectmstruct the IPG, therefore,
we require the locations of ipoints with respect to progrémncsure at the intermediate
code level. However, the standard graph-based structuwwdeinthe CFG, does not
adequately model such information. Either ipoints are gesutogether with other
functional instructions in basic blocks (when softwardnmsientation is employed),
or alternatively, they exist virtually on some part of the CR@en a simulator or
hardware debug interface is employed).

For this reason, our HMB framework replaces the CFG by a CFG*sehmique
characteristic is that ipoints are decoupled into fullydfled vertices; basic blocks
thus only consist of functional instructions. These digjagets of vertices can be
recognised by extending the setlefders[3], which are first instructions inside a
vertex. For the basic blocks of a CFG, each of the followinglesaaer:

e The first instruction of the procedure.
e Any instruction that is the target of a conditional or uncibiodal jJump.

e Any instruction that immediately follows a conditional anaonditional jump.
In addition to these leaders, each of the following is alsalé in the CFG*:

e Each ipoint instruction.

e Any instruction that succeeds an ipoint.

Analogously to a basic block, every vertex in the CFG* cossisiits leader and all
instructions up to, but not including, the next leader oreghd of the program. Thus,
CFG* generation partitions a program into a set of ipointsaded!, and a set of basic
blocks, denoted; these are linked together according to flow of control. Fallym

Definition 2. Letl be the set of ipoints anl be the set of basic blocks in a procedure.
A CFG* is a flow graph C= (V¢ = BUI, Ec,s, t) in which:

o {s,t} CL
e Ec = {u— Vv|u,v e\ Athere is possible flow of control from u t§.v
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For a CFG*C, a non-emptypoint-free path pisasequence—b; — by, — ... —
b, — v such thatb; € B, u,v € I, andn > 0. For brevity of notation, we use% Y,

to denote an ipoint-free path of length one or more, an;é v to denote an ipoint-
free path of length zero or more. An IPG is constructed f@ry contracting the
non-empty ipoint-free paths @. More formally:

Definition 3. Let C= (V¢ = BUI, Egc,s,t) be a CFG*. ThdPG of C is a flow graph
| =(I,E,s,t) in which:

o E :{u—>v|u,veIA3u§>vinC}

Following are some important clarifications to make regagdhe remainder of this
chapter:

Clarification 3. Each ipoint u conceptually belongs to both the CFG* and its IPG
When context does not disambiguate the graph to which u beleveshall usegito
denote that «& V(C) and y to denote that & V(I).

Clarification 4. We assume that, for each ipoirg,Usucquc)| < 1. In practice this
is typically a valid assumption as neither software nor hargaipoints decide the
outcome of a conditional branch.

Clarification 5. We often need to partition a set of CFG* vertices into two digjoi
subsets of basic blocks and ipoints. In particular, for aSgtve use the notation ®
denote the sefuju € SAu € I} and $ to denote the sdtuju € SAu € B}.

3.1.1 Ghost Ipoints, Ghost Edges and Trace Edges

In Definition 2, the dummy verticest of a CFG* are considered to be ipoints. The
reason for this is that, without these being ipoints, theiltast IPG might not be
weakly connected.

In general, ipoints inserted purely for analysis purposesubsequent to program
instrumentation, compilation, and testing — are termledst ipointsbecause they are
never observed in a timing trace. Chapter 4 explores anos@geuof ghost ipoints
whilst transforming the IPG into hierarchical form.
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We say that an edge — v € E; is aghost edgef either u or v is a ghost ipoint,
otherwise it is drace edge This distinction between edges is needed in trace parsing
and the calculation engine, as described in Section 3.5.

3.1.2 Path Expressions

One essential difference between a CFG (or CFG*) and an IPGatsftinctional
instructions reside on the edges of the IPG as opposed teriises. Code can appear
in different execution contexts, depending on the instmtat®n profile utilised, since
more than one IPG edge can execute the same basic block. Wehersection of
code executed when a transition between ipoints occurs jath expressiordefined
formally as follows:

Definition 4. Thepath expressiorof an IPG edge u- v € E|, denoted Pu — v), is
the regular expression overcEepresenting the set of all ipoint-free paths fromto
vc in C. We denote the set of basic blocks {uP- v) asB(P(u — v)).

When|o(P(u— v))| = 1, we say thaP(u — v) is reconstructible, i.e. there is
only one non-empty ipoint-free path fromgx to vc. Furthermore, we say that an
instrumentation profile igath reconstructible if, for all u — v € E, P(u — v) is
reconstructible.

These properties are of interest for several reasons, Ripsith reconstructible in-
strumentation profile allows the exact path through the CFE33e regenerated from
any sequence of ipointsFor such profiles, every iteration of every loop must be ob-
servable in a trace, thus we can determine accurate obdeog@tounds during trace
parsing. Second, non-reconstructible path expressigdigint ipoint transitions for
which testing should be stressed in the front end of a HMB &aork, because such
transitions traverse multiple CFG* paths. For example effiath expression contains
U then the test harness could attempt to execute each acwthicop that transition
using model checking [124]. A third motivation is that thewastructibility of path
expressions determine whether extra flow information, eetating infeasible paths,

'Hardware tracing mechanisms, such as Nexus [1], are irtipligath reconstructible because they
monitor program flow discontinuities, i.e. jumps.
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can be incorporated into the WCET calculation on the IPG. Ndyirsuch informa-

tion is obtained at the source level (through user annatsltiand is mapped down to
the basic block level [62]; in turn, this must be transferoatb the IPG.

An Example

Figure 3.2. Example of a CFG* and an IPG.

S10

0
RN
.

() The CFG*. (b) Resultant IPG.

| IPG Edge| Path Expression
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(c) Path expressions.

We illustrate the properties of the IPG through Figure 3.RBicl depicts a CFG*,
its IPG, and the path expressions of IPG edges. In Figur@a)3.2ifcle vertices are

ipoints, i.e.l = {s1,t1,1,2,3}, and square vertices are labelled basic blocksH.e.
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{a1,b1,c1,d1,€1, f1,01,h1,i1, j1, ki }. We depict all ghost ipoints as unshaded circle
vertices and the ghost edges of Figure 3.2(b) are depictddsieed edges.

The path expression of each IPG edge is shown in Figure 3Rt that there is
context-sensitive execution of all basic blocks exdgpsinceh; only appears in the
path expression of the edge-23. In addition, the path expressions of the edges
1,51 — 2,51 — 3,s1 — t1 are not reconstructible — thus the instrumentation prddile i
not path reconstructible — because there are multiple igoge paths frorma; to d;
(indicated by theJ operator). However, all other path expressions are reagsigile.

3.2 IPG Construction

The previous section gave a formal description of the IPGitsnatoperties. Here we
describe how to construct the IPG from a CFG* using data-floshesis.

Clarification 6. This thesis does not consider how to construct the path sgjmes
of IPG edges, principally because they have no practicafingaon the techniques
developed. From the calculation perspective, path expassare needed when path
information relating basic blocks, e.g. infeasible patissto be transferred onto the
IPG. However, such information is optional, i.e. it tightehe WCET estimate but is
not essential. Note that this does not prevent us from mappombounds obtained
through static analysis onto the IPG because, as Section&s8ribes, this only re-
quires particular structural properties of the IPG.

We begin by defining underlying propertiesbata-Flow Framework¢DFF), be-
fore elaborating upon the DFF that solves the IPG constmgiroblem.

3.2.1 Data-Flow Analysis

In general terms, data-flow analysis gathers facts aboutdatesare manipulated in
programs. Such analyses are employed in compilers to assigitimisation, the
canonical example of which is the reaching definitions catafon (see [3, 83]).
Data-flow information is normally collected at each basiochkl by setting up and
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solving a system of data-flow equations, which model theceffiéthe basic block on
the information across all executions.

Due to the similarities between many data-flow problems; tam often be treated
in a unified way through a DFF. Central to DFFs is an algebraiccsire called a
semi-lattice:

Definition 5. A semi-latticeis a set L with a binary meet operation, and distin-
guished elements and T called bottom and top, respectively, such that:

Commutativity Forall x,y € L, xMy=yrix.
Associativity For all x,y,ze L, (XMy)Mz=Xr1(yrz).
Idempotency For all x € L, XM x = X.

Bounded Forallx e L, xML=xand xX1T =T.

Note that a semi-lattice can alternatively be defined astifigrordered setL, <).
The connection between these two alternative definitiotigais for allx,y € L, x <y
if and only ifxMy =y.

We now formally define a data-flow framework:

Definition 6. A data-flow frameworkis a 4-tuple(G, L, F,M) such that:
e G=(Vg,Eg,s,t) is a flow graph.
e L is a semi-lattice.
e F C{f:L— L}isasettransfer functionsuch that:

— F contains an identity function:IL — L such that [x) = x for all x € L.
— F is closed under composition. Thatised € F, forall f,ge F.

— Forall f eF, f:L— LismonotoneThat s, forall xy e L, x<yimplies
f(x) < f(y).

— Forall f e F, f:L— Ldistributesoverr. Thatis, f(xmu) = f(x) M f(y)
forall x,y € L.

e M: Eg — F is a map from flow graph edges to transfer functions.
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The semi-lattice essentially abstracts the effect of axesh the data-flow informa-
tion, where the meet operationdetermines how the information is combined when
it reaches a vertex. The monotonicity property of the setuotcfions ensures that
the data-flow framework will halt as the information moddlia the lattice can only

increase.

The functionM can be extended to map every path in the flow gi@pb a transfer
functionf. If p=vg—vi — Vo — ... — vy is a path inG, with g =v;_1 — v;, then
the path transfer functiol (p) is defined to bé/(e,) oM(en,) o...oM(e1). The path
transfer function of the empty path is the identity functionThe Meet-Over-all-
Paths (MOP) solution [59] to the data-flow analysis problem is dediras follows:

W e Ve : MOP(v) = |_|pepath$s,v)'\/|(p) (3.1)

Intuitively, the MOP solution produces the information atk vertexv that would
result by applying the composition of each transfer funcatong all paths froms to
v. However, the DFF must be distributive in order to computertteet-over-all-paths
solution. Otherwise, the DFF only computes thaximum fixed poirgolution, which
is a safe approximation.

3.2.2 A Simple Data-Flow Framework to Build the IPG

We define a simple DFF to construct the IP@om its CFG*C based on the obser-
vation that this problem is similar in nature to other claaktdata-flow problems, i.e.
we want to know which ipoints can reach a particular programtp

Following are the elements of this DFF: the flow graph is the €& semi-lattice
L, is the powerset '2over the set of ipoint$; i C 2 — 2! is the set of monotone,
distributive transfer functions; and the meet operatiosas union. Note that the
bottom element of| is the empty set, and the top element.pis the set of all ipoints.

The data-flow problem that we want our DFF to solve encapssithe intuitive idea
that the ipoints reachable to each venex\/c are the ipoint predecessorswainioned
with the ipoints that can reach the basic block predecesdardViore formally, let us
define the set:
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Vv e Ve : ipoints(v) = {ulu e IAHu%vin C}

which can be solved through the following data-flow equation

WV €\ : ipoints(v) = J ipoints(p) | U pred(v) (3.2)
pepreds (v)

3.2.3 The Iterative Algorithm

We can solve this DFF using the round-roliterative algorithm [29, 58, 59], which
was designed specifically to handle common data-flow probliera unified way. All
that is required is to substitute an appropriate set of tlataequations into its generic
structure. The iterative algorithm to construct the IPfBom its sole parameter, the
CFG*C, is shown in Figure 3.3.

Input: C

Output: |

1 foreachv e\ do
2 ipoints(v) := 0
3 changed=true

4 while changeddo

5 changed= false
6 foreachv € v¢ in reverse post ordedo
7 oldipointgV) := ipointg(v)
8 ipoints(v) U- (Upeprec\g(v) ipoints( p)) U pred(v)
9 if oldipointgv) # ipoints(v) then
10 changed= true

Figure 3.3. Iterative Algorithm to Construct the IPG from a CFG*,

All iterative algorithms initially assign a conservativalwe to the information being
computed; in this case, we assume no ipoints can reach awedé/c on a non-
empty ipoint-free path (lines 1-2). The iterative part conés until a fixed-point
solution has been found, which in this case is the meet-algraths solution as the
transfer functions in the semi-lattice are both monotorg distributive. Iteration is
controlled by a boolean variablehanged which is initially set totrue (line 3). Each
pass initially assumes that no changes will occur (lines\8f then traverse each
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vertexv in reverse post order to update the valuegpointsv). Changes to the sets
are discovered by recording the values computed in the qus\teration (line 7),
updating the sets according to Equation (3.2) (lirfe 8d then comparing the values
(line 9). A change to any set forces another iteration (li&€€). On termination,
therefore, the predecessors of each ipwoiim the IPG are stored ifpointgv), i.e.
pred(v;) = ipointg(v).

One benefit of the iterative algorithm is that it is not res&d to reducible flow
graphs, thus the IPG can always be built independent of CF@iaibility. The dis-
advantage is that it requires quadratic time in the worse.cawever, studies have
shown that the iterative algorithm is very efficient in pregt requiring no more than
d(G) + 3 passes if we use the reverse post order of vertices [58]e,ld€B) is the
loop-connectedness G, which is the largest number @fepth-First Search (DFS)
back edges found in any cycle-free pathGn

An Example

To illustrate the operation of the iterative algorithm, smier Figure 3.4, which depicts
a CFG*, its IPG, and the iterative computations. Each row eftétble shows how the
values ofipointg(v) change with successive iterations; coloured cells ardlsathave
changed from the previous iteration. The first column of di#d lists the vertices in
reverse post-order, which we have chosen arbitrarily, edenll other columns dis-
play updates to the data-flow information. Before the firsatien, the set of ipoints
reachable to each vertex is set to 0. As vedgss the entry vertex, i.e. it has no
predecessorspoints(sz) remains empty on each iteration.

After the first iteration, only a subset of the correct edgeshe IPG have been
computed, i.e. onlg, — to andsy, — 4. After the second iteration, the remaining
edges of the IPG, 4- 4 and 4— to, are inserted. After the third iteration, none of the
sets change, and thus the algorithm halts.

2Note that, for setSandT, we useSU_ T as a short form 08:= SUT.
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Figure 3.4. Example used to Demonstrate Construction of IPG using Algo-
rithm in Figure 3.3.
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‘ ¥
O \\g/
t2 to
(a) The CFG*. (b) Resultant IPG.

| || Before #1]| After #1 || After #2 | After #3 |

sy || O 0 0 0

a || 0 {so} {s2} {s2}
by || O {52} {52,4} {52, 4}
4 0 {52} {52,4} {Sz, 4}
c |0 {4} {4} {4}

d || 0 {s2} {s2,4} {s2,4}
ta || 0 {s2} {s2.4} | {s2,4}

(c) Iterative computations.
3.3 Reducibility and Loop-Nesting Trees

The weakness of the algorithm described in the previousoseist that it only builds
the structure of the IPG without identifying itdructural properties As each calcu-
lation technique proposed in WCET analysis presumes knowletithe loops in the
program model — including their nesting relationship — atier analysis step is re-
quired to identify the IPG loops. Straightforward loop dgiten, however, is restricted
to the class ofeducibleflow graphs.

Definition 7. A flow graph G isreducibleif its edges can be partitioned into two
disjoint groups, called théorward edgesandloop-back edgesespectively, with the
following two properties [3]:

1. Theforward edgesk; form an acyclic graph in which every vertex can be
reached from the entry vertex.
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2. Theloop-back edgeg&y, consist only of edges- h such that > u.

Each loop-back edge — h identifies areducibleloop in G, which is an induced
subgraph, denotédd,, of G whose vertices can reathwithout passing through [3].
The destinatiorn of a loop-back edge is termedh@aderand satisfies the following
two propertiesh pre-dominates all vertices Iry,; a subset opred(h) do not belong to
the loop, i.e.his the unique entry vertex of the loop. The source of a loogkleige
is termed dail. As h can be the destination of multiple loop-back edgges- h,u, —
h,...,uys — h, the loops of eacl; — h are unioned together to create a single loop.
When the loop contains a single vertex it is termesgH-loop, otherwise it is termed
anon-trivial loop. A vertexu is termed doop exitif u has a successor that is not in
Lh. Lethy, hy, ... h, be the headers of the loops in which a venteg contained; we
say thath; is theimmediate headerof u, denotech; = headefu), if hj>u and there
is noh;j # hj satisfyingh; >h;. Loops are said to beestedin each other: for distinct
loopsLy andLy, eitherLy is nested irLy (Lx C Ly), Ly is nested iry (Ly C L), or Lx
andLy have no nesting relatiof ¢ Ly andLy ¢ Ly).

The containment relationship between loops in a reducible graph can be cap-
tured in a Loop-Nesting Tree (LNT):

Definition 8. For areducible flow graph G- (Vg,EgU{t — s},s,t), itsLoop-Nesting
Tree TS = (Vg, Erc,s,H) is a tree with the following propertiés

e H C \ is the set of headers identified in G.
® Erc= {(heade(v),v)|ve Vg —{s}}.

e For each he H, the vertices of the loop are the descendants of h. Thexefor
every internal vertex is the header of a non-trivial loop.

The algorithm to construct the LNT of a reducible flow graphsweaiginally pro-
posed by Tarjan [110]. It uses a DFS to identify DFS back ediges reducible flow
graph loop-back edges and DFS back edges are equivalenidegb@ pre-dominators
of a vertex are always its ancestorsaimy DFS spanning tree [66].

3We explicitly add the edge— s to the flow graptG to ensure that the flow graph becomes a maximal
Strongly Connected Component(SCC). Therefore, all vertices i@ are enclosed in a loop and
the nesting relationship between loops can be capturedr@eas opposed to a forest.
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However, when a flow grap® is irreduciblé, the pre-dominance relation is unable
to identify all loop-back edges; that is, removing all edges> h satisfyingh > u
does not ensure th& is acyclic, and consequently Tarjan’s algorithm halts. $tarh
irreducible flow graphs, there is no coherent view of whatstitutes a loop [97] and,
as a result, state-of-the-art techniques [49, 104] cowddyoce different LNTs for the
same program.

Havlak [49] proposed a refinement of Tarjan’s original aitjon that continues to
identify loops even when it finds a DFS back edge- v satisfyingv ¥ u, thus a
loop is constructed for every DFS back edge, as opposed ty &n@p-back edge.
(Ramalingam [96] has produced a modification of Havlak’s atgm so that it runs
in almost linear time.) Note that the Havlak LNT chooses ajueivertex as the
header of each irreducible loop. More importantly, becahsealgorithm piggybacks
on a DFS, the set of loops computed depends on the order offiBe 2. the same
algorithm could produce a different set of loops due to aed#ht DFS.

Another common technique used to identify irreducible kboyas presented by
Sreedhar [104] using thBJ-Graph This is a data structure that basically unifies
the flow graph and its pre-dominator tree together. Theiordlgm first identifies
reducible loops at each level in the underlying pre-donoinaiee of the DJ-Graph. It
then collapses any non-trivial SCC at the same level (notdegttified as a reducible
loop) into an irreducible loop. Thus, in contrast to the H&JULNT, a set of vertices is
chosen as the header of irreducible loops, each of whichénamg to the SCC.

3.3.1 Identifying IPG Loops

The principal reason that loop identification is of concerWWCET analysis is that
we must bound all loops in the program model. When a graphdgasgram model
is in place, irreducibility implies that the computed WCETimsite is sensitive to the
chosen LNT. To be conservative — and because the propeftike program model
cannot be formally proven correct — the largest WCET estinsdeliected. Accuracy
could be compromised, however, as an alternative loop tietemechanism could be

“In practice, CFGs become irreducible as a resufjatf o statements and because of modifications
to the program structure enforced by (optimising) compiler
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developed that produces a different WCET estimate.

Irreducibility is especially prevalent in the IPG and ofeamcompasses much larger
subgraphs than canonical examples of CFG irreducibility. illlgtrate this point,
reconsider the relatively simple IPG in Figure 3.2. In thiaraple, the pre-dominance
relation is able to detect self-loops11 and 3— 3 because & 1 and 3> 3. However,
it cannot compute the loops in the SCC with vertex{se®, 3} because: ¥ {2, 3},

2 ¥ {1,3}, and 3¢ {1,2}. Therefore, unless we can provide a mechanism to correctly
identify IPG loops, WCET calculations on the IPG could be inaate.

Clarification 7. We term the cycle-inducing edges of the IPGtagtion edgesas
opposed to loop-back edges. As noted in Definition 7, loai-lealges have a very
precise meaning in the literature, but as we shall obseneptie-dominance relation
between vertices of iteration edges rarely holds. Furtheenthis distinction clarifies
the graph to which we refer when discussing cycle-inducingedtmop-back edges”
only belong to the CFG* and “iteration edges” only belong tetiPG.

The crux of the problem is that, because ipoint placemenbisestricted to par-
ticular locations, the pre-dominator tree of the IPG can &g/ \shallow. Valuable
structural information is hence lost whilst constructing tPG from the CFG*. This
information can be retrieved, however. From Definition 3isibbvious that every
path in the IPG can be retraced through the CFG*. Thus, foydeep in the IPG,
there must be a corresponding loop in the CFG* (although theerse might not be
true). The following lemma captures this intuition by edigtbng the properties of
the CFG* under which a cycle is induced in its IPG.

Lemma 1. Let C be a CFG* and | its IPG. Then, | contains a cycle if, and afl¢
is cyclic and there is at least one non-trivial SCC in C thatteams an ipoint.

Proof. = If C is acyclic, then clearly, from Definition 3, contraction aimempty
ipoint-free paths irC cannot create cyclic paths in ThereforeC must contain
cycles forl to be cyclic. LetS,S,...S, denote the set of SCCs @, and
assume none of the non-trivial SCCs contain an ipoint (notedheh trivial
SCC is either a basic block or an ipoint). Consider¢benponent graph Gof
C. Since each non-trivial SCC does not contain an ipoint, tHg wansitions
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in | are constructed from the paths between trivial SCO8'inBecauseC’ is

a Directed Acyclic Graph (DAG) (see Lemma 22.13 in [30]), then the IRG
created fronC’ must also be a DAG. Therefore, at least one SCC must contain
an ipoint ifl is cyclic.

< Assume that there is only one SCXin C containing a unique ipoini. By the
definition of a SCC, there must be a pgth uc — by — by... — by — U,
n> 0, inC. From Definition 3, the IPG contracfsinto the edges — u;, which
creates a cycle in

[

This lemma decides upon the existence of cycles in thd |Gt it does not indicate
which edgesre iteration edges ih On the other hand, we may infer the following
key observation from this result. Suppose initially thatas created from an acyclic
CFG*C; thenl is also acyclic. Now assume that the edge€ afe updated to induce
non-trivial SCCsS;, S, ..., S, in C and that the edges dfare updated accordingly.
Let EZ.. denote the set of edges added ia this step. If no SCC contains an ipoint
then| remains acyclic, i.eE...= 0. However, if at least on§ contains an ipoint
thenl would follow the same acyclic-to-cyclic transition @s Specifically, because
each edgel — v € E[.. causes a directed cycle inu — v is an iteration edge df.
This is precisely the information that the pre-dominandatien provides in standard
reducibility, except in the opposite direction, i.e. it @bxs which edges should be
removed for the flow graph to be acyclic.

This suggests that — providéZican be decomposed into a succession of acyclic
regions — we can generalise this observation towards c@#fiG*s. Such a decom-
position mechanism is provided by the LI\T,f: of C[97]. In particular,Tf enables
theloop DAG L;, = (W, En) of each loopLy, to be induced as follows/, consists of
h and every vertex that is a child bfin TLC. Furthermore, it' € V, is a loop header
such thath’ # h thent is a termed arabstract vertex as it represents all vertices
u of an inner loopLy. The edge<;, consist only of forward edges ib, and are
added as follows. For each abstract vetexany exit edge fronky into Ly, hash’
as its source, and any entry edge iatpfrom Ly hash’ as its destination. Any edge
between non-abstract verticeslipis added as normal.
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The following theorem is the main result on how to identirétion edges ih.

Theorem 1. Let C be a reducible CFG*, | be its IPG, Lbe a non-trivial loop in
C with a set of tails T, and{|= (Vi,En) be the loop DAG of b Then, the edge
u— Ve E is an iteration edge if there are paths: p % vc and g: uc % t,teT,in

Ly and there is no path ruc % Ve in Ly,

Proof. Let Elh C E; be the set of edges added tisom L. From lemma 1, every edge
u— v E/ does not create a cycle inlf pathr exists theru — v € E/', thusr cannot
exist. Furthermore, there can be no pathuc % vc in the loop DAG of an outer loop
Ly (i-e. I is a proper ancestor @fin the LNT T, of C) sinceuc andvc will both be
represented by an abstract vertex.

If path p does not exist theh # vc and, becausé cannot reactvc on a non-
empty ipoint free path, there must instead be non-emptytgoee paths from ipoints
wg, W2, ..., Wl to v, i.e.w — v e Ef. Similar reasoning can be used with respect to
pathq.

It follows that we can concatenate paihhendq together joined by the loop-back
edget — hto create the path: uc — t — h - vc. Clearly,sinduces a cycle i€, and
from lemma 1u — v must create a cycle ih thus proving the claim. O]

There is therefore a mapping from exstrumentedCFG* loopLy, (i.e. h has ipoint
descendants iiﬁLC) to an IPG loop. We define a bijective functign . — .#' where
Z is the set of instrumented CFG* loops agd is the set of IPG loops.

Clarification 8. In the remainder of the thesis, we use the notatifnioLrefer to an
IPG loop. Strictly speaking this is an abuse of notation ashbader vertex h might
not actually belong to the IPG loop (i.e. it could be a basiodk). However, this
notation succintly reflects the structural connection betw€FG* and IPG loops.

For an IPG loopL}, we use the notatiotE (L}) to denote itsteration edge set
Observe that an iteration edge— v can belong to multiple iteration edge sets since
u— v can “iterate through” more than a single CFG* loop, the caadg under which
are established in the following corollary:
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Corollary 1. Let Ly and Ly be CFG* loops satisfying,L.C Ly with respective tailst
andt. Then, IEL;) C IE(Ly) provided there are paths y % x and ¢ ty % tyinC
and yty ¢ .

Proof. Immediate from Theorem 1. Ol

Therefore, we may consider— v to be amulti-edge in which the multiplicity of
u — Vv is equal to the number of iteration edge sets to which it lgpm essence,
the iteration space af — v is partitioned across the CFG* loops through which it
iterates. Provided the instrumentation profile is pathmstoictible, all iteration edge
sets must be pairwise disjoint because, by definition, eitergtion of every CFG*
loop must be distinguishable in a trace. As we shall obsarn@eiction 3.5.2, this
property determines whether bounds gathered through paiseng are accurate or
not.

An Example

We illustrate the IPG loop detection mechanism by returmintpe problematic IPG
of Figure 3.2. In the CFG* of this figure, there are two loopibadges,f; — e; and
j1 — dy, identifying respective looplse, andLy,. The LNT of the CFG* is shown in
Figure 3.5. All headers of non-trivial loops are internattiees in the LNT:s; is the
(root) internal vertex due to the dummy edge— s;.

Figure 3.5. The LNT of the CFG* from Figure 3.2.

Using Theorem 1, we can identify IPG loops as follows:
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e Inthe inner loop.e,, there is a patle; % 1 % f1, hencel_'e1 = ({1},{1—1})
is an IPG loop andE (Lg, ) = {1 — 1}.
e Inthe outer lood q4,, there are pathp, : dy % 1,p2:d;1 % 2,p3:dg % 3 and

q:3 % f1. We can concatenate eaghwith g. Thereforel_{jl =({1,2,3},{1—
1,1-21-32—-33—-13—-23—3})isan IPG loop andE(L!jl) =
{3—1,3—-2,3—-3}.

Let us compare these sets of IPG loops with those identifiedlteynative tech-
niques. The Havlak [49] LNT for this IPG is depicted in Figi&(a). As we noted
above, the Havlak LNT is sensitive to the order of the inib&S, thus we have arbi-
trarily chosen the following pre-ordering of vertices; 1,2,3,t;. The Havlak LNT
identifies three IPG loops:

1. ({3},{3— 3}), where 3— 3 s an iteration edge.

2. ({2,3},{3—3,2— 3,3— 2}), where 3— 2 is an iteration edge.

3. ({1,2,3},{1—-1,1-21—-32—-3,3-33—23—1}), where 3 1 and
1— 1 are iteration edges.

Observe, first of all, that this Havlak LNT computes the ex®tiof iteration edges.
However, it does not manage to construct the correct numblerops, and conse-
guently, the correct nesting relationship.

Figure 3.6. Example LNTs Generated for IPG in Figure 3.2(b), and the Set of
Iteration Edges each Identifies.

S1 5 1-1
1—-2
3—3
t1 1 3,2 " 12.3) 1—-3
, |3t gﬂ i
1—1 1 2 3 3.9
3 3-3
() Havlak [49] LNT if 1 (b) Sreedhar [104] LNT
Is visited first during generated by DJ-
DFS. Graph.

The DJ-Graph [104] LNT produced for this IPG is depicted igufe 3.6(b). Each
of the vertices in the seftl,2,3} is chosen as a header of an irreducible loop since
each is an entry into the SCC. The DJ-Graph LNT identifies tHP€elbops:
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1. ({1},{1— 1}), where 1— 1 is an iteration edge.

2. ({3},{3— 3}), where 3— 3 is an iteration edge.

3. {1,2,3},{1—-11—-21—-32—33— 33— 23— 1}), where 1— 2,
1—3,2—3,3— 2,and 3— 1 are iteration edges.

This LNT correctly identifies one loop, i.€{1},{1 — 1}), but it neither correctly
identifies the set of iteration edges in the problematic SC€dnes it compute the
correct set of loops.

Thus, from this simple example, we may conclude the morergépeint that con-
temporary loop detection techniques do not adequatelyastipG loop identifica-
tion.

3.3.2 Bounding IPG Loops through Static Analysis

The mapping between CFG* loops and IPG loops provides the amesin by which
loop bounds supplied through static analysis techniquésd4] (or via an end-user)
can be transferred onto the IPG. Equally, bounds obtainedigih trace parsing (by
means of the properties of IPG loops) can be relayed backetoigkr at the source
level, provided there is a clear mapping between the objetsaurce code level.

Here we consider how to bound IPG loops assuming static sisadhas provided
arelative bound for each instrumented non-trivial CFG* lody,. We consider the
relative bound to be the maximum number of times a vewteXV (Ly) can execute
(with respect to its outer nesting levat)inusany execution ofv on the loop exit
patf?.

Let brei () denote the relative bound bf,. We want to provide a relative bound on
eachu — v € E(L},), denotedye (u— V), according tdye(h). There are two cases to
consider:

Forward edge: On every iteration ok, u — v can execute; thereforby (u — v) =
bre| (h)

5Considering bounds in this way avoids the discrepancieségl loop structures suchfasr loops
or those containingr eak statements. In these cases, a subset of the vertices inojhéyfoically
execute once more than others as they determine whetheit thesloop or not.
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Iteration edge: The bound oru — v depends on the location afv within L. Ob-

serve that, on the first execution lof, u — v is not triggered since an acyclic
path through.;, must be traversed before reaching.e. u — v essentially sig-
nifies a looping back intb,. However, because we do not consider the exit path
out of Ly as contributing to the bound du,, if v can reach an exit dfy, in the
loop DAG L}, thenu — v can execute a further time on one of the exit paths out
of Ly,. Therefore:

brei (h) if v can reach exit ok, in the loop DAGL{,
Brei(U— V) =
brei(h) —1  otherwise

(3.3)

Figure 3.7. Demonstrating Different Relative Bounds on Iteration Edges de-

pending on Locations of Ipoints.

(a) The CFG* with a loop L, whose sole exit is ds.

| Entry [ It#1 | 1t#2 | 1t#3 | Exit | | Entry | It#1 | It#2 | It #3 | Exit |
S3 b3 b3 b3 b3 S3 b3 b3 b3 b3
as 5 5 5 5 as C3 C3 C3 C3
ds ds ds ds ds ds ds ds
€3 €3 €3 03 €3 €3 €3 O3
f3 f3 f3 | t3 f3 f3 f3 t3
6 6 6 6 6 6

(b) One trace of execution through (c) Another trace of execution
the loop. through the loop.
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Let us demonstrate Equation (3.3) through the example inr€i®.7. For the
CFG* in Figure 3.7(a), assume the relative bound of the logpis 3 and note that
IE(L'bg) = {6 — 5,6 — 6}. We have traced two different executions through this loop
on successive iterations in Figures 3.7(b) and 3.7(c),ewsgly, together with the
loop entry and loop exit path. In the trace of execution ofuFey3.7(b), the iteration
edge 6— 5 is executed three times, i.e. its bound is equabtgbs), whereas in
Figure 3.7(c), the iteration edge-6 6 only executes twice, i.e. its bound is equal to
brei(bs) — 1. As explained above, the reason for this difference is thatthe path
exiting the loop, it is possible to hit ipoint 5. Thumyiteration edge with a destina-
tion of 5 is bounded exactly blg (bs3): one execution every time a loop-back edge
is traversed plus one execution when the loop exits. On ther dtand, we cannot hit
ipoint 6 on the loop exit path and-6 6 can only be executed each time a loop-back
edge is traversed, which is cleably (h;) — 1.

3.3.3 Loop-Entry and Loop-Exit Edges in the IPG

Besides identifying the iteration edgeslinour HMB framework also requires de-
tection of loop-entry and loop-exit edgesative to the next outer nesting levéior
instance, the IPET constrains the execution count of iteradges with respect to ei-
ther of these sets of edges. In addition, our trace parsirgpamesm uses the loop-exit
edges to gather relative bounds. Here we show how to detest thdges using the
LNT T of C.

Let us first examine the simpler case of how to identify thedgges inC (assuming
it is reducible), before extending the intuition to its IPGFor a reducible loof, in
C, the standard definition of a loop-entry edge: v (respectively loop-exit edgé —
V) is one satisfyingi ¢ V(L) (respectivelys’ € V(Ly)) andv € V(L) (respectively
vV ¢ V(Lyp)). Note that, because eath is reducible,h must always be the unique
destination ofu — v. These edges can thus be identified using propertiél;s‘_:cds
follows. For the loop-entry edge — v, v is an internal vertex and cannot be a
descendant ofi in T, otherwise it would be enclosed in the lobg; for example,
in Figure 3.2(a)b1 — dy is a loop-entry edge fog,, and in Figure 3.5b; is not a
descendant af;. For the loop-exit edgd’ — V/, eitherd’ is h (exit from af or loop)
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or a child ofhin Tl_C (exit from ado- whi | e loop orbr eak statement) an# is not
a descendant dfin TLC; for example, in Figure 3.2(adl; — kj is a loop-exit edge for
Lg,, and in Figure 3.5 is not a descendant of.

Observe a key implicit property of these edges as defined:dfawntrol can only
enter (or exit) the next inner (or outer) nesting level ie&to the current loop. How-
ever, this might not be the caseliras an ipoint transition can enter (or exit) several
nested loops at a time. (This property can also be presemeniugible CFG* whereby
got o statements can redirect flow of control out of several nelsteps at a time.)
For example, in Figure 3.2(b), it is not obvious which IPGdee eitherL!]Il or L'el —
the loop-entry edge; — 1 is relative to because 1 is in both loops. For this reason,
we propose a stricter definition as follows:

Definition 9. Let G be a flow graph, ¥ be its LNT, u— v be an edge in G, h be a
header in G, and y IcaTLe(u,v). We say that u— v is a(relative) loop-entryedge
(respectively(relative) loop-exitedge) for the loop | provided all of the following
conditions are met:

1. u— vis not a cycle-inducing edge;

2. paren{-LG(u) #+ parent (v) if u,v are not internal vertices in ¥ or u # parente (V)
if uis an internal vertex in P;

3. his the first header on the patht p (=] v (respectively qy (-] u) in TC.

This definition appears rather convoluted and requires sexpi&anation. Condi-
tion 1 states that these edges must be forward edges (sediDefit). Condition 2
states thati andv must reside in different loops. Thus, condition 3 determitiee
outermost loop that is entered (respectively exited) ovetiingu — v becausé.y, is
the only loop in the next nesting level froly (his a child ofy in T,_G); this is precisely
the information that we require to bound cycle-inducingesigelative to their outer
nesting level.

Thus, the problem of identifying loop-entry and loop-exdges in a flow grapie
can be reduced to the problem of performing off-line leastimon ancestor queries
(with the query seEg) on a static tree1(G), for which there are known solutions [12,
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48]. All queries can be answered in constant time, thus wedsantify the loop-entry
and loop-exit edges d& in O(|Eg|) time.

Returning to the initial problem of identifying loop-entryé loop-exit edges in
|, observe that the LNT on which we perform least-common dncegieries isT®
(because we do not explicitly construct the LNT hfHow this is done can be demon-
strated with the LNT in Figure 3.5 and the IPG in Figure 3.2(By condition 1 in
Definition 9, 1— 1,3 — 1,3 — 2,3 — 3 cannot be loop-entry or loop-exit edges since
they are iteration edges. By condition 2 in Definitions®,— t1,2 — 3 cannot be
loop-entry or loop-exit edges since they are in the same. [dbs reduces the query
setto{s; — 1,s1 — 2,51 — 3,1 — 2,1 — 3,3 — t1}. Following are the answers to
these queries:

. IcaTLc(sl, 1)= IcaTLc(sl,Z) = IcaTLc(sl,3) =s;. Observe thad; is the first header
on each path; (=] 1,s1 (=] 2, andsy (=] 3, thus{s; — 1, 51 — 2, 53 — 3}
are loop-entry edges for the IPG Iobbl.

. IcaTLc(l, 2) = dy. In this caseeg is the first header on the pagh (—] 1, thus
1— 2 is a loop-exit edge for the IPG Iodrgl.

° IcaTLc(s,tl) = s1. In this cased; is the first header on the path (i>] 3, thus
3 — t1 is aloop-exit edge for the IPG Iod,til.

3.4 A Modified Data-Flow Framework to Build the
IPG

In the previous section we explained how to identify IPG ®aging the LNT of the
CFG*. Here we describe a more complex algorithm than thatgarfé 3.3 to construct

the IPGI from a CFG*C. To this end, we make some modest changes to the under-
lying DFF described in Section 3.2.2 and control how theatige algorithm operates

in order to detect iteration edges on the fly for each CFG* laging Theorem 1).

Changes to the DFF are needed to compute the iteration edgescto IPG Ioop_'h
because, according to Theorem 1, this requires two piedesosmation:
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e The ipoints in the CFG* looj, that are reachable from the heatlem a (pos-
sibly empty) ipoint-free path in the loop DAG,, i.e. these are the destinations
of iteration edges.

e The ipoints inLy that can reach a tail df;, on a (possibly empty) ipoint-free
path in the loop DAQ_/,, i.e. these are the sources of iteration edges.

The previous DFF already computes the sources of iteratigese for each basic
block tailt, a subset ofpoints(t) holds the ipoints that can reatin L},. (Itis a subset
because ipoints from an outer loop could also retaehd these are not sources of
iteration edges foLy.) However, we cannot infer the destinations of iteratioges=d
for basic blockheaders in the same way because the DFF only computes rdaghab
information concerning ipoints. For this reason, we definetlaer semi-latticé.;,
which is the powerset"® over the set of basic block headétg. We further define
the set of monotone, distributive functioks, C 2" s — 21e,

The semi-latticd_n, is used to decide which basic block headers can reach other
vertices in its loop DAG on ipoint-free paths. Let us define fibllowing set:

Vv e Ve : headergv) = {hjhe Hg A3 h % vin the loop DAGL;,}

It would appear that, in order to computeader$v) for eachv € \c, we can per-
form a union of the basic block headers that can reach the bksik predecessors of
v. However, observe that, for eveyc headergv), h must be an ancestor gfin T
but that not every predecesspiof v is at the same loop-nesting level. This implies
that there could be sonté € header$p) that is not an ancestor of and therefore,
we should not insettt’ into headergv). In essence, we do not want the reachability
of a header to other vertices in its loop to spill into the naxtter loop-nesting level.
Therefore, for a predecesspof v, let us define the following subset béadersp):

headers(p) = {h|h € header$p) A his an ancestor of in T¢}.

From these observations, we arrive at the following data-8quation to compute
headergv):
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<Upe pred(v) headers( p)) u{v} ifveHsg

Upeprediv) headers(p) otherwise

Vv eV : headergv) = (3.4)

3.4.1 The Algorithm

Construction of and identification of its iteration edges therefore reqaesolution
to Equation (3.2) and Equation (3.4). Observe that we casmoply solve these
equations and then determine the iteration edge sets atsbuiith each IPG Ioob'h
off-line. This is because Theorem 1 states that an IPG edgev € IE(L}) if, and
only if, there is no acyclic path from to v in the loop DAGL;, (of the CFG* loop
Ly). Thus, the algorithm must also decide whether such a pastsébefore inserting
u— vinto IE(L}).

Consequently, this section presents a more complex algotitlan the simple it-
erative algorithm, although it operates in a similar fashiaut restricts computations
to particular induced subgraphs ©f The pseudo-code is split across procedures in
Figures 3.8 and 3.9, the conventions of which require sorpagation. First, our in-
tention is to focus on the insertion of edges ihtd-or this reason, we utilise “Update
setSwith setT” in several places to avoid unnecessary clutter. The achgsn-
ing of this is to unionSwith all members off, and if S changes due to this update,
thenchangedis set totrue to force another iteration. Second, we do not associate a
headersset with each ipoint; rather, for each basic block hedxl@re associate a set
desth) that stores the ipoints that are reachable fioiwn a non-empty ipoint-free
path. This saves us from having to scan each ipoint descemaéd in TLC to check
whetherh € headersv).

The main procedure called to initiate IPG construction gpldiyed in Figure 3.8,
which takesC and T as parameters and commences with a series of initialigation
(lines 11-18) as follows. We conservatively estimate tHaesofipointgv) (for each
v € \c) andheadersgv) (for eachv € B) to be the empty set, i.e. the bottom element
of their respective semi-lattices. Furthermore, we asstinag for each CFG* loop,
there is no corresponding loop in the IPG and that there adestinations of iteration
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edges for each basic block header.

The next step of the algorithm is to produce a reverse pakdrimg of each non-
trivial loop Ly, in C (line 19). These reverse post-orderings are required irehetive
part of the algorithm, and can be obtained as follows. Firdialise an empty list
for each non-trivial header i@ and initiate a DFS from the entry vertex Once all
descendants of a vertexn the DFS tree have been visited, apperhto the start of
the list atparentrLc (v) providedv # s. (Note that, ifv is a header them essentially
represents an abstract vertex, i.e. a collapsed loop, imetrerse post-ordering of
parentrLc (v).) Furthermore, ifv is a header, appendonto the start of the list at.
(Note that this completes the reverse post-orderind.jdyecause, as we assume that
C is reducible, every verted # v in Ly, must be a proper descendantvaf the DFS
spanning tree [66]. Therefore, by the nesting of descestemervals (see Corollary
22.8in [30]),u must already be in the list at)

The algorithm then performs an inside-out decompositio€,of.e. from inner
loops outwards to outer loops, usifﬁ§ (lines 20-53). For each lodp, in C, we first
build the forward edges dffrom inside the loop DAQ.{,. After this, we analyse the
entire cyclic region irC induced byLy, and updatd with any remaining transitions
not present irLj: by Theorem 1, all edges added in this step must be iteratigese
of the IPG loopl E (L},).

We do not explicitly induce the loopy, nor its loop DAGL;, from C. Rather, we
use the reverse post-ordering previously computed in cotipn with an integeit
that indicates whether we should analyse(it = 1) or Ly, (it = 2). As the reverse
post-orderings only contain abstract vertices for innepk) we need to know which
ipoints are reachable from an inner heallasn ipoint-free paths so that, on analysing
edges enteringy from Ly, we can build the ipoint transitions with destinations dlesi
Ly. Clearly,l is the only such ipoint iff is an ipoint. Otherwise, we pladen its set
headergh) (lines 22-23) so that we can determine reachabilith td other vertices
in Lp.

The algorithm then constructs the ipoint transitions iadig (lines 24-53). This
section of pseudo-code has strong similarities to thetiteralgorithm in Figure 3.3,
the essential difference being that the iterative part isf éigorithm is employed for
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11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4

45
46
a7
48
49
50

51
52
53

Input: C, T
Output: |
foreachv e V¢ do
ipoints(v) := 0
if v is basic blockthen
headergv) :=0
if vis internal vertex in f then
IE(L):=0
if v is basic blockthen
desiv):=0

Reverse post-order each non-triviglin C

for i := heightT®) — 1 downto 0 by-1 do
foreachinternal vertex h with levéh) =i do
if his basic blockthen
headersh) := {h}
it:=0
changed= true
while changeddo
changed= false
it:=it+1
foreachv in reverse post-order ofiLdo
foreach p € pred(v) do
analyse= false
if v=nh then
if p— visloop-back edge andit 1 then
analyse=true
else ifv not an internal vertex in§ then
analyse= true
else ifp — v is not a loop-back edgé¢hen
analyse= true
if analysethen
if pisipoint then
Updat e(p, V)
else
foreachk € ipoints(p) do
Updat e(k, V)

if it =1 and he header$p) then
if vis ipoint then
Updatedesth) with {v}
else
if v is header of non-trivial loop and¥ h then
Updateheader$u) with {h} providedu is exit of L,
andv € headergu)
Updatedest h) with desiv)
else
Updateheadersv) with {h}

Figure 3.8. Algorithm to Construct the IPG using the Loop-Nesting Tree of
the CFG*.
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each CFG* loof., and that, for each vertex we specifically analyse each predeces-
sor p in turn (line 30). The reason for this is that, as noted abaxepnly want to
analyse forward edges hwhenit = 1, but because we do not explicitly induce loop
DAGs, we must be able to ignore loop-back edges as and wheiredgAnalysis of
edges irC is therefore controlled through the boolean variadalyse

For eachp — v € E¢, we initially assume that we do not want to analyse- v
(line 31). Ifvis the header of the current loop under inspection (i.e. tisé\ertex
in the reverse post-ordering bf), p — Vvis a loop-back edge and> 1 (lines 32-34)
then we analyse the edge becaiise 1 indicates that we want to add the iteration
edges inl associated with this loop. On the other handpuld be the header of an
inner loop. In this case, we do not analyse- vif it is a loop-back edge becauge
does not appear in the reverse post-ordering,pfind consequently, none of the sets
at p are affected whilst analysing, (lines 37-38). The only alternative is thats a
leaf in T,© such thatparentrLc (v) = h, and thus everyp — v must be a forward edge
(lines 35-36).

Input: y,v

54 if vis ipoint then
55 if y ¢ ipointgv) then

56 changed= true

57 ipoints(v) U= {y}

58 if it =2 then

59 IE(L}) U= yi — v

60 else

61 if v is header of non-trivial loop and3 h then

62 Updateipoints(u) with {y} providedu is exit of L, andv € headersgu)
63 foreachw € des{v) do

64 if y ¢ ipoints(w) then

65 changed= true

66 ipointsw) U— {y}

67 if it =2 then

68 IE(L) U= yi —w

69 else ifit =2 and y — w, is iteration edgethen
70 IE(LL) U= yi —w

71 else

72 Updateipoints(v) with {y}

Figure 3.9. Updat e: Helper Procedure in IPG Construction.

The analysis of the edge — v essentially updates the sets associated withth
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the information atp, i.e. we partially solve Equation (3.2) and Equation (3.4).
p is an ipoint then this means thatcan reachv on a non-empty ipoint-free path;
otherwise, every ipoirk € ipoints(p) can reaclv on a non-empty ipoint-free path. In
both cases, the procedudpdat e is called, which takes two parameteysandv, and
performs one of three actions depending on the propertieasffollows:

vis an ipoint: Asy is also an ipoint, we insert the edge— v, into | if it does not
yet exist and mark it as an iteration edge fiyiif it = 2 (lines 55-59).

vis a basic block header of a non-trivial loop: Asv essentially represents a collapsed
loop, we need to update every exiin L, with the information thay can reach
u provided ve headergu) (line 62), since this signifies there is an ipoint-free
path fromv to u. (Observe that we are only interested in the ipoint-fre&pat
that pass throughy, thus it suffices to only update its exits with this informa-
tion. In practice this speeds up the overall running timenefalgorithm as we
do not redundantly re-analyse all vertices in inner loopsthkeory, however,
the running time remains quadratic due to the iterativeneadfithe algorithm.)
Furthermorey can also reach every ipointin Ly such thatv € des{v). Hence,
as for the first case, we add all edges— w; into | if they do not yet exist and
mark them as iteration edges fo,'g if it =2 (lines 63-68). On the other hand,
if yj — w; has already been addeditand marked as an iteration edge of some
inner IoopL'h,, theny, — w; is marked as an iteration edge lld,{ as well pro-
videdit = 2 (lines 69-70). This is because, as noted above, an itaratige can
belong to multiple IPG loops.

vis a basic block: Obviously,y can reachv on a non-empty ipoint-free path, thus it
is inserted intapointgv) (line 72).

The analysis of the edge— v is not complete wheip is a basic blockit = 1 and
h € headergp) because we need to propagate the reachability informatiblootov.
The actions taken here are similar to the actions taken whsmn ipoint, and hence
we can summarise them according to the propertiesasffollows (lines 45-53):

vis an ipoint: As h can reachp on an ipoint-free pathy is a destination of ipoint
transitions entering the collapsed lobp(line 47).
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vis a basic block header of a non-trivial loop: As for the case whepwas an ipoint,
we update every exitin Ly satisfyingv € headergu) with the information that
h can reachu on an ipoint-free path (line 50). Also, this indicates thaipints
reachable fronv in the collapsed loopy (i.e. those indes{v)) are also reach-
able fromh (line 51).

vis a basic block: his inserted intdheader$v) (line 53).

An Example

To illustrate the operation of the algorithm, consider FegB.10, which depicts a
CFG*, its IPG, and its LNT. This example is deliberately mooenplicated than pre-
vious examples as we also wish to exhibit iteration edgedailang to multiple iter-
ation edge sets. Observe that the CFG* of Figure 3.10(a) hasfan-trivial loops:
Lq, andLy, are nested ihy, andLy, is nested in the dummy lodp,. These data are
represented in Figure 3.10(c).

In Figure 3.11, we have traced through the major stages dlterithm for each
loop in the CFG*. All tables in this figure display, for each terv, how the sets
ipointgv), des{v), headergv) change on successive iterations during the iterative part
of the algorithm. Shaded cells indicate sets that have a@thfrgm the previous iter-
ation, and blank cells indicate that a particular set is ssbaiated with a particular
vertex. A further note to make is that the computations perém on the final iter-
ation have been omitted because none of the sets changedthesasily be verified
by the reader). The first column of each table lists an (ambigr chosen) reverse
post-ordering of the vertices inside the loop, and all ottwdumns display updates to
the sets. We have ordered the tables with respect to the ioredrich the loops are
processed by the algorithm.

Before processing each loop, the algorithm first plaagsds, and f, into their
respective setiseadergh,), headeréd,), andheaders$f,) as all headers excepfare
basic blocks.

For the inner loodq,, we do not analyse the edgg — dj in the first iteration
because it is a loop-back edge. Analysis of edges thus pitedeethe following
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Figure 3.10. Example used to Demonstrate Construction of IPG using Algo-
rithm in Figure 3.8.

O 54

(c) The LNT of the CFG*.

order:

e ds — 10: Asit =1 andds € header$d,), {10} is unioned intades{dy).
e 10— e4: 10 can reactes on a non-empty ipoint-free path agd0} is unioned
into ipoints(ey).

On the second iteration, edges are analysed in the folloasider:

e &4 — ds: Asit > 1, we now analyse the loop-back edgd.gf, and thus{10} is
unioned inta points(da).

e ds — 10: 10— 10isinserted into the IPG becausedlipointsds) and, because
it >1, 10— 10is an iteration edge fdr,,.

e 10— e4: No changes.
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On analysis of the other inner lodp,, the steps taken are very similar and are
summarised as follows: 9 is unioned irdes{ f4); 9 — 9 is inserted into the IPG,;
9— 9is flagged as an iteration edge fdy.

Analysis of the outer loopy, is markedly more involved. First observe that vertices
ds and f4 appearing in the reverse post-ordering are actually atistextices that
represent the collapsed loopg, andL¢,. Whilst analysing the loop-entry edges of
these loops, the sets of some of the vertices inside theps Idwange (specifically
10,94,9); we have therefore included them in the table, although itnportant to
stress that they do not appear in the actual reverse posthogfLy,.

Consider analysis of the following edges in the first iteratio

e Cy — dg: Asit =1, by € headers$c,) andd, is the header of a non-trivial loop,
two actions are undertaken. First, thedes{d,) is unioned intadestb,), and
desi(bs) = {10}. Second)y is propagated to the only exit, namely, of Lg,
such thatls € headersu).

e Ccy— 7: Asit =1 andb, € headergcy), 7 is reachable frorhs on a non-empty
ipoint-free path, thug7} is unioned intodesibs). This is the last element
inserted intadesiby); hencedestb,) = {7,10}.

o 7— f4: As 9€ desifs), the edge 7- 9 is inserted into the IPG. However, as
it = 1, this edge is not identified as an iteration edge. Furthermuote that
both exits ofL¢,, namely f4 andgs, have f4 in their respectiveheaderssets,
which causeg7} to be unioned into their respectiygointssets. It is worth re-
emphasising that this step is necessary since the only quath7 to 8 is through
the collapsed inner loop.

e f,— 8: As 7 and 9 are both ipoints(f,), edges 7 8 and 9— 8 are inserted
into the IPG, neither of which are iteration edges.

Next consider the analysis of the following edges in the sdéteration:

e iy — by: The seipointg(i) is unioned intdpoints(by).

e C4— ds: Because 10 is the only elementddsid,), edges 8- 10,9 — 10,7 —
10 are added to the IPG, all of which are iteration edge& fprHowever, also
observe that, although 18 10 already exists in the IPG, it is also identified as
an iteration edge faly,.
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77

(d) In CFG* loop Ls,.

Figure 3.11. Computations Performed by Algorithm in Figure 3.8 for Example
in Figure 3.10.
| [ Before #1 [ After #1 [ After #2 |
| || destv) headergv) ipointsv) || des{v) header$v) ipointsv) ][ des{v) header§v) ipointsv) |
ds 0 {ds} 0 {10} {ds} 0 {10} {da} {10}
10 0 0 {10}
& 0 0 0 (10} 0 (10}
(a) In CFG* loop Lyg,.
| [ Before #1 [ After #1 [ After #2 |
| | des{v) headergv) ipointsv) || des{v) headergv) ipointsv) ][ des{v) headergv) ipointsv) |
fs 0 {fa} 0 {9} {fa} 0 {9} {fa} {9}
94 0 0 {fa} 0 {fa} {9}
9 0 0 {9}
(b) In CFG* loop Ly,.
| [ Before #1 [ After #1 [ After #2 |
| || destv) header$v) ipointsv) || des{v) header$v) ipointsv) [[ des{v) headergv) ipointsv) |
ba 0 104} 0 (7.10]  {ba) 0 7100, {ba}  {8,9,7,10
Cs4 0 0 {ba} 0 {bs} {8,9,7,10}
ds || {10} {ds} {10} {10} {bs,ds} {10} {10} {bs,ds}  {8,9,7,10}
10 {10} {10} {8,9,7,10}
7 0 0 (8,9,7,10}
f4 {9} {fa} {9} {9} {fa} {9, 7} {9} {fa} {97}
U4 {fa} {9} {fa} {9,7} {fa} {9, 7}
9 {9} {9, 7} 19,7}
8 0 {9,7} {9,7}
ha 0 0 0 {8,9,7} 0 18,9,7}
i 0 0 I 18,9,7,10} ba} {8,9,7,10}
(c) In CFG* loop Ly,.
| [ Before #1 [ After #1 |
| || des(v) headergv) ipoints(v) [ des{v) headersv) ipoints(v) |
sS4 0 0 0 0 0 0
11 0 {54}
bs || {7,10} {ba} {8,9,7,10} || {7,10} {ba} {8,9,7,10,11}
7 {8,9,7,10} {8,9,7,10,11}
10 {8,9,7,10} {8,9,7,10,11}
ja 0 0 0 {8,9,7,10,11}
12 0 {8,9,7,10,11}
t 0 {12}
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e C4— 7: Edges 8- 7,9 — 7,7 — 7,10 — 7 are inserted into the IPG and iden-
tified as iteration edges faij, .

The final loop to analyse is that bf,, which causes the remainder of the IPG edges,
sq—1111—-7,11—-10,11—127—128—129— 1210— 12 12— t4, to be
inserted.

The final IPG resulting from this construction is shown indig3.10(b). Following
are the iteration edge sets associated with each IPG loop:

e IE(L},) = {10— 10}.

e IE(L},)={9—9}.

) IE(L,'O4) ={10—10,9— 10,8 — 10,7 —10,10— 7,9 — 7.8 > 7,7 — 7}.
Figure 3.10(b) represents iteration edges as emboldemes edd labels them with

the headers of the CFG* loops that they are associated with.

3.5 Interprocedural Analysis

Thus far we have described the analysis and constructitnedPiG assuming a unique
procedure. However, programs inevitably contain multgiecedures, and thus there
has to be a mechanism to handle interprocedural relatianpaiticular, our HMB
framework must parse timing traces (in order to extract the WW&C&f ipoint transi-
tions) and be able to drive the calculation engine acrossepiare boundaries. We
begin the section with an explanation of our virtual inligimechanism which pro-
vides visibility to procedure calls in the IPG of each prased Following that, we
show how to use the set of IPGs to parse timing traces and tollatd a WCET
estimate.

3.5.1 Master Ipoint Inlining

One straightforward way to handle procedure calls is taugity inline the CFG* of
the callee at each call site in the caller, resulting in au@iGFG*, and ultimately, a
unique inlined IPG. This simplifies interprocedural anayss theTrace Parser(TP)
just walks the inlined IPG for each trace, and calculatiamess procedure boundaries
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are implicitly supported. The biggest weakness, howesdhat the inlined IPG can
grow exponentially in size because of the duplication psecéhus limiting its usage
to small-scale programs.

Instead of duplicating the IPG at each call site, we inlinelasgt of the ipoints —
but none of the transitions — from the callee into the callérese duplicatechaster
ipointsprovide visibility of the call to (and return from) each @l Intuitively, master
ipoints are those which are observed first and last in a trager@cedure invocation
and return. Formally:

Definition 10. For an IPG | = (I, E;,s,t):
. I\7I| ={uel—{t}|ue sucds)} is its set oimaster entry ipoints

° |\7|| ={uel—{s}ue pred(t)} is its set oimaster exit ipoints

Therefore, inlining a master entry ipoint into the calldoais the TP to detect when
a procedure call has arisen and hence it can switch to the fRit& @allee. On the
other hand, inlining a master exit ipoint provides the netlocation in the IPG of the
caller once the portion of the trace inside the callee has pemcessed.

To describe master ipoint inlining in greater detail, letcosisider programs com-
prising multiple proceduregs, p2,..., pn and assume that a call graph models the
interprocedural relations, which is formally defined asdeb:

Definition 11. Thecall graph of a program with a set of proceduré®s, pz, ..., pn}
is adigraph?? = (V»,E4,Sr) such that:

i V@ - {pl» p27"'7pn}-

e 1 €Vyisadistinguished vertex termed timain procedure for whichpred(r)| =
0. Every vertex v can be reached from r, thus preventing dede.ctVe also
assume that r is instrumented so that each new trace begihsawitaster entry
ipointinr.

e Sis a set of basic blocks termedll sites

e E» CVyp xVyp x Sis the set of labelled edges that we texomtexts For an
edge(f,qg,s) € Ex, f is termed thecaller and g is termed theallee We also
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include a dummy context, denot@d, A ), which is essentially the initial context
when the program is invoked.

e There are no cycles, thus preventing recursion. This isvatgd by noting that
recursion is seldom present in embedded software as theraorest resources
of embedded systems do not provide large stack memory.

In addition to the call graph, we also require the CFG* and #@ bf each pro-
cedurep;. As we inline master ipoints from the IPG of a callgénto the CFG* of
the callerf, the CFG* of f changes. Therefore, we uSg to denote the CFG* of;
beforemaster ipoint inIiningCl’Di to denote the CFGafter master ipoint inlining, and
I to denote the IPG of that is constructed frorﬁfoi.

The mechanics of master ipoint inlining are presented inféi@@.12, which takes
the call graph#” and the set of CFG*4C,,,Cy,,...,Cp,} as parameters and op-
erates as follows. Each conteit, g,s) (except the dummy context) is processed in
reverse topological order so that procedure calls are deresil in a bottom-up fashion
(lines 73- 86). We only inline the master ipoints frgmvhenly satisfiesV (Ig)| > 2
(line 74). This is because an IPG must always contain at asighostipoints,
namelys,t. Therefore, ifV (lg)| = 2, then there are no ipoints igthat will be seen in
atrace, and the call adoes not require inlining. On the other hand, whé(g)| > 2,
master entry and master exit ipoints frégrare duplicated int€s (line 75), which we
denote a$_\/i; and |\7/g respectively, to avoid confusion with the actual masteirits
of g.

To allow the TP to disambiguate between ipoints inlined fraarious procedures,
we associate procedure identifier to each ipoinu, denoted?,, which is the proce-
dure causingi to trigger in program execution. Here we set the procedwatifier
of each inlined ipoint to that of the callee (line 76). Obsetiat this step subtly as-
sumes that inlined ipoints do not become master ipoints enctler; that is, each
inlined ipoint must be triggered by during program execution and not by another
procedurey that is called viay. This allows the TP to wind and unwind the call stack
one procedure at a time.

Once these master ipoints have been duplicated and insetefd a simple relink-
ing with the call sitestakes place. Every predecesgarf sis redirected towards each
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Input: &2,{Cp,,Cp,,...,Cp,}

Output: {Cy,,Cp,,...,Cp }
73 foreach (f,g,s) € E» —{(r,r,A)} in reverse topological ordexo
74 if [V(lg)| > 2 then

75 Add inlined master entrielgigJ and master exit?ﬁ/g toV(Cy)
76 Set procedure identifier of each inlined ipointgo
77 foreachu e |\7|;J do

78 foreach p € pred(s) do

79 Add p— uto E(Cy)

80 Removep — sfrom E(Cs)

81 Add u— sto E(Cy)

82 foreachu' e |\7; do

83 foreach p’ € sucds) do

84 Addu — p to E(Cy)

85 Removes — p’ from E(Cy)

86 Adds— U to E(Cy)

Figure 3.12. Algorithm to Effect Master Ipoint Inlining.

!
u € My (line 79), the edge — sis removed (line 80) and then eaahis connected
to s(line 81). Thus, ifCs contained a pativ % s, wherew is an ipoint, therC} will

instead contain a path % u. Consequently, the TP can detect the cafito I+ once

P
thetrace edge w— u € E(lt) has been traversed. In a similar fashion, evéry M
is connected to each succesgbof s (line 84), the edgs — p’ is removed (line 85),
and thersis redirected towards each (line 86). Thus, ifCs contains a patk % w,

wherew is an ipoint, therC} will instead contain a path/ % w. This provides the
location inl¢ at which the TP should return ongehas finished executing, since the
next trace edge to traverse will belin

Note that every inlined master entry ipointlin has the set of inlined master exit
ipoints as its successors. Since there are a number of ippamgitions between these
inlined ipoints (in the call chain), these edges essegtidfick box the procedure call
and are thus termezbntext edged~ormally:

Definition 12. For a CFG* C and its IPG I, an edge & v € E, is a context edgef
u is an inlined master entry exit and v is an inlined mastet idint. Furthermore,
B(P(u— v)) is a singleton set containing a call site in C.

Context edges serve two purposes in our analysis. First,ahay the TP to re-
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construct the exact context from the properties of the IRIBwang trace data to be
retrieved on a per context basis as required — how this is @bdescribed in Sec-
tion 3.5.2. Second, they allow the calculation engine totiporate the (modularised)
WCET calculation of the context into the caller — how this is €as described in
Section 3.5.3.

One potential, yet rare, problem with master ipoint inlgniss described above is
that it causes irreducibility i€. This occurs whers is the header of a (reducible)
loop Ls in C¢ andlg has multiple master entry ipoints, i.qal\—/ig | > 1. In this case,
each inlined master entry ipoint will become an entry inte khop; that isLs will
be transformed into an irreducible loop with headl;r;s Hence,lt must be built
through the simple iterative algorithm of Figure 3.3 (bese(D; is irreducible) and
this complicates the identification of IPG loops.

We propose two solutions to this problem. The firstis to em#uat every procedure
contains a unique master entry ipoint. This is typicallyriast workable as a user (or
automatic tool) can easily detect the problem. On the othadhif no control over
the instrumentation profile can be assumed, we can forcecitatity in C; simply
by inlining a unique ipoint that effectively represents mlhster entry ipoints iry.
The weakness of this approach, however, is that we mightdose precision in the
calculation onl; as a portion of the code from the callee is effectively comsd
within the context of the caller due to master ipoint inliginTherefore, by merging
all master entry ipoints df; into a single vertex it¢, every transition from an ipoiw
to an inlined master entry ipoint forces the calculationieedgo choose the transition
(into g) with the largest value. That is, we cannot constrain theaken count of
the transition with the larger value. Another disadvantagiat we must build the
LNT of Cs (to detect headers that are call sites) an@/ofto build I), adding to the
overall overhead, even though there are almost-linear dilgperithms to construct a
LNT, as explained in Section 3.3. In general, we attempt tadcathe problem entirely
by choosing the first solution where applicable.
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An Example

We illustrate master ipoint inlining in Figure 3.13 for a gram containing two pro-
ceduresf(oo andbar ) whose call relations are depicted in Figure 3.13(a).bAs
is a leaf in the call graph, it does not require inlining, tineshave omitted its CFG*.
The IPG ofbar is, however, shown in Figure 3.13(b) because its mastentiponust
be inlined into the CFG* of 0o. Note thaﬁbar = {20} and thatf\ﬁbar = {23}.

Figure 3.13. Example of Master Ipoint Inlining.
S5 Q

f oo

20
bs Cs 21 22

23

bar , (v)

(a) The call graph. (b) IPG of bar .

N 0

13 I !
13 (f 00)

14 14 (f 00)
16 18 16 (bar) 18 (bar)
16— bs-bs — 17 18— c5-c5 — 19
17 19 17 par) 19 par)
15 (f 00)

ts O ts s 5
(c) CFG* of f oo before (d) CFG* of foo after (e) IPG of f oo.
master ipoint inlining. master ipoint inlin-

ing.

The CFG*s off 0o before and after master ipoint inlining are shown in Figi&4s$(c)
and 3.13(d), respectively. For the contékbo bar ,bs), |points 16 and 17 are the
inlined master ipoints frontar , i.e. Mbar {16} and Mbar {17}. These addi-
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tional ipoints are linked int@€; ,, through the edge insertions of 16 bs, 14— 186,

bs — 17, and 17— 15 together with the edge deletions of 14bs andbs — 15. The
context(f 0o,bar ,cs) is analogously inlined, except that 18 and 19 are the inlined
master ipoints.

The IPG off 0o, which is constructed from the CFG* in Figure 3.13(d), is show
in Figure 3.13(e) in which trace ipoints are annotated whtgirtprocedure identifier.
Following are properties to note: 13 18 and 14— 16 are trace edges that detect a
call to bar in trace parsing as the source and destinations have diffprecedure
identifiers; 16— 17 and 18— 19 are context edges representing the cabbao at
respective call sitebs andcs (indicated by the unique basic block in their path ex-
pressions); depending on the context invoked, the tradeatilrn to either 17 or 19
oncebar has finished executing, i.e. once ipoint 23 is seen in thetrac

3.5.2 Trace Parsing

After master ipoint inlining, we use the set of IPGs to extitaming data from the
trace file on a per context basis. Timing data encompassesoanrfunctional property
that is required, or is optional, in the calculation.

For our analysis, we must extract the WCETSs of IPG edges as #nesbe IPG’s
atomic units of computation. The optional data concern floalgsis, such as loop
bounds and infeasible paths. Here we focus on gatheringypestof loop bounds:
those relative to the next outer nesting leveldtive bounds) and those bounding the
execution in any single invocation of a conteftequency boundg. Both tree-based
approaches and the IPET require relative bounds, whilstRE& can also integrate
frequency bounds to tighten the final estimate. For examplée triangular loop
nest ofBubbl esor t , the relative bound of the inner loopnswhereas its frequency

bound is@, wheren is the number of elements to sort.

Although Section 3.3.2 demonstrated how to map relativantiswbtained through
static analysis onto the IPG, extracting such informatiamf timing traces has its
advantages. One limitation of contemporary static ansliesthniques [47, 52], as
noted in Chapter 2, is that they cannot always provide prdmsmds for all loops
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due to the Halting problem. The user is then expected to fililnyp gaps so that the
calculation can actually run. Therefore, the prime motorafor extracting bounds
from traces is that they allow our HMB framework to operatéoanatically without
user interaction. Evidently, they can also serve to vadidose provided by the user
(as itis often error-prone), or alternatively, be fed int8Atool as an initial guess on
the bound, which is then verified.

The Automata of an IPG

Whilst parsing timing traces, the IPG becomes an automataswalked according
to the sequence of tokens, i.e. trace identifiers (see Definltin Chapter 2), in the
trace file. As trace identifiers need not be unique, both D&testic Finite Automatas
(DFA) and Non-Deterministic Finite Automatas (NDFA) arespible.

In a DFA, given a particular ipoint in the IPG, the next tokarthe trace uniquely
identifies the successor ipoint to advance to. It follows,tha any trace, we can
resolve theexact pathithrough the IPG. On the other hand, in a NDFA, the next token
does not necessarily identify the successor ipoint. Patblwgon is only satisfied if
there are no two identical sequences of trace identifiedirigao some merge vertex
in the IPG. This can lead to a less precise WCET estimate be@aiseust conser-
vatively assume that the timing data retrieved applies th geath identified by the
trace.

For these reasons, it is desirable to assign trace idestibapoints such that each
trace resolves a unique path through the IPG. In practicelyming a DFA is easily
attained by assigning a unique trace identifier to each igmovidedthere are no
context disambiguation issues. For instance, if the CFG*aa in Figure 3.13(c) did
not contain the ipoint 14 then its IPG would instead conthmtransitions 13- 16
and 13— 18. As 16 and 18 effectively represent the master entry {dnof bar
(in Figure 3.13(b)), it is impossible to assign a trace idmmtto 20 that resolves the
ambiguity, and thus the IPG dfoo becomes a NDFA.

Our TP assumes that each IPG is a DFA so that we can implememipéesone
token lookahead scheme without the need to backtrack. Weeiuassume that, for
each IPG, none of its master exit ipoints is the source oferatibn edge; this basically
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means that, each time a master exit ipoint is encounteredoaegure is about to
return, or if the IPG is the root procedure, a new trace is aitwbegin.

A complete description of trace parsing under these assangpappears in Fig-
ure 3.14. Some of the conventions and notation require saplaraation. First, it is
useful to visualise the TP as writing some temporary vaesvhilst extracting the
timing data, and at particular points, populating a datalvaish the values in these
variables. Consequently, the term “commit” appears in sgygaces of the algorithm
to indicate that the data associated with a particular IPG@eeshould be written to
the database (if it exceeds the current value held) andtieaiemporary value held
by the TP should be reset to zero. Second, wetys®edenote the trace identifier of
an ipointu. Third, the TP extracts, for eat¢hace edgeu — v in a particular context
(f,g,s), both its WCET, denotedicet F:99 (u — v), and its frequency bound, denoted
bif:2¥(u— v). In addition, the TP uses the iteration edge sets assoaidtedach
IPG IoopL'h to obtain the relative bound dﬂh in a particular contextf,g,s), denoted
p(f.9s) (h).

rel

Trace parsing is initiated with the trace filaces the set of IPGSl,, 1p,,...,1p, }
and the set of LNTs of the CFG{*TLC"l,TLCpZ, _..,TS™}. The TP keeps track of the
current context in the variablef, g,s), beginning with the dummy context,r,A)
(line 87). Furthermore, the TP always walks the IPG of théeea) as the program
being executed must be emitting ipointsgnwe always commence a new trace with
the IPG of the main procedure. The occurrence of a new tinmanggtis tracked in the

boolean variabl@ewtrace

The TP scans every tuplg, j) in the trace file (lines 89-129), and undertakes one
of two actions depending on the valuerswtraceas follows:

e If newtrace= true then we know that the next token is not the start of a new
trace (line 919. The first ipointu will thus be a master entry ipoint in the IPG
of the main procedure satisfyitg =1 (line 92). As the TP must determine

8In theory, the next token could be the start of a new traceigeavthe program contained a single
ipoint u. In this case, there would be a single IP®r the procedure which causego trigger.
However, ifu was not in a loop thehwould only contain ghost edges, and there would be no need
for trace parsing. Otherwise, there would be a unique trdgee — u € E(1), i.e. an iteration

edge, and moreoveu,c M; we disallow this occurrence from the assumptions above.
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Input: traces {lp,, Ipz,...,Ipn},{Tfpl,TLCpZ,...,TLC"”}
87 (f,g9,s):=(r,r,A)
88 newtrace= true
89 foreach (i, j) € traces do
90 if newtracethen
91 newtrace= false
92 u:=sucds) with t, =i
93 i=]
94 else
95 v:=sucdu) witht, =1
96 Commitj — j’ towcet 99 (u—v)
97 Add one tob 2% (u — v)
98 if u— v is an iteration edgethen
99 foreach IPG loop L, satisfying u— v e IE(L},) do
100 Add one tob[,%9 (h)
101 if uand v in different loops and v is an iteration or a loop-exit edg¢hen
102 if uis internal vertexthen
103 h:=u
104 else
105 h:= parentrch (u)
106 yi= IcaTch(u,v)
107 repeat
108 Commith!/¢% (h)
109 h:= paren[rLcg (h)
110 until h=y
111 i=j
112 if vis inlined master entry ipointhen
113 Push( ContextStack, (f, g, )
114 Push( ReturnStack, v
115 Pick arbitraryv’ € sucqv)
116 (f,9,9 :=(g,R,B(P(v—V)))
117 u:=sucds) witht, =i
118 else ifv is master exit ipointthen
119 foreachtrace edge U— Vv € E(l¢) do
120 Commitbf:2% (0 — V)
121 if (f,9,8) =(r,r,A) then
122 newtrace= true
123 else
124 (f,0,s) := Pop( ContextStack
125 u:= Pop( ReturnStack
126 v:=sucqu) with T, =1
127 u:=v
128 else
129 u:=v

Figure 3.14. Algorithm to Parse Timing Traces to Extract WCET Data.



88 3.5 Interprocedural Analysis

the WCET of each transition — v, we also record the time stamp win the
variablej’ (line 93).

¢ If newtrace= false then we have to find the successoof u satisfyingt, = i
(line 95). The TP thus commits the observed WCET j’ to the edgeu — v
in the current IPG (line 96) and increments the frequencyndafu — v in the
current context (line 97).

If u— vis aniteration edge then this indicates that an IPG loop &as lierated.
Recall from Section 3.3.1 that— v can belong to several iteration edge sets
IE (L}, ),1E(L,),- -, IE(L}, ), one for each CFG* headér whose loop it can
iterate through. As we cannot distinguish the exact loomftbe timing trace
alone, we must conservatively increment the relative bafrelerylPG loop

Ly, for whichu — v e IE(LLi) (lines 99-100). In essence, the relative bound
of the inner loop pollutes those of all outermost loops andegally leads to
overestimation. However, it is important to stress thahsoxerestimation can
only occur when the instrumentation profile is not path retartible, other-
wise every iteration of every CFG* is observable in a timiregct, i.e.u — v
belongs to a single iteration edge set.

The next step is to determine which IPG loops have stoppeatiig (lines 101-
109). This is detected by the fact thaandv are in different loops (i.e. there is no
ancestor-descendant betwaeandv in ng) and thatu — v is an iteration edge or a
loop-exit edge. (Clearly, ifi — vis just a loop-entry edge — and not a loop-exit edge
as well — then the outer loops might not have stopped itegatonno relative bounds
should be committed.)

Assuming these conditions are met, first observe that flowoafrol is currently
contained within the IPG loop|, whereh = u if u is an internal vertex oh =
parentrch(u) otherwise (lines 102-105). Further note that, on traversin- v, flow
of control gets redirected into the IPG Iobpin which bothu, v are contained — the
headery of this loop is the least-common ancestoruw¥ in Tch (line 106). Thus,
on making the transition frorhy, to Ly, every IPG loop whose header is on the path
y (5] hin T™¢ has stopped iterating.

This completes the mapping of trace data onto the currensitran, so the next
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task of the TP is to prepare for the next tuple in the trace.sTthe last time stamp
observed becomes the current one (line 111) and the ipagwadvanced to its next
position (lines 112-129). There are three cases to handle:

Procedure Call: This is recognised by the fact thais an inlined master entry ipoint
(line 112). As we later wish to return to the current contend goint location
once the procedure call has ended, the TP stores this infioman respective
stackContextStackndReturnStacKlines 113-114).

The next step is to construct the elements of the new comrtaxt the properties
of the IPG. Evidently, the current callee becomes the nelercahd the iden-
tifier of the callee is stored iR,, which was set during master ipoint inlining.
In order to retrieve the call site, recall that every edggiogting fromv is a
context edge whose path expression contains a unique Hasic(be. the call
site). Asv might have multiple successors (there could be multipletenasit
ipoints in the callee), we can choose an arbitrary succegsoas they all con-
tain the same basic block. This completes the informatigaired to switch to
the new context (line 116).

As a call has occurred, the TP switches to the IPG of the calldaetrieves the
appropriate master entry ipoint (line 117).

Procedure Return: This is recognised by the fact thais a master exit ipoint, thus
there are no more trace edges to be processed in the currg@ekigand the
frequency bounds of edges can be committed (lines 119-120).

If the current context is the dummy context then we have redt¢he end of
program execution for the current test vector, and thuséxetaple in the trace
file must be the beginning of a new trace (lines 121-122). Miise, the TP
must unwind the stacks to return to the previous contex¢gliti24-125). Note
that, because we push an inlined master entry ipoint &gturnStaclon a
procedure call, we must now advaneéo the inlined master exit ipoint in the
caller IPG so that the TP is in the correct position (lines-128).

’Recall from Clarification 6 that we considered the compatatif path expressions beyond the scope
of the thesis. However, extracting the unique basic bloakooitext edges is straightforward as the
inlined master entry ipoint in the CFG* has the desired bhkick as its unique successor.
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Same Procedure: The final case is thatis triggered by the procedure of the current
IPG, and therefore, the next transition will be a successeor d@herefore, the
TP advances to the same location ag(line 129).

An Example

Let us illustrate the following two operations of the TP: htmswitch between con-
texts; how to determine the relative bound of CFG* loops. Ttheotasks of the TP
— namely, obtaining the WCETSs and the frequency bounds of IRf@sd- is trivial.

To demonstrate the switching between contexts, considgm&i3.13. Note that
the initial dummy context igf 00,f 00,A), thus the TP starts with the IPG bbo
in Figure 3.13(e). Let us assume that the timing trace hakttethe transition 14—
16. As 16 is an inlined master entry ipoint framar , a procedure call is detected.
(Evidently, the caller i$ oo and the callee ibar.) The only successor of 16 is the
inlined master exit ipoint 17, and becal3@”(16 — 17)) = {bs}, bs is the call site
of the new context. Hencéf oo,f 00,A) and 16 are pushed on@ontextStacland
ReturnStackrespectively, and the TP switches to the new context ob,bar ,bs).
Then, we fetch the IPG dfar and move to the master entry ipoint with the current
trace identifier, which is ipoint 20 in Figure 3.13(b).

When the TP reaches ipoint 23 in Figure 3.13(b), a proceduverrés identified
because 23 is a master exit ipoint. Thus, we return to catlorgext(f oo,f 00,A),
which is popped fron€ontextStackOn return, we pop the inlined master entry ipoint
16 (in Figure 3.13(e)) fronReturnStackand advance to the inlined master exit ipoint
successor of 16, which is ipoint 17.

To demonstrate the extraction of relative bounds for IP@#pconsider Figure 3.10
(since the IPGs in Figure 3.13 do not contain any loops). @edhat, in the IPG of
Figure 3.10(b), 11 is the sole master entry ipoint and 12dasstile master exit ipoint.
Also recall that 10— 10 is in both the iteration edge setslgf andLy, .

Consider the following timing trace:
117949 Mg gPltgbgghategghutsyghdigg 10

We have annotated each iteration edge transiien v with the IPG loop header



3.5 Interprocedural Analysis 91

for whichu — v is an iteration edge. How this timing trace is processed easuin-
marised by the following steps:

e On encountering the three-9 9 transitions, the TP increments the relative
bound forL'4, andbye(f4) is currently 3.

e On the next transition 9- 7, two actions are taken. First, the relative bound
of Ly, is set to 1. Second, because 9 and 10 are in different loop§ and 0
is an iteration edge, we know a transition has been made fromreer loop
to an outer loop, thus we have to commit some relative boudserve that
IcaTLc(9, 10) = by and thatf, is the only header on the path (i>] f4. Therefore,
brei(f4) = 3 is committed to the database.

¢ On encountering the three 10 10 transitions, we cannot determine through
which IPG loop execution has iterated, and the TP incremiigtdound for
both LL4 and L'd4. Thus,bre (bs) is currently 4 andy (ds) is currently 3.
Observe that this pollutes the boundLQL if 10 — 10 only iterated through
Ly, however, agj could have iterated, we are forced to be conservative and
assume that the bound on both loops should be incremented.

e The final transition 16~ 12 is a loop-exit edge. Observe thTLc(lo, 12) =s4.
We have to commit the relative bound for the IPG lodys and Ly, as the
headers of these loops appear on the path>] ds. Thereforepye(bs) = 4 and
brel(ds) = 3 are committed to the database.

3.5.3 Calculation Engine

Once all timing traces have been parsed, our HMB framewolik & position to
generate a WCET estimate. We combine the timing data retriegadtrace parsing
using the set of IPGs and the call graph.

Since our trace parser associates timing data with a pkaticantext, the user (or
our tool) can decide whether tmify or expandcontexts off-line. Context unification,
e.g. consider each call pfrom f in its worst case, brings about a more conservative
WCET estimate, which is typically desired if confidence initegtis lacking. For
example, covering all trace edges of each IPG in every coptages a greater burden
on the test framework, and consequently, we might wish téyuhe contexts where
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coverage is thin. On the other hand, full context expansromiges the most accurate
WCET estimate. Observe that, if the TP only obtains timing data per procedure
basis, any context expansion in the calculation engine dveedjuire a (costly) re-

parsing of timing traces.

Our calculation engine operates in the following manner. dhder the contexts
in the call graph in reverse topological order, which is jjdssbecause we assume
there is no recursion. For each contéxktg,s), we first elicit whether it should be
considered expanded or unified: if expanded, we use thediniata applicable to
(f,0,s) retrieved by the trace parser; if unified, we take the maximahae observed
for each call fromf to g. The WCET of(f,g,s) is then calculated using the IPG
Every ghost edge il is assigned the value of 0 as it is not observed in a trace, by
definition. If g calls other procedures then we map the calculated WCETSs oéxisnt
(9.9,9) onto the appropriate context edgeddn Our HMB framework then uses a
tree-based approach or the IPET to calculate the WCEHI, dhe specifics of such
are detailed in Chapters 4 and 5, but for now we assume eitlgeisan place. We
also defer a discussion of how to incorporate loop boundstim calculation until
then. However, it suffices to say that frequency bounds atiertgd (they tighten the
estimate), whereas relative bounds are compulsory. kjrtak WCET estimate for
the program has been generated once we reach the dummytoontey).

An Example

To illustrate the operation of the calculation engine, ad&sthe example of Fig-
ure 3.13 and, for the IPG in Figure 3.13(b), assume the TPxteecéed the following
timing data in the given contexts:

(f oo,bar ,bs) (f 0o,bar ,cs)
IPG Edge| WCET IPG Edge| WCET
20— 21 100 20— 21 75
21— 23 10 21— 23 30
20— 22 30 20— 22 20
22— 23 65 22— 23 25

If these contexts are expanded in the calculation then the WiEToo, bar ,bs) =



3.5 Interprocedural Analysis 93

110 and the WCET off oo, bar ,cs) = 95. Thus, when calculating the WCET of the
context(f oo,f 00,A), 110 is mapped onto the edge 1617 and 95 is mapped onto
the edge 18- 19 (c.f. Figure 3.13(e)).

Now assume that we want to consider every cabl@ao to be unified. Following is
the timing data associated with its IPG edges:

IPG Edge| WCET
20— 21 100
21— 23 30
20— 22 30
22— 23 65

In this case, the WCET dbar is 130, which is clearly more conservative than
either of the expanded contextsoo,bar ,bs) or (f oo,bar ,c5). The pessimism
also propagates into the caller as 130 must be mapped ortteetiges 16— 17 and
18 — 19 because we only have one WCET far .

3.5.4 Discussion

There are a few issues with our interprocedural analysisviaarant further discus-
sion.

The first is that the TP cannot yet handle timing tratackouts which arise when
the port or debugger cannot keep pace with the rate at whaihtgpare emitted, and
data are essentially lost. A second issue with the TP is th#2@s must be DFAs.
This is particularly undesirable as the number of uniqueetidentifiers available is
often restricted by practical considerations. For instaifche data are written to an
I/O port (using a logic analyser) then this number is deteediby how many pins are
available. Although an easy workaround is to initiate nplétiwrites, such a solution
increases the overhead of ipoints (fitebe effectand forces the tracing mechanism
to become non-atomic, which could create problems in ntlnfdaded applications.

Our mechanisms to handle contexts could be generaliseldefubly considering
loops and recursion. For example, the first procedure callloop often has a larger
WCET than the other iterations due to cache misses. Howes®,ddiserve that
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considering more precise forms of contexts places a grbatden on the test frame-
work as we must have a sufficient amount of confidence in thegmata extracted.
Clearly, this does not only mean stressing the WCETs betweant ipansitions but
also forcing loops to iterate as much as possible so thatdheds on iteration edges
are accurate. As noted in Chapter 2, this is now being addtdsséhe concept of
WCET coverage [17].

3.6 Summary

A HMB WCET analysis framework must be retargettable to diffeiastrumentation
profiles without causing any additional pessimism in thewation stage. In this
respect, existing program models, such as the CFG and thepk®#& unsuitable as
basic blocks are the atomic units of computation. As a HMBniaork does not
model the processor, the only way to extract the WCETSs of bdeukb is to parse
timing traces generated during testing. However, whersggastrumentation profiles
are employed, basic blocks rarely execute in isolation gnsargle ipoint transition,
thus their WCETs can become grossly inflated. This dominoesti@ calculation
stage since any analysis is tied to the accuracy of its ingt#trpeters: overestimation
ensues.

The core contribution of this chapter was a novel programehed the IPG —
that forcibly changes the unit of computation to the traosg among ipoints. The
timing data retrieved from trace parsing can therefore bgped directly onto an IPG,
avoiding any overhead associated with basic blocks as aqaesace. This chapter
also made the following additional contributions:

e We showed how to construct and analyse structural progestithe IPG using
the CFG*, an intermediate form similar to the CFG. In particwee demon-
strated how to use the structural connection betweedacibleCFG* and an
IPG in order to identifyarbitrary irreducible loops in the IPG.

e We demonstrated how to use the structural relation betweds*GiRd IPG
loops to transfer loop bounds obtained through static @47, 51] onto the
IPG. Alternatively, we also presented a way to extract looprals from tim-
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ing traces using properties of the IPG. Although the acqucdsuch bounds
is mainly tied to the amount of testing undertaken (bounds & underesti-
mated), we also showed that how the program is instrumeatetde equally as
influential (bounds can be overestimated).

e We showed how to use the IPG in the context of interprocedamalysis. In
particular, we described how to virtually inline a subsethaf ipoints from each
callee into the caller (but none of the transitions), resglin one IPG per pro-
cedure. This inlining mechanism gives the trace parsebilityi to procedure
calls and returns and facilitates retrieval of timing dataaoper context basis
as opposed to a per procedure basis. This provides the ubetheiflexibility
to determine the precision of the analysis as the calcul&igine can unify or
expand contexts.

At this stage we are currently not in a position to evaluagel®G as a program
model within WCET analysis. This is because the IPG is a metie seépresentation
and does not provide a meaper seto compute WCET estimates. The remainder of
this thesis thus addresses this issue by exploring tresdlzadculations on the IPG (in
Chapter 4) and remodelling of the IPET towards the IPG (in Givapt Once these
calculation techniques are in place, we evaluate our efiiraework, including the
effect of context expansion and unification, in Chapter 6.






4 Tree-Based Calculations on the IPG

In the previous chapter, we introduced thetrumentation Point Graph (IPG) as a
novel program model for WCET analysis irHybrid Measurement-Based(HMB)
framework, which is constructed fromGFG* - an augmente@ontrol Flow Graph
(CFG). Instead of modelling the transitions between basickd, the IPG struc-
tures the transitions amongstrumentation points (ipoints) and therefore forcibly
changes the unit of computation.

This chapter considers how to perfortnee-basedcalculations on the IPG. One
advantage of tree-based approaches is that they incur lowpwational complex-
ity. Moreover, in addition to being able to combine pure gné values, tree-based
methods can combinexecution time profilederived from measurements to produce
probabilistic WCET estimates [15, 16], in contrast to path-based approauitthe
Implicit Path Enumeration Technique (IPET).

The first contribution of this chapter is how to transform tR& into a novel hi-
erarchical form, thdtree. This new representation is needed becausé\tistract
Syntax Tree(AST) is constructed from program source and hence it doesuit@ably
model the transitions among ipoints at the intermediatededel. The Itree models
standard control structures found in high-level langudgekection, sequence, and it-
eration), thus it is conceptually similar to the AST. Thea®&t contribution of this
chapter is theiming schema[88, 94] associated with the Itree, which are formulae
that compute a WCET estimate from the Itree structure.

The remainder of the chapter is structured in the followingnmer. Section 4.1
first recalls some properties of the IPG that were present&hapter 3, before Sec-
tion 4.2 presents the formal properties of the Itree. Negtti®n 4.3 considers how
to transform an acyclic IPG into an Itree. For these purposesintroduce the no-

97
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tion of acyclic reducibility, which basically decides if acyclic regions in the IPG
can be decomposed into a hierarchysafgle-Entry, Single-Exit (SESE) Multiple-
Entry, Single-Exit (MESE), andSingle-Entry, Multiple - Exit (SEME) regions. We
show how to identify these regions using the pre-dominapost-dominance, pre-
dominance frontier, and post-dominance frontier relaioin essence, branch and
merge vertices are classified as being either reducibla@ducible, analogously to
how headers of loops are categorised in standard (cycticibility [3, 83]. We show
how to use these properties to prevent redundant travestalsyclic IPGs (whilst
building a hierarchical representation) and how this tesl aforest of Itrees an
Iforest.

Section 4.4 then gives a complete description of the algorthat creates an Iforest
from the IPG. Section 4.5 gives the timing schema, which #@ables us to evaluate
our tree-based calculation engine against the AST in Seeti6. We compare the
core contributions of the chapter with previous work in &atc#.7, before finally
concluding the chapter in Section 4.8.

4.1 Preliminaries

An IPG | = (l,E,s,t) has a set of cycle-inducing edges calleztation edges In
Chapter 3, we showed that it is generally very difficult to iglgnteration edges using
state-of-the-art loop detection techniques due to therarimess of IPGrreducibility
(see Definition 7 in Chapter 3). We instead assumed the CF&tVc = BUI, Ec, s, t)
from which| is constructed to be reducible and usedltbep-Nesting Tree (LNT)
(see Definition 8 in Chapter 3)_C of C to determine which edge insertions initoause
cycles.

A structural connection therefore exists between a CFG*,ldepoted.;,, and an
IPG loop, denotedi'h (denoted in this way to reflect the structural connectiob{o
We defined a functio® : . — .¥', where.Z is the set ofnstrumentedCFG* loops
and.#" is the set of IPG loops. Every IPG lodj) has ariteration edge sef denoted
IE(L},). In the following, it will be useful to partitiohE (L}) into two disjoint subsets:

the set ohon-self-loopiteration edgeSL(L} ) = {u— vlu— ve IE(L},) Au# v} and
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the set ofself-loopiteration edgeSL(L}) = {u— vju— ve IE(L}) Au=v}.

Detection ofloop-entry andloop-exit edges for each IPG Ioold1 is achieved by
performing least-common ancestor queried §nNith the set offorward edges irEg; .

4.2 Itree Representation

For an IPGl = (I,E,s,t), eachleaf of the Itree is an edge — v € E; because this is
the unit of computation of the IPG. Following are the prosrofinternal vertices

e A loop vertex, denotedl OOP, is a rooted binary tree that models a subset of the
IPG transitions in a CFG* loop,. The properties of its children satisfy either
of the following:

— The right tree models an iteration edge- v € SL(L{ ) and the left tree is
empty.

— The right tree models the set of iteration edm and the left tree
models the ipoint transitions created from the induBaected Acyclic

Graph (DAG) Ly,.

As a loop vertex. only has two children, we shall denote its left tree with the
notationsucge (L) and its right tree with the notati‘sucgign: (L ).

¢ An alternative vertex, denoted\LT, is a rootech-ary tree that either models:

1. The path9s, p2,..., pn from a branch vertek to ipost(b).

2. The pathsps, po, ..., pn from a branch verted to a merge vertexn £
ipost(b) such thaim post-dominates all edges on ajl

3. The selection between the execution of the iteration sedgféL(L'h) (pro-

vided |SL(L})| > 1) that are identified for a CFG* lodp,.

4. The selection betwedrOOP verticesLy, Lo, ..., Ly, in which each mod-
els an iteration edge — v € SL(L'h), and the (uniquel OOP vertex mod-

elling the seSL(L}) (providedSL(L}) # 0 andSL(L},) # 0). The iteration

edgesSL(L},) andSL(L}) are those identified for a CFG* lodp,.
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5. The selection between the loop-entry edgesvi, U— Vo, ..., U—V; into
an IPG loop or the selection between the loop-exit edgesy:, w — Yo,
..., Ww—Y; out of an IPG loop.

e A sequencevertex, denotedEQ is an ordered rooted-ary tree that either
models:

1. Thesetofpathpl:b—>sli> m, p2:b—>sQi>m, N o b—>sni> m
such thab is branch vertexs € sucgb) andmis the first merge vertex on
all p; satisfyingm<u — v, whereu — vis an edge on somg.

2. The set of paths = v such thatu is not a branch vertex and satisfies
VU

4.3 Acyclic Reducibility

A hierarchical representation of a flow graph representsyeseecution path by de-
composing the flow graph into a number of regions which ar@natly contained in
others. When the flow graph is cycligducibility assesses whether the flow graph
can be decomposed into a hierarchy of cyclic regions and, ivkich vertices “con-
trol” entry into a particular cyclic region — these vertic® calledreducible(loop)
headers. Which vertices are controlled by such headers, amahweaders control
other headers, can be represented in a LNT.

However, reducibility does not assess which vertices inflive graph “control”
acyclic regions (mainly because compiler optimisatioress@@rformed almost exclu-
sively within loops, i.e. only cyclic properties are of irggt). This is undesirable
since, with such information, we could collapse the regimmf where control is
assumed to the vertex at which control is relinquished im@lastract vertex, and
proceed in this manner until a unique abstract vertex reatha{note the deliberate
similarity to how loops are collapsed in constructing theT)NFurthermore, the re-
duction process naturally organises such regions higcaith

Let us demonstrate this notion of control through a runnixeyeple, which is de-
picted in Figure 4.1. Observe in this IPG thatcontrols access to all edges in the
region untilt; and that 4 controls access to the set of eddes: t;, 4 — 5,5 — t1}.
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S1

t1

Figure 4.1. Example IPG To Demonstrate Acyclic Irreducibility.

Also note that both vertices are branch vertices and thgbditg at which control is
relinquished (or merged) is their respective immediaté-gdosinator. (Clearly, if a
vertex is not a branch vertex then it must always control s€t@its unique successor
edge.)

However, the important vertex to note is 1 which, althoughtamling access to the
set of edge§l — 6,6— 7, 7— 8, 8— t1, 1 — 4}, doesnot control access to the set
of edges from 4 onwards. In this case, becdpsst(1) = t;, control is relinquished
in a regionbeforeflow of control reaches its immediate post-dominator, djmdly
once the edge %+ 4 has been traversed.

These observations are important (to the problem of bugldin Itree from an
acyclic IPG) because, as described in the previous sedherifree must model the
set of alternative paths, po, . . ., pn from a branch vertek to the first vertex common
to all p;, which, by definition, igpost(b). (This must be modelled so that the timing
schema is able to select the longest path amonggt.alin particular, becausedoes
not control all edges on afl up toipost(b), the transitions on these uncontrolled re-
gions will have to be duplicated. Besides causing redundapigtraversals, this will
inflate the Itree space requirements quadratically.

For instance, consider Figure 4.2, which depicts the Iteselting from the IPG
in Figure 4.1. Note, in particular, how the two emboldenddrahtive subtrees are
duplicates, which represent the paths from #4ptost(4).
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1—-6

Figure 4.2. The lItree of the IPG from Figure 4.1.

Vertices that control acyclic regions can be identified whitdominance relations
since they determine which vertices and edges must precqaeaceed the execution
of other vertices and edges acrafigpaths. The specifics of how these can be detected
is established in Theorem 2 below, the proof of which requihe following simple
lemma:

Lemma 2. For a flow graph G, a vertex u pre-dominates all edges with sawrd,
and only if, u pre-dominates v.

Proof. Immediate from the definition of the pre-dominance relation O

Theorem 2. Let G= (g, Eg,s,t) be an acyclic flow graph, b be a branch vertex in
G, and G, be the induced subgraph of G such that all vertices jna@ reachable
from b and satisfy ipogéb) < u. Then, b pre-dominates all edges in G that belong to
E(Gp) if, and only if, b= ipre(ipost(b)) or [DFpre(b)| = 11.

Proof. = From Lemma 2, it suffices to show that the source of every el @, iis
pre-dominated b¥.

There are two cases to consider:

INote that the dominance relations can be reversed to makeapply to merge vertices instead.
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b =ipre(ipost(b)): Suppose to the contrary that- v e E(Gp) is an edge such
thatb ¥ u— v. This implies that there is a paihi u— v — ipost(b) that
avoidsb; evidently,b t¢ ipost(b) and hencd # ipre(ipost(b)).

|DFpre(b)| = 1. We will show thatipost(b) is the unique element iDFpe(b)
and, becausgost(b) is not the source of an edge @y, the implication
holds.

Letb’ the unique element iDFye(b). We show thatpost(b) # b’ implies
|DFpre(b)| > 1. Sinceipost(b) # I, there must be a path— u = t that
avoidsb’ (becausd&’ does not post-dominats). There are two cases to
consider:

e b ¥ u. Eitherb’ ¢ DFye(b), and the proposition is contradicted; or
U € DFpre(b), and thereforgDFpre(b)| > 1.

e bru. Letzdenote the vertex at which the pathsi t andb 5t
converge. Eithez € DFpre(b), or there is another pathi> Z % zsuch
thatb ¥ Z, and therefore € DFpe(b). In either caseDFpre(b)| > 1.

<« There are two cases to consider:

bipost(b) : We want to show the stronger condition that ipre(ipost(b)). It
suffices to show that there is no vertéx V (Gp) such thab>b'>ipost(b).
Observe thab’ must be a branch vertex (the immediate pre-dominator of
a merge vertex is always a branch vertex) andithast(b) <b’, otherwise
b could avoidipost(b) viab'. There are two cases to consider:

e Every path fromb to ipost(b) includesb’. But thenb’ = ipost(b).
e There is a path fronb to ipost(b) that avoidsy. Therefore, because
b is also reachable froin, b’ cannot pre-dominatigost(b).

b % ipost(b) : Asbpre-dominates all edges@that belong tdy,, by Lemma 2,
it also pre-dominates all vertices (@& that are sources of edges @,.
Therefore, the only vertex it cannot pre-dominate is theidason of
an edge. The only such destination mustipest(b), i.e. DFpre(b) =
{ipost(b)}, and the claim holds.
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This theorem is important because it enables ordered vp#ieg (b, m) in a flow
graphG to be identified, where eadhis a branch vertex and eaahis a merge vertex.
Each pair can be categorised as one of the following:

e If ipost(b) = mandipre(m) = b then(b,m) is a SESE region because flow of
control always enters this regionlaand always leaves at.

e If ipost(b) = mand|DFe(b)| = 1 then(b,m) is a SEME region because flow
of control always enters this region latand always exits through one of the

edgesu — mwhereb>u — m.

o If ipre(m) =band|DFposi(m)| = 1 then(b, m) is a MESE region because flow of
control always enters this region through one of the etlgesi wherem<b — u
and always exits througtm.

When all branch vertices i@ control entry into a SESE or SEME region and all
merge vertices irG control exit out of a SESE or MESE region, we say tiais
acyclic reduciblebecause these regions can be organised hierarchicalljarsim
how reducible loops are organised in cyclic flow graphs. Fdiyn

Definition 13. An acyclic flow graph G= (\g, Eg,s, t) is acyclic reducibleprovided:
e Allits branch vertices b satisfy ip(gost(b)) = b or [DFyre(b)| = 1, and

¢ All its merge vertices m satisfy ip@gdre(m)) = m or [DFgost(m)| = 1.

In an acyclic reducible IPG, therefore, we can build theeldref its constituent
SESE, SEME, and MESE regions without redundant graph sal’and without un-
necessary duplication of subtrees.

On the other hand, (& is acyclic irreducible, this indicates that there must @nbh
verticesb satisfying| DFpre(b)| > 1 and merge vertices satisfying|DFposi(m)| > 1:
such vertices are termextyclic-irreducible verticesThe reason for this terminology
is that, for an acyclic-irreducible branch vertbxsome parts in the region froim
to ipost(b) can be reached through paths that do not pass thrbughd thus this
region cannot be collapsed until its outermost enclosiggreis collapsed. (Similar
reasoning can be applied to a merge vertex except that ti@nrbggins aipre(m)
and ends a.)
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In an acyclic irreducible IPG, therefore, there are irrediecmerge vertices at
which flow of control merges from distinct branch verticeattresults in subtree du-
plication and hence a re-traversal of a subgraph in the IPG.

For instance, let us return to our running example in Figufle which contains
branch verticegsi, 1,4} and merge verticegt1,4}. Note that:

ipost(sy) = ipre(t1), thus(ss,t1) is a SESE region.

ipre(ipost(4)) # 4 butDFpre(4) = {t1}, thus(4,t1) is a SEME region.

ipre(ipost(1)) # 1 andDFpre(1) = {4,t1}, thus 1 is an acyclic-irreducible branch.

ipost(ipre(4)) # 4 and DFposi(4) = {1,s1}, thus 4 is an acyclic-irreducible
merge.

From these observations, we may infer that the IPG is acyofiducible. Also note
that, because 4 is an acyclic-irreducible mei@Epost(4) = {1,s1} implies that there
will be two traversals of the subgraph from 4#g one whilst building the subtree
modelling the paths from the branch vertgx(which merge at; = ipost(s1)); the
other whilst building the subtree modelling the paths frowm branch vertex 1 (which
also merge at; = ipost(1)). This explains why the emboldened alternative subtrees
in Figure 4.2 are duplicates.

Duplication can be avoided, however, by instead buildingradt of Itrees (an Ifor-
est) and having conceptual pointers from one subtree tootbteof a particular Itree.
As long as the calculation engine is aware of the order in wivees in the Iforest
need to be processed, production of an Iforest is not an estiéence does not affect
the WCET calculation.

For example, Figure 4.3 depicts the hierarchical represientthat we wish to move
towards for the IPG in Figure 4.1. This is similar to the ItedeFigure 4.2, the key
difference being that there is now only one emboldenedradtere vertex which is a
tree root. Furthermore, there are now two pointers to thi¢ree, which are indicated
by the Ieavei. The calculation engine must therefore generate the WCEMatsi
of the Itree on the left (before the Itree on the right) andhtpepagate its value to the
leaves that are pointer references.

In order to build this representation, however, it is nofisignt to merely detect
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1-6 6-7 7-8 8-t 1-4 T, 12  2-4 53 34

Figure 4.3. The Iforest of the IPG from Figure 4.1.

the merge vertices that are acyclic irreducible — we alsanie&know the vertex at
which to terminate Itree construction. Following are thg kbservations to identify
these additional vertices:

e Because the subtree constructed from an acyclic-irrecumirge vertexwill
be duplicated for each branch vertex DFpost(m), and because we must model
the paths fronb to ipost(b), duplication must halt at another merge vengx
In particular,m will either satisfyipost(b) = m’ or ipost(b) <, i.e. it has to
be enclosed in the regid, ipost(b)).

e m cannot pre-dominatae’ because, ifn did pre-dominatex, this would im-
ply thatm also pre-dominateipre(n). Thereforem would control the SESE
region (ipre(m'),m’) and, consequentlyyf cannot be a merge vertex at which
distinct branch vertices iDFpost(m) merge.

This suggests the following sequence of steps in order tiol baé Iforest of an

acyclic IPGI:

e For each acyclic-irreducible merge vertexthe nearest merge vertex satis-
fying bothm ¢m andm’ <mis identified. We calht, denotedn’ = imergem),
the stopping vertexf the acyclic-irreducible merge vertex

e The vertices of are traversed in reverse topological order. For each aeycli
irreducible merge vertem, we build an Itree fronmto its stopping vertex. For
each branch vertdx, we construct th&L T vertex modelling the paths frobto
ipost(b). However, during this construction, we do not constructithasitions
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from any acyclic-irreducible merge vertex rather, we add a pointer to the

subtree constructed from and “jump” to its stopping vertex. This mechanism
continues untiimergedm) = ipost(b), thus avoiding traversal of the IPG edges
in these regions.

In our running example, observe that= imergg4). Traversing this IPG in reverse
topological order, 4 is the first (and only) acyclic-irrechle merge vertex encoun-
tered; hence the algorithm outlined above will construetltree of the regioit4,t;).
The first branch vertex encountered (except for 4) is 1. Wheldibg its ALT ver-
tex, we know that flow of control will arrive at vertex 4 becausis on a subset of
the paths from 1 te;. When analysing this vertex, the algorithm will instead add a
pointer to the previously computed Itree (for the regidrt;)) and will then jump to
t; because; = imergg4). The construction of thALT vertex (modelling the subset
of paths on which vertex 4 is encountered) will then halt bee& = ipost(1).

4.4 The Algorithm

This section presents the algorithm that constructs aedfdrom an IPG = (I, E, s, t).
It is assumed that the CF& = (V¢ = BUI,EcU{t — s},s,t) from whichl| was built
is reducible. This restriction is needed because the dlgoniequires the LN'ITLC of

C, and as noted in Chapter 3, there is no consistent view of ihygepties of a LNT
in the presence of irreducibility. Also note that the preseof the edge — s sim-

plifies our discussion since all vertices are then encloseadloop, and becauges

constructed fronC, this property also holds ity therefore,everyedge inl will be

rooted under & OOP vertex.

It is important to emphasise that the algorithm can hand&slEhat are generated
from CFG*s with multiple-exit loops (commonly associatedivbr eak statements)
and loops with multiple tails (commonly associated vatint i nue statements).

Due to the complex nature of the algorithm, we will illus&ats operation with
a running example depicted in Figure 4.4, which shows theetlolata structures re-
quired. Note that the CFG* has three non-trivial loopg, { Le,, andLs;) whose nest-
ing relationship is shown in the LNT. With respect to the IR, following properties
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Figure 4.4. Example to Demonstrate Itree Construction Algorithm.

S3

8
o

(b) Resultant IPG.

(c) The LNT of the CFG*.

are of note:

e For the IPG loofLg,, IE(Ly,) = {14 — 14,14 — 13}, its loop-entry edges are
{15— 13 15— 14,16 — 13 16 — 14} and its loop-exit edges afd4 — 17}.

e Forthe IPG loof, , IE(Ly,) = {17 — 15,17 — 16}, its loop-entry edges are
{s3 — 15,53 — 16} and its loop-exit edges afd7 — t3}.

e For the IPG Ioop_'SS, |Es; = {t3 — s3} but it has neither loop-entry edges nor
loop-exit edges as it encloses the entire IPG.

The pseudo-code of the Iforest algorithm is split acrossfeg 4.5, 4.8, 4.9, 4.10,4.12,
and 4.14. Before we embark on a description of each of thesee semarks about
the conventions employed need clarifying. First, we try amdid unnecessary pa-
rameter passing between procedures by assuming the paramassed to the main
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procedureBui | d- | f or est ) are globally visible. This allows us to concentrate on
the parameters to procedures that change between calmnd&Gdor setsSandT, we
useSU_T as a short form 06:= SUT.

44.1Buil d-1forest

This procedure takdsC, andTLC as parameters to initiate construction and is the only
procedure that analyses cyclic propertied pthat is, all other procedures operate
exclusively on (induced) acyclic subgraphd of

The basic operation of the algorithm is akin to that of the E@struction algo-
rithm (see Chapter 3) in the way that it performs an insideemgomposition of,
i.e. from inner loops outwards to outer loops, usTF@ (lines 1-37%. During this
decomposition, the Itree representation of each IPG lchdp constructed as follows.

First of all, recall from Section 4.1 that we partition therdation edge set ch‘}] into
non-self-loop edges and self-loop edges. The reason ®ighihat we may consider
L'h as several sub-loops (one for each iteration edge) thattieféy contribute to
the execution time of one larger loop, namely the CFG* lagp(from which L'h
is constructed). Therefore, the Itree representationldhgace together these sub-
loops in such a way that, during the calculation, the sulp-lith the greatest WCET
estimate is selected. That is, we wantAnl vertex whose children are the Itree
representations of these sub-loops.

Clearly, by definition, any self-loop iteration edge cannaaite any of the forward
edges irLL. Thus the algorithm first constructs individuaDOP vertices for allu —
u e SUL}) (lines 3-12). The left child of eachOOP vertex is empty, as required,
and the right child models the unique transition- u. If there are multiple self-loop
iteration edges then all of the&®OP vertices are rooted under &b T vertex which
effectively models the entire self-loop regionLc#(Iine 5).

Every non-self-loop iteration edge— v € SL(L'h) is modelled in the right tree of
asingleLOOP vertex whose left tree models all forward edgesﬂr(lines 13-21). If

|SL(L})| > 1 then the right tree is aALT vertex so that the calculation engine can

2The algorithm must use the LNT @fto perform the decomposition because we do not specifically
create the LNT of.
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Input: I,C, T,
1 for i := height(T®) — 1 downto O by —1 do

2 foreachinternal vertex h with levéh) =i and I1E(L},) # 0 do
3 if SL(L}) # 0 then
4 if |SL(L},)| > Lthen
5 lg:=ALT
6 foreachu— v e SL(L}) do
7 lc :=LOOP
8 SUCQight(h;) =U—V
9 sucdls) U— {lc}
10 else
11 ls:=LOOP
12 SUCGight (Is) U= {u— v € SL(L})}
13 if SL(L}) # 0 then
14 Im:=LOOP
15 if |SL(L},)| > 1 then
16 a:=ALT
17 foreachu — v e SL(L|) do
18 sucdqa) U= {u — v}
19 SUCGight (Im) :=a
20 else
21 suCGight (Im) :=u— v e SL(L})
22 Induce loop DAGL},' for L},
23 body :=Bui | dAcyclic(d,t))
24 SUCGeft(Im) := body
25 if SL(L},) #0andSL(L}) # 0 then
26 if [SL(L})| =1 then
27 r=ALT
28 sucqr) U= {ls,Im}
29 else
30 ri=Ilg
31 sucqr) U— {Im}
32 loopRootsh) :=r
33 else ifSL(L}) # 0 then
34 loopRootgh) :=1g
35 else ifSL(L}) # 0 then
36 loopRootgh) := Iy
37 AppendloopRoot$h) ontocalculationOrder

Figure 4.5. Bui | d- | f or est : Main procedure to Build Iforest from IPG
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choose the longest iteration back into the acyclic regioa §lall observe in Sec-
tion 4.6 that this is one cause of overestimation). Othexwiise right tree models the

unique iteration edge iSL(L})).

In order to construct the left tree of thisOOP vertex, we must first induce the
loop DAG L}, = (Vi, En,s’,t') of L|, as follows (line 22J. V4, consists of the set of
ipoints {u|parentrLc(u) = hvu=h} and the set of vertice$v| parentrLc(v) =hA
vis internal vertex irlT,*}. Each internal vertex is termed abstract vertex because
it represents all verticasof an inner I00|d_'h,. The edge&y, consist only offorward
edges (i.e. there are no iteration edges) and are addedagdoletu — v € E; be an
edge such that = h or eitheru or vis a child ofh in TLC. Then, ifuis the source (re-
spectively destination) of a loop-exit (respectively leemry) edge from an inner loop
LL,, the abstract vertex representih{g becomes the source (respectively destination)
of the edge irEy,; otherwise u itself is the source (respectively destination).

The vertices/,t’ represent the unique entry and exit vertices, respeclimélly'h'.
These are needed because the dominator tree construgnittahs [4, 66] always
assume their existence. IIJ‘h' has multiple verticesu for which |pred(u)| = 0 or
|sucqu)| = 0, we insert additionaghost ipoints (see Section 3.1) t@, and link the
vertices without predecessors or without successors e thleost ipoints.

The loop DAGs generated for our running example are depictédgure 4.6 to-
gether with their respective post-dominator trees (on it of each sub-figure). In
Figure 4.6(a), only one IPG edge 13 14 has been added because the other edges,
namely 14— 14 and 14— 13, are iteration edges. In Figure 4.6(b), vertex 11 is an
abstract vertex representing the IPG transitions in thelto@ ng. Observe that IPG
edges 15— 13, 15— 14, 16— 13, and 16— 14 have 11 as their destination since
they are all loop-entry edges into the collapsed loop. Alsterhat we have added
the ghost ipoint 10 because both 16 are entries into this loop and therefore have no
predecessors in the loop DAG. Figure 4.6(c) depicts thddagt DAG, where vertex
12 represents the collapsed IPG Idgp.

SRecall that the IPG construction algorithm used reversé-@aterings of vertices in loops to avoid
explicit inducement of each loop DAG. In contraBui | d- | f or est requires each loop DAG to
be induced in order to construct its respective pre-doramand post-dominator trees so that, for
example, acyclic-irreducible merge vertices can be detect
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Figure 4.6. Induced Loop DAGs and their Post-Dominator Trees for IPG in Fig-

ure 4.4
13 14
I I
14 13

(a) For loop Ly,.

S3 S3

O
t3

(c) For loop L.

Once the loop DAG has been generated, the Itree modellisgathyiclic region is
constructed via a call tBui | dAcycl i ¢ with parameters’,t’ (line 23); the returned
Itree is subsequently rooted under the left tree oftBEP vertex (line 24).

The next step oBui | d- | f or est pieces together the respective Itrees constructed
to model the non-self-loop iteration edge regior. (230P vertex) and the self-loop it-
eration edge region (either 4. T vertex or aLOOP vertex). There are three cases to
handle:

1. SL(L}) # 0 andSL(L}) # 0: When|SL(L},)| > 1, the Itree modelling the self-
loop region ofLL is already amALT vertex, thus the.OOP vertex modelling

SL(L}) is added as a child (lines 30-31). Otherwise, we insert aitiadél
ALT vertex and add the respectik@®OP vertices as children (lines 27-28).

2. SL(L}) # 0: The Itree modellingSL(L{) becomes the Itree representation for
the IPG loopL}, (line 34).

3. SUL}) # 0: The Itree modellingSL(L{) becomes the Itree representation for
the IPG loopL|, (line 36).
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The root of the Itree modelling the IPG Ioch,d)] is stored in a temporary variable
loopRootdor subsequent retrieval (because it will become a child sifilatree when
building the Itree representation of its outer loop). Weappend the root onto a list,
calculationOrder in case the abstract vertex representih@n its outer nesting-level
is an irreducible-merge vertex and will therefore only hpeeters to it (line 37).

Let us consider the (partial) state of the Itrees modellirggthree cyclic regions of
the IPG in Figure 4.4 before any of their acyclic regions hasen constructed. This
is depicted in Figure 4.7 in which Itrees are arranged froitntéeright according to
the order that they are built. For the IPG Iob'g, there are twd.OOP vertices rooted
under anALT vertex sinceSL(LY, ) = {14 — 14} andSL(LL ) = {14 — 13}. For the
IPG looplL| ,» there is a uniqué OOP vertex whose right tree is aiL T vertex since

SU(L},) = {17 — 15,17 — 16}. On the other hand, for the IPG loaf,, there is only

one (dummy) iteration edge in the right tree becaBisg.,) = {t — s}. Also note that
the parametrised call Bui | dAcycl i ¢ is shown for each respectivgOOP vertex.

I | I
Lez Lba L53

14— 14 14— 13 17— 15 17— 16
Bui | dAcycl i c(13,14)

Figure 4.7. Itrees modelling Cyclic Regions in IPG of Figure 4.4

4.4.2 Bui | d- Acyclic

This procedure builds the acyclic region induced for eadB 1Bop DAG L' its
pseudo-code is presented in Figure 4.8. It uses the algod#scribed in the previous
section to avoid redundant traversal of the IPG. Therefoppcesses vertices I,

in reverse topological order (lines 39-43), and on encaungean acyclic-irreducible
merge vertey, the subtree modelling the region fronto it stopping vertexmerggy)

is built (line 41). The subtree returned is subsequentlseston an arrayacyclicRoots
(line 42), which is indexed by acyclic-irreducible mergetices, so that we can later
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analyse the properties of the subtree constructed. Funtirer the subtree is appended
ontocalculationOrder(line 43) to allow the calculation engine to generate the WCET
estimate of this subtree before others that point to it. Time Btep of this procedure

is to build the Itree modelling the region froshto t’ (line 44).

Input: u,v
38 Sort vertices irL],’ topologically
39 foreachy in reverse topological order ofLL do

40 if y is irreducible merge vertexhen

41 r :=Whi ch- Sub- Tr ee(y, imerge(y)
42 acyclicRootéy) :=r

43 Appendr ontocalculationOrder

44 return Wi ch- Sub- Tree(u, V)

Figure 4.8. Bui | d- Acycl i c: Helper Procedure in Iforest Construction.

For the loop DAGL'es/ (c.f. Figure 4.6(a)), because there are no acyclic-irreatieic
merge vertices, only the cathi ch- Sub- Tr ee(13,14) is made. On the other hand,
for the loop DAGLle (c.f. Figure 4.6(b)), the calthi ch- Sub- Tr ee(11,17) pre-
cedes that ofti ch- Sub- Tr ee(10,17) since 11 is an acyclic-irreducible merge
vertex. Again, for the loop DACEL'S3' (c.f. Figure 4.6(c)) there are no acyclic-irreducible

merge vertices, thus only the cahi ch- Sub- Tr ee(sz, t3) is made.

4.4.3 \Whi ch- Sub- Tr ee

This is a helper procedure which determines the type of salsgquired in modelling
the paths from a source vertexto a target vertex; its pseudo-code is presented in
Figure 4.9. Specifically, this procedure is called frBm | dAcycl i ¢ whenuis an
acyclic-irreducible merge vertex and= imerggu) or whenu=s" andv =t'. Note,

therefore, thav always post-dominatas

Whenu only has a unique successpwe need to first determinest= v = ipost(u).
If this is satisfied, the Itree created bipi que- Edge- Act i on is returned (line 47),
otherwise we have to build8EQtree fromu to v (line 49).

On the other handj must be a branch vertex. ¥f= ipost(u) then this means that
all alternative paths froma will merge atv, i.e. we only need aALT vertex (line 52).
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Input: u,v
45 if |[sucqu)| =1 then
46 if ipost(u) = v then
47 return Uni que- Edge- Acti on(u, V)
48 else
49 return Bui | d- SEQ Root (u, V)
50 else
51 if ipost(u) =v then
52 return Bui | d- ALT- Root (u)
53 else
54 return Bui | d- SEQ Root (u, V)

Figure 4.9. Wi ch- Sub- Tr ee: Helper Procedure in Iforest Construction.

Otherwise, in addition to modelling the region franto ipost(u), we have to model
the region frompost(u) tov, i.e. we need SEQvertex (line 54).
In our running example, the following calls were made frBm | dAcycl i c:
e Wi ch- Sub- Tr ee(13,14): this returndUni que- Edge- Act i on(13,14).
e Wi ch- Sub- Tr ee(11,17): this returndni que- Edge- Act i on(11,17).
e Wi ch- Sub- Tr ee(10,17): this returnsBui | d- ALT- Root (10,17).
e Wi ch- Sub- Tr ee(ss,t3): this returnBui | d- ALT- Root (s3,t3).

4.4.4 Uni que- Edge- Acti on

This procedure builds the Itree for the edge> vin the loop DAGL! "its pseudo-code

is presented in Figure 4.10. Becam.ﬁ/emight contain abstract vertices, this procedure
also reconstructs the actual IPG transitions (i.e. the-lmpy and loop-exit edges of
E) that the dummy edges between abstract vertices represent.

There are four cases to handle:

1. If uandv are both abstract vertices then we have to model all the éxaedges
of the IPG loopL], that are also loop-entry edges of the IPG lddp When
there is only one such edge, we simply return that edge (B)ediherwise we
construct arALT vertex modelling the selection between them (lines 60-63).

2. Similarly to the previous caselfis an abstract vertex then we have to model all
the loop-exit edges of the IPG lodg that have the destination Again, when
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55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Input: u,v

if uand v are abstract verticethen
X={y—zyecljazell}
if [X] =1 then
return y—ze X
else
a:=ALT
foreachy — ze X do
sucda) U—-{y — z}
return a
else ifu is abstract vertexhen
X={y—vlyeLy}
if [ X| =1 then
return y —ve X
else
a:=ALT
foreachy — ve X do
sucda) U— {y — v}
return a
else ifv is abstract vertexhen
X={u—yyeLy}
if [X] =1 then
return u—ye X
else
a:=ALT
foreachu—ye X do
sucda) U= {u—y}
return a
else
return u— v

Figure 4.10. Uni queEdgeAct i on: Helper Procedure in Iforest Construc-

tion.

there is only one such edge, we simply return that edge (IMeddherwise we

construct anmALT vertex modelling the selection between them (lines 69-72).

For example, Figure 4.11 depicts the subtree created fourtfgpie transition

s3 — 12 (c.f. Figure 4.6(c)).

3. Analogous to the previous case, exceptthagn abstract vertex and we instead

have to model all the loop-exit edges of the IPG lddhat have the sourae

Again, when there is only one such edge, we simply returngtige (line 76),

otherwise we construct aALT vertex modelling the selection between them

(lines 78-81).

4. The edger — v actually belongs t&; and so it is simply returned (line 83).
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s3— 15 s3— 16

Figure 4.11. Itree modelling Loop-Entry Edges into IPG Loop L{)3

Observe that the loop-exit subtree of an IPG loop can haiBttansitions that
were constructed from CFG* loops containingeak statements. The reason is that
the algorithm is not concerned with the source of the loop@xi of the CFG* loop;
rather, it only needs to know that a transitior- v can occur from an ipoint inside
a CFG* loopLy, to an ipointv inside an outer CFG* loofyy.

4.4.5 Bui | d- ALT- Root

This procedure builds afL T root modelling the paths infrom a given branch vertex
u toipost(u); its pseudo-code is presented in Figure 4.12. It dependseooanstruc-
tion of an auxiliary data structure that we call tGempressed Post-Dominator Tree
(CPDT) (line 70). This basically models the nearest mergeemothat is the imme-
diate post-dominator of a subsetsafcqu) and enables thALT subtree to be pieced
together during a bottom-up traversal.

The CPDT, denoted 7, is iteratively computed by performing Least-Common

Ancestor (LCA) queries oiﬁpLi;lstwith aquery seQ. The queries il are all unordered
pairs taken from @ynamicvertex sefX; initially X = sucqu). Each Ica query returns
avertexw. If, for a vertexx € X, wis the vertex with the largest helghtTtaost amongst
all Ica queries involving, thenw is set as the parent afin ngs“t‘. Furthermore, ifw
was not initially a vertex inf 2, it is inserted into a temporary vertex s€t once
all gqueries inQ have been answere}, is assigned the elements Xf and the query
process continues until there is a unique verteX'inThe unique vertex remaining in
X" must beipost(u) (otherwiseu would have a different immediate post-dominator).

For example, let us consider how the CPDT is constructed &btanch vertex 10
in Figure 4.6(b). The initial vertex set % = {15, 16}, and therefore, there is only
one Ica query to be answered, namkdg(15,16) in Tpgst The answer returned is
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17 =ipost(10). Thus the query process stops and the parent of both 15 amdttié i
CPDT is 17.

Input: u
84 a:=ALT

|/
85 Tgost .= Bui | d- Conpr essed- Tr ee( T,JLgst,succ(u))
86 for i := height(T5ge) downto 1 by —1 do
87 foreachv with levelv) =i do

88 s:=Bui | d- SEQ Root (v, parent(v)

89 if vis leaf then

90 sucgs) U— {Uni que- Edge- Acti on(u, V) }
91 else

92 a := mergeRootw)

93 if ve sucqu) then

94 sucga’) U= {Uni que- Edge- Acti on(u, V) }
95 sU_{a'}

96 if parentv) =ipost(u) then

97 sucqa) U— {s}

98 else

99 a:=ALT

100 sucqa’) U= {s}

101 mergeRoot@arentv)) := &

102 if ipost(u) € sucqu) then
103 sucda) U— {Uni que- Edge- Act i on( u, ipost(u) }
104 return a

Figure 4.12. Bui | d- ALT- Root : Helper Procedure in Iforest Construction.

The ALT vertexa is subsequently built by visiting the nodes of the CPDT level
by level in a bottom-up fashion (lines 86-101). For eachesext at level i, we
first construct the subtree to model the paths froto parentv) (line 88). Note
that we explicitly callBui | d- SEQ- Root to carry out this construction (and not
Wi ch- Sub- Tr ee) because we know it has to b&BQvertexs; that is, the subtree
must represent the transition— v andthe paths fronv to parent(v).

The properties o within TSoX are then examined. Wheris a leaf, we append the
subtree modelling the unique transition- v to theSEQvertex (line 90). Otherwise,
v is an internal vertex, indicating that there atternativepaths from the children of
v that merge at. In this case, the algorithm will have constructed anofier vertex
a (as discussed below) modelling these paths. (Observe thgpost(u) because the
level by level of traversal of 56 halts at level 1 angpost(u) is the root.) Therefore,
a is added to th&EQroot (line 95).
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This completes the construction of tB&Q vertexs, so now the algorithm deter-
mines whichALT vertexs should be added as a child. parentv) = ipost(u) then
s should be added to the maki T vertexa because we have reached the end of the
traversal of the CPDT (line 97). Otherwise, as noted aboveneexl anotheALT
vertexa’ to model the flow of control that merges before reachpast(u); sis added
as a child ofd’ in this case (line 100) anal is stored in arraynergeRootindexed by
parentv) so that we can retrieve it at the next level in the CPDT (line)101

The final task of this procedure is to check whether thererisresitionu — i post(u)
(line 102), in which case we also have to add its Itree modeh&ALT vertex
(line 103).

Bui | d- SEQ Root (15,17) Bui | d- SEQ Root (16,17)

Figure 4.13. Itree modelling Paths from Branch Vertex 10in IPG Loop L}O3

For example, let us consider how tAET vertex is constructed for the branch ver-
tex 10 in Figure 4.6(b). There are only two edges to analyssi@PDT: 17— 15
and 17— 16. Let us consider the edge 17 15 because the operations performed
for 17 — 16 will be analogous. The paths 15 17 are constructed with the call
Bui | d- SEQ Root (15,17), which will return aSEQ vertex having a singléLT
child (because 15 is a branch vertex itself). The transitiOr- 15 is then added to
the SEQvertex by a call tdJni que- Edge- Act i on: this will return the single edge
10 — 15 since neither of these vertices are abstract ones. Thea(patate of the
Itree modelling this is shown in Figure 4.13.

4.4.6 Bui | d- SEQ Root

This procedure builds 8EQ root from a given source vertaxto a target vertex;
its pseudo-code is presented in Figure 4.14. Note thatvtimfuaranteed to post-
dominateu because the places from which itis called — nameMhn ch- Sub- Tr ee
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(atlines 49 and 54) andui | d- ALT- Root (at line 88) — always satisfy this prop-
erty. The basic intuition of this procedure, thereforepisppend the subtrees on the
pathu = ipost(u) = v; = ipost(v1) = vo = ... 5 ipost(v;) = v onto theSEQroot in

that order.
Input: u,v

105 s:= SEQ
106 X:=U
107 repeat
108 if X is abstract vertexhen
109 if X is irreducible mergehen
110 sucgs) U— {loopRoot$x) }
111 else
112 sucgs) U= {loopRoot$x) }
113 if x is irreducible mergethen
114 if acyclicRoot$x) is IPG edgethen
115 sucgs) U_ {acyclicRootéx) }
116 else
117 sucgs) U— {acyclicRootéx) }
118 y ;= imergégXx)
119 else
120 y ;= ipost(x)
121 if |sucgx)| > 1 then
122 sucds)U— {Bui | d- ALT- Root ( x) }
123 else
124 sucgs) U= {Uni que- Edge- Acti on(x,y) }

125 X:=y
126 until y=v
127 return s

Figure 4.14. Bui | d- SEQ Root : Helper Procedure in Iforest Construction.

This is done iteratively by successively updating two terappverticex andy that
always satisfyy < v. Initially, x is set tou (line 106) and iteration halts onge= v
(line 126).

On each iteration, we determine which subtree should berajgokto theSEQroot
by analysing the properties wfas follows:

e Whenx is an abstract vertex, this indicates that the path fudmv executes the
IPG loopLl. If xis an acyclic-irreducible merge vertex then we insert a f@oin
to the LOOP vertex modellingL!, (line 110). Otherwisel controls a region
in the current loop DAG (i.e. it is either a SESE or MESE regiand thus
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its LOOP vertex is retrieved fronhoopRootsand rooted under th8EQ vertex
(line 112).

e Whenx is an acyclic-irreducible merge vertex, then we first inspgke prop-
erties of the subtree that was constructedin | dAcycl i ¢ and stored in
acyclicRoot&x). If itis an IPG edgeu — v then we add this to thBEQ vertex
(line 115). The reason is that adding a pointer to a leaf uessarily increases
the size of the Iforest as it merely adds a layer of indirectio the smallest
possible Itree entity. Otherwise, we add a pointer to thdreabas required
(line 117). We then advangeso that it jumps over the already modelled sub-
graph (line 118).

e Whenxis notan acyclic-irreducible merge vertexis updated to its immediate
post-dominator (line 120). Kis a branch vertex then we append &€l vertex
returned byBui | d- ALT- Root onto theSEQroot (line 122); otherwise there
is a unique transition— y and the subtree returned bi que- Edge- Acti on
is instead appended (line 124).

At the end of the iteratiorx is advanced to the position gf(line 125).

15—-13 15—14 16— 13 16— 14

Figure 4.15. The Iforest of the IPG in Figure 4.4
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The final Iforest generated for the IPG in Figure 4.4 is shawhigure 4.15.

4.5 Iforest Calculations: Timing Schema and

Calculation Order

An Iforest is just another program representation and fbegglike the IPG, it does
not implicitly provide a mechanism from which a WCET calcutatican be com-
puted. In this section, we first discuss how to control theepf the computations
on individual Itrees in the Iforest, before introducing thming schema that drive the
calculation over Itrees.

Controlling the calculation order of Itrees is necessaryabse of the creation of
a forest of Itrees as opposed to a unique lItree. For this neasben the timing
schema traverses a particular Itree, the WCETSs of any poieterances that it has
must already have been computed. The algorithm describdtkiprevious section
constructed this ordering on the fly by appending the rootireés onto the list
calculationOrderas they are built. Therefore, all the calculation enginedra® is
process the Itrees icalculationOrderand then transfer the WCET estimate deter-
mined at the root to all pointer references.

Informally, the timing schema are a set of formulae that dediow to compute
a WCET at each internal vertex in the hierarchical representéeither the AST or
the Itree) from the WCETS of their children and the type of vertm this way, the
calculation engine traverses the tree in a bottom-up fask@ad upon reaching the
root, the WCET estimate is produced.

The original timing schema [88, 94] proposed for the AST, &eer, are not ap-
plicable to our tree-based calculation engine becausewtbadpresentations have
different properties; for example, our subtrees repraésgrebnditional constructs (i.e.
the alternative vertex) are not the same &st hen- el se constructs in the AST
which always evaluate the conditional expression regasddé the path taken. We in-
stead present the following set of timing schema to be use@oh Itree in the Iforest,
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which are conceptually similar to the original formutae

0(SEQ = Z a(s) (4.2)
SesucgSEQ)

o(ALT) = Sesmg;(m(a(sl), 0(s),...,0(s)) (4.2)

0(LOOP) = g (sucgeft(LOOP)) * k+ g (sucGigh: (LOOP)) x k (4.3)

In these equationsy denotes the WCET of a particular Itree construct. Equa-
tion (4.1) states that the WCET of a sequence vertex is the stine @xecution times
of its children. Equation (4.2) states that the WCET of an a#teve vertex is the
child that has the greatest execution time. Equation (488¢s that the WCET of a
loop vertex is the sum of the contribution of the acyclic cegmodelled by the left
tree and the iteration edge selected from the right treda dbivhich are factored by
the loop bound obtained fcu‘h (either through static analysis techniques or through
trace parsing).

4.6 Evaluation

In this section, we evaluate the Itree by considering a ®tittexample program
instrumented according to two different instrumentaticofites. We also evaluate this
program in Chapter 5 in order to contrast the precision of me-based calculation
engine against that of the remodelled IPET.

Figure 4.16 depicts the program under consideration in 666 and AST formats.
Here, we will compare the Itree specifically with the AST sirthe latter is the only
hierarchical representation we are aware of that drivestissed calculations (in static
analysis). Moreover, this allows us to pinpoint sourcesasfgimism in the Itree.

Let us assume that the WCETSs of basic blocks have been extradtieer through

4Recall that the basic units of computation of an IPG are itgesdIf an edge is iace edgethen its
WCET is extracted during trace parsing as described in Se8t®2. If an edge is eontext edge
then its WCET is computed by the calculation engine as de=tiiito Section 3.5.3. Otherwise, if
an edge is ghost edgethen it is assigned a WCET of 0.
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Figure 4.16. Example Program.

510 By bio C10 tio
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(a) The CFG. (b) The AST.

building a processor model or from measurements. Thisamdion is directly below
each basic block in the AST of Figure 4.16(b) wherekyyandt;o have WCETSs of
0 because they are ghost ipoints (the meaning of the WCETs akdtsawill become
clear shortly but suffice to say they are used for an additioomparison). Let us
further assume that the loop boundlef, is 5 and that the loop bound bf, , is 10.

A simple tree-based calculation on the AST, according tdithang schema origi-
nally proposed in [88], would proceed bottom-up in the faflog manner:

1. AtLOOR: the WCET is(8+7) 5= 75.

2. At SEQ: the WCET is 75+ 8 = 83.

3. AtALT;: the WCET ismax83,9) = 83.

4. AtLOOR: the WCET is(6+ 10+ 83+ 6) + 10= 1050.

5. AtSEQ: the WCET is O+ 5+ 1050+ 6+ 4+ 0 = 1065.

Observe that 1065 is an accurate WCET estimate with the timiiogration pro-
vided.
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4.6.1 Instrumentation Profile One

Figure 4.17 presents the first instrumentation profile fronictv we will evaluate the
Itree. The CFG* in Figure 4.17(a) has been generated from ti&@i€Figure 4.16(a),
thus the loops have the same relative loop bounds. The hrEgure 4.17(c) repre-
sents edges in the IPG by the labels associated with thengurd-#.17(b) — these
edge labels will also be useful in Chapter 5 when building titeder Linear Program
from the IPG.

Observe in particular that the instrumentation profile ihwpaconstructible, which
means that there is a unique path between ipoints in the CF&&* $ection 3.1).
Let us therefore consider the WCET of each IPG edge v to be the sum of the
WCET of each basic block in the sB{P(u — Vv)). For example, becaugP(s10 —
100)) = {a10,b10,d10, €10}, the WCET ofejgo= 5+ 6+ 10+ 8 = 29. (Recall from
Clarification 1 that this thesis does not consider the profecefthus we assume
ipoints incur zero overhead.) The WCET of every IPG transitlerived in this way
is shown underneath the corresponding edge label in Figii#®e). Furthermore, let
us assume that the loop bound supplied for each CFG* loopnsfeared onto the
corresponding IPG loop. (Recall from Section 3.3.2 thatafoiteration edge — v,
the position ofv with respect to the loop exits &f, determines how the bound fay,
is transferred onta — v. In particular, see Equation (3.3).)

The timing schema presented in the previous section predaedbottom-up man-
ner on the Itree as follows:

1. AtLOOR;: the WCET is 15:4 = 60.

2. AtSEQ: the WCET is 60+ 21 = 81.

3. AtALTs: the WCET ismax6,81) = 81.

4. AtALTs: the WCET ismax24, 25) = 25.

5. At LOOR;: the WCET is(81x 10) + (25 9) = 1035.
6. At LOOR;: the WCET is 36:9 = 270.

7. AtALTy: the WCET ismax270,1035 = 1035.

8. At ALT;: the WCET ismax29, 30,35) = 35.
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Figure 4.17. First Instrumentation Profile on Program from Figure 4.16 to Eval-
uate lItree.
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9. At SEQ: the WCET is 35+ 1035+ 10= 1080.
10. AtALT,: the WCET ismax108Q 15) = 1080.

Because the WCET estimate on the AST was 1065, we may conclut¢éhtha
WCET estimate derived from the Itree has been overestimatetbhyycles. The
underlying cause of the overestimation is the irredudipih the outer IPG IoopL{)m.
For this reason, the Itree models the entry transitionsth@bregion, the acyclic tran-
sitions in that region, and the iteration edges of that regialistinct subtrees without
relation to each other. This forces the calculation engite producing a structurally
infeasible path because it conservatively picks the sabtnath the longest execution
times. In this case, the actual longest path through the ¢t loop includes exe-
cution of the inner loop, which the calculation engine cotlsechooses in the acyclic
region modelled byALTs; however, this implies that the iteration edge £0200 must
also be selected, whereas the calculation engine choasésriition edge 102> 101
atALTg, accounting for 9 cycles of overestimation. The other 6&ydf overestima-
tion come fromALT; because the chosen entry transitgf— 102 should have been
s10 — 100 given that all iterations of that loop pass through vet@0.

However, the original motivation for introducing the IPG svaot when the units
of computation are basic blocks, but when timing traceslaenly sources of such
information. Let us therefore re-calculate a WCET estimategute AST by instead
extracting the WCETS of its basic blocks from the ipoint tréioss (these values are
shown in brackets in Figure 4.16(b)); this will serve to slatie our original claim at
the beginning of Chapter 3 that WCET estimates derived frortcstaalysis program
models become inflated due to sparse instrumentation.

The steps taken in the calculation on the AST are as follows:
1. AtLOOR: the WCET is(35+ 21) « 5 = 280.

2. At SEQ: the WCET is 2806+ 35= 315.

At ALT;: the WCET ismax315 30) = 315.

At LOOR: the WCET is(35+ 35+ 315+ 35) x 10 = 4200.

a b~ »

At SEQ: the WCET is O+ 35+ 4200+ 35+ 10+ 0 = 4280.

In comparison to the WCET estimate computed through the Ithee WCET es-
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timate is an overestimation ef 300%. In this case, therefore, it is the IPG’s unit of
computation that prevents conservative analysis.

4.6.2 Instrumentation Profile Two

Figure 4.18 presents the second instrumentation profita fkich we will evaluate

the IPG. The CFG* in Figure 4.18(a) is similar to that in Figdr&7(a): ipoint 103 is

in the same location as ipoint 100 and ipoint 104 is in the slaceion as ipoint 101.

However, the essential difference is that ipoint 102 hascéffely been moved to the
new location occupied by ipoint 105. We will observe thastiminor modification to

the instrumentation profile changes the Itree calculatmrsierably.

As for the previous instrumentation profile, let us againsider the WCET of each
IPG edgas — vto be the sum of the WCET of each basic block in theBg&{(u — Vv)),
as shown underneath the corresponding edge label in Figl@éc), and that the loop
bound supplied for each CFG* loop is transferred onto itsesponding IPG loop.
Note that both Itrees contain the same timing informatibnstwe are able compare
the WCET estimates that they each compute.

Following are the steps taken in this calculation:

1. AtLOOR;: the WCET is 154 = 60.

At SEQ;: the WCET is 60+ 8 = 68.

At ALT7: the WCET ismax39,46,37,22) = 46.

At LOOR: the WCET is(68+ 10) + (9 46) = 1094.
At LOOR;: the WCET is %31 = 279.

At LOOPR;: the WCET is % 30= 270.

At ALTg: the WCET ismax279,1094 270) = 1094.
At ALTyo: the WCET ismax21, 30) = 30.

© © N oo 0 A w b

At ALTy: the WCET ismax24,31,16) = 31.

=
o

. AtSEQ: the WCET is 30+ 1094+ 31 = 1155.

[
H

. AtALTy: the WCET ismax 1155 15) = 1155.
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Figure 4.18. Second Instrumentation Profile on Program from Figure 4.16 to
Evaluate Itree.
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In comparison to the Itree calculation performed in the firstrumentation profile,
this is ana~ 7% overestimation. Again, the underlying cause of the @staration is
the irreducibility of the outer IPG loop, specifically besauheLOOR) chooses iter-
ation edgee;19to execute 9 times in sequence. Clearly, from the structucgdasties
of the IPG, this is not a feasible execution path.

However, also observe that this WCET estimate is still an imgment on the
WCET estimate (of 4280) that was computed from the AST in whieth\WCETSs
of basic blocks were extracted from timing traces.

4.7 Discussion and Related Work

A similar technique to break up a flow graph into a number oftcdrregions has
been introduced [55] in which SESE regions are identified taedchierarchical con-
tainment between them is captured in a program structuee &ihough at first this
might appear analogous to the SESE, SEME, and MESE regitodurced above, our
consideration of control regions differs in two fundamértspects. First, the notion
of acyclic reducibility clearly precludes cyclic flow gragptbut their SESE regions do
not; however, the intention of our work was to specificallyess the hierarchical rela-
tionship between acyclic regions, and not to redefine (cyodiducibility. Second, the
conditions that they require to identify a SESE region useptie-dominance and post-
dominance relations. In particular, a SESE rediaib) is defined to be one satisfying
botha™ b andb < a (together with another property that is of no relevance here
Our conditions are more stringent in that we useithmediatepre-dominance and
post-dominance relations in conjunction with the pre-dwance and post-dominance
frontier relations.

The acyclic reducibility property can be considered edeiato whether a flow
graph is Two-Terminal Series-Parallel (TTSP) [119]. A TT&®Rph is recursively
defined as follows:

e A graph consisting of an entry and an exit vertex joined byralsi edge is
TTSP.
e Series-Compositionf G; andG; are TTSP graphs with terminals;,t;) and
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(s2,12), respectively, then the graghwith terminals(s;,tp) obtained by identi-
fying verticest; andsy is TTSP.

e Parallel-Composition If G; and G, are TTSP graphs with termina(sy,t1)
and (s, t2), respectively, then the graph with terminals(s;,t;) obtained by
identifying verticess; with s, andt; with ty is TTSP.

In essence, a series-composed graph would be modelle®BQaertex, whereas
a parallel-composed graph would be modelled byAai vertex. Note in particular
that these rules of construction would only result in acyoliducible graphs since two
disjoint graphs are only joined at their respective entry e@xit points, i.e. the single
entry and single exit points are maintained.

TTSP graphs fall into a broader category of graph, those whave boundettee
width [115]. This is essentially an estimate of how close a grapto i@ tree. The
acyclic reducibility property can be similarly viewed, ldugh we principally use it
to identify vertices in the graph at which reduction intoeetivould cause redundant
graph traversal. To our knowledge, nobody has proposed biowe the properties of
TTSP graphs or tree width with the same task in mind.

4.8 Summary

A popular calculation technique used in WCET analysis is based hierarchical
program representation. In this chapter, we considereskaltased approach to com-
puting a WCET estimate from the IPG program model and made tleving key
contributions:

e We presented properties of a novel hierarchical form cattedltree, which
models traditional high-level constructs such as sequesatection, and itera-
tion, except with respect to the IPG.

e We introduced the acyclic reducibility property, which goéicable to the class
of (generalised) acycliflow graphs and essentially categorises branch and
merge vertices either as acyclic-reducible or acyclieducible. We showed
that detection of acyclic-irreducible merge vertices cavent redundant traver-
sals of the IPG when building its Itree representation. Aira@j such traversals
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instead produces a forest of Itrees (called the Iforest)hicivitrees essentially
point to other Itrees.

e We presented an algorithm that decomposes the IPG into egstfolhe algo-
rithm is not restricted to a particular class of IPGs; thaitibandles arbitrary
instrumentation even if that produces arbitrary irredleciiegions in the IPG.
The only restriction is that the CFG* (from which the IPG is stracted) is
reducible, but the algorithm supports multiple exits outamps and multiple
loop-back edges commonly associated witleak andcont i nue statements,

respectively.

e We introduced the timing schema that drives the calculatieer individual
Itrees in the Iforest. In addition, we showed how the calboitaengine con-
trols the order of computations over the Iforest so that the WE&imate of a
referenced Itree is available when required.

¢ Finally, we evaluated our tree-based calculation enginedlogidering an exam-
ple program instrumented with two different (sparse) unskentation profiles,
from which we concluded the following:

— When the atomic units of computation are derived from tracsipg, the
Itree generates more accurate WCET estimates than the dreedihAST-
based calculation. This forms part of the validation of outial conjec-
ture at the beginning of Chapter 3, that the IPG program mduwlld be
chosen ahead of existing static analysis program models ws&umen-
tation is sparse. This will be confirmed in Chapter 6 when atalg a
real application.

— Our tree-based calculation is sensitive to the locatiomgaints because of
the problem of irreducibility. This forces the Itree into kireg a trade-off
between the space overhead incurred and the precision ahtigsis.
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The previous chapter presented a tree-based calculatgnesaperating on thén-
strumentation Point Graph (IPG), which first decomposes the IPG into a novel hi-
erarchical form, thdtree. However, tree-based calculations suffer from the ingbili
to incorporate extra path information, obtained normdilptigh flow analysis tech-
nigues [46, 47, 99], into the calculation, resulting in alpsecise analysis.

A more pronounced problem is the overestimation caused tayrany irreducible
IPGs in hierarchical form. To avoid the complexity, it is pilide to placenstrumen-
tation points (ipoints) at particular locations so that the resultant lIBGeducible.
However, there are clear disadvantages of forcing instniatien to particular loca-
tions. First, we must assume control of the instrumentairofile, which contravenes
our goal of targeting systems that are instrumented ashis. i$ especially true when
a hardware debug interface, such as Nexus [1] or the Embetidee® Macrocell
(ETM) [33] is the chosen tracing mechanism. The second proh$ that we might
inadvertently increase the number of ipoints, potentiallyurring a timing penalty,
depending on how timing traces are extracted. Even more sibinetimes not possi-
ble to increase the number of ipoints due to so-capetht budgetsparticularly when
analysing large systems. Lastly, if a user is selectingdbatlon of ipoints, it is much
more convenient to do this at the source level without theeeomof how they affect
structural properties of the underlying analysis engine.

The unequivocal outcome is that the calculation techniquerating on the IPG
must handle arbitrary irreducibility without causing uedaessimism. In this respect,
the Implicit Path Enumeration Technique (IPET) has already been proven to be
suitable [73, 95] because it does not explicitly modkdbal flow graph structure.
Rather, the IPET expresses the computation of the WCET on a fioreigraph as an

133
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Integer Linear Program (ILP), which has a known solution method. Therefore, the
IPET essentially builds a constraint model relatiogal flow graph structure, i.e. at
each vertex, to path-related information regarding looprigs and infeasible paths.
The key aspect of the IPET, therefore, is that irreducipikt not an issue as long
as there is support from loop identification algorithms. Irafter 3, we presented
a mechanism to identify irreducible IPG loops, thus implythat the IPET can be
reformulated so that it pertains to arbitrary IPGs — thih&snain contribution of the

chapter.

We begin, in Section 5.1, by recalling some properties oflB@ that were pre-
sented in Chapter 3. Section 5.2 then remodels the basic BaRect by the IPET to-
wards the IPG and discusses how ILP solvers computgpar bouncn the WCET
from this basic ILP. In Section 5.3, we discuss theconnected circulation prob-
lem [95], which relates to any flow graph modelled by the ILP. Bamtrol Flow
Graphs (CFG), this can be solved through the additionrelative capacity con-
straints into the basic ILP: this extended model has been proven torrein exact
WCET estimate [95]. Thus, we show how to model relative capanhstraints for
the IPG. Next, Section 5.4 evaluates the WCET estimates egtlmynthe IPET against
those produced by our tree-based calculation engine, whashdescribed in Chap-
ter 4. We show that, in contrast to the tree-based approaeHPET always returns
an accurate WCET estimate as it determines a feasible exequdib. Section 5.5
discusses the current limitations of our remodelled IPEToke we finally summarise
the chapter in Section 5.6.

5.1 Preliminaries

An IPG | = (l,E,s,t) has a set of cycle-inducing edges calleztation edges In
Chapter 3, we showed that it is generally very difficult to iglgnteration edges using
state-of-the-art loop detection techniques due to therarbiess of IPGrreducibility
(see Definition 7 in Chapter 3). We instead assumed the @&tV = BUI, Ec, s, t)
from which| is constructed to be reducible and usedltbep-Nesting Tree (LNT)
(see Definition 8 in Chapter 3)_C of C to determine which edge insertions intocause
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cycles.

A structural connection therefore exists between a CFG*,|depoted.;,, and an
IPG loop, denotedi'h (denoted in this way to reflect the structural connectiob{o
We defined a functio : . — .¢', where.Z is the set ofnstrumentedCFG* loops
and.Z" is the set of IPG loops. Every IPG lody) has ariteration edge set denoted
IE(L}).

An iteration edgeu — v can belong to multiple iteration edge sets. In essence,
u — Vv is amulti-edge such that the multiplicity ofi — v is equal to the number of
iteration edge sets to which it belongs. For this reasos,dhapter considers an IPG
| = (l,EyU{t — s},s,t) to be amulti-digraph . (The additional edge— s is included
to guarantee that the IPG is a maxin&trongly Connected Component{(SCC), a
condition necessary to represent execution paths thrauglhations.)

Detection ofloop-entry andloop-exit edges for each IPG Iooldn is achieved by
performing least-common ancestor queried §nNith the set offorward edges irEg; .

There are two mechanisms by which edge frequencies in an #d®e bounded.
The first is by counting the maximum number of times each eescduringtrace
parsing, resulting in drequency bound However, this potentially creates underesti-
mation because it relies more heavily on good quality tggtirexercise the maximum
number of executions of each IPG edge.

The alternative is to obtaielative bounds which constrain execution of IPG loops
relative to the next outer nesting level. These can also tvac®d by the trace parser
using structural properties of However, we also allow for relative bounds supplied
by static analysis techniques [47, 52] (or via interactiotina user). As such bounds
are typically with respect to a CFG* lodp,, these can be subsequently transferred
onto the IPG loof|..

5.2 Basic ILP of the IPET

Both Puschner and Schedl| [95] and Liand Malik [71, 72, 74, @3Fproposed almost
analogous ways to reduce the WCET computation stage to an #ch &proach has
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its merits. On the one hand, Puschner-Schedl presentedraugtheoretical model
based on theirculation problem [57] — which itself is a generalisation of theet-
work flow problem [30, 57] — before transforming this into an ILP. They weretfirs
to elaborate upon the disconnected circulation problenn;inis especially problem-
atic in the IPG due to irreducibility, as discussed in Setbd. For this reason, and
to retain consistency, we attempt to use terminology andtioot as presented by
Puschner-Schedl, only deviating as necessary. On the lodinet;, Li-Malik presented
the ILP in a more descriptive manner, and thus we often dégieetheir explanations.
Furthermore, they discussed how to solve sewdigjfinctive constraints, which are
normally needed when extra path information is includedhendalculation.

The basic ILP produced by the IPET consists of the followiomponents:

An objective function.

Program structural constraints.

Capacity constraints.

Non-negativity constraints.

5.2.1 The Objective Function

In general terms, a solution to an ILP minimizes or maximie®objective function
composed oh decision variables, subject to a number of constraints riagt be

satisfied simultaneously. For the WCET problem, the objedtinetion models the
execution counts of IPG edges (i.e. these are the decisitabies), which should be
maximized to deliver the WCET estimate.

Following is the objective function:

Z= Z weet(u — v)- f(u—v) (5.1)

u—VveE

whereZ is the returned WCET estimatejcetu — v) the WCET of an IPG edge
(derived from trace parsing), arfdu — v) a non-negative execution count of an IPG
edge that is set by the ILP solver.

Note that, for an iteration edge— v with multiplicity n, the objective function
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containsn decision variables fon — v, all of which have the same WCET.

5.2.2 Program Structural Constraints

These constraints represent the basic properties of prograicture, intuitively stat-
ing that flow into a vertex equals flow out. These can be deesttly from the IPG
and are stated formally as follows:

Vvel: Z f(p—v)= Z f(v—s) (5.2)

pepred(v) sesucqv)

Note here the subtle difference between the network flow hadirculation prob-
lems. The flow conservation property of the network problenapplicable to all
vertices,exceptthe dummy vertices andt. However, the flow conservation property
of the circulation problem is applicable to all vertices éese of the existence of the
edget — s.

5.2.3 Capacity Constraints

As Li-Malik affirmed, the maximisation of (5.1) i® because eacHi(u — v) can

be assigned the value, i.e. each loop can iterate forever. Capacity constrairgs ar
therefore needed which bound both the minimum and maximusnwion count of
each edge. In the circulation problem, these capacity canst are functionb: E; —

R andc: E; — R such that:

Vu—veE :bu—v)<flu—v)<clu—v) (5.3)
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For an IPG, the capacity constraints of each v € E, are defined as follows:

1 fu-v=t—s,
b(u—v) = (5.4)
0 otherwise

1 fu—-v=t—s,
c(u—v) = (5.5)
bmax(U — V) otherwise

wherebmax(U — V) represents the maximum number of executions of an IPG edge in
a single execution. The upper capacity constraint on thenayedget — s is 1 to
indicate that the path through the procedure is executee.onc

For maximum precisiormax Needs to be provided for each edge as this constrains
the valid execution paths further. However, the minimabiniation that we must
provide is a bound on each iteration edge> v because these are the cycle-inducing
edges oft — the solver can then determitg,ax Of other edges from the structural
constraints.

An iteration edgel — v is bounded as follows. Let] be theinnermostiPG loop
such thatu — v € IE(L},) and assuméye(h) is its relative bound, either obtained
through trace parsing or through static analysis; tbggyu — v) = by (h). However,
brer(h) is only relative to the next outer nesting level, thgx(u — v) must also be
factored by the relative bounds on all outer loops,bgax(U — V) is an upper capacity
constraint representing its worst-case number of exewsitidf the multiplicity of
u — Vv is greater than one then all other decision variablesiferv are set to 0. This
IS because the upper capacity constraintien v represents the maximum number of
executions ofti — v across all IPG loops in which it is contained.

Further note that incorporating frequency bounds intoltiredffers better precision
as it constrains the execution count of an IPG edge to thgtaderved in testing.
As already noted above, the accuracy of frequency boundsndispn suitable testing
and coverage, although Chapter 6 will observe a marked inepnent in the WCET
estimate when such bounds are incorporated.
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5.2.4 Non-Negativity Constraints

The non-negative constraints state that the executiontaafuedges must never be
negative. Thatisf(u—v) >0, forallu— v e E,.

5.2.5 Solution to the IPET

The basic ILP is therefore formed of Equations (5.1), (5By (5.15). In solving this
model via standardlinear Program (LP) solvers, the WCET is returned, together
with a setting of the execution counts for each IPG edge imibrst case. In this way,
all paths are implicitly considered since the solver attengifferent assignments to
the execution counts in determining the worst case [73].elmegal, we cannot deter-
mine theexactlongest path from the execution counts because the ordereotigon

IS missing.

5.2.6 An Example

We illustrate the computation of a WCET estimate from a basituking Figure 5.1.
In particular, we compare the WCET estimate with that compideds CFG* be-
cause this allows us to describe the disconnected cironlgtioblem in greater detail.

Figure 5.1(a) depicts a CFG* in which every basic block hasi@®otated with
its WCET. Also note that there are two loopg andLe,, whose relative bounds we
assume are 10 and 5, respectively.

Let us perform the calculation on the CFG* using a simple fmtbed approach
The longest path throughy, is eitherp:b; - dy — fi =2 — 91 — kg — 3, or
pPibp—dy—h 513 i1 A h, — j1 — ki — 3. Furthermore, the longeatyclic
path fromsy tot; isq: sy — a; — by — ¢1 — t1. Following are the WCETSs of these
paths:

1Producing the ILP of the CFG* causes unnecessary cluttetrencbader can easily verify that both
a path-based calculation and an ILP deliver the same WCEMatsti
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Figure 5.1. Example to Demonstrate an ILP for an IPG.

S1

() The CFG*. (b) The IPG.
IPG edgeu — v | B(P(u—V)) wcetu — V)
€1 {al, bl,dl, hl} 32
& {a1,b1,d1,hy, j1,ki} | 41
€3 {al, by,ds, fl} 42
(S7] {a]_, b]_,C]_} 18
e {91, ka} 21
€6 {iz,hy, jo,ke} 24
€7 {iz,he} 15
€g {bl,dl, hl} 27
€9 {bg,d1,hy, ja, ke } 36
€10 {bl,dl, fl} 37
€11 {bl,C]_} 13
€12 A 0

(c) Data associated with IPG edges.
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Path| WCET
p 58
p 111
q 18

Evidently, the worst-case path through the CFG* is eithep +@ or 10p' + q.
Simple arithmetic shows that pO+ q is the chosen path with aaccurateWCET of
1128.

The IPG resulting from this CFG* is depicted in Figure 5.1({b¢Juding the dummy
edget; — s1. Observe that there is a unique sequence of basic blocksobngant
transition, i.e. the instrumentation profile is path rednrdible. Let us therefore
consider the WCET of each IPG edge- v to be the sum of the WCET of each basic
block in the seB(P(u — v)). This information is displayed in Figure 5.1(c) in which
the edge; — s; has a WCET of 0 as its path expression is empty.

Let us provide upper capacity constraints on the iteratidges of the IPG by
transferring the relative bounds of the CFG* loops onto theesponding IPG loop.
For the inner IPG Ioop]E(L'hl) = {e7}. According to Equation (3.3) (in Chap-
ter 3), the relative bound @ is 4 becausép, has a relative bound of 5. Therefore,
c(er) <=4%10=40 asL}11 is nested irl| ,» the latter which has a relative bound of
10. For the outer IPG IoomE(L'bl) = {eg, e9,€10}. As the relative bound dfy, is 10,
these edges have a relative bound of 9, which is also theeruggpacity constraint.

These observations lead to the following ILP:
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32, +41e;+ 4263+ 184+ 2165+ 2465 + 157 + 27eg + 3669 + 37810+ 13611+ O€y2

(5.6)
e1+e+et+e=enp (5.7)
& = €3+ €10 (5.8)

€ = €1+ €11+ € (5.9)
€g+e0+e11=e+e5+6 (5.10)
€2=6€+€e11 (5.11)

ep=1 (5.12)

e7 <=40 (5.13)

eg+e+e <=9 (5.14)

The objective function is Equation (5.6). Structural coaistts are Equations (5.7)
through (5.11), which can be generated directly from the.|B@per capacity con-

straints are Equations (5.12) through Equation (5.14) iclwEquation (5.12) states
that the procedure is executed once.

Solving this ILP returns the following non-zero executi@unts of edges:

Edgeu—v | f(u—v)
€3 1
e 10
€7 40
€10
€11
€12

Therefore, the WCET estimate (& x 42) 4+ (10% 21) + (40% 15) + (9% 37) + (1%
13) + (1%0) = 1198. As both the CFG* and the ILP contain the same timing mésr
tion, we may conclude that this is an overestimation. The@txen path through the
IPG that these execution counts induce is exhibited by tio& times in Figure 5.1(b).
Clearly, this is not a feasible execution patheass completely disconnected. This is
the sole cause of overestimation, the reasons for whichxatered further in the next
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section.

5.3 Inaccuracies in the Basic ILP: Disconnected

Circulations

Despite the fact that the basic ILP produced by the IPET awayurns an upper
bound on the WCET — thus conforming with the safety requireroéVCET anal-
ysis — the previous example demonstrated that it can be cuoj@innecessary pes-
simism. This is because initial reduction to a circulatioalpem does not precisely
characterise the set of execution paths through the IPG.

In particular, the basic ILP models a number of “self-cam¢al” circulations, i.e.
loops. As the ILP solver can satisfy all upper bounds on aapaonstraints simul-
taneously, an inner circulatiof will become disconnected from the execution path
selected through its outermost circulatibrunlessthe longest path througH always
includesf. For example, in Figure 5.1(b), the iteration edgds disconnected be-
cause the longest path through its outermost circulati@s dot include execution of
1, i.e.wcef(es) +wcetejg) = 21+ 37 > wcet(eg) + weet(eg) = 24+ 27.

Puschner-Sched| termed this tthsconnected circulation proble(hich was not
discussed by Li-Malik) and gave the following formal deption. Letl = (I,E; U
{t — s},s,t) be an IPG and lef be a circulation inl. The IPGI' = <I,E|f,s,t>,
whereEIf ={u—veE|f(u—v) >0}, is called the circulation subgraph. Then, the
execution counts returned by the ILP solver do not form actrally feasible path —
and hence lead to overestimation — wheneves not a SCC.

As Puschner-Schedl proved, the disconnected circulatiooilgm can be solved by
relative capacity constrainfsvhich replace the capacity constraints and essentially
constrain the execution count of subgraphs relative ta thaier loop-nesting level.

To this end, it is necessary to identify the setimbplicating edgesEimp C E; for
each IPG loog}, in I. An edgeu’ — V' € Eimp implies the execution of, provided
U — V' ¢ E(L},) and every execution path containiag— V' contains at least one edge
u—veE(L)).



144 5.4 Evaluation

The implicating edges fdr:'h are either its loop-entry edges or its loop-exit edges
because either of these sets “imply” that the loop in quadtas executed. However, it
is possible that an IPG loop has empty sets of loop-entry@mtexit edges according
to Definition 9 (in Chapter 3). For instance, this arises whemsatrumentation profile
is not path reconstructible. In this case, the implicatidges are the iteration edges
from the next outer-nesting level bf for which a subset of (L}) are destinations.

Given the implicating edges for each IPG loop, the relataeecity constraints can
be formally expressed as follows:

flu—v)o ki- f (U — V) (5.15)

u—velE(L}) U —VEEimp

whereo € {<,<,=} and at least onl is greater than zero.

To demonstrate relative capacity constraints, let us metioithe example of Fig-
ure 5.1 and observe that:

e The set of implicating edges f(bE(L'hl) is {es}.
e The set of implicating edges fd)E(L'bl) is {e1,e,e3}.

Since 10 and 5 are the relative loop boundsligrandLe,, respectively, following
are the relative capacity constraints on these iteratige séts:

e; <= 4eg (5.16)
e+ 69+ ey1 <= 9e; +9e» + 9e3 (5.17)

Substituting these constraints for Equations (5.13) and4{5n the ILP results in
an accurate WCET estimate of 1128.

5.4 Evaluation

In this section, we evaluate the remodelled IPET by re-ctergig the synthetic ex-
ample program introduced in Section 4.6, thus allowing amamson between the
precision of the two different calculation engines thatrapeon the IPG. Recall that
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we instrumented the program according to two particularumsentation profiles so
that we could evaluate the sensitivity of the analysis tddlations of ipoints.

Figure 5.2. Example Program (Same as Figure 4.16).

S10

S10 A Pio C10 t10
6 4 C

(35 (10

b1o dio
6 10
(35)  (35)

€10 dio

(35) (21)

(a) The CFG. (b) The AST.

Figure 5.2 repeats the program under consideration, in®@bt and AST formats,
for ease of reference. Recall that we assumed the WCETSs of Haslsl{displayed
below each basic block in Figure 5.2(b)) had been given aatlttite loop bounds
were 5 and 10 fote, andLy,,, respectively. An accurate WCET estimate of 1065
was calculated after performing the calculation on the ASihgithe timing schema
proposed in [88].

5.4.1 Instrumentation Profile One

The CFG* and the IPG constructed from the assumed instrutn@mfaofile are again
depicted in Figure 5.3. Recall that, because the CFG* has bemerated from the
CFG, the loop bounds from the CFG effectively transfer ontaGR&*.

Further recall that, because the instrumentation profifgats reconstructible, we
considered the WCET of each IPG edge- v to be the sum of the WCET of each
basic block in the séB(P(u— v)). For example, becausP(s10 — 100)) = {aso,
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Figure 5.3. Instrumented Program from Figure 5.2 to Evaluate the IPET
(Same as Figure 4.17 without Itree).

S10
©)

S10

0

€10
€101
/\ €125
€104 100 101 €102
et €103
O
ti0 €105 €107
€106

101

102

T
ti0
(a) The CFG*. (b) Resultant IPG.
29100+ 30e101+ 35102+ 15103+ 15104+ 21€105+ (5.18)
24106+ 25€107+ 30e108+ 10e109+ 6€110+ O€125 '
€100+ €101+ €102+ €103 = €125 (5.19)
€105 = €100+ €106 (5.20)
€110 = €101+ €107 (5.21)
€106+ €107+ €109 = €102+ €105+ €100 (5.22)
€125 = €103+ €109 (5.23)
€125 = 1 (524)
€106+ €107+ €108 <= 9e100+ 9e101+ €102 (5.25)
€104 <= 4€e105 (5.26)

(c) The ILP created from the IPG.
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b10, d1o, €10}, the WCET ofejgpo = 5+ 6+ 10+ 8=29. Furthermore, we also assumed
that the loop bound supplied for each CFG* loop is transfeorgd its corresponding
IPG loop.

This timing information leads to the ILP shown in Figure 8)3if which: Equa-
tion (5.18) is the objective function; Equations (5.19)otigh (5.23) are structural
constraints; Equations (5.25) and Equation (5.26) aréiveleapacity constraints; and
Equation (5.24) is the capacity constraint bounding exenuhrough the procedure.

Solving this model by means of an ILP solver returns the Walhg non-zero exe-
cution counts of edges:

Edgeu—v | f(u—v)
125 1
€100 1
€105 10
€104 40
€106
€109

Therefore, the WCET estimate(is«0) + (1x29) + (10x21) 4 (40% 15) + (9% 24) +
(1%10) = 1065. As this was the value computed from the AST, we may caoiedhat
it is accurate. More important is that, in comparison to tineel, which generated a
WCET estimate of 1080, there is no pessimism in the ILP. Thieabse the Itree
cannot adequately model the irreducible IPG Im{gpo consisting of iteration edges
{e106, €107, €108}, in contrast to the ILP which simply models the executionrdsu

5.4.2 Instrumentation Profile Two

The CFG* and the IPG constructed from the second instrumentgtofile are again
depicted in Figure 5.4. Recall that the CFG* in Figure 5.4(agimilar to that in

Figure 5.3(a) except that ipoint 102 has effectively beeweddo the new location
occupied by ipoint 105. Whilst evaluating the Itree, we ofesdrthat this slight mod-
ification to the instrumentation profile resulted in a WCET rastie of 1155, adding
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more pessimism to the analysis.

The corresponding ILP is shown in Figure 5.4(c) in which: &ipn (5.27) is the
objective function; Equations (5.28) through (5.32) aredtral constraints; Equa-
tions (5.34) and Equation (5.35) are relative capacity tamgs; and Equation (5.33)
is the capacity constraint bounding execution through tbhegxdure.

Solving this model by means of an ILP solver returns the Wilhgy non-zero exe-

cution counts of edges:

Edgeu—v | f(u—v)
€126 1
e111 1
€115 10
118 40
€120
€121

Therefore, the WCET estimate (&« 0) + (1% 29) + (10x 15) + (40x 25) + (9%
10) + (1% 6) = 1065. Once more we observe that there is no pessimism in theriL
particular, the IPET is not sensitive to the locations ofrips

5.5 Discussion

Puschner-Schedl also detailed another inaccuracy in thie HaP in that, although
the execution path induced by the returned execution casntennected, it is in-
feasible. Both Puschner-Sched| and Li-Malik have descrit@d to include more
sophisticated path data, e.g. mutually inclusive and exatupaths, to constrain the
feasible execution paths further.

However, we have not considered how to include such additioonstraints in our
remodelled IPET. There are a couple of reasons for thist, Mieshave no mechanism
by which such data are collected. On the one hand, our trasemp@escribed in Sec-
tion 3.5.2) only collects frequency bounds on the IPG edgétsyithout correlation to
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Figure 5.4. Second Instrumentation Profile on Program from Figure 5.2 to
Evaluate the IPET (Same as Figure 4.18 without Itree).

S10

S10

/"N
€117 €118 103 \

(@) The CFG*. (b) Resultant IPG.

21eq11+ 306112+ 15113+ 30€114+ 8e115+ 39116+ 24€117+ 15€118+

46e119+ 37€120+ 316121+ 226120+ 166123+ 31€124+ O€126 (5:27)

€111+ €112+ €113= €126 (5.28)

€115+ €116+ €117 = €111+ €122+ €120 (5.29)

€119+ €120+ €121 = €115 (5.30)

€122+ €123 = €112+ €116+ €119 (5.31)

€126 = €117+ €121+ €123+ €113 (5.32)

es=1 (5.33)

e118 <= 4€115 (5.34)

€114+ €116+ €119+ €120+ €122+ €124 <= 9€111+ 9112 (5.35)

(c) The ILP created from the IPG.



150 5.6 Summary

other IPG edges. On the other hand, assuming static anatydi@ provide such data
(with respect to basic blocks), we cannot yet transfer tioese the IPG because our
HMB framework does not compute path expressions of IPG e(@gesClarification 6
in Chapter 3).

Another issue with path constraints is that they typicallyss procedure bound-
aries. Recall, however, that our calculation engine (deedrin Section 3.5.3) modu-
larises the calculation of each context due to master ipoiming. Although this is
not an issue for our tree-based calculation engine (bedacaenot handle such con-
straints) incorporation into the IPET would require a déet inlining mechanism.
For these reasons, path-related constraints are congidey®nd the scope of this
thesis.

5.6 Summary

Programs that are arbitrarily instrumented often creagelucibility in the IPG, even
if the underlying graph-based model of the program (the CR&teducible. This
is particularly problematic for the tree-based calculatemgine proposed in Chap-
ter 4 since the hierarchical representation must tradeespaerheads against loss of
precision. One way to avoid such a trade-off is to assumeraioot the instrumen-
tation profile and guarantee well-structured IPGs. Howethas restricts the type
of instrumentation employed (normally software so that ato@atic tool can place
ipoints carefully) and generally prohibits the use of stt¢he-art instrumentation
profiles [2, 8, 65, 116]. Both of these limitations ultimatelymplicate re-targeting of
our HMB framework to new systems.

In order to avoid pessimistic WCET estimates arising from patdelling, this
chapter demonstrated how to remodel the IPET so that itegppd the IPG. In this
context, we made the following additional contributions:

e We showed how to determine relative capacity constraiot® fihe IPG using
its structural properties, which are needed to accuratedyacterise the set of
feasible execution paths through the IPG.

e We compared the IPET model with our tree-based calculatigme using the
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same instrumentation profiles as in Section 4.6 and shoveeth& IPET always
returned a precise WCET estimate, in contrast to those comhphteugh an
Itree. The main reason is that the IPET does not model progoamexplicitly
and can therefore handle arbitrary irreducible IPGs withmdue pessimism.
Although this is not a completely novel observation (simileeaknesses with
ASTs fuelled the migration to graph-based models and th&)REhat we may
conclude is thatfor arbitrarily instrumented programghe IPET should be the
calculation engine of choice when the IPG is the program rnode






6 Prototype Tool and Evaluation

In Chapters 4 and 5 we evaluated thetrumentation Point Graph (IPG) program
model against existing static analysis program modelsgusoth a tree-based ap-
proach and thémplicit Path Enumeration Technique (IPET). Although we were
careful to select code that is representative of real-wagglications, a thorough
evaluation of the techniques proposed demands actual cedeted with actual test
vectors. This issue is now addressed by evaluating a lax@e-sdustrial application.

This chapter commences in Section 6.1 with an overview opoafiotype tool. Fol-
lowing that, Section 6.2 motivates our evaluation of an stdal case study — as op-
posed to the emerging WCET benchmarks [91] — and gives a détélscription of
its properties. Section 6.3 then presents four differepearments that we undertook
and evaluates the results computed through the prototyge Eonally, Section 6.4
summarises our main findings.

6.1 Prototype Implementation

In order to automate the analytical process described int€hap through 5, we have
implemented these techniques in a prototype tool. The @paraf the tool, its main
features, assumptions, and limitations can be summarsstadlews:

e The first input to the tool is structural knowledge of the peog at the interme-
diate code level. In particular, we require the followingpimation:

— The basic blocks and the transitions amongst them.
— Which basic blocks are call sites, and moreover, the target firoce-
dure) of the call. This means that we cannot analyse progcamisining
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function pointers. Also recall that we assume there are mtesyin the
call graph (see Definition 11 in Section 3.5), thus no tool support is yet
available for programs containing recursion.

— Which basic blocks containstrumentation points (ipoints) and the trace
identifier associated with each ipoint (to enable traceipg)s This sub-
tly implies that we assume no control over the assignmentacktiden-
tifiers to ipoints; consequently, we must also assume tleaagsignment
mechanism does not result in an IPG becoming a Non-Detestiuifiinite
Automata (NDFA), otherwise our trace parsing mechanisrsh&urther-
more, we do not yet support other tracing mechanisms prdvigdogic
analysers or, for example, Nexus [1].

The reason that the tool requires information about the naragn this form
is that, for the industrial application under analysis,ddlject code operations
had to be stripped out before it could be released off-sitetduthe sensitive
nature of the application. Therefore, we have no knowledgheInstruction
Set Architecture (ISA) and instead had to rely on a thirdyptol® to provide
the basic properties of program structure.

It is clearly a trivial programming task to extend the inpbitlee tool to handle
object code of other ISAs. As we do not require a processoreiduerefore,
porting to new architectures is relatively straightfordiar

From this information, our tool constructs t6&G* (a data structure similar to
the Control Flow Graph) of each procedure together with the call graph of the
program. Master ipoint inlining is then carried out beforelding the IPG of
each procedure. As noted in Chapter 3, we assume that each €r&tuicible
after master ipoint inlining in order to detect loops in the IPG. @utly, we
have implemented Havlak’s loop detection algorithm [49, 9hich identifies
both reducible and irreducible loops. We envisage thathéenfuture, we can
extend the IPG construction algorithm to handle both rdale@nd irreducible
CFG*s.

e The second input is a trace file, which then triggers tracsipgr The trace

IRapiTime produced by Rapita Systems Ltd. [77]



6.2 Properties of the Industrial Case Study 155

parser populates an internal database structure thasdiote the WCETSs of
IPGs transitions and the loop bounds of CFG* loops on a peregbiasis.
In addition, we also obtain th®leasured Execution Time(MET), which is

simply the maximum observed time from the start of a timiragérto the end;
this value is used as a comparison against the WCET estim&teuhaool

computes.

e Both full context expansion and full context unification calculations are- cur
rently supported (see Section 3.5.3). To calculate a WCETa#i for each
context, the calculation engine can choose whether to wsérdle-based cal-
culation engine (described in Chapter 4) or the remodell&T IRlescribed in
Chapter 5). To produce a solution from the Integer Linear Ruog(ILP) cre-
ated by the IPET, our tool connects to thp_sol ve library [13], which is
freely available under the GNU public license and is gehevalry fast.

We do not currently accept any path information from the .uBkis implies that
all loop bounds used in the calculation are obtained diydtim trace parsing;
any loop not triggered during testing is therefore assurndthve a bound of

Z€ero.

e Interaction between the user and the analysis engine iddthbg a Graphical
User Interface (GUI). The GUI has been implemented usinglhg-in archi-
tecture and Rich Client Platform (RCP) provided by Eclipse [103]

Interaction with the GUI allows the user to view a particul#ermediate data
structures (e.g. the pre- and post-dominator trees), wamehlisplayed by con-
necting to the uDraw(Graph) API [118]. Furthermore, the @igplays a sum-
mary of the WCET report, which gives individual WCET estimatemdividual
procedures, their measured end-to-end execution timdseag basic coverage
derived from trace parsing, such as trace edge coverage.

6.2 Properties of the Industrial Case Study

For our evaluation, we have chosen to analyse an indusiication rather than the
WCET benchmark91] that have recently emerged. There are a couple of redson
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this choice that are worth discussion.

First, we initially did run our analysis on a subset of the WCERthmarks using
random testing and, in some cases, running the benchmahkit&itvorst-case test
vector, e.g. using a reverse sorted array forithbbl esort application. We found
that our WCET estimates always bounded the MET. This is an ¢xgeesult as we
combine smaller portions of the measurements in computid¢CET estimate —
thus our HMB framework can never produce a smaller value theaET. However,
we are particularly interested in the sensitivity of thelgsia to the coverage of proce-
dures/contexts and how expanding or unifying contextsctdfthe computed WCET
estimate. Most, if not all, of the WCET benchmarks are relgtigmall, i.e. they
only have a few procedures with a small number of proceduts. d&/e believe this
is one limitation of the current set of WCET benchmarks, matdgause the analysis
of contexts is pivotal to the accuracy of the WCET estimate witieasingly larger
applications.

Second, it is very difficult to compare the WCET estimates caegbby our tool
with those computed by others, even with access to the samélsenchmarks. This
is because, we would additionally need the same target laaedand the same com-
piler suite configured with the same options. Although the@eScalar toolset [7]
provides, in theory, such a suitable framework, we are narawf any direct compar-
ison between existing WCET analysis tools using the same 8Baalar configura-
tion. Rather, the SimpleScalar architecture is typicallgfigured so as to isolate the
effect of a particular hardware feature, e.g. the instamctiache, to show the relative
improvement.

Finally, to reiterate the point made at the onset of this tdrapve want to evaluate
our HMB framework on an application for which we can neithentrol the properties
of the program nor disable particular hardware effects.

Unfortunately, for non-disclosure reasons, we are not @bikescribe the function-
ality of the industrial application. Nor can we give a breakt of the system prop-
erties as both the source code and details of the hardwérigemtare were withheld.
(It is worth stressing that no static analysis tool coulds®this application because
it is impossible to build a processor model.) However, whatare able to describe is
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properties of the application that are derived from the CE@1ts call graph, and the
trace file.

6.2.1 Structural Properties

Table 6.1 gives a summary of the main properties of the progirecluding its instru-
mentation.

In total there are 73 loops; thus, 42 are self-loops, manylotkvwe believe are
array initialisations as they most often appear at the lmeggnof a procedure. There
is a maximum loop-nesting level of 2 for non-trivial loopa.deneral, there are only a
few loops with respect to the overall size of the applicatiwhich is quite a common
property in embedded software.

Property Total | Instrumented
Procedures 223 105
Contexts 432 228
Non-trivial Loops| 31 21
Basic Blocks 7010 958

Table 6.1. Structural Properties of Industrial Case Study.

Regarding the instrumentation profile, we had no control oésghor how many
ipoints were inserted. However, the third-party tool, Rapéd [77], used to instru-
ment the application generally ensures that each procddisa single master entry
ipoint and a single master exit ipoint, i.e. 210 of the 958npare master ipoints.
From our understanding of the application, most of the pitaces that were not in-
strumented are error-handling routines, which do not dauti to the execution time
during normal operation and are not instrumented as a result

Observe that the instrumentation profile is very sparse. totad number of basic
blocks across all instrumented procedures is 6488, thi%% of this number are
instrumented. We use this property to validate our clainmtti@l PG should be chosen
ahead of the CFG or the Abstract Syntax Tree (AST) in a HMB fraark. Although
the instrumentation profile is not path reconstructiblesrevteration of every CFG*
loop could be observed in a trace, thus bounds extracted tii@re parsing are not
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subject to pessimism (see Section 3.5.2). It is also wortmgahat all of the IPGs
are well structured, i.e. the instrumentation does notterd2G irreducibility as each
header of a non-trivial loop (in the CFG) contains an ipoint.

6.2.2 Testing and Coverage Properties

Table 6.2 gives a summary of the main properties of testinlgcanerage as extracted
from trace parsing.

The trace file contains 9328 traces, i.e. this is the number of test vectors, and the
longest MET observed in these traces is ,B7B.

Clarification 9. We use the MET to evaluate the precision of the WCET estimate co
puted through our tool. This has become best practice in #ie &f WCET analysis
as the actual WCET is non-computable in the general case.

Property Value
Test Vectors 97,528
MET 127,373
Procedures Covered 87
Contexts Covered 166
Non-trivial Loops Covered 11

Table 6.2. Testing and Coverage Properties of Industrial Case Study.

Observe from Table 6.1 that it is desirable for the test fraork to cover all 118
procedures, all 228 contexts, and all IPG trace edges aalossntexts. This would
increase our confidence in the WCET estimate (and indeed in tE) Mecause no
sections of code that potentially contribute to the WCET wawelthain uncovered.
From Table 6.2, we see that 83% of procedures and 73% of contexts were cov-
ered. Furthermore, after trace parsing, we counted the auaflirace edges triggered
in each context and then calculated how many trace edgesocaeeeed in each pro-
cedure. On average, across all 87 covered procedsr&5% of trace edges were
covered, and across all 166 covered context§,3% of trace edges were covered.
Finally, we note that only about half of the non-trivial Icowere covered.



6.3 Experimental Set-Up and Results 159

Normally we would expect a better attainment of coveragetiquaarly because
functional coverage metrics attempt to cover every insimncat least once. From a
timing analysis perspective, we would especially prefdatdoecoverage of the non-
trivial loops given that most of the (average-case and waase) execution time of
programs is spent in loops. However, we recall from Clarifcca® (in Chapter 2)
that these issues relate to WCET coverage and are considgreddothe scope of
the thesis. For this reason, we assume that testing is gameykrin analysing this
application.

6.3 Experimental Set-Up and Results

We use the industrial application described in the preveeion to perform four
experiments which aim to validate particular hypothesebénthesis. Each of these
is now described, together with the results computed thr@ugy prototype tool.

6.3.1 Experiment 1: IPG versus CFG*

In Chapter 3, we motivated the introduction of the IPG prograodel by claiming
that, when instrumentation is sparse, calculation teclesgpn existing static anal-
ysis program models are subject to unnecessary pessimmsaniHMB framework).
We can validate this claim with the industrial applicationce it has been sparsely
instrumented.

To do this, we used the IPET on both the IPG and the CFG* (sirc€HG* is con-
ceptually similar to the CFG) and then compared their WCET egém We initially
considered all contexts unified, but we shall consider edpdrtontexts shortly. The
IPET in particular was picked as we do not have a tree reptatsem of the CFG*,
and moreover, it generally offers greater precision.

We constructed the objective function for the CFG* as follows

e We retrieved the WCET of each basic bldzhky taking the maximum observed
WCET amongst the ipoint transitions on whibhs executed unledsis a call
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site?. In this case, as we construct one CFG* per procedure, the WCEWa$
assigned the WCET of the procedure that it calls.

e Each ipoint was given a value of 0 as we do not quantify the ohpithe probe
effect in this thesis — see Clarification 1 (in Chapter 2).

The bounds on CFG* loops were those obtained from trace aitsim the corre-
sponding iteration edge set. Because every iteration off&/EG* loop is observable
in a trace, these bounds are accurate provided testing iggered the worst-case

number of iterations.

Table 6.3 gives the computed WCET estimates and the asso¢iatettied) pes-
simism relative to the MET (which is 12373).

Program Model WCET Estimate +%
IPG 646, 392 408
CFG* 17,471,631 13,617

Table 6.3. Results of Experiment One.

There are a couple of interesting observations from thesdtge First, the WCET
estimate computed from the CFG* is several orders of magaitugher than that
computed from the IPG. One potential problem with this — tesigiving overin-
flated values — is that the longest path identified can be ditmgards procedures
that are sparsely instrumented rather than the procechaeadtually contribute to the
WCET. Engineers often want to reduce the WCET by optimising cadihe worst-
case path, thus identifying code that does not contributeoist-case behaviour will

result in fruitless optimisation.

Second, the WCET estimate computed from the IPG is (approgly)at four-fold
overestimation. This contrasts with most results pubdsimethe literature, which
normally report little margin of overestimation. This iseevmore surprising given
that the program is structurally simple, only containinga foops.

2The astute reader will recall that, in Clarification 6, we sidered the computation of path expres-
sions beyond the scope of the thesis. The natural questaskidaherefore, is how we obtained the
WCETSs of basic blocks from ipoint transitions. In fact, ouoltonplements a more sophisticated
version of the data-flow framework that we presented in Giraptto construct the IPG. Simple
extensions to the data-flow equations allow the basic blexksuted on each ipoint transition to be
computed during construction.
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We investigated the reason for the pessimism by examiniagnithividual WCET
estimates of procedures compared with their METS. (As eaategure has a single
master entry ipoint and a single master exit ipoint, thesel®dEould be extracted
by the trace parser in the same way that the MET of the progsaextracted.) As
the number of procedures is large, we have selected a fevequoes with different
properties and displayed their comparisons in Table 6.4.

Procedure Properties MET | WCET estimate +%
1 SLC 242 242 0
2 SLC 544 544 O
3 SLC 1,388 1,673 21
4 SLC 19, 092 22,158| 16
5 One loop 25, 581 57,700| 126
6 SLC & many procedure calls 44, 742 419, 862| 838
7 SLC & many procedure calls 9, 668 38, 344| 296
8 SLC & many procedure calls 24, 549 58, 008| 136
9 SLC & many procedure calls 96, 600 565, 309| 485

Table 6.4. Comparison of Measured Execution Times (MET) and WCET esti-
mates of Selected Procedures. SLC signifies Straight-Line Code.

Procedures 1 through 4 are leaves in the call graph and digrteaee extremely ac-
curate WCET estimates — the margin of overestimation is coatgpato that reported
in the literature using the WCET benchmarks.

Procedure 5 is also a leaf in the call graph but the overestmas more con-
siderable due to the loop. Observe that this is preciselyathentage that a HMB
framework offers vis-a-vis an end-to-end testing stratégyat is, the latter relies on
a test vector to trigger the loop for its maximum number afatens with worst-case
timing behaviour, whereas the HMB framework is able to pige information to-
gether from the smaller units of computation and the loopldsyprovided. For this
reason, we may also infer that inserting ipoints in loopsioi®s increased confidence
in the WCET estimate as there is less reliance on the test frarkew trigger each
loop for its worst number of iterations.

Procedures 6 through 9 are relatively close to the root ot#tlegraph and do not
contain loops. Comparing their margins of overestimatiotinwie other straight-line
code procedures (1 through 4), we observe a marked incréldse key difference
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is that the paths through these procedures contain mangguoe calls. Therefore,
any overestimation in a callee is propagated into the ¢alled as a consequence, the
overestimation widens as the calculation engine appraattteeroot. This explains
the pessimism in the IPG calculation as the program unddysiaaontains many

procedure calls.

6.3.2 Experiment 2: Context Expansion versus Context

Unification

The previous experiment suggested that how contexts asedayed in the calculation
is pivotal to the accuracy of the WCET estimate. To quantifyrtfaegin of improve-
ment (if any), we also ran the WCET calculation engine on the ¢B@sidering all
contexts expanded and all contexts unified; these are onsappmnds of the sliding
scale and therefore offer the best measure of comparison.

Table 6.5 gives the computed WCET estimates and the asso¢iatewted) pes-
simism relative to the MET (which is 12373).

Contexts | WCET Estimate] +%
Unified 646, 392| 408
Expanded 610, 814| 378

Table 6.5. Results of Experiment Two.

As we can see, the unified calculation is tighter by a margiy 80%, principally
because the unit of computation is more accurate and thimgedes up the call graph.
Clearly, more significant improvements can be expected wiahemowerful context-
handling techniques. For example, on architectures withche, the first call to a
procedure often induces a greater WCET than on all subseqabsitdcie to cache
misses; contexts could thus be extended to distinguishdestthese cases.

6.3.3 Experiment 3: Itree versus the IPET

Chapters 4 and 5 presented a tree-based and an ILP-basddtoabcengine, respec-
tively, which operate on the IPG. We showed, by means of ahgyiat yet realistic,
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example that the IPET is generally less sensitive to theunstntation profile. Here
we wish to compare the actual differences using real codenedl numbers.

Table 6.6 gives the computed WCET estimates and the assoiatettied) pes-
simism relative to the MET (which is 12373). We performed two types of IPET
calculations. The first one (referred to as “IPET”) was the@e ILP model with
structural constraints and relative loop bounds. The stooe (referred to as “IPET-
Fregs”) integrated the maximum frequency of execution atdredges (that were
extracted during trace parsing) as execution count canttraWe did this because
tree-based calculations cannot include extra path infoomand we wanted to eval-
uate its affect on the precision of the WCET estimate.

Calculation| WCET Estimate| +%
Itree 646, 392| 408
IPET 646, 392| 408
IPET-Freqs 566, 527| 345

Table 6.6. Results of Experiment Three.

An interesting result is that both the Itree and the IPET wdaltons produced the
same WCET estimate. This is due to the fact that the instrurientarofile created
reducible IPGs. This reaffirms our earlier finding from Chagtéhat the Itree can be
competitive with other calculation methods provided instentation is well placed in

loops.

On the other hand, the IPET-Freqs calculation offers mucterpeecision than that
of the Itree, which is to be expected as the bounds on the Bgaaounts essentially
constrain the feasible execution paths. Also observe tiatightness gained with
IPET-fregs outweighs than when considering expanded gt:nfe.f. Table 6.5). Al-
though, in general, using frequency bounds creates théyidgf underestimation,
what we can infer is that the IPG can gain significantly frorthpaformation supplied
by a user or from conventional static analysis tools.
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6.3.4 Experiment 4: Sensitivity to Coverage

Our final experiment explored how sensitive our HMB framéwisrto coverage. In
particular, we wanted to know how many procedures had to bered (and the num-
ber of test vectors required) to produce a WCET estimate thatdex the MET.

To do this, we stopped the trace parser once a particulargiimace covered a set of
(as yet uncovered) procedures and then performed the aatmuivith the timing data
retrieved until that point. We unified all contexts and udeel basic IPET (without
frequency bounds), although the previous experiment sigdieat we can expect the
same WCET estimates using the lItree.

Procedures coveredTest vectors MET | WCET estimate +/-%
11 1| 34,643 48, 797| -62
11 3,405| 39,928 77,647 -39
38 3,406| 114, 403 323, 150| +154
39 3,407| 114, 403 377,899| +197
48 3,909]| 114, 403 377,899| +197
54 3,953]| 114, 403 394, 155| +209
56 4,492 | 114, 403 402, 206| +216
59 4,495| 114, 403 402, 206| +216
60 5,136/| 114, 403 536, 147| +321
62 5,603| 114, 403 541, 754| +325
68 6, 138| 114, 403 542,563| +325
71 6, 139| 114, 403 542, 604| +326
73 6, 140| 114, 403 542, 604| +326
75 8, 147| 114, 403 549, 538| +331
76 13,117 117, 762 580, 594| +356
78 15, 228| 117, 762 581, 899| +357
79 30, 123| 124, 163 598, 488| +370
80 72,816| 124, 163 610, 178| +379
82 72,819| 124, 163 610, 178| +379
87 76,556 127,373 613, 707| +382

Table 6.7. Results of Experiment Four.

Table 6.7 presents: the number of procedures covered imtihements observed,;
the number of test vectors that achieved the given covetag®IET after that number
of test vectors; the computed WCET estimate after that numibisbvectors; and
the associated (rounded) optimism/pessimism in the WCEMmasti relative to the
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longest MET (which is 12.8373). The final row in the table has 87 covered procedures
as this was the maximum covered by the test vectors (see8&cf). Also note that
there is no increment in the number of procedures coveraddegithe first and second
rows; we provided this additional row because this is thedasber of test vectors
for which our tool underestimates the longest MET.

Figure 6.1 is a graphical representation of the results. e lalso plotted the
longest MET (of 127373) so that the differences between them can be visualised.
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Figure 6.1. Graphical Representation of Experiment Four.

There are several interesting observations from thesédtsestirst, our HVB tool
only underestimates whilst there4s13% procedure coverage (of those that can be
covered) andx 3% of the total number of test vectors have been employedseTae
very small numbers, however, and it is unlikely that any esystvould be deployed
with such little testing. On the other hand, end-to-endrigss much more sensitive
to coverage as the longest MET is not discovered until 10086qufure coverage and
~ 78% of the total number of test vectors have been employed.

Second, our HMB tool benefits much more from increasing ayethan does end-
to-end testing. For example, the MET in the interval of385 covered procedures
remains the same, but in the same interval, the WCET estimategels considerably.



166 6.4 Summary

Especially note the difference between the WCET estimate ab%@red procedures
and at 60 covered procedures, i.e. where the covered pnasedaly differ by one.

An interesting future direction of research, thereforéoiguide the test framework to
procedures where execution time becomes concentratedrlyCtess is not possible

when only measuring the MET, which highlights another pt#tradvantage of a
HMB framework.

6.3.5 Discussion

Analogously to similar experiments reported elsewherg, 2@ major bottleneck in
our experiments was trace parsing, which took approxim&@ehinutes on a Pentium
4 3.2 GHz processor with 512 MB of RAM. This is not entirely susimg since the
trace file is 177 MB, thus just reading from the file (withoutgiag the data) consumes
considerable time, about one third of the 8 minutes. Moreawgr implementation
has not been optimised, and we therefore envisage markedvempents with a more
thoughtful implementation.

Observe, however, that this motivates sparse instrumentéirther as trace file
sizes shrink and we can analyse more timing traces with time sverhead. Indeed,
this was one of the motivations for the work in [8, 65], whickvdloped an optimal
instrumentation profile, i.e. fewest number of ipoints, kstretaining path recon-
structibility.

Regarding the calculation, we found that solution times dedhithe complexity of
trace parsing. That is, each modularised Itree or IPET tation took milliseconds.
For the IPET, this is because the ILP problems collapse tedriProgram (LP) prob-
lems, which have fast solutions as discussed in Chapter 5.

6.4 Summary

This chapter analysed a large-scale industrial applicdktiat had been executed using
real test vectors on the target hardware. The analysis wasated by means of a
prototype tool that implemented the techniques describ&thapters 3 through 5.
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We performed four different experiments with the industagplication and con-

cluded the following:

When instrumentation is sparse and units of computationxraated from a
trace file, calculations on the IPG program model are mucleraocurate than
those on conventional static analysis program models, asithe CFG. This is
due to the fact that there is no pessimism in the unit of coatpart.

For large applications, how contexts are handled is pivotdhe accuracy of
WCET estimates. Calculations on procedures near the leavls catl graph

generally have very good precision but the overestimatimiems as the calcu-
lation engine reaches the root due to an accumulation ofrpesss.

The tree-based calculation engine proposed in Chapter 4 eaoibpetitive
with the remodelled IPET described in Chapter 5. In particwle confirmed
the earlier finding (in Chapter 4) that the key to precise lt@eulations is well
instrumented loops (in the structural sense).

The biggest factor in decreasing the WCET estimate was thepocation of
frequency bounds extracted from trace parsing. Extra p#Etirmation can
therefore aid calculations on the IPG significantly.

Increasing the amount of code coverage and test vectorsribesecessarily
increase confidence in the longest end-to-end WCET, but our fitBework

benefits considerably as the smaller units of computatien {ne ipoint transi-
tions) are stressed further.

The majority of the analysis time in HMB frameworks is lockedrace parsing.
Therefore, it is desirable to reduce the size of timing tsdnemeans of sparser
instrumentation profiles, allowing more timing traces topbecessed (without
increasing overheads) and thereby increasing the congdartbe WCET esti-
mate.






7 Conclusions and Future Work

In this final chapter we draw some conclusions and summdrésmain contributions
of the thesis. We also point out several areas of future wotke HMB direction.

7.1 Summary of Contributions

In Chapter 1, we motivated the development bydorid Measurement-Based(HMB)
framework by noting two key points:

1. Current static analysis techniques regpiredictability at all levels of the anal-
ysis. However, more advanced processors are infiltrategmhbedded systems
market, and these cause varying degrees of unpredicyabilit manage com-
plexity, the only solution is to make conservative assuangiabout processor
operation, which ultimately translates into an overestiomeof the WCET.

2. Existing end-to-end testing techniques do not providea@wurate estimate of
the WCET because they only tardgenctionalproperties of theoftware There-
fore, the effect of hardware is neglected, which is esplgaificient given the
influence of advanced processors on the execution time aigrgm.

In Chapter 2, we gave a detailed account of the state-of+thie-&VCET analy-
sis and reviewed existing testing and coverage practicesoerved that, although
great strides have been taken in processor modelling, tbet eff the operational in-
teraction between disparate units (e.g. a branch prediaa cache) largely remains
untouched. Furthermore, most effort has been concentaatedodelling the CPU,
neglecting the impact of peripheral devices, such as bugnban. For these reasons,
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some researchers are now advocating the design of moretaigléi hardware or are
focusing their attention on reducing the WCET.

On the other hand, we also highlighted the deficiency of jstoverage metrics
that are employed in end-to-end testing to compute a WCET atimAs a result,
HMB techniques have started to emerge. However, we notddstith techniques
currently require very specifimstrumentation point (ipoint) placement (to avoid
pessimistic WCET estimates) because they use an existing atetlysis program
model — either th&ontrol Flow Graph (CFG) or theAbstract Syntax Tree (AST)
— in the calculation stage. Not only does this limit the tygenstrumentation em-
ployed (i.e. software), it prevents usage of state-ofaheanstrumentation profiles
that have been developed to reduce ipoint overheads.

Based on these observations, we motivated the developmarniet HMB frame-
work that allows foarbitrary instrumentation In the context of this HMB framework,
we made the following contributions:

¢ In Chapter 3, we introduced thestrumentation Point Graph (IPG) as a novel
program model, which models the transitions among ipomgteiad of the tran-
sitions among basic blocks. This simple paradigm shifivedltiming data ex-
tracted from timing traces (produced when the program isweel in the test
phase) to be mapped directly onto the IPG, avoiding any @asttassociated
with basic blocks as a consequence.

We showed how to construct and analyse structural progestithe IPG using
the CFG*, an intermediate form similar to the CFG. In particular, wende-
strated how to use the structural connection between a itddU€FG* and an
IPG in order to identify arbitrary irreducible loops in tieG. This relation also
provides the mechanism by which loop bounds obtained thrtatic analy-
sis [47, 51] can be transferred onto the IPG. However, becaush analyses
can only ever be semi-automatic at best due to the Haltinglenm, we also
presented a way to extract loop bounds from timing tracesgusioperties of
the IPG. Although the accuracy of such bounds is mainly teethe amount
of testing undertaken (bounds can be underestimated),sseshbwed that the
instrumentation profile can be equally as influential (baundn be overesti-
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mated).

The final contribution of this chapter was the analysis oigpams with inter-
procedural relations. We described how to virtually inlingubset of the ipoints
from each callee into the caller (but none of the transifi@usthat thetrace
parser has visibility to procedure calls and returns. We showed teextract
timing data from timing traces on a per context basis, as eggto a per proce-
dure basis, using the set of IPGs (one per procedure). Tibhigsathe precision
of the analysis to be determined off-line as the calculagiogine can unify or
expand contexts as and when requested.

e Chapter 4 presented a tree-based calculation engine thattepen thdtree, a
novel hierarchical representation of the IPG which modelditional high-level
constructs such as sequence, selection, and iteration.

We presented an algorithm to decompose the IPG into Itrea.fdfor these
purposes, we introduced the notionamlyclic reducibility, which basically de-
cides if acyclic regions in the IPG can be decomposed hieicalty. This al-
lows branch and merge vertices to be categorised eitheryacareducible or
acyclic-irreducible, detection of which can prevent rediamt traversals of the
IPG that instead produces a forest of Itreeslfarest.

We presented an algorithm that decomposes the IPG into eestfol he algo-
rithm is not restricted to a particular class of IPGs; thattibandles arbitrary
instrumentation even if that produces arbitrary irredieciiegions in the IPG.
The only restriction is that the CFG* (from which the IPG is stracted) is
reducible, but the algorithm supports multiple exits outaafps and multiple
loop-back edges commonly associated witieak andcont i nue statements,
respectively.

We introduced the timing schema that drives the calculatieer individual

Itrees in the Iforest and then evaluated our tree-basedlaéilan engine by con-
sidering an example program instrumented with two diffefsparse) instru-
mentation profiles. We concluded that, when the atomic wiitsomputation
are derived from trace parsing, the Itree generates mongatecWCET esti-
mates than the traditional AST-based calculation. Morgave locations of
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ipoints with respect to the program structure

Our tree-based calculation is sensitive to the locationpahts because of the
problem of irreducibility. This forces the Itree into magia trade-off between
the space overhead incurred and the precision of the asalysi

e Chapter 5 remodelled thenplicit Path Enumeration Technique (IPET) so
that it applies to the IPG. In particular, we showed how to eloelative capac-
ity constraints for the IPG since these are needed to ensure that the executio
counts returned by the ILP solver form a structurally fel@eséxecution path.

Finally, we evaluated the IPET using the same instrumeantgprofile as in
Chapter 4 and concluded that, because it can handle arbitieatycibility with-
out undue pessimism, the IPET should generally be the clazdeulation tech-
nique when the IPG is the program model.

e Chapter 6 described the implementation of the prototypedeetloped to sup-
port the techniques described in Chapters 3 through 5. Wethsegrototype
tool to analyse a large-scale industrial application tlzat been executed using
real test vectors on the target hardware.

We performed four different experiments with the industapplication and
concluded the following:

— The IPG offers better precision than existing static anslgsogram mod-
els when instrumentation is sparse and units of computaticst be gleaned
from timing traces.

— How contexts are handled plays a crucial role in the accuchdyCET
estimates generated from the IPG. In general, procedusestine leaves
of the call graph have very good precision but the overesiimavidens
as the calculation engine reaches the root due to an acctiomutd pes-
simism.

— The tree-based calculation engine can be competitive Wweliegmodelled
IPET on an industrial-strength application. The key, intigatar, is to
place instrumentation with structural properties of th& iR mind, i.e. to
avoid irreducibility.
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— Confidence in the WCET estimate computed by our HMB framework in-

creases with better code coverage and an increasing nuifrtest wectors.

— The biggest bottleneck in our HMB framework is attributedrexce pars-
ing. This motivates a reduction in the size of timing tracgsieans of
sparser instrumentation profiles so that more timing traees be pro-
cessed whilst keeping overheads low.

The more general conclusion that we may draw from the the#ist the instrumen-
tation profile employed largely determines the accuracy of WE€&imates computed
through a HMB framework. On the one hand, sparse instrurtientplaces a greater
burden on the testing front end because it is important esstthe WCETSs of the
units of computation (i.e. the ipoint transitions). Undgmmation is always possi-
ble if coverage is insufficient because any analysis is tiethié accuracy of its input
parameters.

On the other hand, WCET estimates have the potential to besiiraeged if testing
is good but ipoints are not well placed within loops. This ecause loop bounds
automatically derived from the properties of the IPG can berestimated, whilst
the tree-based calculation engine could produce a stalstunfeasible path due to
irreducibility.

However, what this thesis has contributed is a fully autaenetVIB framework
based on the IPG which allows programs to be instrumentéshaghout causing any
additional pessimism in the units of computation. Provitesting is good enough
and loop bounds are accurate, WCET estimates will thereforadve accurate than
those computed through existing static analysis prograiefso

7.2 Future Work

Each of the following is a future direction of work:

e One of the main assumptions of the thesis was that a suitesiéramework is
in place, including, in particular, an appropriate set ofarage metrics. To date,
all such coverage metrics have targeted the functionalgoti@s of a program:
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a stricter set of criteria, from the timing analysis perspec would provide
greater confidence in the WCET estimate computed through ouB Filne-
work. We believe that anWCET coveragenetric must, amongst others, take
the following three key considerations into account:

1. The structural properties of the instrumentation propfled specifically,
whether it is path reconstructible or not. With the same nemalh ipoints,
it is possible to instrument a program in two different wayststhat there
is a large disparity between the respective number of igoamisitions to
cover, e.g. by instrumenting each basic block that is a leahé pre-
dominator tree [116]. Simply covering each edge in the IPGhtiihere-
fore require different test cases.

If the instrumentation profile is not path reconstructilgarticular transi-
tions could execute many different paths in the program.ddbt must the
test vectors attempt to exercise each such path, but theyatsosattempt
to stress the path in its worst-case architectural state.

2. The properties of the processor in conjunction with thgesyof instruc-
tions on each ipoint transition due to the effect of the handnarchitec-
ture on the time each instruction takes to complete. Foant#, transi-
tions including floating-point instructions would requioetter coverage
on processors that employed a separate floating-pointipgas opposed
to those which had no speed-up features (because all itisttsavould
have fixed execution times).

3. The context of execution so that call contexts can be elgzhwith suffi-
cient confidence in the WCET calculation stage. Obtaining pootext
coverage forces the calculation to unify contexts, geherabulting in a
more conservative WCET estimate.

Each of the above three points underline the message that W&IETage met-
rics have very different requirements than existing fumeai criteria.

We believe in many cases that the IPG provides a suitablasimircture for
which attainment of WCET coverage metrics can be measuremaply be-
cause it contains the program properties of interest, ég.séction of code
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executed and the types of instructions.

e Regarding procedure calls, we assumed that recursion amdidnrpointers
were both absent. From our experience, there are a numbenlwddeed sys-
tems that include these features, thus currently limitingapproach. We be-
lieve that function pointers can be handled by patching #legraph during
trace parsing when the targets of calls become known.

e Our trace parsing mechanism required each IPG to be a DelistimiFinite
Automata (DFA). This generally requires a larger numberrate identifiers
and sometimes forces ipoints to particular locations (at@dure call sites) to
avoid Non-Deterministic Finite Automatas (NDFA). Howevdre number of
trace identifiers can be restricted by properties of thartgpmechanism, such
as the number of pins available on an external port. Extgntia analysis to
handle NDFAs would, in theory, overcome these issues.

Another future area of research linked to trace parsingagirivation of non-
functional properties from timing traces. Currently, weyordtrieve loop bounds,
but there is no reason to suggest that infeasible path irgtiom cannot also be
gleaned. Indeed, such information could then be fed backardtatic analysis
tool, or related to the user, for subsequent verification.

e Concerning the IPET and static analysis. Many static aratgsihniques de-
rive quite sophisticated flow facts for the program undehgis, and generally,
the IPET is the only calculation technique that can suitabbdel such con-
straints. Although the mapping is normally straightfordiarhen the CFG pro-
gram model is chosen, the IPG adds another layer of comyplegitause basic
blocks appear on different ipoint transitions. The bigdastor in decreasing
the WCET estimate was the incorporation of frequency bounttaeed from
trace parsing. Extra path information can therefore aiduations on the IPG
significantly.

A first step towards being able to transfer these data onttP(Ges to construct
the path expressions of IPG edges, which we did not consiletbelieve that
the work in [102, 112] can be modified for these purposes aslthee showed
how to construct the path expressions on reducible flow graplowever, the
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main difference between that problem and the path expregsmblem on the
IPG is the latter only consideipoint-free paths between ipoints, whereas the
former considers all paths between vertices.

7.3 Final Remarks

This thesis did not set out to suggest that HMB analysis cawmige upper bounds
on the WCET. Rather, the starting point of the thesis was thatause modelling
advanced processors is complex, existing static analysistques can greatly over-
estimate the WCET. With this motivation in mind, we developddMB framework
based on the IPG that combines the relative strengths of stadlysis and existing
testing practices, thus avoiding processor modellinggeliver. This thesis contends
that the IPG is the most suitable program model when compWIET estimates
through a HMB approach.



A Terminology and Notation

Here we review core graph and tree terminology and notatimeshey are not stan-
dardised in the literature. We also clarify some set natati®ed throughout the text.

A.1 Basic Set Notation

For a sefS, we denote its cardinal 4§|. Thesingleton setShas a unique element; we
sometimes abuse notation and &e indicate the unique elemest S. Thepower
setof a setS, i.e. the set of all subsets &f is denoted 2

A multiset is an unordered collection of elements where an element caur @s
a member more than once. Thaultiplicity of an element in a multisetSis the
number of times; occurs inS.

A.2 Basic Graph Terminology

A graph G = (Vg,Eg) is a pair of finite set¥s andEg, calledverticesandedges
respectively. We will denote the vertex and edge se¥ () andE(G) when context
does not disambiguate these sets amongst several graplese dite two types of
graphs:

e An undirected graphG = (V, Eg) has an edge s&g = {{u,v}|u,v € Vg}.

e A (forward) directed graph ¢ligraph) G = (Vg,Eg) has an edge sdig =
{(u,v)|u,v € Vg}. We sometimes denote a directed edgg/) asu — v and
say thatu andv areadjacent, u is thesource andv is thedestination. For any
ueVe:
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— pred(u) = {v|(v,u) € Eg} denotes the set dfmmediate) predecessors
A mergevertexu is one for which|pred(u)| > 1.

— sucdqu) = {v|(u,v) € Eg} denotes the set gfmmediate) successorsA
branch vertexu is one for which/sucqu)| > 1.

Following are two derivatives of a digrafgh= (Vg,Eg):

— Theunderlying undirected graph G’ = (\s,Ex/) has an edge s =
{{U,VH(U,V) < EG\/(Va U) < EG}

— ThereversedigraphG’' = (Vg,Eg/) has an edge s@&g = {(u,v)|(v,u) €
Ec}.

A multi-digraph G = (Vg, Eg) is a digraph such tha&ig is a multiset. Any edge in
Ec appearing more than once is termeghalti-edge.

A flow graph is a weakly connected digragh= (Vg, Eg,s,t) such that:

e s, t €\ are distinguished (dummy) vertices in whigred(s)| = 0 and|sucdt)| =
0; s is theentry vertex and theexit vertex.

e Every vertexv is reachable from and can reach

LetG = (Vg,Eg) andG’' = (Vz,Ew) be two graphs. ¥z C Vs andEg C Eg then
G’ is asubgraphof G, written asG' C G. Moreover,G' is aninduced subgraph ofs
whenevelG' C G and either:

e Eg ={(u,v) € Eg|u,ve Vg } if Gisdirected, or
e Eg = {{u,v} € Eg|u,v e Vg } if Gis undirected.

For a graptG = (g, Eg), apath p of lengthm— 1 is a sequence, — vo — ... —
Vm_1 — Vm such that, for all 1< i < m+1, vi — vi;1 € Eg. The notationu — v
denotes a path of length zero or more, wheneas v denotes a path of length one
or more. We say that a vertaxis reachablefrom vertex au (or alternativelyu can
reachv) if there is at least one path-> v. We denote the set of all paths framio v
asPathgu,v). Two pathsp: u— vandq: u— v arevertex disjoint if uandv are the
only vertices on botlp andg. A cycleisapathu=v; - Vvo — ... = V1 —>Vn=u
such tham > 1, i.e. it cannot be empty; a digraphasyclicif there are no cycles.

We are often interested in the connected property of a grapbllaws:
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e Anundirected grapls = (Vg, Eg) is connectedif there is a pattu — v between
anyu,v e V\g.

e AdigraphG = (g, Eg) is weakly connectedf its underlying undirected graph
G' = (Vs,Eg) is connected.

e A Strongly Connected Componen{SCC) of a digraplc = (Vg, Eg) is a max-
imal subgraphG’ = (V,Ew) such that, for every,v € Vi, there are paths
u>Svandv S u. Gis strongly connectedwheneveig = Vg'.

For a digraphG consisting of SCC§,, S, ..., S, thecomponent graphG’ of
G is built by collapsing al§ into abstract verticess; any entry edge — win
G,we S, hasug as its destination i®’; any exit edgev — vin G, W € S, has
Us as its source %'

A.3 Basic Tree Terminology

A spanning treeT = (Vg, E7) of a connected undirected gragh= (Vg,Eg) is an
induced acyclic subgraph @.

A rooted (directed) tree T = (Vr,Er,r) is a connected, acyclic graph with the
following properties:

e risadistinguished vertex called theot such thatpred(r)| = 0. We sometimes
denoter asrr.

e For eachu eV —{r}, |pred(u)| = 1. Further,p € pred(u) is theparent of u,
denotedparentr (u).

e uis aninternal vertex whenevejsucqu)| > 1; eachs € sucqu) is achild of u.
e uis aleaf wheneversucqu)| = 0.

e Thelevelof u € Vr, denotedevel(u), is the length of the unique path™ u.

e Theheightof T, denotecheight(T), is defined asnax{level(u)|u € V1 }.

o If a vertexv appears on the unique path™ u thenv is anancestorof u and
u adescendantof v; whenv # u, v is aproper ancestor oy andu a proper
descendant of.
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For a rooted tred@ = (1, Er,r), the following additional notation with respect to
verticesu, v is sometimes used:

e u[>) vto represent the path fromtovin T, excludingv; if u=v, thenu [>) v
is the empty path.

e u (5] vtorepresent the path fromtovin T, excludingu; if u=v, thenu (=] v
Is the empty path.

e U (=) v to represent the path fromto v in T, excluding bothu andv; if
v € sucdu), thenu (=) vis the empty path.

An ordered (rooted) treeT = (Vq,Er,r) is one in which, for each internal vertex
u, there is a total order relatiofsucqu), <).

For a rooted tred@ = (Vr,Er,r), we say that a vertew is theleast common an-
cestorof verticesu andv, denotedv = Icar (u, V), if wis on both pathg : r = uand
q:r = vand there is ng # w on bothp andq with level(y) > level(w). The notion
also extends to a set of verticés C Vr.

A forestis a disjoint union of a set of tredg1, To, ..., Tn}.

A.4 Depth-first Search

A depth-first search (DFS) of a graplG = (Vi, Eg) searche& by choosing to visit
the unexplored successors of the most recently exploradxverhe DFS ofG pro-
duces a foresk = {Ty, T,..., Ty} of depth-first treeq; = (M, Ei,ri) where:r; is a
vertex from which a DFS was initiated; for eacke V; — {ri}, parentv) is the vertex
from whichv was discovered. There is a unique tred=invheneverG is a weakly
connected digraph and the search is initiated at a verfeom which all vertices are
reachable. In such cases, we refer to the unique tree inttéstias th®©FS spanning
tree.

The DFS imparts a classification on the set of edgeas follows:
e (u,v) is aDFS treeedge ifu = parentv) in F.

e (u,v) is aDFS backedge ifvis an ancestor afiin F.
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e (u,v) is aDFS forwardedge ifu # parent(v) is an ancestor of in F.

e (u,v) is aDFS crossdge if there is no ancestor-descendant relation between
andvin F.

A pre-order (post-order) numbering ol is the order in which vertices were first
(last) visited during the DFS. A reverse post-order of ancheydigraphG is also
termed aopological sortof G in which u appears beforein the ordering if there is
a pathu = vin G.

A.5 The Dominance Relations

The dominance relations are used extensively at the optilorsstage of a compiler,
especially to analyse the structural properties of flow lgsap

For a flow graphG, a vertexu pre-dominatesa vertexv if every path froms to v
includesu. In addition, a vertexi post-dominatesa vertexv if every path fromvtot
includesu. Following is the notation used with respect to the domieamtations:

e Ul v (respectivelyu < v) to denote thati pre-dominates (respectivelyu post-
dominatesy).

e U>V (respectivelyu<v) to denote thaiti strictly pre-dominates (respectivelyu
strictly post-dominates); that is,u ™ v andu # v.

e ipre(v) = u (respectivelyipost(v) = u) to denote thati is theimmediate pre-
dominator ofv (respectivelyu is theimmediate post-dominator of/), i.e. u>v
and there is no vertex= u such thauryv.

The pre- and post-dominance relations can be succincthgsepted in respective
trees:

Definition 14. Thepre-dominator treeTF?r‘e = (Vg, ET,s) of a flow graph G is a rooted
directed tree such that:

e Er = {(ipre(u),u)|lue Vs —{s}}.

Definition 15. The post-dominator treeTF%st: (Vg,ET,t) of a flow graph G is a
rooted directed tree such that:
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e Er = {(ipost(u),u)|ue Vs — {t}}.

Construction of the dominator trees is a well studied probl&he first near linear
time algorithm was proposed in [66], which has since beenmovgd to make it run in
linear time [4].

We can extend the notion of pre-dominance (and post-doro@)dn relate the sets
of vertices and edges @. That is, a vertexi pre-dominates an edge— w if every
path froms to v — w passes through, or alternativelyy — w pre-dominates if every
path froms to u passes through— w.

Another important relation used in compiler optimisatisrtie dominance frontier
relation [32]:

Definition 16. For a flow graph G:

e Thepre-dominance frontierof a vertex v, denoted DQf(V), is the set

{yl(3p € pred(y))(v>pAVEY)}.
e Thepost-dominance frontieof a vertex v, denoted DRbst(Vv), is the set

{yI(3s € sucdy))(vasAv Ay)}.

A.6 Regular Expressions

We use terminology and notation consistent with that of [1111P].

A regular expressionover a finite alphabek is constructed from the following
rules:

e A and 0 are atomic regular expressions denoting the emg stnd the empty
set, respectively. For eaehe Z, ais an atomic regular expression.

e If Ry and R, are regular expressions théR; URy), (Ry-Rp), and (R;) are
compound regular expressions denoting set union, cored@denand reflexive,
transitive closure under concatenation, respectively.

The regular expressions obtained from this definition alig parenthesized. How-
ever, parentheses are usually relaxed using the operatoegence of over- overu.
Notation is sometimes abuse@- b) is written (ab); ((a*)a) is writtena™.
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Each regular expressidr over X thus represents a setR) of strings overz as
follows:

Ry - Rz) = O'(R]_) . O'(Rz) = {W’WE O'(Rj_) andw € O'(Rz)}.
Rx) = Up_,0(R), wherea(R)° = {A} ando(R)' = o(R)'1- o(R).
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