
Hybrid Measurement-Based

WCET Analysis using

Instrumentation Point Graphs

Adam Betts

This thesis is submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy.

University of York

February 2010

Abstract

Precise operation of real-time systems depends on functionally correct computations

that are delivered within imposed timing constraints. These temporal requirements are

often modelled and verified assuminga priori knowledge of theWorst-Case Execution

Time(WCET) of each task. Due to complexities resolving theactualWCET, estimates

normally suffice. These estimates should be safe, so as not tocompromise temporal

correctness, and accurate, in order to maximise the often limited system resources.

The aim ofWCET analysisis to therefore compute a WCET estimate that is the actual

WCET.

To date, the predominant research direction has beenstatic analysis, which builds

both program and processor models, and can therefore provide rigourous proofs re-

garding safety. However, the real-time sector is being infiltrated by more advanced

processors that complicate processor modelling sufficiently so that simplfying as-

sumptions are needed. Such assumptions lead to varying degrees of overestimation,

depending on processor configuration. On the other hand, currentend-to-end testing

practices - most often employed in industry - do not target WCETestimation and could

therefore underestimate unless the longest path is triggered. This is further compli-

cated by advanced processors as the WCET can depend on a rare sequence of events

at the architectural level, and not necessarily on the inputcausing the greatest number

of operations.

In this thesis, we combine the relative strengths of testingand static analysis through

aHybrid Measurement-Based(HMB) framework based on a new program model, the

Instrumentation Point Graph(IPG). We present an algorithm to construct the IPG from

a reducible CFG* - an augmented Control Flow Graph (CFG) - such that arbitrary

irreducible IPG loops are identified on the fly. Using these structural properties, we

i

ii Abstract

show how to map loop bounds obtained through static analysisonto the IPG and also

how to extract observed loop bounds fromtiming traces.

However, since the IPG does not provide a meansper seto compute WCET esti-

mates, we remodel two common calculation techniques so thatthey pertain to arbitrary

IPGs. For the purposes of tree-based calculations, we present an algorithm that de-

composes the IPG into a new hierarchical form, the Itree; we also present the timing

schema used to drive the calculation over the Itree. However, we show that the Itree

representation must make a space/precision trade-off whenmodelling arbitrary irre-

ducible IPGs, ultimately resulting in a margin of overestimation. As a consequence,

we rework the Implicit Path Enumeration Technique (IPET) sothat it applies to the

IPG.

All these techniques have been implemented in a prototype tool which takes a dis-

assembled program and a number of timing traces as input, illustrating the relative

ease in which our HMB framework can be retargetted as neithera processor model

nor user interaction is required. We use this prototype toolto evaluate a large-scale

industrial application.

Contents

Abstract i

List of Figures v

List of Tables vii

Acknowledgements ix

Declaration xi

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 4

2 Background and Related Work 9
2.1 Real-Time Systems . 9
2.2 Worst-Case Execution Time Analysis 12
2.3 Summary . 41

3 Instrumentation Point Graphs 43
3.1 The CFG* and the IPG . 46
3.2 IPG Construction . 50
3.3 Reducibility and Loop-Nesting Trees 55
3.4 A Modified Data-Flow Framework to Build the IPG67
3.5 Interprocedural Analysis . 78
3.6 Summary . 94

4 Tree-Based Calculations on the IPG 97
4.1 Preliminaries . 98
4.2 Itree Representation . 99
4.3 Acyclic Reducibility . 100
4.4 The Algorithm . 107
4.5 Iforest Calculations: Timing Schema and Calculation Order 122
4.6 Evaluation . 123
4.7 Discussion and Related Work . 130
4.8 Summary . 131

iii

iv Contents

5 IPET Calculations on IPGs 133
5.1 Preliminaries . 134
5.2 Basic ILP of the IPET . 135
5.3 Inaccuracies in the Basic ILP: Disconnected Circulations. 143
5.4 Evaluation . 144
5.5 Discussion . 148
5.6 Summary . 150

6 Prototype Tool and Evaluation 153
6.1 Prototype Implementation . 153
6.2 Properties of the Industrial Case Study 155
6.3 Experimental Set-Up and Results . 159
6.4 Summary . 166

7 Conclusions and Future Work 169
7.1 Summary of Contributions . 169
7.2 Future Work . 173
7.3 Final Remarks . 176

Appendix A Terminology and Notation 177
A.1 Basic Set Notation . 177
A.2 Basic Graph Terminology . 177
A.3 Basic Tree Terminology . 179
A.4 Depth-first Search . 180
A.5 The Dominance Relations . 181
A.6 Regular Expressions . 182

List of References 185

List of Figures

1.1 Overview of our WCET Toolchain 5

2.1 Example Task Schedule using the Deadline Monotonic Algorithm. . . 11

3.1 Pessimism Intrinsic to the WCET Calculation Stage when using Sparse
Instrumentation. 44

3.2 Example of a CFG* and an IPG. 49

3.3 Iterative Algorithm to Construct the IPG from a CFG*. 53

3.4 Example used to Demonstrate Construction of IPG using Algorithm
in Figure 3.3. 55

3.5 The LNT of the CFG* from Figure 3.2. 61

3.6 Example LNTs Generated for IPG in Figure 3.2(b), and the Set of
Iteration Edges each Identifies. 62

3.7 Demonstrating Different Relative Bounds on Iteration Edges depend-
ing on Locations of Ipoints. 64

3.8 Algorithm to Construct the IPG using the Loop-Nesting Tree of the
CFG*. 71

3.9 Update: Helper Procedure in IPG Construction. 72

3.10 Example used to Demonstrate Construction of IPG using Algorithm
in Figure 3.8. 75

3.11 Computations Performed by Algorithm in Figure 3.8 for Example in
Figure 3.10. 77

3.12 Algorithm to Effect Master Ipoint Inlining. 81

3.13 Example of Master Ipoint Inlining. 83

3.14 Algorithm to Parse Timing Traces to Extract WCET Data. 87

4.1 Example IPG To Demonstrate Acyclic Irreducibility. 101

4.2 The Itree of the IPG from Figure 4.1.102

4.3 The Iforest of the IPG from Figure 4.1. 106

v

vi LIST OF FIGURES

4.4 Example to Demonstrate Itree Construction Algorithm. 108

4.5 Build-Iforest: Main procedure to Build Iforest from IPG 110

4.6 Induced Loop DAGs and their Post-Dominator Trees for IPGin Fig-
ure 4.4 . 112

4.7 Itrees modelling Cyclic Regions in IPG of Figure 4.4 113

4.8 Build-Acyclic: Helper Procedure in Iforest Construction. 114

4.9 Which-Sub-Tree: Helper Procedure in Iforest Construction. . . . 115

4.10 UniqueEdgeAction: Helper Procedure in Iforest Construction. . . 116

4.11 Itree modelling Loop-Entry Edges into IPG LoopLI
b3

. 117

4.12 Build-ALT-Root: Helper Procedure in Iforest Construction. . . . 118

4.13 Itree modelling Paths from Branch Vertex 10 in IPG LoopLI
b3

. . . . 119

4.14 Build-SEQ-Root: Helper Procedure in Iforest Construction. . . . 120

4.15 The Iforest of the IPG in Figure 4.4121

4.16 Example Program. 124

4.17 First Instrumentation Profile on Program from Figure 4.16 to Evaluate
Itree. 126

4.18 Second Instrumentation Profile on Program from Figure 4.16 to Eval-
uate Itree. 129

5.1 Example to Demonstrate an ILP for an IPG.140

5.2 Example Program (Same as Figure 4.16).145

5.3 Instrumented Program from Figure 5.2 to Evaluate the IPET (Same as
Figure 4.17 without Itree). 146

5.4 Second Instrumentation Profile on Program from Figure 5.2 to Evalu-
ate the IPET (Same as Figure 4.18 without Itree). 149

6.1 Graphical Representation of Experiment Four. 165

List of Tables

2.1 Timing Schema for Tree-Based Calculations 17

6.1 Structural Properties of Industrial Case Study. 157

6.2 Testing and Coverage Properties of Industrial Case Study.. 158

6.3 Results of Experiment One. 160

6.4 Comparison of Measured Execution Times (MET) and WCET esti-
mates of Selected Procedures. 161

6.5 Results of Experiment Two. 162

6.6 Results of Experiment Three. 163

6.7 Results of Experiment Four. 164

vii

Acknowledgements

There are three people to whom I want to extend an indebted amount of gratitude.

First, my mother and father, who are the bestest parents in the whole wide world!

Unfortunately, my mother (Margaret “Taffy” Betts) will never see the completion of

this mammoth document, but without her love, her kind and caring nature, her sense of

humour, her (bad) laundry service(!), I would never have fulfilled my lofty ambitions.

I miss you every single second, mother. But of course, behind every good woman is

a good man, and my father (Kenneth “Cowboy” Betts) has providedme with support

in equal measure with his dodgy DIY, his occasional shoe polishing services, his slow

and frustrating driving, and his general dopiness. I love you, honestly father!

Second, to my supervisor Dr. Guillem “Rapita” Bernat, who gaveme the opportu-

nity to come to York under his astute guidance. Along the undulating journey that is a

PhD, Guillem has always been there in the background, ensuring that my ideas do not

become too aloof or, plainly and simply, too stupid. Guillemhas provided me with a

plethora of opportunities in my professional career - sometimes through sheer blind

faith it would appear - and that will never be forgotten. Moltes gr̀acies, Guillem!

ix

Declaration

Some of the material presented in this thesis has previouslybeen published in the

following papers:

• A. Betts and G. Bernat, ”Issues using the Nexus Interface for Measurement-

Based WCET Analysis”, Proceedings of the 5th international workshop on Worst-

Case Execution Time Analysis, satellite workshop to the 17thinternational Eu-

romicro conference on Real-Time Systems, July 2005.

• A. Betts and G. Bernat, ”Tree-Based WCET Analysis on Instrumentation Point

Graphs”, Proceedings of the International Symposium on Object and component-

oriented Real-time distributed Computing (ISORC’06), April 2006.

• A. Betts, G. Bernat, Raimund Kirner, Peter Puschner, and Ingomar Wenzel

”WCET Coverage for Pipelines”, Techincal report for the ARTIST2 Network

of Excellence, August 2006.

Except where stated, all of the work contained within this thesis represents the

original contribution of the author.

xi

1 Introduction

In today’s society, the dependability of computer-controlled systems manifests itself

to a larger degree due to an increasing reliance on their correct functionality. These

embeddedsystems are seldom visible to the naked eye since they are usually com-

ponents of a larger system or machine. The modern world is littered with numerous

pervasive examples, including: washing machines, printers, mobile phones, the Anti-

lock Breaking System (ABS), and flight control systems for missiles and aircraft.

Embedded systems for which precise operation also depends on timing constraints

are calledreal-time systems. A failure in some aspect of the temporal domain has

a wide range of possible consequences, depending on the typeof application. For

instance, a jittery video streaming application is perhapsless of an inconvenience than

the delayed release of an airbag after a high-speed impact. It is therefore critical —

sometimes evensafety-critical— that some analytical process has been undertaken to

verify the temporal properties of a real-time system beforeits eventual dispatch into

the real world.

The design of a real-time system revolves heavily around a model known as atask

schedule, which allots computational resources to executing tasks,i.e. programs.

Many differentscheduling algorithmshave been invented, all of which depend on

a set of temporal properties relevant to each task. One such property is theWorst-

Case Execution Time(WCET), intuitively described as the longest possible execu-

tion time. This is clearly essential in designing and verifying a feasibletask schedule

so that each task can be allocated a portion of CPU time. However, determining the

WCET is not trivial because execution times vary as a consequence of underlying

software and hardware properties. On the one hand, different input vectors cause de-

viations in the path followed through the software. On the other hand, the time taken

1

2 1.1 Motivation

for each instruction to complete depends largely on the hardware architecture. Due to

these characteristics,WCET estimatesare sought in which a typical requirement is to

bound the actual WCET so that neither the task schedule nor the verification process

are compromised. Yet, simply providing asafeupper bound is tempered by the desire

for accuracy because embedded resources are restricted andneed to be maximised ac-

cordingly. The epitome ofWCET analysis is to therefore compute a WCET estimate

that is the actual WCET.

1.1 Motivation

Mainstream industrial approaches for obtaining WCET estimates remain predomi-

nantlyad hoc. This is because the WCET is taken to be the longest observedend-to-

endexecution time during functional testing [117], using a particular kind of coverage

criteria, such as Modified Condition/Decision Coverage (MC/DC)[23]. Sometimes,

through sheer lack of confidence in the measured WCET, the observed time is fac-

tored in an attempt to bypass any optimism. However, this provides no guarantee of

safety as the factoring scale is usually based on engineering wisdom, which might not

sufficiently bound the actual WCET. On the other hand, if the actual WCET has been

captured, the factoring is likely to lead to a very pessimistic WCET estimate.

Drawing motivation from this deficiency,Static Analysis (SA) emerged towards

the end of the 1980s [94], which models the software and hardware instead of execut-

ing the program; a WCET estimate is then computed from these models. The most

appealing aspect of SA is that it provides the framework for formal proofs — due to

the properties of these models — that demonstrate the safetyof the computed WCET

estimate. Moreover, the embedded market has traditionallybeen dominated by simple

andpredictableprocessors (4-, 8-, and 16-bit), a trend which is due in part to power

consumption and cost issues [100]. This considerably easesaccurate and safe pro-

cessor modelling since the effect of the CPU on the execution time of instructions is

easily determined. However, processor modelling retains anumber of undesirable fea-

tures that are snowballing with the prevalence of significantly advanced CPU designs

within the real-time sector.

1.1 Motivation 3

First, there is an intrinsic SA requirement forpredictability at each stage of the

analysis, which is jeopardised in the presence of more advanced processors that in-

clude caches, dynamic branch predictors, and out-of-orderexecution units. Evidence

suggests that the uptake of these processors within the embedded market is escalat-

ing [44], especially because core industries (e.g., the avionic and the automotive) re-

quest increased performance. This point is illustrated by the lane departure warning

system implemented by Hella [24]; they specifically use Freescale Semiconductor’s

32-bit MPC5200 microprocessor due to its computational power. Producingprecise

models of such processors quickly becomes intractable because of the degree of unpre-

dictability introduced. Especially significant is the highlevel of interference between

operations of disparate units; for example, an incorrect branch prediction pollutes the

cache. The typical workaround is to decompose the analysis into specific speed-up

features and merge the results together at some subsequent stage. However, some pes-

simism is inherent in such an analysis simply because the normal mode of processing

encompasses concurrent operation of all features. Worse yet, this type of decom-

position could yield unsafe WCET estimates because oftiming anomalies[79, 123]

whereby local worst-case behaviour, such as a cache miss, does not necessarily lead

to the global WCET.

The second issue with SA ties in with the seemingly relentless increase in transistor

density, and hence the advent of theSystem on a Chip(SoC). These systems can pack

a mixture of one or more mircocontrollers, microprocessors, or Digital Signal Pro-

cessor (DSP) cores — together with different memory storagemediums (e.g. ROM,

RAM, Flash) — onto a single chip. A prime example is the TriCoreTM architecture

produced by Infineon, which is a single core 32-bit microcontroller-DSP architecture

that provides configurable memory in the size and type dimensions. In these cases, it

is not sufficient to build a model of the CPU because of the tightcoupling between

peripheral units. For instance, the worst scenario could depend on the relative bus

speed between the CPU and the on-chip memory. Following a similar decomposition

strategy to that of processor modelling leads to yet more pessimism.

The third problem that accompanies hardware modelling is the reliance on the pro-

cessor manufacturer to publish details of internal operation and implementation. In

many cases, such sensitive information is withheld becauseof intellectual property

4 1.2 Contribution

and competition. This is also true of any hardware synthesisperformed by the manu-

facturer, e.g. using VHDL. However, even when manuals are produced, they are often

error strewn [37], and this challenges the validity of any model originating from this

source.

The final bugbear of SA hardware modelling concerns the monumental effort re-

quired, which is highlighted by each of the above three points. Without question,

undertaking this for high-end processors occupies significant resources, both in terms

of time and money. For companies operating under strict time-to-market pressures, or

for those with limited budgets, this could prove a decisive factor. This is more notable

because state-of-the-art SA modelling techniques lag behind cutting-edge processor

design [93]. Moreover, replacing or upgrading from one processor to another demands

a fresh redesign of the model, incurring similar costs.

1.2 Contribution

This thesis contends that, in order to compute accurate WCET estimates — and not

necessarily bounds thereof — aHybrid Measurement-Based (HMB) framework

should be employed rather than a pure end-to-end or SA approach. In particular, we

believe that there are a myriad ofmission-critical systems for which absolute upper

bounds cause vast underutilisation of system resources, and as such would be ignored

by the industrial sector due to the margin of pessimism. In reality, real-time systems

are governed by self-checking and recovery mechanisms in case the actual WCET

ever exceeds the computed estimate.

This thesis is based upon two points of contention. First, increasingly complex

processors are emerging in the mission-critical sector of the embedded market, and

building processor models requires predictable hardware.Computation of WCET

estimates by SA techniques is therefore closely dependent on the accuracy of these

models, whereas we argue that the most suitable model to analyse is the processor

itself.

Second, existing end-to-end techniques rely on finding the actual worst-case test

vector, thus thelongest pathcould be missed. This is accentuated even further by

1.2 Contribution 5

higher-performance processors because the longest path also depends on the architec-

tural state. Therefore, the accuracy of such estimates is intrinsically tied to the quality

of test data and the percentage of coverage achieved, but even these remain insufficient

as they solely target functional properties.

Process

Program

Build IPGs

IPGs

Parse Traces

WCET estimate

IPET Calculation

or

Tree−Based

CFG*s

Test

Trace
File

Test
Vectors

Compile

Units of

Loop bounds
&

Computation

Procedure WCET

Call Graph

Calculation
Engine

Instrument

Legend

Data

Process

Conditional

Figure 1.1. Overview of our WCET Toolchain

To prove the thesis, we develop a HMB framework to compute WCET estimates,

a schematic overview of which is presented in Figure 1.1. In essence, we measure

the execution times of program segments throughinstrumentation points1 (ipoints).

Upon execution during testing, these ipoints generate a number oftiming traces of ex-

ecution through the program. The static analysis part of ouranalysis then recombines

1Although we use the term ”instrumentation points”, we emphasise that these are are notional points
in the program which donot always require software probes. There are often alternative means by
which timing traces can be extracted — namely, through hardware debug interfaces — even if in
practice the software solution proves to be the most desirable.

6 1.2 Contribution

the measured execution times by means of a novel program model, the Instrumenta-

tion Point Graph (IPG). To realise this, the timing traces are first parsed in order to

extract the basic unit of computation and, if required, loopbounds. The calculation

engine then uses either a tree-based approach or the Implicit Path Enumeration Tech-

nique (IPET) — in both cases operating on the IPG — to compute aWCET estimate.

In developing this framework, the following key contributions are provided:

• A new program model: Chapter 3 motivates and presents the IPG, in which

the atomic unit of computation is the transition among ipoints, as opposed to

the more traditional basic block. We show how the IPG is constructed from a

CFG* — which is basically an intermediate form similar to the Control Flow

Graph (CFG) — through two algorithms. The first of these is verysimple but its

weakness is that it requires support from state-of-the-arttechniques to identify

loops in the IPG. We show that these often fail due to the arbitrariness of IPG

irreducibility [3, 83]. Our solution is a more complex algorithm that instead

uses theLoop-Nesting Tree(LNT) of the CFG* during construction, and hence

identifies all such loops on the fly.

This chapter also describes usage of the IPG in the context ofinterprodecu-

ral analysis. We describe a virtual inlining technique,master ipoint inlining ,

which avoids duplication of the callee’s IPG at each call site in the caller and

produces one IPG per procedure. We show how to use the set of IPGs in con-

junction with thecall graph to parse the trace file so as to extract WCET data on

a per context basis. In particular, we show how to extract observed loop bounds

using properties of IPG loops. The final contribution of thischapter describes

how to use the call graph and the set of IPG loops in order to compute a final

WCET estimate.

• A new tree-based calculation engine:Chapter 4 presents a new hierarchical

form — the Itree — to facilitate tree-based calculations on the IPG. To this

end, we present an algorithm to decompose anarbitrary irreducibleIPG into an

Itree, as well as thetiming schemathat drives the WCET computation.

We show how to use thedominancerelations to detectSingle-Entry, Single-

Exit (SESE),Single-Entry, Multiple-Exit (SEME), andMultiple-Entry, Single-

1.2 Contribution 7

Exit (MESE) regions in acyclic IPGs. In particular, we show how these proper-

ties prevent redundant traversals of acyclic IPGs (whilst building a hierarchical

representation) and how this results in aforest of Itrees, anIforest.

We show that, when modelling cyclic IPGs in Itree form, irreducibility is gener-

ally the biggest contributing factor to overestimation in the calculation engine.

• Remodelling of the IPET: Chapter 5 describes how to remodel the IPET, a

calculation technique that constructs an Integer Linear Program (ILP), so that it

applies to arbitrary irreducible IPGs. We show that, in contrast to the Itree, the

IPET does not cause any undue overestimation in the calculation on the IPG.

• A prototype tool: Chapter 6 describes the prototype tool developed to support

HMB WCET calculations, which takes a disassembled program anda trace file

as input. We use the prototype tool to evaluate the techniques presented with

a large-scale industrial application that existing SA techniques cannot analyse

due to the non-disclosure of fundamental system properties— in particular, both

program source and processor configuration are withheld.

We compare the WCET estimate that our HMB framework computes with end-

to-end measurements. Our results indicate that our tree-based calculation en-

gine can be competitive with the remodelled IPET, that analysis of execution

contexts is essential to the quality of the WCET estimate when the IPG is the

program model, and that computation of the WCET estimate is less sensitive to

the amount of coverage achieved than end-to-end estimates.

In addition to these main chapters, a thorough account of related work is provided

in Chapter 2, which also discusses our key assumptions regarding how timing traces

are extracted and how testing is implemented. Chapter 7 drawsgeneral conclusions

and indicates future directions of work. Appendix A reviewscore terminology and

notation used throughout the thesis, with particular regard to graphs, trees, and control

flow analysis. It is recommended that the reader familiarises oneself with the material

in the appendix before embarking on Chapters 3 through 5.

2 Background and Related Work

The central topic of this thesis is Hybrid Measurement-Based(HMB) WCET analysis.

Section 2.1 begins by reviewing core material in real-time systems in order to provide

the setting for WCET analysis research. This leads to Section 2.2, which is devoted

to a survey of techniques used to generate WCET estimates. In particular, this section

examines in detail the program and processor models used by Static Analysis (SA)

and the testing techniques used by existing end-to-end measurements. An overview of

the tool support available for WCET analysis from commercial and academic horizons

is also presented. We conclude with a summary of the chapter in Section 2.3.

2.1 Real-Time Systems

Chapter 1 provided an intuitive distinction between embedded and real-time systems.

Rather than rephrase previous definitions in the search for formalism, we present the

following as provided by Laplante [64]:

A real-time systemis one whose logical correctness is based on both the

correctness of the outputs and their timeliness.

The diversity implicated in this definition is mirrored by the extensive range of

systems to which it applies: multimedia hand-held devices,heart pacemakers, and

aircraft control systems, to name but a few. Clearly, the costof failure of such systems

differs enormously, but when loss of life is a possibility such systems are branded

safety-critical. Other systems for which correct functionality is vital to the fulfilment

of its goal are coinedmission-critical, although the differences between them are not

always abundantly transparent.

9

10 2.1 Real-Time Systems

2.1.1 Scheduling

In reasoning about the temporal requirements of a real-timesystem, i.e. whether they

can be satisfied or not, a model of the computations performedis constructed. Each

sequential computation is referred to as a task, and the collective set of computations

as a task setT = {τ1,τ2, . . . ,τn}. For each task, a task instance is a fresh invocation of

that task, the regularity of which provides a categorisation as follows:

• Periodic if these arrive with a constant period,

• Aperiodic if these arrive irregularly,

• Sporadic if there is a minimum interarrival time between arrivals.

Each periodic taskτi has several associated parameters that are assumed known:

• The release timeRi is the time at which the task becomes ready for execution.

• The periodPi is the regularity at which a new instance ofτi is initiated.

• The deadlineDi is the time at which the computation should have completed.

• The worst-case execution timeCi is the time needed for the processor to perform

uninterrupted execution of the task.

Given the task modelT, a scheduleis an assignment of tasks to the processor,

so that each task is executed until completion [21]. Scheduling algorithms retain a

number of characteristics that facilitate their categorisation. First, the actual selection

policy of which task to execute can be decided on-line or off-line. On-line mechanisms

choose the task during run-time, whereas off-line ones decide before the system is

ever run. Second, how the scheduling decision is determineddepends either on fixed

priorities or on dynamic priorities of the task set. Fixed priority schemes assume that

particular parameters remain fixed to determine a priority ordering of tasks statically.

On the other hand, dynamic policies permit such parameters to change at run-time and

utilise these dynamic values to determine the priority ordering. Third, the scheduler

can operate a pre-emptive or a non-pre-emptive approach according to the priority of

tasks. A pre-emptive algorithm permits a higher priority task to interrupt the execution

of a lower priority task. In comparison, a non-pre-emptive algorithm forces the lower

priority task to finish before invoking that of the higher priority.

2.1 Real-Time Systems 11

Three classical scheduling policies are:

• Rate monotonic [76]: A pre-emptive, fixed priority policy in which tasks with

shorter periods between instances are given higher priority over those with

longer periods.

• Deadline monotonic [67]: A pre-emptive, fixed priority policy in which tasks

with shorter deadlines are given higher priority over thosewith longer deadlines.

• Earliest Deadline First (EDF) [76]: A pre-emptive, dynamicpriority policy in

which the task with the earliest deadline is assigned the highest priority. The

difference between EDF and deadline monotonic is that the release times of

tasks are modified during execution, and hence priorities evolve; therefore, EDF

decides using these modified priorities.

Figure 2.1. Example Task Schedule using the Deadline Monotonic Algorithm.

Task Release time Period WCET
τ1 1 6 3
τ2 0 5 2

(a) The task set and associated parameters.

time
τ1

τ2

0 5 10

(b) The task schedule in which arrows represent an invocation of each respec-
tive task. Task τ2 has a higher priority than τ1 since its deadline is shorter.

To illustrate a sample task schedule using the deadline monotonic algorithm, con-

sider an example task set, the respective parameters of eachtask, and the resultant

schedule in Figure 2.1. The task set consists of two periodictasksτ1 andτ2 in which

the deadline is assumed to be equal to the period;τ2 has a shorter deadline thanτ1,

thus it is deemed of a higher priority. The schedule in Figure2.1(b) is over discrete

time units whereby invocations of tasks is represented by arrows. Note thatτ1 does

not pre-emptτ2 at its release time due to the priority ordering. However, itdoes com-

mence execution onceτ2 has finished.

12 2.2 Worst-Case Execution Time Analysis

When a task set can be scheduled in accordance with specified constraints, e.g. all

periodic tasks meet their deadline, it is termed feasible. Moreover, the task set is

schedulable if there exists at least one scheduling policy that is feasible. Aschedu-

lability test determines whether the task set is feasible for a particularscheduling

algorithm.

Liu and Layland [76] provided a schedulability test for the rate monotonic algo-

rithm:
n

∑
i=1

Ci

Pi
< n

(

21/n−1
)

(2.1)

In this inequality, the left-hand side represents the totalprocessor utilisation and

the right-hand side is the utilisation bound, which converges towards 0.69. This is a

sufficient schedulability test but not a necessary one because a test set could fail the

test yet still be schedulable according to the rate monotonic algorithm. Note that this is

also a schedulability test for the deadline monotonic algorithm under the assumption

that, for each task,Pi = Di.

Liu and Layland [76] also provided a sufficient and necessaryschedulability test for

EDF:
n

∑
i=1

Ci

Pi
≤ 1 (2.2)

2.2 Worst-Case Execution Time Analysis

In the previous section, the task model built in the design and verification of real-time

systems was discussed. This model provides the framework for scheduling algorithms

and their schedulability tests in which a fundamental assumption is that the WCET

of each task is available andfixed. This is evident in the schedulability tests of the

rate monotonic and EDF scheduling algorithms shown above in(2.1) and (2.2), re-

spectively. However, in spite of the increased interest in scheduling theory during the

1970s and 1980s, research in WCET analysis surprisingly remained dormant until the

seminal paper by Puschner and Koza [94] aroused interest. Being the great pioneers

of WCET analysis, a reminder of their definition of a WCET estimateis in order:

2.2 Worst-Case Execution Time Analysis 13

The Calculated Maximum Execution Time (MAXTC)1 of a program is the

least upper bound for the Application Specific Maximum Execution Time

(MAXTA) that can be derived from the task’s program code. TheMAXTA

of a program is the time it maximally takes to perform its functionality in

the given application context, provided that all needed resources are avail-

able, the program is not interrupted and the performance of the hardware

is known.

We crucially note the term “least upper bound”, which indicates that merely pro-

viding an upper bound has never been the specific aim of WCET analysis. Besides

presenting this definition, several key properties of the WCETproblem were noted,

namely:

• Providing a WCET estimate for an arbitrary program reduces to the Halting

problem. Therefore, to ensure that the WCET problem is decidable, a minimal

set of restrictions must be supplied. In particular, these are loop bounds and

maximal depth of recursive procedures.

• The timing behaviour of all hardware components should be deterministic since

execution times are hardware dependant.

• WCET estimates do not typically account for the interference produced by back-

ground activities, such as dynamic RAM refresh, nor that produced by pre-

empting tasks.

Broadly speaking, the computation of WCET estimates is either achieved through

SA or end-to-end testing techniques. Due to the conceptual requirement that a WCET

estimate should be an upper bound on the actual WCET, SA solutions were the first

to impact the literature. These techniques typically combine data derived from two

disparate models:program models that we review in Section 2.2.1; andprocessor

modelsthat we review in Section 2.2.2. However, these models alonedo not provide

sufficient information to compute a WCET estimate because of the Halting problem,

as discussed above. Calculable WCET estimates are therefore ensured byflow anal-

ysis, which computes path-related properties of the program, and are discussed in

1As an historical aside, although they provided the seminal paper on WCET analysis, the name
“MAXT” was (unjustly) modified to “WCET” by native English-speaking authors.

14 2.2 Worst-Case Execution Time Analysis

Section 2.2.3.

As this thesis develops a HMB framework, we also survey test-oriented and cov-

erage techniques to compute WCET estimates in Section 2.2.4. Finally, tool support

for generating WCET estimates is an almost essential requirement, some of which

have successfully evolved from academic prototypes into fully-fledged commercial

toolsets. Tools having the greatest impact on the field are described in Section 2.2.5.

2.2.1 Program Models and WCET Calculations

In general terms, a program model represents the set of structurally feasible execution

paths without considering the semantics of the code. From a WCET analysis perspec-

tive, the ultimate application of the program model is to derive the longest path by

means of an appropriate calculation technique; how this is performed depends on the

type of model. TheControl Flow Graph (CFG) and theAbstract Syntax Tree(AST)

are thede factomodels since they are often a by-product of program compilation. In

both the AST and the CFG, the atomic unit of computation is thebasic block, which

is a sequence of consecutive functional instructions (at the assembly/object code level)

in which flow of control enters at the beginning and leaves at the end [3, 83]. Typi-

cally, the WCET of each basic block is deduced from either a processor model or from

measurements.

Path-Based Calculations and the IPET

Bothpath-basedapproaches and theImplicit Path Enumeration Technique (IPET)

to calculate WCET estimates require a graph-based program model. The standard

model is the CFG, which is a flow graph of basic blocks in which edges represent

the control flow relation between them. The graph-based model employed in our

HMB framework is the IPG (see Chapter 3), thus these calculation techniques are also

applicable to the IPG — Chapter 5 considers remodelling of theIPET towards the

IPG.

The simplest way to implement a path-based approach is to enumerate each path

through the graph and then select the longest amongst them — the clear benefit is that

2.2 Worst-Case Execution Time Analysis 15

there is no pessimism in the calculation. However, because programs inevitably con-

tain loops, this is not applicable in any practical setting as path enumeration causes

exponential growth in the number of paths, e.g. a loop with bound n containing a

uniqueif-then-else construct has 2n paths. To limit the complexity, therefore,

the enumeration of paths should be restricted to sections ofstraight-line code [105],

such as within a loop body. In this way, calculations become localised (in a manner

similar to that of a tree-based approach) and integrating global flow analysis data is

compromised. However, a path-based approach working at theloop boundary level

can virtually unroll paths and thus select a different path on each individual itera-

tion [50].

To ensure a more precise analysis, the calculation must alsobe aware of infeasible

paths. In [106], an algorithm was presented that iteratively computes a longest path

until it finds a feasible execution path. This is basically done by rewriting the graph

— inserting additional vertices and edges so that the infeasible path is not structurally

feasible in the modified graph. (Their algorithm also accounts for pipeline effects.)

Instead of rewriting the graph, infeasible path data can be included directly in the

calculation [109]. In this approach, infeasibility data are derived for the acyclic region

of each loop, which basically link edges (with branch vertices as sources) that cannot

execute in sequence. Armed with this knowledge, the calculation engine then traverses

the loop body in reverse topological order and propagates the longest path up to the

loop header, discounting infeasible paths along the way. However, their approach is

not yet able to handle cross-loop or interprocedural constraints.

The general weakness of path-based approaches is that, in order to incorporate

global flow analysis data, the unit of analysis must be extended to complete execution

paths. Any form of unrolling or graph rewriting provides a partial solution but can be

quite costly. The alternative is to model feasible execution paths as a constraint model

on the graph: this is how the IPET [73, 95] operates. The key observation to the IPET

is that it generates bounds on the execution count of the atomic unit of computation,

e.g. basic blocks, without explicitly enumerating all paths and can thus incorporate

global flow analysis data. This is achieved by producing anInteger Linear Program

(ILP) or a Constraint Program (CP). In both cases, an objective function needs to

be maximised subject to a set of constraints expressing flow information. We defer a

16 2.2 Worst-Case Execution Time Analysis

detailed examination of this calculation technique until Chapter 5.

One weakness of the basic constraint model of the IPET is thatit simply provides a

bound on the execution count of each variable. This means that it cannot sufficiently

capture more detailed flow information, e.g. that a basic block is never executed on

the first 20 iterations of a loop. The IPET has since been retargetted towards a scope

graph [40], which is a CFG partitioned into regions, i.e. scopes. Every scope is

essentially a hierarchical component of the program, such as a loop or a procedure, and

carries a set of flow facts (derived from SA) that describe itsdynamic properties. Flow

facts can span across scopes. From the set of flow facts and theset of scopes, virtual

scopes are created, which are basically duplicated scopes for which linear constraints

can correctly bound the execution count of variables according to the flow facts. These

duplicated scopes can be seen as “mini” constraint models that, when pieced together,

give a complete description of flow through the CFG.

The long-standing issue with the IPET is that, in the worst case, solutions to ILPs (or

CPs) have exponential time complexity [30]. This is particularly an issue when inte-

grating global flow data into the constraint model because, otherwise, the problem can

be reduced to the network flow problem [73] for which there areknown polynomial-

time solutions [30]. For this reason, a so-called clusteredcalculation [42] has been

explored, which attempts to avoid the creation of a single global constraint model.

This again uses the scope graph and the set of flow facts. Basically, flow facts deter-

mine the smallest unit of analysis (in the graph) to which a localised calculation can

be confined, either using the IPET or an existing path-based approach. However, as

the authors acknowledge, if flow data span the entire CFG, a global constraint model

is the only option.

Tree-Based Calculations

A tree-based approach to calculating a WCET estimate was first proposed in the sem-

inal paper on WCET analysis [94]. The original calculation engine operated at the

source level of a program on its AST representation. This is created by parsing pro-

gram source and identifying sequence, selective, and iterative constructs. Each inter-

nal vertex of an AST is one of these constructs and leaves are sequences of statements,

2.2 Worst-Case Execution Time Analysis 17

i.e. basic blocks.

The calculation engine operates by traversing the AST bottom-up whilst concep-

tually collapsing each construct according to a particulartiming rule, collectively re-

ferred to as thetiming schema[88]. The original timing rules are shown in Table 2.1

in which: S is a basic block or an interior vertex;C is a conditional expression;n is an

upper bound on the number of loop iterations.

Language construct Timing rule

Sequence: S1,S2 . . . ,Sn ∑n
i=1WCET(Si)

Alternative : ifC then S1 else S2 WCET(C)+max(WCET(S1),WCET(S2))
Iteration : whileC do S WCET(C)+(WCET(C)+WCET(S))∗n

Table 2.1. Timing Schema for Tree-Based Calculations

However, the most poignant shortcoming of the original timing schema was its in-

ability to account for the effect of hardware features, since it assumed fixed execution

times of basic blocks. The timing schema has since been extended to account for

the effects of pipelines and instruction caches on RISC architectures [75]. Colin and

Puaut [28] proposed a data structure to represent the simulation results obtained from

pipeline, cache, and branch prediction modelling in a modular way during the tree-

based calculation.

There are also issues with the actual hierarchical representation. First, the timing

schema impose localised calculations, and thus more complex flow analysis data, e.g.

relating to infeasible paths or non-rectangular loops (where the number of iterations

of an inner loop depends on the number of iterations of an outer loop), cannot be in-

tegrated into the calculation. The WCET estimate is thus less precise. This deficiency

motivated the work in [25], which introduces a scope tree that has similar properties

to those of the AST. The scope tree can handle more complicated flow analysis data

by duplicating sub-trees.

Second, tree-based calculations are only suitable for well-structured programs whereby

hierarchical relations hold. This essentially precludes any programs containing high-

level statements that abruptly redirect flow of control to a different region, e.g.goto,

break, andcontinue. Furthermore, there has to be a clear mapping between the

source-level constructs in the AST and the compiled code at the intermediate level.

18 2.2 Worst-Case Execution Time Analysis

This is because processor models determine the WCETs of basic blocks, and these

must then be transferred onto the AST for the calculation. However, as more complex

hardware architectures prevail so too does the role of optimising compilers, which

vastly complicate the mapping. The crux of the problem is that the AST should be

created from the graph-based model, i.e. the CFG, in order to be compatible with the

information extracted at the intermediate code level. (This is main reason that usage of

the CFG is significantly more widespread as it can handle arbitrary program structure,

including aggressively optimised code.)

In Chapter 4, we present an algorithm that does construct a hierarchical data struc-

ture, theItree, from a graph-based program model (i.e. the IPG). As the IPG itself

is derived from a program model similar to the CFG (as discussed in Chapter 3),

this means that the Itree is able to support more control structures, e.g.break and

continue statements, than those associated with well-structured programs. The

Itree also models arbitrary irreducible loops in the IPG, although we show that these

unstructured sections of code are the principal cause of inaccuracies in the resultant

WCET estimate.

It might appear that tree-based approaches are inherently so weak that their study

does not warrant further investigation. However, one clearadvantage of a tree-based

approach is that it allows computation ofprobabilistic WCET estimates; these can

subsequently be used in schedulability analyses [20, 35] that assume execution times

as probability distributions. This has motivated the introduction of a probabilistic tim-

ing schema [15, 16] which combines Execution Time Profile (ETP) instead of integer

values. Each ETP represents the frequency of execution times for a particular code se-

quence (normally basic blocks), which are usually obtainedfrom measurements. The

algebra is then able to combine dependent ETPs arising from hardware effects that

have not been captured in the measurement stage.

Interprocedural Analysis and Contexts

The calculation techniques described above typically operate on a per procedure basis,

but there is clearly a need to drive calculations across procedure boundaries.

Interprocedural analysis is often aided by thecall graph in which procedures are

2.2 Worst-Case Execution Time Analysis 19

vertices and the procedure calls are modelled by its edges. To achieve maximum

precision in the calculation, it is not sufficient to consider that the WCET of each call

from a proceduref to a procedureg is the same at every call site. This neglects the

context of the call and can be a major source of pessimism. For example, the loop

bounds in a callee could be parametrised by the arguments supplied in the procedure

call, thus simply assuming the maximum bound leads to overestimation across all calls

to that callee.

Interprocedural analysis within the scope of the IPET has been researched by Theil-

ing [113], which includes support for recursion. They consider a context to be a call

stack state — a so-called call string. In order to manage complexity, the length of the

call string can be constrained by a parameter, i.e. it determines how far back to go in

the execution history.

In Chapter 3 we describe our interprocedural analysis technique using the IPG. The

main difference between our work and that of Theiling is thatwe discover contexts

from timing traces. Furthermore, our calculation engine ismodularised, which means

that either a tree-based approach, a path-based approach orthe IPET can be chosen to

calculate the WCET of each individual context.

A different approach to context-sensitive analysis is to represent the WCET of a

piece of code as an algebraic expression, more widely referred to asparametric

analysis [14, 25, 120]. This is especially useful for code that is heavily input-data

dependent, such as an image processing application. In [14,25] the formulae are

constructed at the source level and a computational algebrasystem like Mathematica

or Maple is used to simplify and evaluate these expressions.However, parametric

analysis is sometimes performed at run time when the parameters become available

in order to make dynamic scheduling decisions [120]. In suchcases, it is unrealistic

to assume such a computational algebra system is available.Rather, the formulae are

much simpler so that the WCET can quickly be evaluated.

20 2.2 Worst-Case Execution Time Analysis

2.2.2 Processor Models

Although this thesis is not concerned with processor modelling, a picture of WCET

analysis would not be complete without reviewing this area of research, especially

because most work has been concentrated here. Moreover, theprime motivation for

the development of a HMB framework is that there are a number of deficiencies in

existing processor modelling techniques; thus, it is worthwhile reviewing the state of

the art to support this claim.

A processor model synthesises the functional and temporal behaviour of an actual

processor, which SA uses to compute the WCET of basic blocks without executing

the software on the target hardware. The intricacy involvedin providing a safe yet

accurate model largely depends on the speed-up features present in the processor.

Pipelinesandcacheshave both been comprehensively studied. The former is widely

used in contemporary embedded systems due to low implementation cost and power

consumption. The latter has the greatest effect on the WCET [26, 61]. Some embed-

ded systems wish to speed up memory accesses without the modelling complexity of

caches:scratchpadsprovide an elegant workaround. Interest inbranch prediction

and out-of-order execution has only recently emerged, mainly because these fea-

tures are reserved for processors striving for aggressive instruction throughput, which

is a less common requirement in embedded systems. These moreadvanced features

proliferate the presence oftiming anomalies, which potentially invalidate traditional

divide-and-conquer strategies. We survey the state of the art in each of these tech-

niques.

Pipelines

Pipelining permits multiple instructions to be in flight simultaneously by exploiting

the fact that an instruction must pass through multiple stages to complete execution.

This idea contrasts with a non-pipelined architecture whereby the execution of an

instruction only begins on completion of the previous instruction.

A pipeline thus consists of a number of stages — its depth — each instruction

must pass through and allows several instructions to occupyindependent stages. Each

2.2 Worst-Case Execution Time Analysis 21

instruction normally progresses to the next stage on every clock cycle, although each

instruction does not need to pass through each stage. The instruction latency is the

number of cycles taken to pass through the pipeline. The idealised latency of an

instruction is the pipeline depth, but this is hindered by hazards.

To obtain a safe and accurate WCET estimate in the presence of pipelines, the tim-

ing effect over basic block boundaries must be contemplated, since the effect within

the basic block is quite easily determined using reservation tables [86]. In many cases,

there is a relative speed-up in the execution time (of consecutive basic blocks), in com-

parison to their individual execution, due to the inherent overlapping of the pipeline.

However, hazards between basic blocks can produce an increase in execution time, a

so-calledpositive timing effect.

The first contribution in this area was to account for the overlap between adjacent

basic blocks [86]. However, this is insufficient in the general case because the ef-

fects of pipelines can reach much farther [39]; for example,floating-point instructions

occupy functional units much longer than do integer instructions. An alternative to

capture such effects is trace-driven simulation [39, 37] inwhich a trace of a program

for a fixed input is recorded and then simulated2; this is performed for sequences of

basic blocks.

The effect of a pipeline on the WCET can also be analysed byabstract interpre-

tation [31]. This is the approach taken in [101] in order to model theSuperSPARC I

superscalar pipeline, whereby the abstract state of the pipeline is updated at each basic

block until a fixed point solution is reached. However, stateexplosion must be man-

aged by merging abstract states at selected (merge) vertices in the CFG; this makes

the analysis more conservative, and ultimately translatesinto a loss of accuracy in the

WCET estimation.

Caches and Scratchpads

For fast CPUs, a severe performance penalty would be incurredif both instructions and

data were continually fetched from main memory, since the access time is relatively

much slower and CPU execution would stall. A cache is an on-chip memory — thus

2Comparatively, execution-driven simulation dynamicallyinterprets instructions for variable input.

22 2.2 Worst-Case Execution Time Analysis

providing significantly faster access times — whose contents subset the next lower

level of memory, resulting in a memory hierarchy. Caches can contain instructions

(instruction caches), data (data caches), or a mixture of both (unified caches). General-

purpose faster processors typically contain two-levels ofcache, normally configured

with separate on-chip instruction and data caches at level one (L1), and a unified on-

chip/off-chip cache at level two (L2) [56].

When the requested data resides in the cache then a cache hit ensues. Otherwise, it

is a cache miss and a penalty is accrued whilst a fixed-size setof data, termed a cache

line, is retrieved from the next lower level in the memory hierarchy. The location in

which the incoming line is placed depends on the configuration as follows [53]:

• In a direct-mapped scheme, the block is placed in a specific location, usually as

a function of its address.

• In a set-associative scheme, the cache is split between a number of sets. The

block is then mapped onto a set, as a function of its address, and placed any-

where within that set.

• In a fully-associative scheme, the block can reside anywhere in the cache.

For set-associative and fully-associative configurations, a cache miss forces a block

resident in cache to be displaced in order to accommodate theincoming block. There

are typically three block replacement strategies:

1. The Least Recently Used (LRU) approach removes the block that has not been

used for the longest time. To determine the exact LRU item to be evicted re-

quires a number of status bits to track when each block was accessed, which

becomes expensive when the number of blocks in each set is large. Instead, the

pseudo-LRU approximates the LRU item, which is a very good approximation

of LRU [81].

2. The First In, First Out (FIFO) strategy removes the block that has been resident

for the longest duration.

3. The random approach arbitrarily chooses the block to be removed.

Note that direct-mapped caches do not require a cache replacement strategy since

there is a unique location for each block. In serving a cache miss, the CPU stalls until

2.2 Worst-Case Execution Time Analysis 23

the entire block has been transferred. A wrap-around fill (critical word first [53]) devi-

ates from such behaviour by transferring the requested wordfirst and freeing the CPU

to continue execution as soon as the data is available, whilst the transfer completes in

parallel.

Scratchpads provide on-chip memory with predictable access latencies which are

comparable to those of caches. The contents of a scratchpad are mapped into the ad-

dress space of the processor and, unlike a cache, are normally allocated at compile

time. Therefore, when the CPU requests data that falls withinthe range of the scratch-

pad, it fetches from the scratchpad; otherwise, it must fetch from the appropriate level

in the memory hierarchy.

Caches significantly complicate WCET analysis because of the difficulty in deter-

mining which instructions and data reside in cache at a particular program point: their

presence usually equates to a faster execution3, otherwise a cache miss occurs and

the associated penalty must be considered. Simply assuminguniform cache misses,

or disabling the cache to force predictability, is likely tolead to gross overestimation

and an underutilisation of processor resources. In general, predicting the caching be-

haviour of instructions is more straightforward than it is for data because the addresses

of instructions are fixed and known at compile time. Comparatively, determining ab-

solute data addresses at compile time is complicated by, forexample, pointers. It is

further aggravated by unique instructions whose data access different memory loca-

tions at run time, e.g. load/store instructions. Scratchpads, on the other hand, are often

a desirable alternative because of their predictability.

One of the first techniques to emerge for WCET cache analysis wasStatic Cache

Simulation [6, 85, 125, 126], which effectively simulates the effect ofevery path

through the program on the state of the cache.

More specifically, static cache simulation is founded ondata-flow analysis[3] and

represents theAbstract Cache State(ACS) at each point in the program (that is,

in its CFG). The ACS holds the program lines thatmayreside in cache if execution

reaches that particular point, as opposed to theConcrete Cache State(CCS) that

would otherwise represent theexactprogram lines resident in cache. The ACS at

3Due to timing anomalies, this might not always be the case.

24 2.2 Worst-Case Execution Time Analysis

each vertex is computed by taking the union of the output states of each immediate

predecessor and simulating the effect of the instructions or data in that vertex on the

state of the cache. The ACSs are propagated across the programthrough iteration

until a fixpoint solution has been reached, which is a set of stable ACSs. Termination

is guaranteed by the properties of the underlying data-flow framework.

Having computed ACSs, the next step is to determine if each instruction or data

reference will either be a cache hit or a cache miss during program execution. It is not

always possible, however, to categorise a reference as a hitor a miss, so instructions

are instead categorised as follows:

• Always miss: the instruction is not guaranteed to be in cache.

• Always hit: the instruction is guaranteed to be in cache.

• First miss: the first access will miss but all subsequent accesses will hit.

• First hit: the first access will hit but all subsequent accesses will miss.

• Unknown: the caching behaviour of an instruction cannot be categorised. This

is handled as always miss.

Static cache simulation has been extended to handle set-associative caches assum-

ing perfect LRU [85, 125], multi-level caches [84], data caches [125, 126], and in-

struction caches employing a wrap-around fill mechanism [126]. However, it has the

following limitations:

• At merge vertices in the CFG, cache states of all immediate predecessors must

be unioned together to limit the complexity of the analysis (which would oth-

erwise grow exponentially because all paths would effectively be simulated). If

the cache states are very different then the model becomes pessimistic. This

can be particularly problematic for loops (unless the first iteration is virtually

unrolled) because no distinction is made between the first iteration of the loop

and all other iterations.

• Replacement policies other than perfect LRU, e.g. pseudo LRU, cause unpre-

dictability and force the analysis to be more conservative because the analysis

should reflect the worst possible state of the cache at each vertex.

2.2 Worst-Case Execution Time Analysis 25

• Analysis overheads can be considerable, both in terms of time and space. The

underlying iterative data-flow framework is known to have quadratic time com-

plexity in the worst case because it must make several passesover the CFG until

the cache states become stable from the initial cache state (of all invalid lines).

On each pass, set unions must be performed at each vertex, which are typically

quite slow especially when sets are not sparse as in the case of a cache model.

A similar way to categorise the caching behaviour of instructions and data is through

abstract interpretation [43, 114], which combines ACS through a join function. In this

work, three different types of analyses are performed:

1. Must analysis: determines which lines are always in cacheat a particular vertex

in the CFG. The join function is effectively a set intersection of the ACSs.

2. May analysis: determines which lines are never in cache bycomputing the set

of lines that may be in cache. The join function is effectively a set union of the

ACSs.

3. Persistence analysis: determines which lines are alwaysin cache once loaded.

The join function is effectively a set union of the ACSs.

After these analyses, memory accesses can be classified as always hit, always miss,

persistent, or not classified in a similar manner to the categorisations proposed by

static cache simulation. Likewise, it also suffers from theabove mentioned problems.

Bounding the worst-case performance of data caches was originally studied in [60],

which proposed two techniques. The first reduces the number of load/store instruc-

tions that are incorrectly classified as dynamic load/stores instructions; this is done by

using data-flow analysis on the base register of such instructions. The second deter-

mines the maximum number of cache misses for array accesses in loops by using the

pigeonhole principle. The approach, however, is limited todirect-mapped caches in

which the entire loops fits in cache.

In a similar vein, data memory accesses can be classified as predictable or unpre-

dictable [107]. Predictable accesses are those produced byscalar variables and pre-

defined array accesses; otherwise, they are unpredictable.The impact of an unpre-

dictable memory access on the current cache state, and its respective number of cache

26 2.2 Worst-Case Execution Time Analysis

misses, are both bounded by observing that at most one block can be evicted from the

cache due to that access.

However, effective modelling of data caches is impeded by the presence of point-

ers because addresses are not known at compile time. In thesecases, it is possible to

compute a conservative set of memory locations that each pointer references during

program execution using pointer analysis techniques [83].This leads to more over-

estimation, which is especially problematic given that C, a pointer-driven language,

largely dominates the embedded sector.

Branch Prediction

In general, program execution does not proceed for long without evaluating a branch

instruction that can alter the flow of control. Either the flowof control is always

redirected (unconditional branch) or else it is decided at run time (conditional branch).

Both types of branches can cause pipeline stalls because the CPU does not know the

target of successive instructions. A Branch Target Buffer (BTB)stores the targets

of unconditional and conditional branches. However, in deeply-pipelined processors

where stalls seriously degrade instruction throughput, a branch prediction mechanism

is inevitable, which tries to guess the outcome of conditional branches and hence keep

the pipeline full.

A static branch prediction scheme is a compile-time directive that assigns a predic-

tion to each conditional so that it is always predicted the same way during execution.

However, to reach near optimal branch prediction accuracy,dynamic schemes are

mandatory. In its simplest form, a single-level predictor indexes a Branch History Ta-

ble (BHT) with the low-order bits of the branch address. Each entry of the BHT maps

to either a one- or two-bit counter, which returns the prediction.

The first dynamic branch predictor studied was the IntelR© PentiumR© architec-

ture [54]. The idea was to bound the number of mispredictionsarising through the

BTB [27] by defining branch instructions either as history-predicted if it is the BTB

at prediction time, or default-predicted otherwise. Thesedefinitions allow branches to

be classified as follows:

2.2 Worst-Case Execution Time Analysis 27

• Always default-predicted: the branch is always predicted not taken.

• First default-predicted: the branch is default-predictedon the first prediction,

and history-predicted thereafter.

• First unknown: the branch is either default-predicted or history-predicted on the

first prediction, and history-predicted thereafter.

• Always unknown: the branch prediction is never known.

In terms of BHTs, a global history register has been modelled in which each entry

indexes a one-bit counter, although it can be extended to handle two-bit counters [82].

The number of mispredictions for each branch is incorporated into the IPET through

additional linear constraints. Following this direction,the idea was extended in order

to model the interaction between cache and instruction cache by making changes to

the cache conflict graph [68].

Engblom has quantified the effects of dynamic branch predictors on WCET analy-

sis by investigating the behaviour of the IntelR© PentiumR© III and 4 [54], the AMD

AthlonTM [5], and Sun UltraSparc II and III [80] architectures [38]. These proces-

sors use the most sophisticated branch prediction mechanism: a two-level predictor in

which a history register tracks the outcome of the most recent branches and indexes

the BHT. Englom concludes that these predictors are not suitable for SA because, for

example, there are cases where executing more iterations ofa loop takes less time

than executing fewer iterations. However, this counter-intuitive behaviour has since

been explained with a theorem that bounds the number of mispredictions for nested

loops [10].

One severe limitation of these WCET analysis techniques to analyse branch pre-

dictors is that they assume an absence of aliasing in the BHT. Aliasing describes the

situation whereby branches compete for the same entry due tospace restrictions in

the BHT. Constructive aliasing is beneficial as branches correctly update the predic-

tion for each branch mapping to that entry. However, destructive aliasing — where

branches with different run-time behaviour result in more mispredictions — is much

more common and is the largest limiting factor on predictionaccuracy [127]. In the

worst case, therefore, the presence of destructive aliasing would force static analysis

28 2.2 Worst-Case Execution Time Analysis

into assuming a misprediction on each prediction, and hencea much more conserva-

tive analysis.

Out-of-Order Execution

To achieve the highest instruction throughput in a pipelinerequires out-of-order ex-

ecution, which permits instructions to be issued and executed in a different order to

that ordained by the program. This prevents unnecessary stalls caused by in-order

execution because an instruction can be dispatched to an idle functional unit once its

operands are available. In theory, a processor employing out-of-order execution rep-

resents the most challenging aspect of CPU modelling since its operation depends on

the support of other microarchitectural features, such as branch prediction, and hence

introduces the greatest amount of unpredictability. The outcome is that there has been

very little effort in this area.

A technique to bound the WCET of each basic block when operatingwith out-of-

order resources has been proposed [69]. To this end, each basic block has an execution

graph in which there is a vertex for each instruction and pipeline stage, and edges

represent dependencies, e.g. data or resource. Every basicblock was considered in

isolation. However, their approach is only applicable under a number of simplifying

architectural assumptions [36], e.g. a single-issue pipeline, a 4-entry instruction buffer

and a 8-entry reorder buffer. Furthermore, although the authors claim to account for

execution context of surrounding basic blocks in later work[70], they have not proven

the absence of long-running timing effects in their model [98].

A possible way to handle out-of-order execution is to make hardware more pre-

dictable [98]. This means incorporating additional logic that decides if the instruc-

tions of a basic block can enter the pipeline. The decision depends on whether these

instructions will be stalled by a structural or data hazardscaused by some previous in-

struction. In this way, the execution of each basic block is independent from all others

and long-running timing effects can never arise.

2.2 Worst-Case Execution Time Analysis 29

Timing Anomalies

Modern architectural trends complicate processor modelling due to the parallelism ex-

isting between units and the interference between them. Forinstance, a branch mispre-

diction can result in instructions of the wrong path being fetched in cache. To handle

the complexity, SA has adopted the traditional divide-and-conquer mindset: provide

a WCET model of each unit and combine their effects in some subsequent analysis.

However, this could yieldunsafeWCET estimates because of the presence of timing

anomalies [78], which Wenzelet al.have succinctly summarised as follows [123]:

A timing anomaly is the unexpected deviation of real hardware behaviour

contrasted with the modelled one, namely in the sense that predictions

from models become wrong. This unexpected behaviour could lead to

erroneous calculation results by WCET analysis when actuallyimple-

mented. Thus, the concept of timing anomalies rather relates to the WCET

analysis modelling process and does not denote malicious behaviour at

runtime.

Timing anomalies were first reported by Lundqvist and Stenström [79]. In particu-

lar, they outlined three types:

1. Data cache hits, as opposed to misses, can lead to the WCET.

2. Cache miss penalties can be larger than expected due to changes in the instruc-

tion schedule.

3. The increase in cache miss penalties is not always boundedby a constant, but

can be proportional to the length of the program.

They also claimed that timing anomalies were absent in processors that had exclu-

sive in-order resources. However, an example was presentedin [123] that disproved

this claim, since timing anomalies can incur in processors with multiple in-order re-

sources serving the same instructions. They instead provedthat processors that do

not allow resource allocations, i.e. assigning instructions to a given functional unit,

are free of timing anomalies. Dynamic branch predictors arealso subject to timing

anomalous behaviour [11]. In particular, a lower number of branch mispredictions

does not necessarily result in a lower WCET.

30 2.2 Worst-Case Execution Time Analysis

Improving the WCET

Traditional compiler optimisation has targeted average-case performance given that

certain paths are more frequently executed. However, such techniques can be tweaked

so that minimising the WCET is the primary goal. This has becomean active area

of research because of the belief that static modelling is already too complex, or that,

with new generations of processors on the horizon, this willsoon be the case [18].

Minimisation of the WCET can be achieved through one of the following:

• Controlling the contents of instruction caches [92]. The idea is to divide the

program into regions at which the cache is to be reloaded. Thecontents at each

reload point are determined by calculating the longest pathand selecting in-

structions according to their execution frequencies. During program execution,

the cache replacement strategy is disabled so that it is effectively locked.

• Statically predicting the outcome of branches [18, 19]. This generally works

by initially assuming all branches are mispredicted and assigning predictions to

these branches until a stable longest path is found.

• Determining the contents of data scratchpads, either for the entire lifetime of

execution [108], or including dynamic updates [34]. For these approaches, the

variables on the longest path are assigned to the scratchpadusing linear pro-

gramming techniques.

• Optimising the code [128] through one of three methods:

1. Superblock creation: this is a duplicate sequence of basic blocks on the

worst-case path. The basic blocks (of the superblock) are contiguous in

memory so that penalties due to conditional branches are eliminated.

2. Path duplication: the superblock path in a loop can be duplicated to elimi-

nate more penalties associated with conditional branches.

3. Loop unrolling: the entire body of a loop is duplicated as opposed to just

the longest path.

Each of the these approaches must be aware of the stability ofthe longest path since

it can possibly switch to a different path because of the optimisations. Normally, this

is handled through a re-evaluation mechanism until the longest path becomes stable.

2.2 Worst-Case Execution Time Analysis 31

2.2.3 Flow Analysis

In order to compute WCET estimates statically, additional flowinformation is re-

quired to bound the iterative or recursive components of a program. Flow information

pertains to any dynamic property of the program not capturedby the static model,

including knowledge of infeasible paths. The challenge is to glean sufficient flow in-

formation to enable safe and precise WCET computations. However, crucial to this

process is the level at which these properties are derived. On the one hand, it is often

more practical to assume the software developer undertakesthis task at the source code

level by including manual annotations in some specialised syntax. This is based on the

hunch that the developer has detailed insight of software functionality. On the other

hand, the final calculation stage operates at the object-code level, and therefore after

program compilation. The consequence is that the entire process must be mindful of

compiler transformations and optimisations to ensure exact correspondence between

flow information at the various levels. This is more widely known as the mapping

problem [62].

Manual Annotations

Manual annotations were first presented in the seminal paperon WCET analysis [94].

Additional constructs were incorporated into an extended version of C — the MARS-

C language. This thread has been pursued further by developing the wcetC language,

which is a superset of a subset of ANSI C [62]. The value of thisapproach is that

annotations are mapped simultaneously — and transparentlyto the user — into object

code during compilation, thus overcoming the mapping problem.

In a similar vein, Park [87] presented the Information Description Language (IDL),

which supports quite sophisticated path-related information, especially interprocedu-

ral relations between high-level statements; for example,”statement A in procedure

foo is always executed whenever statement B in procedurebar is executed”. An-

notations can also be added to SPARK Ada (a subset of the Ada language) programs

through standard comment lines [22].

32 2.2 Worst-Case Execution Time Analysis

Automatic Analysis

Many researchers argue that annotations are error prone, thus potentially invalidating

subsequent calculations. Indeed, Park [87] legislates fordefective annotations (sup-

plied through the IDL) by verifying them with assertional program logic. However,

this is not a complete remedy due to the mapping problem, since compiler optimi-

sations could still affect, for example, the number of loop iterations. Another prob-

lem highlighted by the IDL is that developers must sometimeslearn new languages,

clearly at additional cost to the project. Maintaining these annotations during suc-

cessive project iterations is tedious, especially when newor different engineers are

introduced. Instead, flow information can be derived automatically without user inter-

vention, typically through SA.

Abstract execution is a way to simulate the program in the abstract domain [41,

46, 47]. This is a technique founded on abstract interpretation, which has abstract

values for program variables, i.e. interval ranges for numeric variables, and abstract

versions of the program operators. An example is an assignment operation, which

calculates a new interval range instead of a unique value. The analysis of interval

values at selected program points then enables loop bounds and infeasible paths to be

deduced; for example, analysing the interval range of a loopcounter variable at loop

termination. However, potential state explosion must be managed by merging abstract

states at merge points in the program. The effect of merging is loose loop bounds and

the inability to uncover infeasible paths, although the analysis remains safe.

In fact, abstract execution is a form of symbolic execution,the latter which executes

programswithout input data. When a branch is encountered that contains a variable

with an unknown value, the execution simulates both paths, except that path-merging

must also be employed in the context of loops to prevent path explosion [78].

Data-flow analysis [83] is also a popular method to obtain loop bounds, especially

since it can be integrated within a compiler framework. In [51, 52] three variations

of loops are supported: those with multiple exits; those in which the exit condition

is decided in relation to a non-constant loop-invariant variable; those in which the

number of iterations of an inner loop depends on the control variable of an outer loop

(non-rectangular loops).

2.2 Worst-Case Execution Time Analysis 33

One limitation of automatic static analyses is that they cannot always provide pre-

cise bounds for all loops due to the Halting problem [62]. In such cases, the user is

expected to bridge the knowledge gap, but as we noted above, it is equally unreason-

able to expect a user to obtain such information from a simpleinspection of the code.

Even if a user can supply arelative loop bound, i.e. relative to the next outer loop

nesting level, it is typically much more difficult to providean accurate bound on the

actual number of executions due to non-rectangular loops.

In Chapter 3, we describe an alternative automatic flow analysis within the scope of

trace parsing. The key difference between our technique andothers described above

is that we derive flow information from observations (in timing traces). This allows

our HMB tool to operate without user interaction. In particular, we show how to use

properties of the IPG to extract relative loop bounds, whichare needed in both tree-

based calculations and the IPET. In addition to determiningrelative loops bounds,

our trace parser also counts the overall frequency of execution of loop bodies, and

therefore, the analysis becomes more precise (provided testing is good enough).

Recently, an approach that is similar to our work has been explored [9]. They de-

termine loop bounds through a combination of testing and machine learning. Their

approach is able to deduce bounds relative to a particular loop-nesting level, including

those common to non-rectangular loops. Our approach differs in a number of ways.

First, we use properties of the IPG to obtain the loop bounds whereas they use pattern

matching techniques. Second, they have not considered how to obtain traces of execu-

tion. We show that this actually affects the accuracy of the bound. In both cases, the

accuracy of the derived bounds relies heavily on good test vectors, which we discuss

further in the next section.

2.2.4 Measurement-Based Techniques

Interest in measurement-based approaches has been afforded increasing attention in

recent years. The main motivation for these techniques is that processor modelling is

either too complex, too time-consuming, or plainly and simply not possible.

34 2.2 Worst-Case Execution Time Analysis

Testing and Coverage Criteria

A myriad of testing techniques have been put forward with respect to functional be-

haviour. The main purpose of such techniques is to uncover errors, but because these

have no bearing on WCET analysis, here we focus on the issues of testing that HMB

frameworks must be mindful of.

Typically, testing takes places at the procedural level of aprogram. The idea of

white box techniques is to utilise the structural properties of the CFG to construct

test vectors. In order to measure the quality of testing,coverage criteria [129] are

required. Some criteria are more stringent than others, thus the subsumes relationship

offers a comparison between different coverage criteria: acriterion A subsumes a

criterionB if, and only if, every test vector that satisfiesA also satisfiesB [23].

Statement coverage ensures that all statements in the program are exercised, and

is clearly subsumed by basic block coverage. Full statementcoverage can never be

achieved in the presence of unreachable code. Branch coverage requires each edge of

the CFG to be traversed, which also subsumes statement coverage. However, safety-

critical systems require more stringent criteria, such as that provided by Modified

Condition/Decision Coverage (MC/DC). In this metric, a condition is a boolean ex-

pression containing no boolean operators, whereas a decision is an outcome of a (com-

posite) boolean valued statement in a high-level language.MC/DC is satisfied when

every condition in a decision has been exercised, and each condition has been shown

to independently affect the decision’s outcome [23]. Path coverage is the most strin-

gent but the least practical as programs generally contain loops and thus the number

of paths grows exponentially.

End-to-end testing techniques and coverage criteria that target WCET estimation

have not been extensively researched due to lack of confidence in the measured ex-

ecution time. One approach is to use evolutionary algorithms to generate test vec-

tors [121]. Initially, a random population of test vectors is generated, and the exe-

cution time is measured. Test vectors generating long execution times obtain high

fitness values. New generations of test datum are bred through the combination and

mutation mechanisms of evolutionary computation. This procedure continues until a

particular stopping criterion has been met, usually when a certain number of genera-

2.2 Worst-Case Execution Time Analysis 35

tions have evolved. The accuracy of evolutionary testing was then compared with a

SA method [122]. Results showed that the WCET estimates were in closer proximity

to those obtained by SA, but that there was an underestimation in some cases.

This latter observation highlights the long-standing issue with end-to-end tech-

niques in that they cannot guarantee a bound on the actual WCET.To do so would

not only require full path coverage but also full state coverage at the architectural

level; these are clearly intractable requirements. Research has thus digressed into

HMB approaches in an attempt to combine the best features of both SA and end-

to-end measurements. The key feature of such approaches is that measurements for

program segments are collected via the testing phase and then recombined using the

calculation techniques described in Section 2.2.1.

Instrumentation and Trace Generation

In order to collect measurements of program segments,instrumentation points (ipoints)

are required. Once triggered during program execution, each ipoint emits atrace

identifier and is timestamped accordingly, resulting in a timing traceof execution.

Definition 1. A (timing) trace is a sequence of tuples(i, t) in which i is the trace

identifier of an ipoint and t the time of observation.

Therefore, testing the program with a set of test vectors produces multiple traces that

are collated into atrace file. It is from this file thattrace parsing extracts both the

WCETs of ipoint transitions and observed loop bounds, both of which are explained

further in Chapter 3.

How ipoints are inserted and how timing traces are generatedand extracted depends

on the mechanism available. Trace generation methods can generally be categorised

as follows:

• Simulation: Cycle-accurate simulators, e.g. SimpleScalar[7], allow individual

instructions to be traced (through the program counter) whereby the simulator

provides the time stamp. However, because a simulator is a hardware model,

this method encounters problems associated with SA as described above.

36 2.2 Worst-Case Execution Time Analysis

• Software: Ipoints are inserted into the source code via language extensions, and

are thus compiled into the executable. When an ipoint is hit during execution,

it is time stamped on target; traces are stored internally ina memory buffer to

be downloaded on test completion. The advantage of this approach is that port-

ing to new architectures is relatively straightforward. However, the additional

ipoint routine incurs a timing penalty and increases overall code size, which is

commonly referred to as theprobe effect.

• Software/Hardware: This is similar to software only instrumentation, except

that execution of an ipoint writes its trace identifier to an I/O port of the target.

The port is monitored by a logic analyser, which both timestamps ipoints off

target as they are produced and stores timing traces. Penalties associated with

the probe effect are thus minimised. However, the target must have available

and accessible pins to emit the data, which is not always practical with more

advanced processors.

• Hardware: On-chip debug interfaces, such as Nexus [1] or theEmbedded Trace

Macrocell [33], allow programs to be traced without interference. In these cases,

the trace data are either written to an on-chip trace buffer for subsequent down-

load, or exported directly in real time through an external port. In order to

limit the size of traces, only the program flow discontinuities are monitored, i.e.

conditional and unconditional jumps. However, bandwidth remains the major

technical obstacle because the port or debugger must keep pace with the rate at

which trace data are produced; otherwise,blackouts arise in which parts of a

timing trace are overwritten and essentially lost.

There is clearly a trade-off in using any of the above trace generation methods.

On the one hand, source-level instrumentation provides greater flexibility, but this is

inhibited by the probe effect. On the other hand, less intrusive instrumentation requires

more technical support.

Clarification 1. In this thesis, we embrace a more abstract view of how traces are gen-

erated by considering an ipoint simply as a program point at which a (timestamped)

observation occurs. This could be intrusively by calls to a tracing library, or com-

pletely transparently through a hardware debug interface. Consequently, we do not

2.2 Worst-Case Execution Time Analysis 37

quantify the impact of the probe effect on WCET estimates. We thus assume, without

loss of generality, that there exists a suitable mechanism to generate and download

traces.

Given the freedom to select the locations of ipoints, various instrumentation pro-

files have been proposed, normally with functional coverage metrics or profiling in

mind. The main goal of [2] is to select the fewest number of basic blocks (edges) to

instrument so that basic block (branch) coverage can be measured by observing the

number of ipoints hit. Tikir and Hollingsworth [116] detailed an approach that dy-

namically inserts and remove ipoints in order to reduce the run-time overhead of code

coverage, as opposed to instrumenting statically. Instrumentation is only inserted into

a procedure when executed for the first time during program execution; it is subse-

quently removed when it does not provide any additional coverage information. A

widely-adopted instrumentation profile has been proposed by Ball and Larus [8, 65]

in which a minimum number of ipoints are inserted such that the entire traversed path

through a program can be reconstructed from a trace. We term such instrumentation

profilespath reconstructible. In subsequent chapters, we will observe that this prop-

erty impacts the accuracy of WCET estimates computed on the IPGprogram model.

Despite these novel techniques, the instrumentation profiles in modern HMB frame-

works largely remain arbitrary. The archetypical case is anend-user inserting ipoints

in an ad hoc fashion at the source level. However, arbitrary in this sense refers to

instrumentation that is not program specific. Typically, there could be an upper bound

on the permissible number of ipoints due to trace generationproblems, e.g. blackouts,

or because of the probe effect. Indeed, when a program contains a large number of

procedures, it might only be possible to implement boundaryinstrumentation in which

only the beginning and end of each procedure is instrumented.

Evidently, the instrumentation profile adopted impacts theamount of coverage sought

in the testing phase of the HMB framework. During testing, the focus is to trigger the

WCET of ipoint transitions, otherwise the final calculation could be compromised.

In essence, smaller program segments, e.g. comprising basic blocks, between ipoint

transitions require less stringent coverage because theseare known to have a small

number of different execution times [26]. On the other hand,program segments in-

38 2.2 Worst-Case Execution Time Analysis

corporating nested loops require greater coverage to ensure that all paths are exercised

and that the WCET is indeed captured. This is further complicated by the influence of

the hardware architecture on the amount of coverage sought.Relatively simple archi-

tectures with shallow, in-order pipelines result in smaller variations of execution times

between ipoints. In comparison, state-of-the-art processors with multi-level caches,

dynamic branch prediction, and out-of-order execution, exhibit a greater variability in

execution time between ipoints due to, for example, cache misses and branch mispre-

dictions.

Furthermore, as we noted in Section 2.2.3, we often wish to obtain more than the

WCETs of transitions from timing traces. For example, determining loop bounds

allows our HMB framework to operate automatically without user interaction, but this

places a larger burden on the test phase as bounds need to be accurate.

Clarification 2. How to stress any non-functional property of a program is thesubject

of WCET coverage[17]. Consequently, we do not make any assumptions regarding

the way in which testing is conducted nor the amount of coverageachieved. This

is considered beyond the scope of this thesis and we thus assume a uniform testing

strategy provided by, for example, functional testing techniques.

For this reason, when discussing the percentage of pessimismin the WCET estimate

(computed through the IPG program model), we assume that testing is good enough,

and therefore, the raw timing data provided are sufficientlyrepresentative of the worst

case. Observe that existing SA techniques make a similar assumption as any error

— either in the WCETs of basic blocks due to incorrect processor modelling or be-

cause the loop bound provided by a user is an underestimate — invalidates the entire

analysis.

Hybrid Measurement-Based Approaches

The idea of a HMB framework is not a novel contribution of thisthesis as it was

first proposed elsewhere [90, 89]. Their work identifies paths in the CFG that must

be exercised during testing. However, because of the path complexity problem, the

CFG is manually split into measurement blocks, with the finestgranularity being the

basic block. Before executing each measurement block, cachecontents and other

2.2 Worst-Case Execution Time Analysis 39

hardware units are flushed so that history effects of other measurement blocks are

isolated. The flushing mechanism clearly translates into pessimism in the WCET

estimate as measurements blocks will not operate in isolation during execution.

The closest related work to our approach is the HMB frameworkproposed in [26].

In particular, they use timing traces generated by the SimpleScalar toolsuite [7] to

extract the WCETs of basic blocks, from which a WCET estimate is computed using

the standard timing schema of an AST. The crucial differencebetween their work and

ours is that we allow for arbitrary instrumentation and employ the IPG program model

in the calculation phase.

However, the main focus of their work was to quantify the effects of modern speed-

up features on the WCET by using various processor configurations that the Sim-

pleScalar framework allows. Their experiments demonstrated some interesting as-

pects relating the disabling/enabling of hardware features to WCET estimates. In par-

ticular, they showed that caches have the biggest impact in reducing the actual WCET,

i.e. without instruction or data caches, the WCET is very large. Furthermore, the level

of overestimation normally outweighs the loss of performance caused by disabling of

the advanced speed-up features. This latter point reinforces the main motivation of

HMB analysis in that we should not impose predictability at the hardware level to

force easier analysis as it is detrimental to the entire system.

More recent work [63, 124] has approached the HMB problem from a slightly dif-

ferent angle by focusing more on test vector generation for WCET estimation. In

particular, they partition the CFG into program segments using instrumentation. This

is conceptually similar to the approach of [90, 89] described above, except that the

partitioning criterion depends on the number of acyclic paths through the segment.

They force execution of each path in the program segment using test vectors gener-

ated by a model checker. Paths through the program segment must be acyclic to avoid

the high computational complexity that is associated with model checking.

40 2.2 Worst-Case Execution Time Analysis

2.2.5 WCET Tools

The dominance of SA is best reflected by the number of academictools that have

emerged from this field. Following is a selection of the most prominent:

• Cinderella from the University of Princeton. This was originally developed to

support the IPET, including modelling of cache constraints.

• Heptane from the Université de Rennes. This has the capacity to analyse four

different architectures: Pentium I, H8/300, StrongARM, andMIPS. There is a

cache analysis unit supporting the LRU replacement policy in which the size,

the block size, and the associativity of the cache can be configured. It supports

source- and assembly-level analysis through the AST and theIPET, respectively.

• Chronos from the University of Singapore. The user can configure the processor

model (pipeline, cache, branch prediction) with the help ofthe SimpleScalar

toolset [7]. It produces WCET estimates through the IPET.

• SWEET from the University of M̈alardalen. This is integrated with an ANSI

C compiler so that flow analysis can operate at the intermediate code level. It

supports timing analysis on both the ARM9 and NECV850E processors, and can

produce WCET estimates through either a path-based approach or the IPET.

Industry has increasingly become aware of the importance ofWCET analysis. This

has inspired two spin-off companies from affiliated universities:

• AbsInt [45] was founded from research at the University of Saarland and first

produced a WCET analyser, aiT, based on SA. Their processor modelling tech-

niques are founded on AI and they currently support the following architec-

tures: ARM7, HCS12/STAR12, PPC 555/565/755, C16x/ST10, TMS320C3x,

TriCore 1796, and i386. They can analyse programs containingrecursive pro-

cedures and the calculations are based on the IPET.

• Rapita Systems [77] was founded from research at the University of York and

their WCET tool, RapiTime, is based on HMB analysis. In particular, they use a

probabilistic tree-based approach to compute the WCET, whichcombines ETPs

that are collected during testing.

2.3 Summary 41

2.3 Summary

This chapter has contextualized WCET analysis and described the state-of-the-art

techniques to produce WCET estimates that derive from static and MB analyses. A

deluge of research has emerged to support processor modelling, yet certain opera-

tional assumptions are still required to ensure safe analysis, many of which are not

practically feasible. Prime examples are assuming perfectLRU cache replacement or

the absence of destructive aliasing in a branch history table. Moreover, and perhaps

more crucially, no techniques satisfactorily model the operational interaction between

processor speed-up featuressimultaneously. Indeed, timing anomalies vastly compli-

cate this task. A further observation is that the models onlyconsider the activities of

the CPU and disregard the impact of peripheral devices.

Complexities modelling the processor has led some researchers to promote usage of

more predictable hardware. However, industry continues tochoose off-the-shelf pro-

cessors in line with its requirements, e.g. cost, and there is no evidence to suggest that

processor manufacturers will alter future designs with predictability in mind. Indeed,

processors are much more likely to increase in complexity astransistor size decreases

and multi-core CPUs become prevalent.

In industry, end-to-end measurements remain the dominant means by which the

WCET is estimated, but this truism is yet to fully impact research. This means that

WCET estimates are normally computed using testing techniques and coverage met-

rics that target functionality. This is not sufficient, however, as more complex hard-

ware infiltrates the real-time sector.

In response to this, HMB techniques are emerging, which includes some form of

instrumentation. However, the biggest drawback so far is that they require very spe-

cific ipoint placement. This not only limits the type of instrumentation employed, i.e.

software, but also prevents state-of-the-art instrumentation profiles from being consid-

ered. The remainder of this thesis is devoted to an analytical framework to compute

WCET estimates givenarbitrary instrumentation, under the assumption that there is a

suitable test phase in place.

3 Instrumentation Point Graphs

Chapter 2 explored the program and processor models used in contemporary WCET

techniques. In particular, we noted that the baseline program model is either theAb-

stract Syntax Tree(AST) or theControl Flow Graph (CFG). More important, how-

ever, is that the calculation engine operating on these datastructures requires as input

the WCET of basic blocks since these are theatomic units. For these purposes, static

analysis constructs a processor model which attempts to bound the execution time of

each basic block. Comparatively, currentHybrid Measurement-Based(HMB) ap-

proaches derive observed WCETs during testing after instrumenting the beginning of

each basic block.

However, a severe shortcoming of these program models, froma HMB angle, is that

they necessitate particular instrumentation profiles to avoid a pessimistic WCET esti-

mate. This is best illustrated by considering a contrived example shown in Figure 3.1.

The CFG in Figure 3.1(a) is a simpleif-then-else construct withinstrumenta-

tion points (ipoints) inserted in basic blocks A, B, and D; note that C is not instru-

mented and that the ipoint in D is misaligned with respect to those in A and B since it

is not inserted at the beginning of the basic block. The tablein Figure 3.1(b) exhibits

the observed WCETs of these ipoint transitions. In order to combine these data in the

calculation stage using the CFG (or indeed the AST), the WCETs ofbasic blocks must

be derived from these measurements. Common practice assumesthat this value is the

maximum observed WCET amongst the ipoint transitions on whicha basic block is

executed; in this example, these WCETs are shown in Figure 3.1(c). However, the

instrumentation employed causes overestimation of every basic block. The WCET of

B is overestimated because transition 2→ 3 also executes D as a result of the mis-

alignment of ipoints. Likewise, the WCETs of A, C, and D are overestimated because

of both the missing ipoint in C and the misalignment of ipoints. A simple path-based

43

44 3 Instrumentation Point Graphs

approach on the CFG with these WCETs would deduce thatA→C→ D is the worst

path, resulting in a WCET estimate of 25+ 25+ 25 = 75. Clearly, this a threefold

overestimation since the actual WCET of the pathA→C→ D is 25, which occurs

when transition 1→ 3 is followed.

Figure 3.1. Pessimism Intrinsic to the WCET Calculation Stage when using
Sparse Instrumentation.

A

B C

D

Ipoint 1

Ipoint 2

Ipoint 3

(a) A CFG with ipoints at the beginning of basic blocks A and B, and at the end
of basic block D. However, basic block C is not instrumented.

Ipoint transition Observed WCET
1→ 2 5
2→ 3 11
1→ 3 25

(b) Observed WCETs of ipoint tran-
sitions during testing.

Basic block WCET
A 25
B 11
C 25
D 25

(c) Overestimated
WCETs of basic
blocks.

The general problem is that there is little leeway in the employed instrumentation

profile for these program models: either each basic block is uniformly instrumented

or an overestimation in their WCETs occurs (see Clarification 2 in Chapter 2). It is

obvious that the overestimation becomes more problematic with coarser instrumenta-

tion profiles [2, 8, 65, 116], many of which are widely adoptedin functional testing

environments to limit the size of timing traces. This is undesirable as we want our

HMB framework to integrate seamlessly with contemporary test harnesses so that it is

applicable in an industrial setting.

3 Instrumentation Point Graphs 45

In this chapter, we propose a novel program model — theInstrumentation Point

Graph (IPG) — in which the atomic unit of computation is the transition among

ipoints instead of basic blocks. This forcible modificationessentially circumvents the

pessimism associated with CFGs and ASTs when usingarbitrary instrumentation.

The remainder of this chapter is organised as follows. Section 3.1 begins by in-

troducing an intermediate form similar to the CFG — the CFG* — which is used

to construct and analyse properties of the IPG. Following that, the section contin-

ues with a presentation of the IPG and its properties that arerelevant in our HMB

framework. Section 3.2 formulates the IPG construction problem as a data-flow prob-

lem [83], which leads to a simpleiterative algorithm[29, 58, 59] that constructs the

IPG independent of CFG* reducibility. However, merely constructing the IPG is gen-

erally not sufficient for it to be used as a program model (in WCETanalysis) because

of the problem ofirreducibility . Section 3.3 demonstrates that irreducibility is es-

pecially prevalent in the IPG, that it often encompasses much larger subgraphs than

canonical cases of CFG irreducibility, and consequently, that state-of-the-art tech-

niques [49, 96, 97, 104] inevitably fail. We therefore detail a mechanism to identify

all IPG loops — irrespective of irreducibility — using theLoop-Nesting Tree(LNT)

of a reducible CFG*. This result forms the basis of a more complex algorithm, pre-

sented in Section 3.4, which constructs the IPG and identifies all IPG loops on the

fly.

Following that, we consider usage of the IPG in the context ofinterprocedural anal-

ysis in Section 3.5. We describe a virtual inlining mechanism — master ipoint in-

lining — which provides visibility to procedure calls without virtually inlining the

entire IPG of each callee. This results in one IPG per procedure and essentially black

boxes procedure calls. We subsequently demonstrate how to parse timing traces using

the set of IPGs and their properties. In particular, we show how to extract (observed)

loop bounds and how to detectcontextsdynamically so that the timing data retrieved

applies to each context as opposed to each procedure, resulting in a more precise anal-

ysis. We then show how the call graph controls the calculation given the set of IPGs

and the trace data. Finally, we conclude the chapter with a summary in Section 3.6.

46 3.1 The CFG* and the IPG

3.1 The CFG* and the IPG

The program model in our HMB framework is the IPG, which basically arranges the

transitions among ipoints into structural form. In order toconstruct the IPG, therefore,

we require the locations of ipoints with respect to program structure at the intermediate

code level. However, the standard graph-based structural model, the CFG, does not

adequately model such information. Either ipoints are grouped together with other

functional instructions in basic blocks (when software instrumentation is employed),

or alternatively, they exist virtually on some part of the CFG(when a simulator or

hardware debug interface is employed).

For this reason, our HMB framework replaces the CFG by a CFG* whose unique

characteristic is that ipoints are decoupled into fully-fledged vertices; basic blocks

thus only consist of functional instructions. These disjoint sets of vertices can be

recognised by extending the set ofleaders[3], which are first instructions inside a

vertex. For the basic blocks of a CFG, each of the following is aleader:

• The first instruction of the procedure.

• Any instruction that is the target of a conditional or unconditional jump.

• Any instruction that immediately follows a conditional or unconditional jump.

In addition to these leaders, each of the following is also leader in the CFG*:

• Each ipoint instruction.

• Any instruction that succeeds an ipoint.

Analogously to a basic block, every vertex in the CFG* consists of its leader and all

instructions up to, but not including, the next leader or theend of the program. Thus,

CFG* generation partitions a program into a set of ipoints, denotedI, and a set of basic

blocks, denotedB; these are linked together according to flow of control. Formally:

Definition 2. Let I be the set of ipoints andB be the set of basic blocks in a procedure.

A CFG* is a flow graph C= 〈VC = B∪ I,EC,s, t〉 in which:

• {s, t} ⊆ I.

• EC = {u→ v|u,v∈VC∧ there is possible flow of control from u to v}.

3.1 The CFG* and the IPG 47

For a CFG*C, a non-emptyipoint-free path p is a sequenceu→ b1→ b2→ . . .→

bn→ v such thatbi ∈ B, u,v ∈ I, andn≥ 0. For brevity of notation, we useu
+
−→
B

v

to denote an ipoint-free path of length one or more, andu
∗
−→
B

v to denote an ipoint-

free path of length zero or more. An IPG is constructed fromC by contracting the

non-empty ipoint-free paths inC. More formally:

Definition 3. Let C= 〈VC = B∪ I,EC,s, t〉 be a CFG*. TheIPG of C is a flow graph

I = 〈I,EI ,s, t〉 in which:

• EI = {u→ v|u,v∈ I∧∃ u
+
−→
B

v in C}

Following are some important clarifications to make regarding the remainder of this

chapter:

Clarification 3. Each ipoint u conceptually belongs to both the CFG* and its IPG.

When context does not disambiguate the graph to which u belongs, we shall use uC to

denote that u∈V(C) and uI to denote that u∈V(I).

Clarification 4. We assume that, for each ipoint uC, |succ(uC)| ≤ 1. In practice this

is typically a valid assumption as neither software nor hardware ipoints decide the

outcome of a conditional branch.

Clarification 5. We often need to partition a set of CFG* vertices into two disjoint

subsets of basic blocks and ipoints. In particular, for a setS, we use the notation SI to

denote the set{u|u∈ S∧u∈ I} and SB to denote the set{u|u∈ S∧u∈ B}.

3.1.1 Ghost Ipoints, Ghost Edges and Trace Edges

In Definition 2, the dummy verticess, t of a CFG* are considered to be ipoints. The

reason for this is that, without these being ipoints, the resultant IPG might not be

weakly connected.

In general, ipoints inserted purely for analysis purposes —subsequent to program

instrumentation, compilation, and testing — are termedghost ipointsbecause they are

never observed in a timing trace. Chapter 4 explores another usage of ghost ipoints

whilst transforming the IPG into hierarchical form.

48 3.1 The CFG* and the IPG

We say that an edgeu→ v ∈ EI is a ghost edgeif either u or v is a ghost ipoint,

otherwise it is atrace edge. This distinction between edges is needed in trace parsing

and the calculation engine, as described in Section 3.5.

3.1.2 Path Expressions

One essential difference between a CFG (or CFG*) and an IPG is that functional

instructions reside on the edges of the IPG as opposed to its vertices. Code can appear

in different execution contexts, depending on the instrumentation profile utilised, since

more than one IPG edge can execute the same basic block. We term the section of

code executed when a transition between ipoints occurs as itspath expression, defined

formally as follows:

Definition 4. Thepath expressionof an IPG edge u→ v∈ EI , denoted P(u→ v), is

the regular expression over EC representing the set of all ipoint-free paths from uC to

vC in C. We denote the set of basic blocks in P(u→ v) asB(P(u→ v)).

When |σ(P(u→ v))| = 1, we say thatP(u→ v) is reconstructible, i.e. there is

only one non-empty ipoint-free path fromuC to vC. Furthermore, we say that an

instrumentation profile ispath reconstructible if, for all u→ v ∈ EI , P(u→ v) is

reconstructible.

These properties are of interest for several reasons. First, a path reconstructible in-

strumentation profile allows the exact path through the CFG* to be regenerated from

any sequence of ipoints1. For such profiles, every iteration of every loop must be ob-

servable in a trace, thus we can determine accurate observedloop bounds during trace

parsing. Second, non-reconstructible path expressions highlight ipoint transitions for

which testing should be stressed in the front end of a HMB framework, because such

transitions traverse multiple CFG* paths. For example, if the path expression contains

∪ then the test harness could attempt to execute each acyclic path on that transition

using model checking [124]. A third motivation is that the reconstructibility of path

expressions determine whether extra flow information, e.g.relating infeasible paths,

1Hardware tracing mechanisms, such as Nexus [1], are implicitly path reconstructible because they
monitor program flow discontinuities, i.e. jumps.

3.1 The CFG* and the IPG 49

can be incorporated into the WCET calculation on the IPG. Normally, such informa-

tion is obtained at the source level (through user annotations) and is mapped down to

the basic block level [62]; in turn, this must be transferredonto the IPG.

An Example

Figure 3.2. Example of a CFG* and an IPG.
s1

t11

2

3

a1

b1 c1

d1

e1

f1

g1

h1

i1

j1

k1

(a) The CFG*.

s1

t1

1

2

3

(b) Resultant IPG.

IPG Edge Path Expression

s1→ 1 s1→ a1 · (a1→ b1 ·b1→ d1∪a1→ c1 ·c1→ d1) ·d1→ e1 ·e1→ 1
s1→ 2 s1→ a1 · (a1→ b1 ·b1→ d1∪a1→ c1 ·c1→ d1) ·d1→ e1 ·e1→ g1 ·g1→ 2
s1→ 3 s1→ a1 · (a1→ b1 ·b1→ d1∪a1→ c1 ·c1→ d1) ·d1→ e1 ·e1→ g1 ·g1→ i1 · i1→ 3
s1→ t1 s1→ a1 · (a1→ b1 ·b1→ d1∪a1→ c1 ·c1→ d1) ·d1→ k1 ·k1→ t1

1→ 1 1→ f1 · f1→ e1 ·e1→ 1
1→ 2 1→ f1 · f1→ e1 ·e1→ g1 ·g1→ 2
1→ 3 1→ f1 · f1→ e1 ·e1→ g1 ·g1→ i1 · i1→ 2
2→ 3 1→ h1 ·h1→ 2
3→ 1 3→ j1 · j1→ d1 ·d1→ e1 ·e1→ 1
3→ 2 3→ j1 · j1→ d1 ·d1→ e1 ·e1→ g1 ·g1→ 2
3→ 3 3→ j1 · j1→ d1 ·d1→ e1 ·e1→ g1 ·g1→ i1 · i1→ 3
3→ t1 3→ j1 · j1→ d1 ·d1→ k1 ·k1→ t1

(c) Path expressions.

We illustrate the properties of the IPG through Figure 3.2, which depicts a CFG*,

its IPG, and the path expressions of IPG edges. In Figure 3.2(a), circle vertices are

ipoints, i.e.I = {s1, t1,1,2,3}, and square vertices are labelled basic blocks, i.e.B =

50 3.2 IPG Construction

{a1,b1,c1,d1,e1, f1,g1,h1, i1, j1,k1}. We depict all ghost ipoints as unshaded circle

vertices and the ghost edges of Figure 3.2(b) are depicted asdashed edges.

The path expression of each IPG edge is shown in Figure 3.2(c). Note that there is

context-sensitive execution of all basic blocks excepth1, sinceh1 only appears in the

path expression of the edge 2→ 3. In addition, the path expressions of the edgess1→

1, s1→ 2, s1→ 3, s1→ t1 are not reconstructible — thus the instrumentation profile is

not path reconstructible — because there are multiple ipoint-free paths froma1 to d1

(indicated by the∪ operator). However, all other path expressions are reconstructible.

3.2 IPG Construction

The previous section gave a formal description of the IPG andits properties. Here we

describe how to construct the IPG from a CFG* using data-flow analysis.

Clarification 6. This thesis does not consider how to construct the path expressions

of IPG edges, principally because they have no practical bearing on the techniques

developed. From the calculation perspective, path expressions are needed when path

information relating basic blocks, e.g. infeasible paths,is to be transferred onto the

IPG. However, such information is optional, i.e. it tightensthe WCET estimate but is

not essential. Note that this does not prevent us from mappingloop bounds obtained

through static analysis onto the IPG because, as Section 3.3describes, this only re-

quires particular structural properties of the IPG.

We begin by defining underlying properties ofData-Flow Frameworks(DFF), be-

fore elaborating upon the DFF that solves the IPG construction problem.

3.2.1 Data-Flow Analysis

In general terms, data-flow analysis gathers facts about howdata are manipulated in

programs. Such analyses are employed in compilers to assistin optimisation, the

canonical example of which is the reaching definitions computation (see [3, 83]).

Data-flow information is normally collected at each basic block by setting up and

3.2 IPG Construction 51

solving a system of data-flow equations, which model the effect of the basic block on

the information across all executions.

Due to the similarities between many data-flow problems, they can often be treated

in a unified way through a DFF. Central to DFFs is an algebraic structure called a

semi-lattice:

Definition 5. A semi-latticeis a set L with a binary meet operation⊓, and distin-

guished elements⊥ and⊤ called bottom and top, respectively, such that:

Commutativity For all x,y∈ L, x⊓y = y⊓x.

Associativity For all x,y,z∈ L, (x⊓y)⊓z= x⊓ (y⊓z).

Idempotency For all x ∈ L, x⊓x = x.

Bounded For all x ∈ L, x⊓⊥= x and x⊓⊤=⊤.

Note that a semi-lattice can alternatively be defined as a partially-ordered set〈L,�〉.

The connection between these two alternative definitions isthat, for allx,y∈ L, x� y

if and only if x⊓y = y.

We now formally define a data-flow framework:

Definition 6. A data-flow frameworkis a 4-tuple〈G,L,F,M〉 such that:

• G = 〈VG,EG,s, t〉 is a flow graph.

• L is a semi-lattice.

• F ⊆ { f : L→ L} is a settransfer functionssuch that:

– F contains an identity function I: L→ L such that I(x) = x for all x∈ L.

– F is closed under composition. That is, f◦g∈ F, for all f ,g∈ F.

– For all f ∈ F, f : L→ L is monotone. That is, for all x,y∈ L, x� y implies

f (x)� f (y).

– For all f ∈ F, f : L→ L distributesover⊓. That is, f(x⊓u) = f (x)⊓ f (y)

for all x,y∈ L.

• M : EG→ F is a map from flow graph edges to transfer functions.

52 3.2 IPG Construction

The semi-lattice essentially abstracts the effect of a vertex on the data-flow informa-

tion, where the meet operation⊓ determines how the information is combined when

it reaches a vertex. The monotonicity property of the set of functions ensures that

the data-flow framework will halt as the information modelled in the lattice can only

increase.

The functionM can be extended to map every path in the flow graphG to a transfer

function f . If p = v0→ v1→ v2→ . . .→ vn is a path inG, with ei = vi−1→ vi, then

the path transfer functionM(p) is defined to beM(en)◦M(en1)◦ . . .◦M(e1). The path

transfer function of the empty path is the identity functionI . The Meet-Over-all-

Paths(MOP) solution [59] to the data-flow analysis problem is defined as follows:

∀v∈VG : MOP(v) = ⊓p∈paths(s,v)M(p) (3.1)

Intuitively, the MOP solution produces the information at each vertexv that would

result by applying the composition of each transfer function along all paths froms to

v. However, the DFF must be distributive in order to compute the meet-over-all-paths

solution. Otherwise, the DFF only computes themaximum fixed pointsolution, which

is a safe approximation.

3.2.2 A Simple Data-Flow Framework to Build the IPG

We define a simple DFF to construct the IPGI from its CFG*C based on the obser-

vation that this problem is similar in nature to other classical data-flow problems, i.e.

we want to know which ipoints can reach a particular program point.

Following are the elements of this DFF: the flow graph is the CFG*; the semi-lattice

LI is the powerset 2I over the set of ipointsI; FI ⊆ 2I → 2I is the set of monotone,

distributive transfer functions; and the meet operation isset union. Note that the

bottom element ofLI is the empty set, and the top element ofLI is the set of all ipoints.

The data-flow problem that we want our DFF to solve encapsulates the intuitive idea

that the ipoints reachable to each vertexv∈VC are the ipoint predecessors ofv unioned

with the ipoints that can reach the basic block predecessorsof v. More formally, let us

define the set:

3.2 IPG Construction 53

∀v∈VC : ipoints(v) = {u|u∈ I∧∃u
+
−→
B

v in C}

which can be solved through the following data-flow equation:

∀v∈VC : ipoints(v) =

⋃

p∈predB(v)

ipoints(p)

∪ predI(v) (3.2)

3.2.3 The Iterative Algorithm

We can solve this DFF using the round-robin,iterativealgorithm [29, 58, 59], which

was designed specifically to handle common data-flow problems in a unified way. All

that is required is to substitute an appropriate set of data-flow equations into its generic

structure. The iterative algorithm to construct the IPGI from its sole parameter, the

CFG* C, is shown in Figure 3.3.

Input : C
Output : I

foreachv∈VC do1

ipoints(v) := /02

changed:= true3

while changeddo4

changed:= false5

foreachv∈ vC in reverse post orderdo6

oldipoints(v) := ipoints(v)7

ipoints(v) ∪=

(

⋃

p∈predB(v) ipoints(p)
)

∪ predI(v)8

if oldipoints(v) 6= ipoints(v) then9

changed:= true10

Figure 3.3. Iterative Algorithm to Construct the IPG from a CFG*.

All iterative algorithms initially assign a conservative value to the information being

computed; in this case, we assume no ipoints can reach a vertex v ∈ VC on a non-

empty ipoint-free path (lines 1-2). The iterative part continues until a fixed-point

solution has been found, which in this case is the meet-over-all-paths solution as the

transfer functions in the semi-lattice are both monotone and distributive. Iteration is

controlled by a boolean variable,changed, which is initially set totrue (line 3). Each

pass initially assumes that no changes will occur (lines 5).We then traverse each

54 3.2 IPG Construction

vertexv in reverse post order to update the values ofipoints(v). Changes to the sets

are discovered by recording the values computed in the previous iteration (line 7),

updating the sets according to Equation (3.2) (line 8)2, and then comparing the values

(line 9). A change to any set forces another iteration (lines9-10). On termination,

therefore, the predecessors of each ipointv in the IPG are stored inipoints(v), i.e.

pred(vI) = ipoints(v).

One benefit of the iterative algorithm is that it is not restricted to reducible flow

graphs, thus the IPG can always be built independent of CFG* reducibility. The dis-

advantage is that it requires quadratic time in the worst case. However, studies have

shown that the iterative algorithm is very efficient in practice, requiring no more than

d(G)+ 3 passes if we use the reverse post order of vertices [58]. Here, d(G) is the

loop-connectednessof G, which is the largest number ofDepth-First Search (DFS)

back edges found in any cycle-free path inG.

An Example

To illustrate the operation of the iterative algorithm, consider Figure 3.4, which depicts

a CFG*, its IPG, and the iterative computations. Each row of the table shows how the

values ofipoints(v) change with successive iterations; coloured cells are setsthat have

changed from the previous iteration. The first column of the table lists the vertices in

reverse post-order, which we have chosen arbitrarily, whereas all other columns dis-

play updates to the data-flow information. Before the first iteration, the set of ipoints

reachable to each vertex is set to /0. As vertexs2 is the entry vertex, i.e. it has no

predecessors,ipoints(s2) remains empty on each iteration.

After the first iteration, only a subset of the correct edges in the IPG have been

computed, i.e. onlys2→ t2 and s2→ 4. After the second iteration, the remaining

edges of the IPG, 4→ 4 and 4→ t2, are inserted. After the third iteration, none of the

sets change, and thus the algorithm halts.

2Note that, for setsSandT, we useS∪= T as a short form ofS:= S∪T.

3.3 Reducibility and Loop-Nesting Trees 55

Figure 3.4. Example used to Demonstrate Construction of IPG using Algo-
rithm in Figure 3.3.

s2

t2

4

a2

b2

c2

d2

(a) The CFG*.

s2

t2

4

(b) Resultant IPG.

Before #1 After #1 After #2 After #3

s2 /0 /0 /0 /0
a2 /0 {s2} {s2} {s2}
b2 /0 {s2} {s2,4} {s2,4}
4 /0 {s2} {s2,4} {s2,4}
c2 /0 {4} {4} {4}
d2 /0 {s2} {s2,4} {s2,4}
t2 /0 {s2} {s2,4} {s2,4}

(c) Iterative computations.

3.3 Reducibility and Loop-Nesting Trees

The weakness of the algorithm described in the previous section is that it only builds

the structure of the IPG without identifying itsstructural properties. As each calcu-

lation technique proposed in WCET analysis presumes knowledge of the loops in the

program model — including their nesting relationship — a further analysis step is re-

quired to identify the IPG loops. Straightforward loop detection, however, is restricted

to the class ofreducibleflow graphs.

Definition 7. A flow graph G isreducible if its edges can be partitioned into two

disjoint groups, called theforward edgesand loop-back edges, respectively, with the

following two properties [3]:

1. The forward edgesEf form an acyclic graph in which every vertex can be

reached from the entry vertex.

56 3.3 Reducibility and Loop-Nesting Trees

2. Theloop-back edgesEb consist only of edges u→ h such that hD u.

Each loop-back edgeu→ h identifies areducibleloop in G, which is an induced

subgraph, denotedLh, of G whose vertices can reachh without passing throughh [3].

The destinationh of a loop-back edge is termed aheaderand satisfies the following

two properties:h pre-dominates all vertices inLh; a subset ofpred(h) do not belong to

the loop, i.e.h is the unique entry vertex of the loop. The source of a loop-back edge

is termed atail . As h can be the destination of multiple loop-back edgesu1→ h,u2→

h, . . . ,un→ h, the loops of eachui → h are unioned together to create a single loop.

When the loop contains a single vertex it is termed aself-loop, otherwise it is termed

a non-trivial loop. A vertexu is termed aloop exit if u has a successor that is not in

Lh. Let h1,h2, . . . ,hn be the headers of the loops in which a vertexu is contained; we

say thathi is theimmediate headerof u, denotedhi = header(u), if hi ⊲u and there

is noh j 6= hi satisfyinghi ⊲h j . Loops are said to benestedin each other: for distinct

loopsLx andLy, eitherLx is nested inLy (Lx⊆ Ly), Ly is nested inLx (Ly⊆ Lx), or Lx

andLy have no nesting relation (Lx * Ly andLy * Lx).

The containment relationship between loops in a reducible flow graph can be cap-

tured in a Loop-Nesting Tree (LNT):

Definition 8. For a reducible flow graph G= 〈VG,EG∪{t→ s},s, t〉, itsLoop-Nesting

TreeTG
L = 〈VG,ETG

L
,s,H〉 is a tree with the following properties3:

• H ⊂VG is the set of headers identified in G.

• ETG
L

= {(header(v),v)|v∈VG−{s}}.

• For each h∈ H, the vertices of the loop are the descendants of h. Therefore,

every internal vertex is the header of a non-trivial loop.

The algorithm to construct the LNT of a reducible flow graph was originally pro-

posed by Tarjan [110]. It uses a DFS to identify DFS back edges: in a reducible flow

graph loop-back edges and DFS back edges are equivalent because the pre-dominators

of a vertex are always its ancestors inanyDFS spanning tree [66].

3We explicitly add the edget→ s to the flow graphG to ensure that the flow graph becomes a maximal
Strongly Connected Component(SCC). Therefore, all vertices inG are enclosed in a loop and
the nesting relationship between loops can be captured in a tree as opposed to a forest.

3.3 Reducibility and Loop-Nesting Trees 57

However, when a flow graphG is irreducible4, the pre-dominance relation is unable

to identify all loop-back edges; that is, removing all edgesu→ h satisfyingh D u

does not ensure thatG is acyclic, and consequently Tarjan’s algorithm halts. Forsuch

irreducible flow graphs, there is no coherent view of what constitutes a loop [97] and,

as a result, state-of-the-art techniques [49, 104] could produce different LNTs for the

same program.

Havlak [49] proposed a refinement of Tarjan’s original algorithm that continues to

identify loops even when it finds a DFS back edgeu→ v satisfyingv 4 u, thus a

loop is constructed for every DFS back edge, as opposed to every loop-back edge.

(Ramalingam [96] has produced a modification of Havlak’s algorithm so that it runs

in almost linear time.) Note that the Havlak LNT chooses a unique vertex as the

header of each irreducible loop. More importantly, becausethe algorithm piggybacks

on a DFS, the set of loops computed depends on the order of the DFS, i.e. the same

algorithm could produce a different set of loops due to a different DFS.

Another common technique used to identify irreducible loops was presented by

Sreedhar [104] using theDJ-Graph. This is a data structure that basically unifies

the flow graph and its pre-dominator tree together. Their algorithm first identifies

reducible loops at each level in the underlying pre-dominator tree of the DJ-Graph. It

then collapses any non-trivial SCC at the same level (not yet identified as a reducible

loop) into an irreducible loop. Thus, in contrast to the Havlak LNT, a set of vertices is

chosen as the header of irreducible loops, each of which is anentry to the SCC.

3.3.1 Identifying IPG Loops

The principal reason that loop identification is of concern in WCET analysis is that

we must bound all loops in the program model. When a graph-based program model

is in place, irreducibility implies that the computed WCET estimate is sensitive to the

chosen LNT. To be conservative — and because the properties of the program model

cannot be formally proven correct — the largest WCET estimate is selected. Accuracy

could be compromised, however, as an alternative loop detection mechanism could be

4In practice, CFGs become irreducible as a result ofgoto statements and because of modifications
to the program structure enforced by (optimising) compilers.

58 3.3 Reducibility and Loop-Nesting Trees

developed that produces a different WCET estimate.

Irreducibility is especially prevalent in the IPG and oftenencompasses much larger

subgraphs than canonical examples of CFG irreducibility. Toillustrate this point,

reconsider the relatively simple IPG in Figure 3.2. In this example, the pre-dominance

relation is able to detect self-loops 1→ 1 and 3→ 3 because 1D 1 and 3D 3. However,

it cannot compute the loops in the SCC with vertex set{1,2,3} because: 16 ⊲ {2,3},

2 6 ⊲ {1,3}, and 36 ⊲ {1,2}. Therefore, unless we can provide a mechanism to correctly

identify IPG loops, WCET calculations on the IPG could be inaccurate.

Clarification 7. We term the cycle-inducing edges of the IPG asiteration edgesas

opposed to loop-back edges. As noted in Definition 7, loop-back edges have a very

precise meaning in the literature, but as we shall observe, the pre-dominance relation

between vertices of iteration edges rarely holds. Furthermore, this distinction clarifies

the graph to which we refer when discussing cycle-inducing edges: “loop-back edges”

only belong to the CFG* and “iteration edges” only belong to the IPG.

The crux of the problem is that, because ipoint placement is not restricted to par-

ticular locations, the pre-dominator tree of the IPG can be very shallow. Valuable

structural information is hence lost whilst constructing the IPG from the CFG*. This

information can be retrieved, however. From Definition 3, itis obvious that every

path in the IPG can be retraced through the CFG*. Thus, for every loop in the IPG,

there must be a corresponding loop in the CFG* (although the converse might not be

true). The following lemma captures this intuition by establishing the properties of

the CFG* under which a cycle is induced in its IPG.

Lemma 1. Let C be a CFG* and I its IPG. Then, I contains a cycle if, and onlyif, C

is cyclic and there is at least one non-trivial SCC in C that contains an ipoint.

Proof. ⇒ If C is acyclic, then clearly, from Definition 3, contraction of non-empty

ipoint-free paths inC cannot create cyclic paths inI . Therefore,C must contain

cycles for I to be cyclic. LetS1,S2, . . .Sn denote the set of SCCs inC, and

assume none of the non-trivial SCCs contain an ipoint (note that each trivial

SCC is either a basic block or an ipoint). Consider thecomponent graph C′ of

C. Since each non-trivial SCC does not contain an ipoint, the only transitions

3.3 Reducibility and Loop-Nesting Trees 59

in I are constructed from the paths between trivial SCCs inC′. BecauseC′ is

a Directed Acyclic Graph (DAG) (see Lemma 22.13 in [30]), then the IPGI ′

created fromC′ must also be a DAG. Therefore, at least one SCC must contain

an ipoint if I is cyclic.

⇐ Assume that there is only one SCCSi in C containing a unique ipointu. By the

definition of a SCC, there must be a pathp : uC → b1→ b2 . . .→ bn→ uC,

n> 0, inC. From Definition 3, the IPG contractsp into the edgeuI → uI , which

creates a cycle inI .

This lemma decides upon the existence of cycles in the IPGI , but it does not indicate

which edgesare iteration edges inI . On the other hand, we may infer the following

key observation from this result. Suppose initially thatI was created from an acyclic

CFG*C; thenI is also acyclic. Now assume that the edges ofC are updated to induce

non-trivial SCCsS1,S2, . . . ,Sn in C and that the edges ofI are updated accordingly.

Let E′scc denote the set of edges added toI in this step. If no SCC contains an ipoint

then I remains acyclic, i.e.E′scc = /0. However, if at least oneSi contains an ipoint

thenI would follow the same acyclic-to-cyclic transition asC. Specifically, because

each edgeu→ v∈ E′scc causes a directed cycle inI , u→ v is an iteration edge ofI .

This is precisely the information that the pre-dominance relation provides in standard

reducibility, except in the opposite direction, i.e. it decides which edges should be

removed for the flow graph to be acyclic.

This suggests that — providedC can be decomposed into a succession of acyclic

regions — we can generalise this observation towards cyclicCFG*s. Such a decom-

position mechanism is provided by the LNTTC
L of C [97]. In particular,TC

L enables

the loop DAG L′h = 〈Vh,Eh〉 of each loopLh to be induced as follows.Vh consists of

h and every vertex that is a child ofh in TC
L . Furthermore, ifh′ ∈Vh is a loop header

such thath′ 6= h thenh′ is a termed anabstract vertex as it represents all vertices

u of an inner loopLh′ . The edgesEh consist only of forward edges inLh and are

added as follows. For each abstract vertexh′, any exit edge fromLh′ into Lh hash′

as its source, and any entry edge intoLh′ from Lh hash′ as its destination. Any edge

between non-abstract vertices inLh is added as normal.

60 3.3 Reducibility and Loop-Nesting Trees

The following theorem is the main result on how to identify iteration edges inI .

Theorem 1. Let C be a reducible CFG*, I be its IPG, Lh be a non-trivial loop in

C with a set of tails T , and L′h = 〈Vh,Eh〉 be the loop DAG of Lh. Then, the edge

u→ v∈ EI is an iteration edge if there are paths p: h
∗
−→
B

vC and q: uC
∗
−→
B

t, t ∈ T, in

Lh and there is no path r: uC
+
−→
B

vC in L′h.

Proof. Let Eh
I ⊂ EI be the set of edges added toI from L′h. From lemma 1, every edge

u→ v∈ Eh
I does not create a cycle inI . If pathr exists thenu→ v∈ Eh

I , thusr cannot

exist. Furthermore, there can be no pathr ′ : uC
+
−→
B

vC in the loop DAG of an outer loop

Lh′ (i.e. h′ is a proper ancestor ofh in the LNT TC
L of C) sinceuC andvC will both be

represented by an abstract vertex.

If path p does not exist thenh 6= vC and, becauseh cannot reachvC on a non-

empty ipoint free path, there must instead be non-empty ipoint-free paths from ipoints

w1
C,w2

C, . . . ,wn
C to vC, i.e. wi → v∈ Eh

I . Similar reasoning can be used with respect to

pathq.

It follows that we can concatenate pathsp andq together joined by the loop-back

edget→ h to create the paths : uC
∗
→ t→ h

∗
→ vC. Clearly,s induces a cycle inC, and

from lemma 1,u→ v must create a cycle inI , thus proving the claim.

There is therefore a mapping from aninstrumentedCFG* loopLh (i.e. h has ipoint

descendants inTC
L) to an IPG loop. We define a bijective functionΩ : L →L I where

L is the set of instrumented CFG* loops andL I is the set of IPG loops.

Clarification 8. In the remainder of the thesis, we use the notation LI
h to refer to an

IPG loop. Strictly speaking this is an abuse of notation as the header vertex h might

not actually belong to the IPG loop (i.e. it could be a basic block). However, this

notation succintly reflects the structural connection between CFG* and IPG loops.

For an IPG loopLI
h, we use the notationIE(LI

h) to denote itsiteration edge set.

Observe that an iteration edgeu→ v can belong to multiple iteration edge sets since

u→ v can “iterate through” more than a single CFG* loop, the conditions under which

are established in the following corollary:

3.3 Reducibility and Loop-Nesting Trees 61

Corollary 1. Let Lx and Ly be CFG* loops satisfying Lx ⊆ Ly with respective tails tx

and ty. Then, IE(LI
x)⊆ IE(LI

y) provided there are paths p: y
+
−→
B

x and q: tx
+
−→
B

ty in C

and y, ty /∈ I.

Proof. Immediate from Theorem 1.

Therefore, we may consideru→ v to be amulti-edge in which the multiplicity of

u→ v is equal to the number of iteration edge sets to which it belongs; in essence,

the iteration space ofu→ v is partitioned across the CFG* loops through which it

iterates. Provided the instrumentation profile is path reconstructible, all iteration edge

sets must be pairwise disjoint because, by definition, everyiteration of every CFG*

loop must be distinguishable in a trace. As we shall observe in Section 3.5.2, this

property determines whether bounds gathered through traceparsing are accurate or

not.

An Example

We illustrate the IPG loop detection mechanism by returningto the problematic IPG

of Figure 3.2. In the CFG* of this figure, there are two loop-back edges,f1→ e1 and

j1→ d1, identifying respective loopsLe1 andLd1. The LNT of the CFG* is shown in

Figure 3.5. All headers of non-trivial loops are internal vertices in the LNT:s1 is the

(root) internal vertex due to the dummy edget1→ s1.

s1

t1

1

2 3

a1 b1 c1d1

e1

f1

g1 h1 i1 j1

k1

Figure 3.5. The LNT of the CFG* from Figure 3.2.

Using Theorem 1, we can identify IPG loops as follows:

62 3.3 Reducibility and Loop-Nesting Trees

• In the inner loopLe1, there is a pathe1
+
−→
B

1
+
−→
B

f1, henceLI
e1

= 〈{1},{1→ 1}〉

is an IPG loop andIE(LI
e1

) = {1→ 1}.

• In the outer loopLd1, there are pathsp1 : d1
+
−→
B

1, p2 : d1
+
−→
B

2, p3 : d1
+
−→
B

3 and

q : 3
+
−→
B

f1. We can concatenate eachpi with q. Therefore,LI
d1

= 〈{1,2,3},{1→

1,1→ 2,1→ 3,2→ 3,3→ 1,3→ 2,3→ 3}〉 is an IPG loop andIE(LI
d1

) =

{3→ 1,3→ 2,3→ 3}.

Let us compare these sets of IPG loops with those identified byalternative tech-

niques. The Havlak [49] LNT for this IPG is depicted in Figure3.6(a). As we noted

above, the Havlak LNT is sensitive to the order of the initialDFS, thus we have arbi-

trarily chosen the following pre-ordering of vertices:s1,1,2,3, t1. The Havlak LNT

identifies three IPG loops:

1. 〈{3},{3→ 3}〉, where 3→ 3 is an iteration edge.

2. 〈{2,3},{3→ 3,2→ 3,3→ 2}〉, where 3→ 2 is an iteration edge.

3. 〈{1,2,3},{1→ 1,1→ 2,1→ 3,2→ 3,3→ 3,3→ 2,3→ 1}〉, where 3→ 1 and

1→ 1 are iteration edges.

Observe, first of all, that this Havlak LNT computes the exactset of iteration edges.

However, it does not manage to construct the correct number of loops, and conse-

quently, the correct nesting relationship.

Figure 3.6. Example LNTs Generated for IPG in Figure 3.2(b), and the Set of
Iteration Edges each Identifies.

s1

t1 1

2

3

3→ 3
3→ 2

3→ 1

1→ 1

(a) Havlak [49] LNT if 1
is visited first during
DFS.

s1

t1 {1,2,3}

1 2 3

1→ 1

1→ 2
1→ 3

2→ 3

3→ 3

3→ 1

3→ 2

(b) Sreedhar [104] LNT
generated by DJ-
Graph.

The DJ-Graph [104] LNT produced for this IPG is depicted in Figure 3.6(b). Each

of the vertices in the set{1,2,3} is chosen as a header of an irreducible loop since

each is an entry into the SCC. The DJ-Graph LNT identifies three IPG loops:

3.3 Reducibility and Loop-Nesting Trees 63

1. 〈{1},{1→ 1}〉, where 1→ 1 is an iteration edge.

2. 〈{3},{3→ 3}〉, where 3→ 3 is an iteration edge.

3. 〈{1,2,3},{1→ 1,1→ 2,1→ 3,2→ 3,3→ 3,3→ 2,3→ 1}〉, where 1→ 2,

1→ 3, 2→ 3, 3→ 2, and 3→ 1 are iteration edges.

This LNT correctly identifies one loop, i.e.〈{1},{1→ 1}〉, but it neither correctly

identifies the set of iteration edges in the problematic SCC, nor does it compute the

correct set of loops.

Thus, from this simple example, we may conclude the more general point that con-

temporary loop detection techniques do not adequately support IPG loop identifica-

tion.

3.3.2 Bounding IPG Loops through Static Analysis

The mapping between CFG* loops and IPG loops provides the mechanism by which

loop bounds supplied through static analysis techniques [47, 52] (or via an end-user)

can be transferred onto the IPG. Equally, bounds obtained through trace parsing (by

means of the properties of IPG loops) can be relayed back to the user at the source

level, provided there is a clear mapping between the object and source code level.

Here we consider how to bound IPG loops assuming static analysis has provided

a relative bound for each instrumented non-trivial CFG* loopLh. We consider the

relative bound to be the maximum number of times a vertexv ∈ V(Lh) can execute

(with respect to its outer nesting level)minusany execution ofv on the loop exit

path5.

Let brel(h) denote the relative bound ofLh. We want to provide a relative bound on

eachu→ v∈ E(LI
h), denotedbrel(u→ v), according tobrel(h). There are two cases to

consider:

Forward edge: On every iteration ofLh, u→ v can execute; therefore,brel(u→ v) =

brel(h).

5Considering bounds in this way avoids the discrepancies of general loop structures such asfor loops
or those containingbreak statements. In these cases, a subset of the vertices in the loop typically
execute once more than others as they determine whether to exit the loop or not.

64 3.3 Reducibility and Loop-Nesting Trees

Iteration edge: The bound onu→ v depends on the location ofu,v within Lh. Ob-

serve that, on the first execution ofLh, u→ v is not triggered since an acyclic

path throughLh must be traversed before reachingu, i.e. u→ v essentially sig-

nifies a looping back intoLh. However, because we do not consider the exit path

out of Lh as contributing to the bound onLh, if v can reach an exit ofLh in the

loop DAGL′h, thenu→ v can execute a further time on one of the exit paths out

of Lh. Therefore:

brel(u→ v) =

brel(h) if v can reach exit ofLh in the loop DAGL′h

brel(h)−1 otherwise
(3.3)

Figure 3.7. Demonstrating Different Relative Bounds on Iteration Edges de-
pending on Locations of Ipoints.

s3

t3

5

6

a3

b3

c3

d3

e3

f3

g3

(a) The CFG* with a loop Lb3 whose sole exit is d3.

Entry It #1 It #2 It #3 Exit

s3 b3 b3 b3 b3

a3 5 5 5 5
d3 d3 d3 d3

e3 e3 e3 g3

f3 f3 f3 t3

6 6 6

(b) One trace of execution through
the loop.

Entry It #1 It #2 It #3 Exit

s3 b3 b3 b3 b3

a3 c3 c3 c3 c3

d3 d3 d3 d3

e3 e3 e3 g3

f3 f3 f3 t3

6 6 6

(c) Another trace of execution
through the loop.

3.3 Reducibility and Loop-Nesting Trees 65

Let us demonstrate Equation (3.3) through the example in Figure 3.7. For the

CFG* in Figure 3.7(a), assume the relative bound of the loopLb3 is 3 and note that

IE(LI
b3

) = {6→ 5,6→ 6}. We have traced two different executions through this loop

on successive iterations in Figures 3.7(b) and 3.7(c), respectively, together with the

loop entry and loop exit path. In the trace of execution of Figure 3.7(b), the iteration

edge 6→ 5 is executed three times, i.e. its bound is equal tobrel(b3), whereas in

Figure 3.7(c), the iteration edge 6→ 6 only executes twice, i.e. its bound is equal to

brel(b3)− 1. As explained above, the reason for this difference is that, on the path

exiting the loop, it is possible to hit ipoint 5. Thus,any iteration edge with a destina-

tion of 5 is bounded exactly bybrel(b3): one execution every time a loop-back edge

is traversed plus one execution when the loop exits. On the other hand, we cannot hit

ipoint 6 on the loop exit path and 6→ 6 can only be executed each time a loop-back

edge is traversed, which is clearlybrel(hi)−1.

3.3.3 Loop-Entry and Loop-Exit Edges in the IPG

Besides identifying the iteration edges inI , our HMB framework also requires de-

tection of loop-entry and loop-exit edgesrelative to the next outer nesting level. For

instance, the IPET constrains the execution count of iteration edges with respect to ei-

ther of these sets of edges. In addition, our trace parsing mechanism uses the loop-exit

edges to gather relative bounds. Here we show how to detect these edges using the

LNT TC
L of C.

Let us first examine the simpler case of how to identify these edges inC (assuming

it is reducible), before extending the intuition to its IPGI . For a reducible loopLh in

C, the standard definition of a loop-entry edgeu→ v (respectively loop-exit edgeu′→

v′) is one satisfyingu /∈V(Lh) (respectivelyu′ ∈V(Lh)) andv∈V(Lh) (respectively

v′ /∈ V(Lh)). Note that, because eachLh is reducible,h must always be the unique

destination ofu→ v. These edges can thus be identified using properties ofTC
L as

follows. For the loop-entry edgeu→ v, v is an internal vertex andu cannot be a

descendant ofh in TC
L , otherwise it would be enclosed in the loopLh; for example,

in Figure 3.2(a),b1→ d1 is a loop-entry edge forLd1, and in Figure 3.5,b1 is not a

descendant ofd1. For the loop-exit edgeu′→ v′, eitheru′ is h (exit from afor loop)

66 3.3 Reducibility and Loop-Nesting Trees

or a child ofh in TC
L (exit from ado-while loop orbreak statement) andv′ is not

a descendant ofh in TC
L ; for example, in Figure 3.2(a),d1→ k1 is a loop-exit edge for

Ld1, and in Figure 3.5,k1 is not a descendant ofd1.

Observe a key implicit property of these edges as defined: flowof control can only

enter (or exit) the next inner (or outer) nesting level relative to the current loop. How-

ever, this might not be the case inI as an ipoint transition can enter (or exit) several

nested loops at a time. (This property can also be present in areducible CFG* whereby

goto statements can redirect flow of control out of several nestedloops at a time.)

For example, in Figure 3.2(b), it is not obvious which IPG loop — eitherLI
d1

or LI
e1

—

the loop-entry edges1→ 1 is relative to because 1 is in both loops. For this reason,

we propose a stricter definition as follows:

Definition 9. Let G be a flow graph, TGL be its LNT, u→ v be an edge in G, h be a

header in G, and y= lcaTG
L
(u,v). We say that u→ v is a (relative) loop-entryedge

(respectively(relative) loop-exitedge) for the loop Lh provided all of the following

conditions are met:

1. u→ v is not a cycle-inducing edge;

2. parentTG
L
(u) 6= parentTG

L
(v) if u,v are not internal vertices in TGL or u 6= parentTG

L
(v)

if u is an internal vertex in TGL ;

3. h is the first header on the path p: y (
∗
→] v (respectively q: y (

∗
→] u) in TG

L .

This definition appears rather convoluted and requires someexplanation. Condi-

tion 1 states that these edges must be forward edges (see Definition 7). Condition 2

states thatu andv must reside in different loops. Thus, condition 3 determines the

outermost loop that is entered (respectively exited) on traversingu→ v becauseLh is

the only loop in the next nesting level fromLy (h is a child ofy in TG
L); this is precisely

the information that we require to bound cycle-inducing edges relative to their outer

nesting level.

Thus, the problem of identifying loop-entry and loop-exit edges in a flow graphG

can be reduced to the problem of performing off-line least-common ancestor queries

(with the query setEG) on a static tree (TG
L), for which there are known solutions [12,

3.4 A Modified Data-Flow Framework to Build the IPG 67

48]. All queries can be answered in constant time, thus we canidentify the loop-entry

and loop-exit edges ofG in O(|EG|) time.

Returning to the initial problem of identifying loop-entry and loop-exit edges in

I , observe that the LNT on which we perform least-common ancestor queries isTC
L

(because we do not explicitly construct the LNT ofI). How this is done can be demon-

strated with the LNT in Figure 3.5 and the IPG in Figure 3.2(b). By condition 1 in

Definition 9, 1→ 1,3→ 1,3→ 2,3→ 3 cannot be loop-entry or loop-exit edges since

they are iteration edges. By condition 2 in Definition 9,s1→ t1,2→ 3 cannot be

loop-entry or loop-exit edges since they are in the same loop. This reduces the query

set to{s1→ 1,s1→ 2,s1→ 3,1→ 2,1→ 3,3→ t1}. Following are the answers to

these queries:

• lcaTC
L
(s1,1)= lcaTC

L
(s1,2)= lcaTC

L
(s1,3)= s1. Observe thatd1 is the first header

on each paths1 (
∗
→] 1, s1 (

∗
→] 2, ands1 (

∗
→] 3, thus{s1→ 1, s1→ 2, s1→ 3}

are loop-entry edges for the IPG loopLI
d1

.

• lcaTC
L
(1,2) = d1. In this case,e1 is the first header on the pathe1 (

∗
→] 1, thus

1→ 2 is a loop-exit edge for the IPG loopLI
e1

.

• lcaTC
L
(3, t1) = s1. In this case,d1 is the first header on the paths1 (

∗
→] 3, thus

3→ t1 is a loop-exit edge for the IPG loopLI
s1

.

3.4 A Modified Data-Flow Framework to Build the

IPG

In the previous section we explained how to identify IPG loops using the LNT of the

CFG*. Here we describe a more complex algorithm than that in Figure 3.3 to construct

the IPGI from a CFG*C. To this end, we make some modest changes to the under-

lying DFF described in Section 3.2.2 and control how the iterative algorithm operates

in order to detect iteration edges on the fly for each CFG* loop (using Theorem 1).

Changes to the DFF are needed to compute the iteration edges for each IPG loopLI
h

because, according to Theorem 1, this requires two pieces ofinformation:

68 3.4 A Modified Data-Flow Framework to Build the IPG

• The ipoints in the CFG* loopLh that are reachable from the headerh on a (pos-

sibly empty) ipoint-free path in the loop DAGL′h, i.e. these are the destinations

of iteration edges.

• The ipoints inLh that can reach a tail ofLh on a (possibly empty) ipoint-free

path in the loop DAGL′h, i.e. these are the sources of iteration edges.

The previous DFF already computes the sources of iteration edges: for each basic

block tail t, a subset ofipoints(t) holds the ipoints that can reacht in L′h. (It is a subset

because ipoints from an outer loop could also reacht and these are not sources of

iteration edges forLh.) However, we cannot infer the destinations of iteration edges

for basic blockheaders in the same way because the DFF only computes reachability

information concerning ipoints. For this reason, we define another semi-latticeLHB
,

which is the powerset 2HB over the set of basic block headersHB. We further define

the set of monotone, distributive functionsFHB
⊆ 2HB → 2HB .

The semi-latticeLHB
is used to decide which basic block headers can reach other

vertices in its loop DAG on ipoint-free paths. Let us define the following set:

∀v∈VC : headers(v) = {h|h∈ HB∧∃ h
∗
−→
B

v in the loop DAGL′h}

It would appear that, in order to computeheaders(v) for eachv∈VC, we can per-

form a union of the basic block headers that can reach the basic block predecessors of

v. However, observe that, for everyh∈ headers(v), h must be an ancestor ofv in TC
L

but that not every predecessorp of v is at the same loop-nesting level. This implies

that there could be someh′ ∈ headers(p) that is not an ancestor ofv, and therefore,

we should not inserth′ into headers(v). In essence, we do not want the reachability

of a header to other vertices in its loop to spill into the nextouter loop-nesting level.

Therefore, for a predecessorp of v, let us define the following subset ofheaders(p):

headersv(p) = {h|h∈ headers(p)∧h is an ancestor ofv in TC
L }.

From these observations, we arrive at the following data-flow equation to compute

headers(v):

3.4 A Modified Data-Flow Framework to Build the IPG 69

∀v∈VC : headers(v) =

(

⋃

p∈pred(v) headersv(p)
)

∪{v} if v∈ HB

⋃

p∈pred(v) headersv(p) otherwise
(3.4)

3.4.1 The Algorithm

Construction ofI and identification of its iteration edges therefore requires a solution

to Equation (3.2) and Equation (3.4). Observe that we cannotsimply solve these

equations and then determine the iteration edge sets associated with each IPG loopLI
h

off-line. This is because Theorem 1 states that an IPG edgeu→ v ∈ IE(LI
h) if, and

only if, there is no acyclic path fromu to v in the loop DAGL′h (of the CFG* loop

Lh). Thus, the algorithm must also decide whether such a path exists before inserting

u→ v into IE(LI
h).

Consequently, this section presents a more complex algorithm than the simple it-

erative algorithm, although it operates in a similar fashion, but restricts computations

to particular induced subgraphs ofC. The pseudo-code is split across procedures in

Figures 3.8 and 3.9, the conventions of which require some explanation. First, our in-

tention is to focus on the insertion of edges intoI . For this reason, we utilise “Update

set S with set T” in several places to avoid unnecessary clutter. The actualmean-

ing of this is to unionS with all members ofT, and if S changes due to this update,

thenchangedis set totrue to force another iteration. Second, we do not associate a

headersset with each ipoint; rather, for each basic block headerh, we associate a set

dest(h) that stores the ipoints that are reachable fromh on a non-empty ipoint-free

path. This saves us from having to scan each ipoint descendant v of h in TC
L to check

whetherh∈ headers(v).

The main procedure called to initiate IPG construction is displayed in Figure 3.8,

which takesC andTC
L as parameters and commences with a series of initialisations

(lines 11-18) as follows. We conservatively estimate the values ofipoints(v) (for each

v∈VC) andheaders(v) (for eachv∈ B) to be the empty set, i.e. the bottom element

of their respective semi-lattices. Furthermore, we assumethat, for each CFG* loop,

there is no corresponding loop in the IPG and that there are nodestinations of iteration

70 3.4 A Modified Data-Flow Framework to Build the IPG

edges for each basic block header.

The next step of the algorithm is to produce a reverse post-ordering of each non-

trivial loop Lh in C (line 19). These reverse post-orderings are required in theiterative

part of the algorithm, and can be obtained as follows. First initialise an empty list

for each non-trivial header inC and initiate a DFS from the entry vertexs. Once all

descendants of a vertexv in the DFS tree have been visited, appendv onto the start of

the list atparentTC
L
(v) providedv 6= s. (Note that, ifv is a header thenv essentially

represents an abstract vertex, i.e. a collapsed loop, in thereverse post-ordering of

parentTC
L
(v).) Furthermore, ifv is a header, appendv onto the start of the list atv.

(Note that this completes the reverse post-ordering forLv because, as we assume that

C is reducible, every vertexu 6= v in Lv must be a proper descendant ofv in the DFS

spanning tree [66]. Therefore, by the nesting of descendants’ intervals (see Corollary

22.8 in [30]),u must already be in the list atv.)

The algorithm then performs an inside-out decomposition ofC, i.e. from inner

loops outwards to outer loops, usingTC
L (lines 20-53). For each loopLh in C, we first

build the forward edges ofI from inside the loop DAGL′h. After this, we analyse the

entire cyclic region inC induced byLh and updateI with any remaining transitions

not present inL′h: by Theorem 1, all edges added in this step must be iteration edges

of the IPG loopIE(LI
h).

We do not explicitly induce the loopLh nor its loop DAGL′h from C. Rather, we

use the reverse post-ordering previously computed in conjunction with an integerit

that indicates whether we should analyseL′h (it = 1) or Lh (it = 2). As the reverse

post-orderings only contain abstract vertices for inner loops, we need to know which

ipoints are reachable from an inner headerh′ on ipoint-free paths so that, on analysing

edges enteringLh′ from Lh, we can build the ipoint transitions with destinations inside

Lh′. Clearly,h′ is the only such ipoint ifh′ is an ipoint. Otherwise, we placeh in its set

headers(h) (lines 22-23) so that we can determine reachability ofh to other vertices

in Lh.

The algorithm then constructs the ipoint transitions inside Lh (lines 24-53). This

section of pseudo-code has strong similarities to the iterative algorithm in Figure 3.3,

the essential difference being that the iterative part of this algorithm is employed for

3.4 A Modified Data-Flow Framework to Build the IPG 71

Input : C,TC
L

Output : I

foreachv∈VC do11

ipoints(v) := /012

if v is basic blockthen13

headers(v) := /014

if v is internal vertex in TCL then15

IE(LI
v) := /016

if v is basic blockthen17

dest(v) := /018

Reverse post-order each non-trivialLh in C19

for i := height(TC
L)−1 downto 0 by-1 do20

foreach internal vertex h with level(h) = i do21

if h is basic blockthen22

headers(h) := {h}23

it := 024

changed:= true25

while changeddo26

changed:= false27

it := it +128

foreachv in reverse post-order of Lh do29

foreach p∈ pred(v) do30

analyse:= false31

if v = h then32

if p→ v is loop-back edge and it> 1 then33

analyse:= true34

else ifv not an internal vertex in TCL then35

analyse:= true36

else if p→ v is not a loop-back edgethen37

analyse:= true38

if analyse then39

if p is ipoint then40

Update(p, v)41

else42

foreachk∈ ipoints(p) do43

Update(k, v)44

if it = 1 and h∈ headers(p) then45

if v is ipoint then46

Updatedest(h) with {v}47

else48

if v is header of non-trivial loop and v6= h then49

Updateheaders(u) with {h} providedu is exit ofLv50

andv∈ headers(u)
Updatedest(h) with dest(v)51

else52

Updateheaders(v) with {h}53

Figure 3.8. Algorithm to Construct the IPG using the Loop-Nesting Tree of
the CFG*.

72 3.4 A Modified Data-Flow Framework to Build the IPG

each CFG* loopLh and that, for each vertexv, we specifically analyse each predeces-

sor p in turn (line 30). The reason for this is that, as noted above,we only want to

analyse forward edges inC whenit = 1, but because we do not explicitly induce loop

DAGs, we must be able to ignore loop-back edges as and when required. Analysis of

edges inC is therefore controlled through the boolean variableanalyse.

For eachp→ v ∈ EC, we initially assume that we do not want to analysep→ v

(line 31). If v is the header of the current loop under inspection (i.e. the first vertex

in the reverse post-ordering ofLh), p→ v is a loop-back edge andit > 1 (lines 32-34)

then we analyse the edge becauseit > 1 indicates that we want to add the iteration

edges inI associated with this loop. On the other hand,v could be the header of an

inner loop. In this case, we do not analysep→ v if it is a loop-back edge becausep

does not appear in the reverse post-ordering ofLh, and consequently, none of the sets

at p are affected whilst analysingLh (lines 37-38). The only alternative is thatv is a

leaf in TC
L such thatparentTC

L
(v) = h, and thus everyp→ v must be a forward edge

(lines 35-36).

Input : y,v

if v is ipoint then54

if y /∈ ipoints(v) then55

changed:= true56

ipoints(v) ∪= {y}57

if it = 2 then58

IE(LI
h) ∪= yI → vI59

else60

if v is header of non-trivial loop and v6= h then61

Updateipoints(u) with {y} providedu is exit ofLv andv∈ headers(u)62

foreachw∈ dest(v) do63

if y /∈ ipoints(w) then64

changed:= true65

ipoints(w) ∪= {y}66

if it = 2 then67

IE(LI
h) ∪= yI → wI68

else if it = 2 and yI → wI is iteration edgethen69

IE(LI
h) ∪= yI → wI70

else71

Updateipoints(v) with {y}72

Figure 3.9. Update: Helper Procedure in IPG Construction.

The analysis of the edgep→ v essentially updates the sets associated withv with

3.4 A Modified Data-Flow Framework to Build the IPG 73

the information atp, i.e. we partially solve Equation (3.2) and Equation (3.4).If

p is an ipoint then this means thatp can reachv on a non-empty ipoint-free path;

otherwise, every ipointk∈ ipoints(p) can reachv on a non-empty ipoint-free path. In

both cases, the procedureUpdate is called, which takes two parameters,y andv, and

performs one of three actions depending on the properties ofv as follows:

v is an ipoint: As y is also an ipoint, we insert the edgeyI → vI into I if it does not

yet exist and mark it as an iteration edge forLI
h if it = 2 (lines 55-59).

v is a basic block header of a non-trivial loop: Asvessentially represents a collapsed

loop, we need to update every exitu in Lv with the information thaty can reach

u provided v∈ headers(u) (line 62), since this signifies there is an ipoint-free

path fromv to u. (Observe that we are only interested in the ipoint-free paths

that pass throughLv, thus it suffices to only update its exits with this informa-

tion. In practice this speeds up the overall running time of the algorithm as we

do not redundantly re-analyse all vertices in inner loops. In theory, however,

the running time remains quadratic due to the iterative nature of the algorithm.)

Furthermore,y can also reach every ipointw in Lv such thatw∈ dest(v). Hence,

as for the first case, we add all edgesyI → wI into I if they do not yet exist and

mark them as iteration edges forLI
h if it = 2 (lines 63-68). On the other hand,

if yI → wI has already been added toI and marked as an iteration edge of some

inner loopLI
h′, thenyI → wI is marked as an iteration edge forLI

h as well pro-

videdit = 2 (lines 69-70). This is because, as noted above, an iteration edge can

belong to multiple IPG loops.

v is a basic block: Obviously,y can reachv on a non-empty ipoint-free path, thus it

is inserted intoipoints(v) (line 72).

The analysis of the edgep→ v is not complete whenp is a basic block,it = 1 and

h∈ headers(p) because we need to propagate the reachability information of h ontov.

The actions taken here are similar to the actions taken whenp is an ipoint, and hence

we can summarise them according to the properties ofv as follows (lines 45-53):

v is an ipoint: As h can reachp on an ipoint-free path,v is a destination of ipoint

transitions entering the collapsed loopLh (line 47).

74 3.4 A Modified Data-Flow Framework to Build the IPG

v is a basic block header of a non-trivial loop: As for the case whenpwas an ipoint,

we update every exitu in Lv satisfyingv∈ headers(u) with the information that

h can reachu on an ipoint-free path (line 50). Also, this indicates that all ipoints

reachable fromv in the collapsed loopLv (i.e. those indest(v)) are also reach-

able fromh (line 51).

v is a basic block: h is inserted intoheaders(v) (line 53).

An Example

To illustrate the operation of the algorithm, consider Figure 3.10, which depicts a

CFG*, its IPG, and its LNT. This example is deliberately more complicated than pre-

vious examples as we also wish to exhibit iteration edges that belong to multiple iter-

ation edge sets. Observe that the CFG* of Figure 3.10(a) has four non-trivial loops:

Ld4 andL f4 are nested inLb4 andLb4 is nested in the dummy loopLs4. These data are

represented in Figure 3.10(c).

In Figure 3.11, we have traced through the major stages of thealgorithm for each

loop in the CFG*. All tables in this figure display, for each vertex v, how the sets

ipoints(v),dest(v),headers(v) change on successive iterations during the iterative part

of the algorithm. Shaded cells indicate sets that have changed from the previous iter-

ation, and blank cells indicate that a particular set is not associated with a particular

vertex. A further note to make is that the computations performed on the final iter-

ation have been omitted because none of the sets change (thiscan easily be verified

by the reader). The first column of each table lists an (arbitrarily chosen) reverse

post-ordering of the vertices inside the loop, and all othercolumns display updates to

the sets. We have ordered the tables with respect to the orderin which the loops are

processed by the algorithm.

Before processing each loop, the algorithm first placesb4, d4, and f4, into their

respective setsheaders(b4), headers(d4), andheaders(f4) as all headers excepts4 are

basic blocks.

For the inner loopLd4, we do not analyse the edgee4→ d4 in the first iteration

because it is a loop-back edge. Analysis of edges thus proceeds in the following

3.4 A Modified Data-Flow Framework to Build the IPG 75

Figure 3.10. Example used to Demonstrate Construction of IPG using Algo-
rithm in Figure 3.8.

s4

t4

7

8

9

10

11

12

a4

b4

c4

d4

e4

f4

g4

h4

i4

j4

(a) The CFG*.

s4

t4

7

8

9

10

11

12

b4,d4

b4

b4b4

b4

b4

b4

b4

f4

(b) The IPG.

s4

t4

7 8

910

11 12
a4 b4

c4 d4

e4

f4

g4

h4 i4

j4

(c) The LNT of the CFG*.

order:

• d4→ 10: As it = 1 andd4 ∈ headers(d4), {10} is unioned intodest(d4).

• 10→ e4: 10 can reache4 on a non-empty ipoint-free path and{10} is unioned

into ipoints(e4).

On the second iteration, edges are analysed in the followingorder:

• e4→ d4: As it > 1, we now analyse the loop-back edge ofLe4, and thus{10} is

unioned intoipoints(d4).

• d4→ 10: 10→ 10 is inserted into the IPG because 10∈ ipoints(d4) and, because

it > 1, 10→ 10 is an iteration edge forLI
d4

.

• 10→ e4: No changes.

76 3.4 A Modified Data-Flow Framework to Build the IPG

On analysis of the other inner loopL f4, the steps taken are very similar and are

summarised as follows: 9 is unioned intodest(f4); 9→ 9 is inserted into the IPG;

9→ 9 is flagged as an iteration edge forLI
f4

.

Analysis of the outer loopLb4 is markedly more involved. First observe that vertices

d4 and f4 appearing in the reverse post-ordering are actually abstract vertices that

represent the collapsed loopsLd4 andL f4. Whilst analysing the loop-entry edges of

these loops, the sets of some of the vertices inside these loops change (specifically

10,g4,9); we have therefore included them in the table, although itis important to

stress that they do not appear in the actual reverse post-ordering ofLb4.

Consider analysis of the following edges in the first iteration:

• c4→ d4: As it = 1, b4 ∈ headers(c4) andd4 is the header of a non-trivial loop,

two actions are undertaken. First, the setdest(d4) is unioned intodest(b4), and

dest(b4) = {10}. Second,b4 is propagated to the only exit, namelyd4, of Ld4

such thatd4 ∈ headers(u).

• c4→ 7: As it = 1 andb4 ∈ headers(c4), 7 is reachable fromb4 on a non-empty

ipoint-free path, thus{7} is unioned intodest(b4). This is the last element

inserted intodest(b4); hence,dest(b4) = {7,10}.

• 7→ f4: As 9∈ dest(f4), the edge 7→ 9 is inserted into the IPG. However, as

it = 1, this edge is not identified as an iteration edge. Furthermore, note that

both exits ofL f4, namely f4 andg4, have f4 in their respectiveheaderssets,

which causes{7} to be unioned into their respectiveipointssets. It is worth re-

emphasising that this step is necessary since the only path from 7 to 8 is through

the collapsed inner loop.

• f4→ 8: As 7 and 9 are both inipoints(f4), edges 7→ 8 and 9→ 8 are inserted

into the IPG, neither of which are iteration edges.

Next consider the analysis of the following edges in the second iteration:

• i4→ b4: The setipoints(i4) is unioned intoipoints(b4).

• c4→ d4: Because 10 is the only element ofdest(d4), edges 8→ 10,9→ 10,7→

10 are added to the IPG, all of which are iteration edges forLb4. However, also

observe that, although 10→ 10 already exists in the IPG, it is also identified as

an iteration edge forLb4.

3.4 A Modified Data-Flow Framework to Build the IPG 77

Figure 3.11. Computations Performed by Algorithm in Figure 3.8 for Example
in Figure 3.10.

Before #1 After #1 After #2

dest(v) headers(v) ipoints(v) dest(v) headers(v) ipoints(v) dest(v) headers(v) ipoints(v)

d4 /0 {d4} /0 {10} {d4} /0 {10} {d4} {10}
10 /0 /0 {10}
e4 /0 /0 /0 {10} /0 {10}

(a) In CFG* loop Ld4.

Before #1 After #1 After #2

dest(v) headers(v) ipoints(v) dest(v) headers(v) ipoints(v) dest(v) headers(v) ipoints(v)

f4 /0 { f4} /0 {9} { f4} /0 {9} { f4} {9}
g4 /0 /0 { f4} /0 { f4} {9}
9 /0 /0 {9}

(b) In CFG* loop L f4.

Before #1 After #1 After #2

dest(v) headers(v) ipoints(v) dest(v) headers(v) ipoints(v) dest(v) headers(v) ipoints(v)

b4 /0 {b4} /0 {7,10} {b4} /0 {7,10} {b4} {8,9,7,10}
c4 /0 /0 {b4} /0 {b4} {8,9,7,10}
d4 {10} {d4} {10} {10} {b4,d4} {10} {10} {b4,d4} {8,9,7,10}
10 {10} {10} {8,9,7,10}
7 /0 /0 {8,9,7,10}
f4 {9} { f4} {9} {9} { f4} {9, 7} {9} { f4} {9,7}
g4 { f4} {9} { f4} {9,7} { f4} {9,7}
9 {9} {9,7} {9,7}
8 /0 {9,7} {9,7}

h4 /0 /0 /0 {8,9,7} /0 {8,9,7}
i4 /0 /0 {b4} {8,9,7,10} {b4} {8,9,7,10}

(c) In CFG* loop Lb4.

Before #1 After #1

dest(v) headers(v) ipoints(v) dest(v) headers(v) ipoints(v)

s4 /0 /0 /0 /0 /0 /0
11 /0 {s4}
b4 {7,10} {b4} {8,9,7,10} {7,10} {b4} {8,9,7,10,11}
7 {8,9,7,10} {8,9,7,10,11}

10 {8,9,7,10} {8,9,7,10,11}
j4 /0 /0 /0 {8,9,7,10,11}

12 /0 {8,9,7,10,11}
t4 /0 {12}

(d) In CFG* loop Ls4.

78 3.5 Interprocedural Analysis

• c4→ 7: Edges 8→ 7,9→ 7,7→ 7,10→ 7 are inserted into the IPG and iden-

tified as iteration edges forLI
b4

.

The final loop to analyse is that ofLs4, which causes the remainder of the IPG edges,

s4→ 11,11→ 7,11→ 10,11→ 12,7→ 12,8→ 12,9→ 12,10→ 12,12→ t4, to be

inserted.

The final IPG resulting from this construction is shown in Figure 3.10(b). Following

are the iteration edge sets associated with each IPG loop:

• IE(LI
d4

) = {10→ 10}.

• IE(LI
f4
) = {9→ 9}.

• IE(LI
b4

) = {10→ 10,9→ 10,8→ 10,7→ 10,10→ 7,9→ 7,8→ 7,7→ 7}.

Figure 3.10(b) represents iteration edges as emboldened edges and labels them with

the headers of the CFG* loops that they are associated with.

3.5 Interprocedural Analysis

Thus far we have described the analysis and construction of the IPG assuming a unique

procedure. However, programs inevitably contain multipleprocedures, and thus there

has to be a mechanism to handle interprocedural relations. In particular, our HMB

framework must parse timing traces (in order to extract the WCETs of ipoint transi-

tions) and be able to drive the calculation engine across procedure boundaries. We

begin the section with an explanation of our virtual inlining mechanism which pro-

vides visibility to procedure calls in the IPG of each procedure. Following that, we

show how to use the set of IPGs to parse timing traces and to calculate a WCET

estimate.

3.5.1 Master Ipoint Inlining

One straightforward way to handle procedure calls is to virtually inline the CFG* of

the callee at each call site in the caller, resulting in a unique CFG*, and ultimately, a

unique inlined IPG. This simplifies interprocedural analysis as theTrace Parser(TP)

just walks the inlined IPG for each trace, and calculations across procedure boundaries

3.5 Interprocedural Analysis 79

are implicitly supported. The biggest weakness, however, is that the inlined IPG can

grow exponentially in size because of the duplication process, thus limiting its usage

to small-scale programs.

Instead of duplicating the IPG at each call site, we inline a subset of the ipoints —

but none of the transitions — from the callee into the caller.These duplicatedmaster

ipointsprovide visibility of the call to (and return from) each callee. Intuitively, master

ipoints are those which are observed first and last in a trace on procedure invocation

and return. Formally:

Definition 10. For an IPG I = 〈I,EI ,s, t〉:

•
→
MI = {u∈ I−{t}|u∈ succ(s)} is its set ofmaster entry ipoints.

•
←
MI = {u∈ I−{s}|u∈ pred(t)} is its set ofmaster exit ipoints.

Therefore, inlining a master entry ipoint into the caller allows the TP to detect when

a procedure call has arisen and hence it can switch to the IPG of the callee. On the

other hand, inlining a master exit ipoint provides the return location in the IPG of the

caller once the portion of the trace inside the callee has been processed.

To describe master ipoint inlining in greater detail, let usconsider programs com-

prising multiple proceduresp1, p2, . . . , pn and assume that a call graph models the

interprocedural relations, which is formally defined as follows:

Definition 11. Thecall graph of a program with a set of procedures{p1, p2, . . . , pn}

is a digraphP = 〈VP ,EP ,S, r〉 such that:

• VP = {p1, p2, . . . , pn}.

• r ∈VP is a distinguished vertex termed themainprocedure for which|pred(r)|=

0. Every vertex v can be reached from r, thus preventing dead code. We also

assume that r is instrumented so that each new trace begins with a master entry

ipoint in r.

• S is a set of basic blocks termedcall sites.

• EP ⊆VP ×VP ×S is the set of labelled edges that we termcontexts. For an

edge(f ,g,s) ∈ EP , f is termed thecaller and g is termed thecallee. We also

80 3.5 Interprocedural Analysis

include a dummy context, denoted(r, r,λ), which is essentially the initial context

when the program is invoked.

• There are no cycles, thus preventing recursion. This is motivated by noting that

recursion is seldom present in embedded software as the constrained resources

of embedded systems do not provide large stack memory.

In addition to the call graph, we also require the CFG* and the IPG of each pro-

cedurepi . As we inline master ipoints from the IPG of a calleeg into the CFG* of

the callerf , the CFG* of f changes. Therefore, we useCpi to denote the CFG* ofpi

beforemaster ipoint inlining,C′pi
to denote the CFG*after master ipoint inlining, and

Ipi to denote the IPG ofpi that is constructed fromC′pi
.

The mechanics of master ipoint inlining are presented in Figure 3.12, which takes

the call graphP and the set of CFG*s{Cp1,Cp2, . . . ,Cpn} as parameters and op-

erates as follows. Each context(f ,g,s) (except the dummy context) is processed in

reverse topological order so that procedure calls are considered in a bottom-up fashion

(lines 73- 86). We only inline the master ipoints fromg whenIg satisfies|V(Ig)| > 2

(line 74). This is because an IPG must always contain at leasttwo ghost ipoints,

namelys, t. Therefore, if|V(Ig)|= 2, then there are no ipoints inIg that will be seen in

a trace, and the call atsdoes not require inlining. On the other hand, when|V(Ig)|> 2,

master entry and master exit ipoints fromIg are duplicated intoCf (line 75), which we

denote as
→
M
′

g and
←
M
′

g, respectively, to avoid confusion with the actual master ipoints

of g.

To allow the TP to disambiguate between ipoints inlined fromvarious procedures,

we associate aprocedure identifier to each ipointu, denotedPu, which is the proce-

dure causingu to trigger in program execution. Here we set the procedure identifier

of each inlined ipoint to that of the callee (line 76). Observe that this step subtly as-

sumes that inlined ipoints do not become master ipoints in the caller; that is, each

inlined ipoint must be triggered byg during program execution and not by another

procedureg′ that is called viag. This allows the TP to wind and unwind the call stack

one procedure at a time.

Once these master ipoints have been duplicated and insertedinto f , a simple relink-

ing with the call sites takes place. Every predecessorp of s is redirected towards each

3.5 Interprocedural Analysis 81

Input : P,{Cp1,Cp2, . . . ,Cpn}
Output : {C′p1

,C′p2
, . . . ,C′pn

}

foreach (f ,g,s) ∈ EP −{(r, r,λ)} in reverse topological orderdo73

if |V(Ig)|> 2 then74

Add inlined master entries
→
M
′

g and master exits
←
M
′

g to V(Cf)75

Set procedure identifier of each inlined ipoint tog76

foreachu∈
→
M
′

g do77

foreach p∈ pred(s) do78

Add p→ u to E(Cf)79

Removep→ s from E(Cf)80

Add u→ s to E(Cf)81

foreachu′ ∈
←
M
′

g do82

foreach p′ ∈ succ(s) do83

Add u′→ p′ to E(Cf)84

Removes→ p′ from E(Cf)85

Add s→ u′ to E(Cf)86

Figure 3.12. Algorithm to Effect Master Ipoint Inlining.

u∈
→
M
′

g (line 79), the edgep→ s is removed (line 80) and then eachu is connected

to s (line 81). Thus, ifCf contained a pathw
+
−→
B

s, wherew is an ipoint, thenC′f will

instead contain a pathw
+
−→
B

u. Consequently, the TP can detect the call tog in I f once

the trace edge w→ u∈ E(I f) has been traversed. In a similar fashion, everyu′ ∈
←
M
′

g

is connected to each successorp′ of s (line 84), the edges→ p′ is removed (line 85),

and thens is redirected towards eachu′ (line 86). Thus, ifCf contains a paths
+
−→
B

w′,

wherew′ is an ipoint, thenC′f will instead contain a pathu′
+
−→
B

w′. This provides the

location inI f at which the TP should return onceg has finished executing, since the

next trace edge to traverse will be inI f .

Note that every inlined master entry ipoint inI f has the set of inlined master exit

ipoints as its successors. Since there are a number of ipointtransitions between these

inlined ipoints (in the call chain), these edges essentially black box the procedure call

and are thus termedcontext edges. Formally:

Definition 12. For a CFG* C and its IPG I, an edge u→ v∈ EI is a context edgeif

u is an inlined master entry exit and v is an inlined master exit ipoint. Furthermore,

B(P(u→ v)) is a singleton set containing a call site in C.

Context edges serve two purposes in our analysis. First, theyallow the TP to re-

82 3.5 Interprocedural Analysis

construct the exact context from the properties of the IPG, allowing trace data to be

retrieved on a per context basis as required — how this is doneis described in Sec-

tion 3.5.2. Second, they allow the calculation engine to incorporate the (modularised)

WCET calculation of the context into the caller — how this is done is described in

Section 3.5.3.

One potential, yet rare, problem with master ipoint inlining as described above is

that it causes irreducibility inC′f . This occurs whens is the header of a (reducible)

loop Ls in Cf and Ig has multiple master entry ipoints, i.e.|
→
Mg | > 1. In this case,

each inlined master entry ipoint will become an entry into the loop; that is,Ls will

be transformed into an irreducible loop with headers
→
M
′

g. Hence,I f must be built

through the simple iterative algorithm of Figure 3.3 (becauseC′f is irreducible) and

this complicates the identification of IPG loops.

We propose two solutions to this problem. The first is to ensure that every procedure

contains a unique master entry ipoint. This is typically themost workable as a user (or

automatic tool) can easily detect the problem. On the other hand, if no control over

the instrumentation profile can be assumed, we can force reducibility in C′f simply

by inlining a unique ipoint that effectively represents allmaster entry ipoints inIg.

The weakness of this approach, however, is that we might losesome precision in the

calculation onI f as a portion of the code from the callee is effectively considered

within the context of the caller due to master ipoint inlining. Therefore, by merging

all master entry ipoints ofIg into a single vertex inI f , every transition from an ipointw

to an inlined master entry ipoint forces the calculation engine to choose the transition

(into g) with the largest value. That is, we cannot constrain the execution count of

the transition with the larger value. Another disadvantageis that we must build the

LNT of Cf (to detect headers that are call sites) and ofC′f (to build I f), adding to the

overall overhead, even though there are almost-linear timealgorithms to construct a

LNT, as explained in Section 3.3. In general, we attempt to avoid the problem entirely

by choosing the first solution where applicable.

3.5 Interprocedural Analysis 83

An Example

We illustrate master ipoint inlining in Figure 3.13 for a program containing two pro-

cedures (foo andbar) whose call relations are depicted in Figure 3.13(a). Asbar

is a leaf in the call graph, it does not require inlining, thuswe have omitted its CFG*.

The IPG ofbar is, however, shown in Figure 3.13(b) because its master ipoints must

be inlined into the CFG* offoo. Note that
→
Mbar= {20} and that

←
Mbar= {23}.

Figure 3.13. Example of Master Ipoint Inlining.

foo

bar

b5 c5

(a) The call graph.

s5

t5

20

21 22

23

(b) IPG of bar.

s5

t5

13

14

15

a5

b5 c5

d5

(c) CFG* of foo before
master ipoint inlining.

s5

t5

13

14

15

16

17

18

19

a5

b5 c5

d5

(d) CFG* of foo after
master ipoint inlin-
ing.

s5

t5

13 (foo)

14 (foo)

15 (foo)

16 (bar)

17 (bar)

18 (bar)

19 (bar)

16→ b5 ·b5→ 17 18→ c5 ·c5→ 19

(e) IPG of foo.

The CFG*s offoo before and after master ipoint inlining are shown in Figures3.13(c)

and 3.13(d), respectively. For the context(foo,bar,b5), ipoints 16 and 17 are the

inlined master ipoints frombar, i.e.
→
M
′

bar= {16} and
←
M
′

bar= {17}. These addi-

84 3.5 Interprocedural Analysis

tional ipoints are linked intoC′foo through the edge insertions of 16→ b5, 14→ 16,

b5→ 17, and 17→ 15 together with the edge deletions of 14→ b5 andb5→ 15. The

context(foo,bar,c5) is analogously inlined, except that 18 and 19 are the inlined

master ipoints.

The IPG offoo, which is constructed from the CFG* in Figure 3.13(d), is shown

in Figure 3.13(e) in which trace ipoints are annotated with their procedure identifier.

Following are properties to note: 13→ 18 and 14→ 16 are trace edges that detect a

call to bar in trace parsing as the source and destinations have different procedure

identifiers; 16→ 17 and 18→ 19 are context edges representing the call tobar at

respective call sitesb5 andc5 (indicated by the unique basic block in their path ex-

pressions); depending on the context invoked, the trace will return to either 17 or 19

oncebar has finished executing, i.e. once ipoint 23 is seen in the trace.

3.5.2 Trace Parsing

After master ipoint inlining, we use the set of IPGs to extract timing data from the

trace file on a per context basis. Timing data encompasses anynon-functional property

that is required, or is optional, in the calculation.

For our analysis, we must extract the WCETs of IPG edges as theseare the IPG’s

atomic units of computation. The optional data concern flow analysis, such as loop

bounds and infeasible paths. Here we focus on gathering two types of loop bounds:

those relative to the next outer nesting level (relative bounds) and those bounding the

execution in any single invocation of a context (frequency bounds). Both tree-based

approaches and the IPET require relative bounds, whilst theIPET can also integrate

frequency bounds to tighten the final estimate. For example,in the triangular loop

nest ofBubblesort, the relative bound of the inner loop isn, whereas its frequency

bound isn(n+1)
2 , wheren is the number of elements to sort.

Although Section 3.3.2 demonstrated how to map relative bounds obtained through

static analysis onto the IPG, extracting such information from timing traces has its

advantages. One limitation of contemporary static analysis techniques [47, 52], as

noted in Chapter 2, is that they cannot always provide precisebounds for all loops

3.5 Interprocedural Analysis 85

due to the Halting problem. The user is then expected to fill inany gaps so that the

calculation can actually run. Therefore, the prime motivation for extracting bounds

from traces is that they allow our HMB framework to operate automatically without

user interaction. Evidently, they can also serve to validate those provided by the user

(as it is often error-prone), or alternatively, be fed into aSA tool as an initial guess on

the bound, which is then verified.

The Automata of an IPG

Whilst parsing timing traces, the IPG becomes an automata as it is walked according

to the sequence of tokens, i.e. trace identifiers (see Definition 1 in Chapter 2), in the

trace file. As trace identifiers need not be unique, both Deterministic Finite Automatas

(DFA) and Non-Deterministic Finite Automatas (NDFA) are possible.

In a DFA, given a particular ipoint in the IPG, the next token in the trace uniquely

identifies the successor ipoint to advance to. It follows that, for any trace, we can

resolve theexact paththrough the IPG. On the other hand, in a NDFA, the next token

does not necessarily identify the successor ipoint. Path resolution is only satisfied if

there are no two identical sequences of trace identifiers leading to some merge vertex

in the IPG. This can lead to a less precise WCET estimate becausewe must conser-

vatively assume that the timing data retrieved applies to each path identified by the

trace.

For these reasons, it is desirable to assign trace identifiers to ipoints such that each

trace resolves a unique path through the IPG. In practice, producing a DFA is easily

attained by assigning a unique trace identifier to each ipoint provided there are no

context disambiguation issues. For instance, if the CFG* offoo in Figure 3.13(c) did

not contain the ipoint 14 then its IPG would instead contain the transitions 13→ 16

and 13→ 18. As 16 and 18 effectively represent the master entry ipoint 20 of bar

(in Figure 3.13(b)), it is impossible to assign a trace identifier to 20 that resolves the

ambiguity, and thus the IPG offoo becomes a NDFA.

Our TP assumes that each IPG is a DFA so that we can implement a simple one

token lookahead scheme without the need to backtrack. We further assume that, for

each IPG, none of its master exit ipoints is the source of an iteration edge; this basically

86 3.5 Interprocedural Analysis

means that, each time a master exit ipoint is encountered, a procedure is about to

return, or if the IPG is the root procedure, a new trace is about to begin.

A complete description of trace parsing under these assumptions appears in Fig-

ure 3.14. Some of the conventions and notation require some explanation. First, it is

useful to visualise the TP as writing some temporary variables whilst extracting the

timing data, and at particular points, populating a database with the values in these

variables. Consequently, the term “commit” appears in several places of the algorithm

to indicate that the data associated with a particular IPG edge should be written to

the database (if it exceeds the current value held) and that the temporary value held

by the TP should be reset to zero. Second, we usetu to denote the trace identifier of

an ipointu. Third, the TP extracts, for eachtraceedgeu→ v in a particular context

(f ,g,s), both its WCET, denotedwcet(f ,g,s)(u→ v), and its frequency bound, denoted

b(f ,g,s)
max (u→ v). In addition, the TP uses the iteration edge sets associatedwith each

IPG loopLI
h to obtain the relative bound ofLI

h in a particular context(f ,g,s), denoted

b(f ,g,s)
rel (h).

Trace parsing is initiated with the trace filetraces, the set of IPGs{Ip1, Ip2, . . . , Ipn},

and the set of LNTs of the CFG*{T
Cp1
L ,T

Cp2
L , . . . ,T

Cpn
L }. The TP keeps track of the

current context in the variable(f ,g,s), beginning with the dummy context(r, r,λ)

(line 87). Furthermore, the TP always walks the IPG of the callee g as the program

being executed must be emitting ipoints ing; we always commence a new trace with

the IPG of the main procedure. The occurrence of a new timing trace is tracked in the

boolean variablenewtrace.

The TP scans every tuple(i, j) in the trace file (lines 89-129), and undertakes one

of two actions depending on the value ofnewtraceas follows:

• If newtrace= true then we know that the next token is not the start of a new

trace (line 91)6. The first ipointu will thus be a master entry ipoint in the IPG

of the main procedure satisfyingtu = i (line 92). As the TP must determine

6In theory, the next token could be the start of a new trace provided the program contained a single
ipoint u. In this case, there would be a single IPGI for the procedure which causesu to trigger.
However, ifu was not in a loop thenI would only contain ghost edges, and there would be no need
for trace parsing. Otherwise, there would be a unique trace edgeu→ u ∈ E(I), i.e. an iteration

edge, and moreover,u∈
←
M; we disallow this occurrence from the assumptions above.

3.5 Interprocedural Analysis 87

Input : traces,{Ip1, Ip2, . . . , Ipn},{T
Cp1
L ,T

Cp2
L , . . . ,T

Cpn
L }

(f ,g,s) := (r, r,λ)87

newtrace:= true88

foreach (i, j) ∈ traces do89

if newtrace then90

newtrace:= false91

u := succ(s) with tu = i92

j ′ := j93

else94

v := succ(u) with tv = i95

Commit j− j ′ to wcet(f ,g,s)(u→ v)96

Add one tob(f ,g,s)
max (u→ v)97

if u→ v is an iteration edgethen98

foreach IPG loop LI
h satisfying u→ v∈ IE(LI

h) do99

Add one tob(f ,g,s)
rel (h)100

if u and v in different loops and u→ v is an iteration or a loop-exit edgethen101

if u is internal vertexthen102

h := u103

else104

h := parent
T

Cg
L

(u)105

y := lca
T

Cg
L

(u,v)106

repeat107

Commitb(f ,g,s)
rel (h)108

h := parent
T

Cg
L

(h)109

until h = y110

j ′ := j111

if v is inlined master entry ipointthen112

Push(ContextStack, (f, g, s))113

Push(ReturnStack, v)114

Pick arbitraryv′ ∈ succ(v)115

(f ,g,s) := (g,Pv,B(P(v→ v′)))116

u := succ(s) with tu = i117

else ifv is master exit ipointthen118

foreach trace edge u′→ v′ ∈ E(I f) do119

Commitb(f ,g,s)
max (u′→ v′)120

if (f ,g,s) = (r, r,λ) then121

newtrace:= true122

else123

(f ,g,s) := Pop(ContextStack)124

u := Pop(ReturnStack)125

v := succ(u) with Tv = i126

u := v127

else128

u := v129

Figure 3.14. Algorithm to Parse Timing Traces to Extract WCET Data.

88 3.5 Interprocedural Analysis

the WCET of each transitionu→ v, we also record the time stamp ofu in the

variable j ′ (line 93).

• If newtrace= false then we have to find the successorv of u satisfyingtv = i

(line 95). The TP thus commits the observed WCETj − j ′ to the edgeu→ v

in the current IPG (line 96) and increments the frequency bound ofu→ v in the

current context (line 97).

If u→ v is an iteration edge then this indicates that an IPG loop has been iterated.

Recall from Section 3.3.1 thatu→ v can belong to several iteration edge sets

IE(LI
h1

), IE(LI
h2

), . . . , IE(LI
hn

), one for each CFG* headerhi whose loop it can

iterate through. As we cannot distinguish the exact loop from the timing trace

alone, we must conservatively increment the relative boundof everyIPG loop

Lhi for which u→ v ∈ IE(LI
hi
) (lines 99-100). In essence, the relative bound

of the inner loop pollutes those of all outermost loops and generally leads to

overestimation. However, it is important to stress that such overestimation can

only occur when the instrumentation profile is not path reconstructible, other-

wise every iteration of every CFG* is observable in a timing trace, i.e.u→ v

belongs to a single iteration edge set.

The next step is to determine which IPG loops have stopped iterating (lines 101-

109). This is detected by the fact thatu andv are in different loops (i.e. there is no

ancestor-descendant betweenu andv in T
Cg
L) and thatu→ v is an iteration edge or a

loop-exit edge. (Clearly, ifu→ v is just a loop-entry edge — and not a loop-exit edge

as well — then the outer loops might not have stopped iterating so no relative bounds

should be committed.)

Assuming these conditions are met, first observe that flow of control is currently

contained within the IPG loopLI
h, whereh = u if u is an internal vertex orh =

parent
T

Cg
L

(u) otherwise (lines 102-105). Further note that, on traversing u→ v, flow

of control gets redirected into the IPG loopLI
y in which bothu,v are contained — the

headery of this loop is the least-common ancestor ofu,v in T
Cg
L (line 106). Thus,

on making the transition fromLh to Ly, every IPG loop whose header is on the path

y (
+
→] h in T

Cg
L has stopped iterating.

This completes the mapping of trace data onto the current transition, so the next

3.5 Interprocedural Analysis 89

task of the TP is to prepare for the next tuple in the trace. Thus the last time stamp

observed becomes the current one (line 111) and the ipointu is advanced to its next

position (lines 112-129). There are three cases to handle:

Procedure Call: This is recognised by the fact thatv is an inlined master entry ipoint

(line 112). As we later wish to return to the current context and ipoint location

once the procedure call has ended, the TP stores this information on respective

stacksContextStackandReturnStack(lines 113-114).

The next step is to construct the elements of the new context from the properties

of the IPG. Evidently, the current callee becomes the new caller and the iden-

tifier of the callee is stored inPv, which was set during master ipoint inlining.

In order to retrieve the call site, recall that every edge originating fromv is a

context edge whose path expression contains a unique basic block (i.e. the call

site)7. As v might have multiple successors (there could be multiple master exit

ipoints in the callee), we can choose an arbitrary successorof v as they all con-

tain the same basic block. This completes the information required to switch to

the new context (line 116).

As a call has occurred, the TP switches to the IPG of the calleeand retrieves the

appropriate master entry ipoint (line 117).

Procedure Return: This is recognised by the fact thatv is a master exit ipoint, thus

there are no more trace edges to be processed in the current context, and the

frequency bounds of edges can be committed (lines 119-120).

If the current context is the dummy context then we have reached the end of

program execution for the current test vector, and thus the next tuple in the trace

file must be the beginning of a new trace (lines 121-122). Otherwise, the TP

must unwind the stacks to return to the previous context (lines 124-125). Note

that, because we push an inlined master entry ipoint ontoReturnStackon a

procedure call, we must now advanceu to the inlined master exit ipoint in the

caller IPG so that the TP is in the correct position (lines 126-127).

7Recall from Clarification 6 that we considered the computation of path expressions beyond the scope
of the thesis. However, extracting the unique basic block ofcontext edges is straightforward as the
inlined master entry ipoint in the CFG* has the desired basicblock as its unique successor.

90 3.5 Interprocedural Analysis

Same Procedure:The final case is thatv is triggered by the procedure of the current

IPG, and therefore, the next transition will be a successor of v. Therefore, the

TP advancesu to the same location asv (line 129).

An Example

Let us illustrate the following two operations of the TP: howto switch between con-

texts; how to determine the relative bound of CFG* loops. The other tasks of the TP

— namely, obtaining the WCETs and the frequency bounds of IPG edges — is trivial.

To demonstrate the switching between contexts, consider Figure 3.13. Note that

the initial dummy context is(foo,foo,λ), thus the TP starts with the IPG offoo

in Figure 3.13(e). Let us assume that the timing trace has lead to the transition 14→

16. As 16 is an inlined master entry ipoint frombar, a procedure call is detected.

(Evidently, the caller isfoo and the callee isbar.) The only successor of 16 is the

inlined master exit ipoint 17, and becauseB(P(16→ 17)) = {b5}, b5 is the call site

of the new context. Hence,(foo,foo,λ) and 16 are pushed ontoContextStackand

ReturnStack, respectively, and the TP switches to the new context of(foo,bar,b5).

Then, we fetch the IPG ofbar and move to the master entry ipoint with the current

trace identifier, which is ipoint 20 in Figure 3.13(b).

When the TP reaches ipoint 23 in Figure 3.13(b), a procedure return is identified

because 23 is a master exit ipoint. Thus, we return to callingcontext(foo,foo,λ),

which is popped fromContextStack. On return, we pop the inlined master entry ipoint

16 (in Figure 3.13(e)) fromReturnStackand advance to the inlined master exit ipoint

successor of 16, which is ipoint 17.

To demonstrate the extraction of relative bounds for IPG loops, consider Figure 3.10

(since the IPGs in Figure 3.13 do not contain any loops). Observe that, in the IPG of

Figure 3.10(b), 11 is the sole master entry ipoint and 12 is the sole master exit ipoint.

Also recall that 10→ 10 is in both the iteration edge sets ofLI
b4

andLI
d4

.

Consider the following timing trace:

11→ 7→ 9
f4
→ 9

f4
→ 9

f4
→ 9

b4→ 7
b4→ 10

b4,d4→ 10
b4,d4→ 10

b4,d4→ 10→ 12

We have annotated each iteration edge transitionu→ v with the IPG loop header

3.5 Interprocedural Analysis 91

for which u→ v is an iteration edge. How this timing trace is processed can be sum-

marised by the following steps:

• On encountering the three 9→ 9 transitions, the TP increments the relative

bound forLI
f4

, andbrel(f4) is currently 3.

• On the next transition 9→ 7, two actions are taken. First, the relative bound

of LI
b4

is set to 1. Second, because 9 and 10 are in different loops and9→ 10

is an iteration edge, we know a transition has been made from an inner loop

to an outer loop, thus we have to commit some relative bounds.Observe that

lcaTC
L
(9,10) = b4 and thatf4 is the only header on the pathb4 (

+
→] f4. Therefore,

brel(f4) = 3 is committed to the database.

• On encountering the three 10→ 10 transitions, we cannot determine through

which IPG loop execution has iterated, and the TP incrementsthe bound for

bothLI
b4

andLI
d4

. Thus,brel(b4) is currently 4 andbrel(d4) is currently 3.

Observe that this pollutes the bound ofLI
b4

if 10→ 10 only iterated through

LI
d4

; however, asLI
b4

could have iterated, we are forced to be conservative and

assume that the bound on both loops should be incremented.

• The final transition 10→ 12 is a loop-exit edge. Observe thatlcaTC
L
(10,12) = s4.

We have to commit the relative bound for the IPG loopsLI
b4

and LI
d4

as the

headers of these loops appear on the paths4 (
+
→] d4. Therefore,brel(b4) = 4 and

brel(d4) = 3 are committed to the database.

3.5.3 Calculation Engine

Once all timing traces have been parsed, our HMB framework isin a position to

generate a WCET estimate. We combine the timing data retrievedfrom trace parsing

using the set of IPGs and the call graph.

Since our trace parser associates timing data with a particular context, the user (or

our tool) can decide whether tounifyor expandcontexts off-line. Context unification,

e.g. consider each call tog from f in its worst case, brings about a more conservative

WCET estimate, which is typically desired if confidence in testing is lacking. For

example, covering all trace edges of each IPG in every context places a greater burden

on the test framework, and consequently, we might wish to unify the contexts where

92 3.5 Interprocedural Analysis

coverage is thin. On the other hand, full context expansion provides the most accurate

WCET estimate. Observe that, if the TP only obtains timing dataon a per procedure

basis, any context expansion in the calculation engine would require a (costly) re-

parsing of timing traces.

Our calculation engine operates in the following manner. Weorder the contexts

in the call graph in reverse topological order, which is possible because we assume

there is no recursion. For each context(f ,g,s), we first elicit whether it should be

considered expanded or unified: if expanded, we use the timing data applicable to

(f ,g,s) retrieved by the trace parser; if unified, we take the maximumvalue observed

for each call fromf to g. The WCET of(f ,g,s) is then calculated using the IPGIg.

Every ghost edge inIg is assigned the value of 0 as it is not observed in a trace, by

definition. If g calls other procedures then we map the calculated WCETs of contexts

(g,g′,s′) onto the appropriate context edges inIg. Our HMB framework then uses a

tree-based approach or the IPET to calculate the WCET ofIg, the specifics of such

are detailed in Chapters 4 and 5, but for now we assume either one is in place. We

also defer a discussion of how to incorporate loop bounds into the calculation until

then. However, it suffices to say that frequency bounds are optional (they tighten the

estimate), whereas relative bounds are compulsory. Finally, the WCET estimate for

the program has been generated once we reach the dummy context (r, r,λ).

An Example

To illustrate the operation of the calculation engine, consider the example of Fig-

ure 3.13 and, for the IPG in Figure 3.13(b), assume the TP has extracted the following

timing data in the given contexts:

(foo,bar,b5)

IPG Edge WCET

20→ 21 100

21→ 23 10

20→ 22 30

22→ 23 65

(foo,bar,c5)

IPG Edge WCET

20→ 21 75

21→ 23 30

20→ 22 20

22→ 23 25

If these contexts are expanded in the calculation then the WCETof (foo,bar,b5)=

3.5 Interprocedural Analysis 93

110 and the WCET of(foo,bar,c5) = 95. Thus, when calculating the WCET of the

context(foo,foo,λ), 110 is mapped onto the edge 16→ 17 and 95 is mapped onto

the edge 18→ 19 (c.f. Figure 3.13(e)).

Now assume that we want to consider every call tobar to be unified. Following is

the timing data associated with its IPG edges:

IPG Edge WCET

20→ 21 100

21→ 23 30

20→ 22 30

22→ 23 65

In this case, the WCET ofbar is 130, which is clearly more conservative than

either of the expanded contexts(foo,bar,b5) or (foo,bar,c5). The pessimism

also propagates into the caller as 130 must be mapped onto both edges 16→ 17 and

18→ 19 because we only have one WCET forbar.

3.5.4 Discussion

There are a few issues with our interprocedural analysis that warrant further discus-

sion.

The first is that the TP cannot yet handle timing traceblackouts, which arise when

the port or debugger cannot keep pace with the rate at which ipoints are emitted, and

data are essentially lost. A second issue with the TP is that all IPGs must be DFAs.

This is particularly undesirable as the number of unique trace identifiers available is

often restricted by practical considerations. For instance, if the data are written to an

I/O port (using a logic analyser) then this number is determined by how many pins are

available. Although an easy workaround is to initiate multiple writes, such a solution

increases the overhead of ipoints (theprobe effect) and forces the tracing mechanism

to become non-atomic, which could create problems in multi-threaded applications.

Our mechanisms to handle contexts could be generalised further by considering

loops and recursion. For example, the first procedure call ina loop often has a larger

WCET than the other iterations due to cache misses. However, also observe that

94 3.6 Summary

considering more precise forms of contexts places a greaterburden on the test frame-

work as we must have a sufficient amount of confidence in the timing data extracted.

Clearly, this does not only mean stressing the WCETs between ipoint transitions but

also forcing loops to iterate as much as possible so that the bounds on iteration edges

are accurate. As noted in Chapter 2, this is now being addressed by the concept of

WCET coverage [17].

3.6 Summary

A HMB WCET analysis framework must be retargettable to different instrumentation

profiles without causing any additional pessimism in the calculation stage. In this

respect, existing program models, such as the CFG and the AST,prove unsuitable as

basic blocks are the atomic units of computation. As a HMB framework does not

model the processor, the only way to extract the WCETs of basic blocks is to parse

timing traces generated during testing. However, when sparse instrumentation profiles

are employed, basic blocks rarely execute in isolation on any single ipoint transition,

thus their WCETs can become grossly inflated. This dominoes into the calculation

stage since any analysis is tied to the accuracy of its input parameters: overestimation

ensues.

The core contribution of this chapter was a novel program model — the IPG —

that forcibly changes the unit of computation to the transitions among ipoints. The

timing data retrieved from trace parsing can therefore be mapped directly onto an IPG,

avoiding any overhead associated with basic blocks as a consequence. This chapter

also made the following additional contributions:

• We showed how to construct and analyse structural properties of the IPG using

the CFG*, an intermediate form similar to the CFG. In particular, we demon-

strated how to use the structural connection between areducibleCFG* and an

IPG in order to identifyarbitrary irreducible loops in the IPG.

• We demonstrated how to use the structural relation between CFG* and IPG

loops to transfer loop bounds obtained through static analysis [47, 51] onto the

IPG. Alternatively, we also presented a way to extract loop bounds from tim-

3.6 Summary 95

ing traces using properties of the IPG. Although the accuracy of such bounds

is mainly tied to the amount of testing undertaken (bounds can be underesti-

mated), we also showed that how the program is instrumented can be equally as

influential (bounds can be overestimated).

• We showed how to use the IPG in the context of interproceduralanalysis. In

particular, we described how to virtually inline a subset ofthe ipoints from each

callee into the caller (but none of the transitions), resulting in one IPG per pro-

cedure. This inlining mechanism gives the trace parser visibility to procedure

calls and returns and facilitates retrieval of timing data on a per context basis

as opposed to a per procedure basis. This provides the user with the flexibility

to determine the precision of the analysis as the calculation engine can unify or

expand contexts.

At this stage we are currently not in a position to evaluate the IPG as a program

model within WCET analysis. This is because the IPG is a mere static representation

and does not provide a meansper seto compute WCET estimates. The remainder of

this thesis thus addresses this issue by exploring tree-based calculations on the IPG (in

Chapter 4) and remodelling of the IPET towards the IPG (in Chapter 5). Once these

calculation techniques are in place, we evaluate our entireframework, including the

effect of context expansion and unification, in Chapter 6.

4 Tree-Based Calculations on the IPG

In the previous chapter, we introduced theInstrumentation Point Graph (IPG) as a

novel program model for WCET analysis in aHybrid Measurement-Based(HMB)

framework, which is constructed from aCFG* - an augmentedControl Flow Graph

(CFG). Instead of modelling the transitions between basic blocks, the IPG struc-

tures the transitions amonginstrumentation points (ipoints) and therefore forcibly

changes the unit of computation.

This chapter considers how to performtree-basedcalculations on the IPG. One

advantage of tree-based approaches is that they incur low computational complex-

ity. Moreover, in addition to being able to combine pure integral values, tree-based

methods can combineexecution time profilesderived from measurements to produce

probabilisticWCET estimates [15, 16], in contrast to path-based approachesand the

Implicit Path Enumeration Technique (IPET).

The first contribution of this chapter is how to transform theIPG into a novel hi-

erarchical form, theItree. This new representation is needed because theAbstract

Syntax Tree(AST) is constructed from program source and hence it does not suitably

model the transitions among ipoints at the intermediate code level. The Itree models

standard control structures found in high-level languages(selection, sequence, and it-

eration), thus it is conceptually similar to the AST. The second contribution of this

chapter is thetiming schema[88, 94] associated with the Itree, which are formulae

that compute a WCET estimate from the Itree structure.

The remainder of the chapter is structured in the following manner. Section 4.1

first recalls some properties of the IPG that were presented in Chapter 3, before Sec-

tion 4.2 presents the formal properties of the Itree. Next, Section 4.3 considers how

to transform an acyclic IPG into an Itree. For these purposes, we introduce the no-

97

98 4.1 Preliminaries

tion of acyclic reducibility , which basically decides if acyclic regions in the IPG

can be decomposed into a hierarchy ofSingle-Entry, Single-Exit (SESE),Multiple-

Entry, Single-Exit (MESE), andSingle-Entry, Multiple - Exit (SEME) regions. We

show how to identify these regions using the pre-dominance,post-dominance, pre-

dominance frontier, and post-dominance frontier relations. In essence, branch and

merge vertices are classified as being either reducible or irreducible, analogously to

how headers of loops are categorised in standard (cyclic) reducibility [3, 83]. We show

how to use these properties to prevent redundant traversalsof acyclic IPGs (whilst

building a hierarchical representation) and how this results in a forest of Itrees, an

Iforest.

Section 4.4 then gives a complete description of the algorithm that creates an Iforest

from the IPG. Section 4.5 gives the timing schema, which thenenables us to evaluate

our tree-based calculation engine against the AST in Section 4.6. We compare the

core contributions of the chapter with previous work in Section 4.7, before finally

concluding the chapter in Section 4.8.

4.1 Preliminaries

An IPG I = 〈I,EI ,s, t〉 has a set of cycle-inducing edges callediteration edges. In

Chapter 3, we showed that it is generally very difficult to identify iteration edges using

state-of-the-art loop detection techniques due to the arbitrariness of IPGirreducibility

(see Definition 7 in Chapter 3). We instead assumed the CFG*C= 〈VC = B∪ I,EC,s, t〉

from which I is constructed to be reducible and used theLoop-Nesting Tree(LNT)

(see Definition 8 in Chapter 3)TC
L of C to determine which edge insertions intoI cause

cycles.

A structural connection therefore exists between a CFG* loop, denotedLh, and an

IPG loop, denotedLI
h (denoted in this way to reflect the structural connection toLh).

We defined a functionΩ : L →L I , whereL is the set ofinstrumentedCFG* loops

andL I is the set of IPG loops. Every IPG loopLI
h has aniteration edge set, denoted

IE(LI
h). In the following, it will be useful to partitionIE(LI

h) into two disjoint subsets:

the set ofnon-self-loopiteration edgesSL(LI
h) = {u→ v|u→ v∈ IE(LI

h)∧u 6= v} and

4.2 Itree Representation 99

the set ofself-loop iteration edgesSL(LI
h) = {u→ v|u→ v∈ IE(LI

h)∧u = v}.

Detection ofloop-entry and loop-exit edges for each IPG loopLI
h is achieved by

performing least-common ancestor queries onTC
L with the set offorward edges inEI .

4.2 Itree Representation

For an IPGI = 〈I,EI ,s, t〉, eachleaf of the Itree is an edgeu→ v∈ EI because this is

the unit of computation of the IPG. Following are the properties of internal vertices:

• A loop vertex, denotedLOOP, is a rooted binary tree that models a subset of the

IPG transitions in a CFG* loopLh. The properties of its children satisfy either

of the following:

– The right tree models an iteration edgeu→ v∈ SL(LI
h) and the left tree is

empty.

– The right tree models the set of iteration edgesSL(LI
h) and the left tree

models the ipoint transitions created from the inducedDirected Acyclic

Graph (DAG) L′h.

As a loop vertexL only has two children, we shall denote its left tree with the

notationsuccle f t(L) and its right tree with the notationsuccright(L).

• An alternative vertex, denotedALT, is a rootedn-ary tree that either models:

1. The pathsp1, p2, . . . , pn from a branch vertexb to ipost(b).

2. The pathsp1, p2, . . . , pn from a branch vertexb to a merge vertexm 6=

ipost(b) such thatmpost-dominates all edges on allpi.

3. The selection between the execution of the iteration edges in SL(LI
h) (pro-

vided|SL(LI
h)|> 1) that are identified for a CFG* loopLh.

4. The selection betweenLOOP verticesL1,L2, . . . ,Ln, in which eachLi mod-

els an iteration edgeu→ v∈ SL(LI
h), and the (unique)LOOP vertex mod-

elling the setSL(LI
h) (providedSL(LI

h) 6= /0 andSL(LI
h) 6= /0). The iteration

edgesSL(LI
h) andSL(LI

h) are those identified for a CFG* loopLh.

100 4.3 Acyclic Reducibility

5. The selection between the loop-entry edgesu→ v1, u→ v2, . . ., u→ vi into

an IPG loop or the selection between the loop-exit edgesw→ y1, w→ y2,

. . ., w→ yi out of an IPG loop.

• A sequencevertex, denotedSEQ, is an ordered rootedn-ary tree that either

models:

1. The set of pathsp1 : b→ s1
+
→m, p2 : b→ s2

+
→m, . . ., pn : b→ sn

+
→m

such thatb is branch vertex,si ∈ succ(b) andm is the first merge vertex on

all pi satisfyingm⊳u→ v, whereu→ v is an edge on somepi.

2. The set of pathsu
+
→ v such thatu is not a branch vertex andv satisfies

v⊳u.

4.3 Acyclic Reducibility

A hierarchical representation of a flow graph represents every execution path by de-

composing the flow graph into a number of regions which are notionally contained in

others. When the flow graph is cyclic,reducibility assesses whether the flow graph

can be decomposed into a hierarchy of cyclic regions and, if so, which vertices “con-

trol” entry into a particular cyclic region – these verticesare calledreducible(loop)

headers. Which vertices are controlled by such headers, and which headers control

other headers, can be represented in a LNT.

However, reducibility does not assess which vertices in theflow graph “control”

acyclic regions (mainly because compiler optimisations are performed almost exclu-

sively within loops, i.e. only cyclic properties are of interest). This is undesirable

since, with such information, we could collapse the region from where control is

assumed to the vertex at which control is relinquished into an abstract vertex, and

proceed in this manner until a unique abstract vertex remained (note the deliberate

similarity to how loops are collapsed in constructing the LNT). Furthermore, the re-

duction process naturally organises such regions hierarchically.

Let us demonstrate this notion of control through a running example, which is de-

picted in Figure 4.1. Observe in this IPG thats1 controls access to all edges in the

region untilt1 and that 4 controls access to the set of edges{4→ t1, 4→ 5, 5→ t1}.

4.3 Acyclic Reducibility 101

s1

t1

1 2 3

4

5

6

7

8

Figure 4.1. Example IPG To Demonstrate Acyclic Irreducibility.

Also note that both vertices are branch vertices and that thepoint at which control is

relinquished (or merged) is their respective immediate post-dominator. (Clearly, if a

vertex is not a branch vertex then it must always control access to its unique successor

edge.)

However, the important vertex to note is 1 which, although controlling access to the

set of edges{1→ 6, 6→ 7, 7→ 8, 8→ t1, 1→ 4}, doesnot control access to the set

of edges from 4 onwards. In this case, becauseipost(1) = t1, control is relinquished

in a regionbeforeflow of control reaches its immediate post-dominator, specifically

once the edge 1→ 4 has been traversed.

These observations are important (to the problem of building an Itree from an

acyclic IPG) because, as described in the previous section,the Itree must model the

set of alternative pathsp1, p2, . . . , pn from a branch vertexb to the first vertex common

to all pi, which, by definition, isipost(b). (This must be modelled so that the timing

schema is able to select the longest path amongst allpi.) In particular, becauseb does

not control all edges on allpi up to ipost(b), the transitions on these uncontrolled re-

gions will have to be duplicated. Besides causing redundant graph traversals, this will

inflate the Itree space requirements quadratically.

For instance, consider Figure 4.2, which depicts the Itree resulting from the IPG

in Figure 4.1. Note, in particular, how the two emboldened alternative subtrees are

duplicates, which represent the paths from 4 toipost(4).

102 4.3 Acyclic Reducibility

ALT

ALT ALT

ALT

ALT

SEQ SEQ

SEQ

SEQSEQSEQ

SEQSEQ

s1→ 1

1→ 6 6→ 7 7→ 8 8→ t1 1→ 4

4→ t1

4→ t1

4→ 5

4→ 5

5→ t

5→ t

s1→ 4

s1→ 2 2→ 4 s1→ 3 3→ 4

Figure 4.2. The Itree of the IPG from Figure 4.1.

Vertices that control acyclic regions can be identified withthedominance relations,

since they determine which vertices and edges must precede or proceed the execution

of other vertices and edges acrossall paths. The specifics of how these can be detected

is established in Theorem 2 below, the proof of which requires the following simple

lemma:

Lemma 2. For a flow graph G, a vertex u pre-dominates all edges with source v if,

and only if, u pre-dominates v.

Proof. Immediate from the definition of the pre-dominance relation.

Theorem 2. Let G= 〈VG,EG,s, t〉 be an acyclic flow graph, b be a branch vertex in

G, and Gb be the induced subgraph of G such that all vertices in Gb are reachable

from b and satisfy ipost(b) E u. Then, b pre-dominates all edges in G that belong to

E(Gb) if, and only if, b= ipre(ipost(b)) or |DFpre(b)|= 11.

Proof. ⇒ From Lemma 2, it suffices to show that the source of every edge in Gb is

pre-dominated byb.

There are two cases to consider:

1Note that the dominance relations can be reversed to make them apply to merge vertices instead.

4.3 Acyclic Reducibility 103

b = ipre(ipost(b)): Suppose to the contrary thatu→ v∈E(Gb) is an edge such

thatb ⋫ u→ v. This implies that there is a paths
+
→ u→ v

∗
→ ipost(b) that

avoidsb; evidently,b ⋫ ipost(b) and henceb 6= ipre(ipost(b)).

|DFpre(b)|= 1: We will show thatipost(b) is the unique element inDFpre(b)

and, becauseipost(b) is not the source of an edge inGb, the implication

holds.

Let b′ the unique element inDFpre(b). We show thatipost(b) 6= b′ implies

|DFpre(b)| > 1. Sinceipost(b) 6= b′, there must be a pathb
+
→ u

+
→ t that

avoidsb′ (becauseb′ does not post-dominateb). There are two cases to

consider:

• b ⋫ u. Eitherb′ /∈ DFpre(b), and the proposition is contradicted; or

u∈ DFpre(b), and therefore|DFpre(b)|> 1.

• b⊲ u. Let z denote the vertex at which the pathsu
+
→ t andb′

+
→ t

converge. Eitherz∈DFpre(b), or there is another pathu
+
→ z′

+
→ zsuch

thatb⋫ z′, and thereforez′ ∈DFpre(b). In either case,|DFpre(b)|> 1.

⇐ There are two cases to consider:

b⊲ ipost(b) : We want to show the stronger condition thatb= ipre(ipost(b)). It

suffices to show that there is no vertexb′ ∈V(Gb) such thatb⊲b′⊲ ipost(b).

Observe thatb′ must be a branch vertex (the immediate pre-dominator of

a merge vertex is always a branch vertex) and thatipost(b)⊳b′, otherwise

b could avoidipost(b) via b′. There are two cases to consider:

• Every path fromb to ipost(b) includesb′. But thenb′ = ipost(b).

• There is a path fromb to ipost(b) that avoidsb′. Therefore, because

b′ is also reachable fromb, b′ cannot pre-dominateipost(b).

b ⋫ ipost(b) : Asbpre-dominates all edges inG that belong toGb, by Lemma 2,

it also pre-dominates all vertices inG that are sources of edges inGb.

Therefore, the only vertex it cannot pre-dominate is the destination of

an edge. The only such destination must beipost(b), i.e. DFpre(b) =

{ipost(b)}, and the claim holds.

104 4.3 Acyclic Reducibility

This theorem is important because it enables ordered vertexpairs(b,m) in a flow

graphG to be identified, where eachb is a branch vertex and eachm is a merge vertex.

Each pair can be categorised as one of the following:

• If ipost(b) = m andipre(m) = b then(b,m) is a SESE region because flow of

control always enters this region atb and always leaves atm.

• If ipost(b) = m and|DFpre(b)| = 1 then(b,m) is a SEME region because flow

of control always enters this region atb and always exits through one of the

edgesu→mwhereb⊲u→m.

• If ipre(m) = band|DFpost(m)|= 1 then(b,m) is a MESE region because flow of

control always enters this region through one of the edgesb→ uwherem⊳b→ u

and always exits throughm.

When all branch vertices inG control entry into a SESE or SEME region and all

merge vertices inG control exit out of a SESE or MESE region, we say thatG is

acyclic reduciblebecause these regions can be organised hierarchically, similar to

how reducible loops are organised in cyclic flow graphs. Formally:

Definition 13. An acyclic flow graph G= 〈VG,EG,s, t〉 is acyclic reducibleprovided:

• All its branch vertices b satisfy ipre(ipost(b)) = b or |DFpre(b)|= 1, and

• All its merge vertices m satisfy ipost(ipre(m)) = m or |DFpost(m)|= 1.

In an acyclic reducible IPG, therefore, we can build the Itrees of its constituent

SESE, SEME, and MESE regions without redundant graph traversal and without un-

necessary duplication of subtrees.

On the other hand, ifG is acyclic irreducible, this indicates that there must be branch

verticesb satisfying|DFpre(b)| > 1 and merge verticesm satisfying|DFpost(m)| > 1:

such vertices are termedacyclic-irreducible vertices. The reason for this terminology

is that, for an acyclic-irreducible branch vertexb, some parts in the region fromb

to ipost(b) can be reached through paths that do not pass throughb, and thus this

region cannot be collapsed until its outermost enclosing region is collapsed. (Similar

reasoning can be applied to a merge vertex except that the region begins atipre(m)

and ends atm.)

4.3 Acyclic Reducibility 105

In an acyclic irreducible IPG, therefore, there are irreducible merge vertices at

which flow of control merges from distinct branch vertices that results in subtree du-

plication and hence a re-traversal of a subgraph in the IPG.

For instance, let us return to our running example in Figure 4.1, which contains

branch vertices{s1,1,4} and merge vertices{t1,4}. Note that:

• ipost(s1) = ipre(t1), thus(s1, t1) is a SESE region.

• ipre(ipost(4)) 6= 4 butDFpre(4) = {t1}, thus(4, t1) is a SEME region.

• ipre(ipost(1)) 6= 1 andDFpre(1)= {4, t1}, thus 1 is an acyclic-irreducible branch.

• ipost(ipre(4)) 6= 4 and DFpost(4) = {1,s1}, thus 4 is an acyclic-irreducible

merge.

From these observations, we may infer that the IPG is acyclicirreducible. Also note

that, because 4 is an acyclic-irreducible merge,DFpost(4) = {1,s1} implies that there

will be two traversals of the subgraph from 4 tot1: one whilst building the subtree

modelling the paths from the branch vertexs1 (which merge att1 = ipost(s1)); the

other whilst building the subtree modelling the paths from the branch vertex 1 (which

also merge att1 = ipost(1)). This explains why the emboldened alternative subtrees

in Figure 4.2 are duplicates.

Duplication can be avoided, however, by instead building a forest of Itrees (an Ifor-

est) and having conceptual pointers from one subtree to the root of a particular Itree.

As long as the calculation engine is aware of the order in which trees in the Iforest

need to be processed, production of an Iforest is not an issueand hence does not affect

the WCET calculation.

For example, Figure 4.3 depicts the hierarchical representation that we wish to move

towards for the IPG in Figure 4.1. This is similar to the Itreeof Figure 4.2, the key

difference being that there is now only one emboldened alternative vertex which is a

tree root. Furthermore, there are now two pointers to this subtree, which are indicated

by the leaves
−→
T4 . The calculation engine must therefore generate the WCET estimate

of the Itree on the left (before the Itree on the right) and then propagate its value to the

leaves that are pointer references.

In order to build this representation, however, it is not sufficient to merely detect

106 4.3 Acyclic Reducibility

ALT

ALT

ALT

ALT

SEQSEQ

SEQ

SEQSEQ

SEQSEQ

s1→ 1

1→ 6 6→ 7 7→ 8 8→ t1 1→ 4

4→ t1

4→ 5 5→ t

s1→ 4

s1→ 2 2→ 4 s1→ 3 3→ 4

−→
T4

−→
T4

Figure 4.3. The Iforest of the IPG from Figure 4.1.

the merge vertices that are acyclic irreducible — we also need to know the vertex at

which to terminate Itree construction. Following are the key observations to identify

these additional vertices:

• Because the subtree constructed from an acyclic-irreducible merge vertexmwill

be duplicated for each branch vertexb∈DFpost(m), and because we must model

the paths fromb to ipost(b), duplication must halt at another merge vertexm′.

In particular,m′ will either satisfyipost(b) = m′ or ipost(b) ⊳ m′, i.e. it has to

be enclosed in the region(b, ipost(b)).

• m cannot pre-dominatem′ because, ifm did pre-dominatem′, this would im-

ply thatm also pre-dominatesipre(m′). Therefore,m would control the SESE

region(ipre(m′),m′) and, consequently,m′ cannot be a merge vertex at which

distinct branch vertices inDFpost(m) merge.

This suggests the following sequence of steps in order to build the Iforest of an

acyclic IPGI :

• For each acyclic-irreducible merge vertexm, the nearest merge vertexm′ satis-

fying bothm 6 ⊲m′ andm′ ⊳m is identified. We callm′, denotedm′ = imerge(m),

thestopping vertexof the acyclic-irreducible merge vertexm.

• The vertices ofI are traversed in reverse topological order. For each acyclic-

irreducible merge vertexm, we build an Itree fromm to its stopping vertex. For

each branch vertexb, we construct theALT vertex modelling the paths fromb to

ipost(b). However, during this construction, we do not construct thetransitions

4.4 The Algorithm 107

from any acyclic-irreducible merge vertexm; rather, we add a pointer to the

subtree constructed fromm and “jump” to its stopping vertex. This mechanism

continues untilimerge(m) = ipost(b), thus avoiding traversal of the IPG edges

in these regions.

In our running example, observe thatt1 = imerge(4). Traversing this IPG in reverse

topological order, 4 is the first (and only) acyclic-irreducible merge vertex encoun-

tered; hence the algorithm outlined above will construct the Itree of the region(4, t1).

The first branch vertex encountered (except for 4) is 1. When building its ALT ver-

tex, we know that flow of control will arrive at vertex 4 because it is on a subset of

the paths from 1 tot1. When analysing this vertex, the algorithm will instead add a

pointer to the previously computed Itree (for the region(4, t1)) and will then jump to

t1 becauset1 = imerge(4). The construction of theALT vertex (modelling the subset

of paths on which vertex 4 is encountered) will then halt becauset1 = ipost(1).

4.4 The Algorithm

This section presents the algorithm that constructs an Iforest from an IPGI = 〈I,EI ,s, t〉.

It is assumed that the CFG*C = 〈VC = B∪ I,EC∪{t→ s},s, t〉 from whichI was built

is reducible. This restriction is needed because the algorithm requires the LNTTC
L of

C, and as noted in Chapter 3, there is no consistent view of the properties of a LNT

in the presence of irreducibility. Also note that the presence of the edget→ s sim-

plifies our discussion since all vertices are then enclosed in a loop, and becauseI is

constructed fromC, this property also holds inI ; therefore,everyedge inI will be

rooted under aLOOP vertex.

It is important to emphasise that the algorithm can handle IPGs that are generated

from CFG*s with multiple-exit loops (commonly associated with break statements)

and loops with multiple tails (commonly associated withcontinue statements).

Due to the complex nature of the algorithm, we will illustrate its operation with

a running example depicted in Figure 4.4, which shows the three data structures re-

quired. Note that the CFG* has three non-trivial loops (Lb3, Le3, andLs3) whose nest-

ing relationship is shown in the LNT. With respect to the IPG,the following properties

108 4.4 The Algorithm

Figure 4.4. Example to Demonstrate Itree Construction Algorithm.

PSfrag

s3

t3

13

14

15

16

17

a3

b3

c3

d3

e3

f3

g3

h3

i3

j3

(a) The CFG*.

s3

t3

13

14

15 16

17

(b) Resultant IPG.

s3

t3

13 14

15 16 17

a3 b3

c3 d3e3

f3 g3 h3

i3

j3

(c) The LNT of the CFG*.

are of note:

• For the IPG loopLI
e3

, IE(LI
e3

) = {14→ 14,14→ 13}, its loop-entry edges are

{15→ 13,15→ 14,16→ 13,16→ 14} and its loop-exit edges are{14→ 17}.

• For the IPG loopLI
b3

, IE(LI
b3

) = {17→ 15,17→ 16}, its loop-entry edges are

{s3→ 15,s3→ 16} and its loop-exit edges are{17→ t3}.

• For the IPG loopLI
s3

, IEs3 = {t3→ s3} but it has neither loop-entry edges nor

loop-exit edges as it encloses the entire IPG.

The pseudo-code of the Iforest algorithm is split across Figures 4.5, 4.8, 4.9, 4.10, 4.12,

and 4.14. Before we embark on a description of each of these, some remarks about

the conventions employed need clarifying. First, we try andavoid unnecessary pa-

rameter passing between procedures by assuming the parameters passed to the main

4.4 The Algorithm 109

procedure (Build-Iforest) are globally visible. This allows us to concentrate on

the parameters to procedures that change between calls. Second, for setsSandT, we

useS∪= T as a short form ofS:= S∪T.

4.4.1 Build-Iforest

This procedure takesI , C, andTC
L as parameters to initiate construction and is the only

procedure that analyses cyclic properties ofI ; that is, all other procedures operate

exclusively on (induced) acyclic subgraphs ofI .

The basic operation of the algorithm is akin to that of the IPGconstruction algo-

rithm (see Chapter 3) in the way that it performs an inside-outdecomposition ofI ,

i.e. from inner loops outwards to outer loops, usingTC
L (lines 1-37)2. During this

decomposition, the Itree representation of each IPG loopLI
h is constructed as follows.

First of all, recall from Section 4.1 that we partition the iteration edge set ofLI
h into

non-self-loop edges and self-loop edges. The reason for this is that we may consider

LI
h as several sub-loops (one for each iteration edge) that effectively contribute to

the execution time of one larger loop, namely the CFG* loopLh (from which LI
h

is constructed). Therefore, the Itree representation should piece together these sub-

loops in such a way that, during the calculation, the sub-loop with the greatest WCET

estimate is selected. That is, we want anALT vertex whose children are the Itree

representations of these sub-loops.

Clearly, by definition, any self-loop iteration edge cannot execute any of the forward

edges inLI
h. Thus the algorithm first constructs individualLOOP vertices for allu→

u ∈ SL(LI
h) (lines 3-12). The left child of eachLOOP vertex is empty, as required,

and the right child models the unique transitionu→ u. If there are multiple self-loop

iteration edges then all of theseLOOP vertices are rooted under anALT vertex which

effectively models the entire self-loop region ofLI
h (line 5).

Every non-self-loop iteration edgeu→ v∈ SL(LI
h) is modelled in the right tree of

a singleLOOP vertex whose left tree models all forward edges inLI
h (lines 13-21). If

|SL(LI
h)| > 1 then the right tree is anALT vertex so that the calculation engine can

2The algorithm must use the LNT ofC to perform the decomposition because we do not specifically
create the LNT ofI .

110 4.4 The Algorithm

Input : I ,C,TC
L

for i := height(TC
L)−1 downto 0 by −1 do1

foreach internal vertex h with level(h) = i and IE(LI
h) 6= /0 do2

if SL(LI
h) 6= /0 then3

if |SL(LI
h)|> 1 then4

ls := ALT5

foreachu→ v∈ SL(LI
h) do6

lc := LOOP7

succright(lc) := u→ v8

succ(ls)∪= {lc}9

else10

ls := LOOP11

succright(ls)∪= {u→ v∈ SL(LI
h)}12

if SL(LI
h) 6= /0 then13

lm := LOOP14

if |SL(LI
h)|> 1 then15

a := ALT16

foreachu→ v∈ SL(LI
h) do17

succ(a)∪= {u→ v}18

succright(lm) := a19

else20

succright(lm) := u→ v∈ SL(LI
h)21

Induce loop DAGLI
h
′
for LI

h22

body :=BuildAcyclic(s
′, t′)23

succle f t(lm) := body24

if SL(LI
h) 6= /0 andSL(LI

h) 6= /0 then25

if |SL(LI
h)|= 1 then26

r := ALT27

succ(r)∪= {ls, lm}28

else29

r := ls30

succ(r)∪= {lm}31

loopRoots(h) := r32

else ifSL(LI
h) 6= /0 then33

loopRoots(h) := ls34

else ifSL(LI
h) 6= /0 then35

loopRoots(h) := lm36

AppendloopRoots(h) ontocalculationOrder37

Figure 4.5. Build-Iforest: Main procedure to Build Iforest from IPG

4.4 The Algorithm 111

choose the longest iteration back into the acyclic region (we shall observe in Sec-

tion 4.6 that this is one cause of overestimation). Otherwise, the right tree models the

unique iteration edge inSL(LI
h).

In order to construct the left tree of thisLOOP vertex, we must first induce the

loop DAG LI
h
′
= 〈Vh,Eh,s

′, t′〉 of LI
h as follows (line 22)3. Vh consists of the set of

ipoints {u|parentTC
L
(u) = h∨ u = h} and the set of vertices{v|parentTC

L
(v) = h∧

v is internal vertex inTC
L }. Each internal vertex is termed anabstract vertexbecause

it represents all verticesu of an inner loopLI
h′ . The edgesEh consist only offorward

edges (i.e. there are no iteration edges) and are added as follows. Letu→ v∈EI be an

edge such thatu = h or eitheru or v is a child ofh in TC
L . Then, ifu is the source (re-

spectively destination) of a loop-exit (respectively loop-entry) edge from an inner loop

LI
h′, the abstract vertex representingLI

h′ becomes the source (respectively destination)

of the edge inEh; otherwise,u itself is the source (respectively destination).

The verticess′, t′ represent the unique entry and exit vertices, respectively, of LI
h
′
.

These are needed because the dominator tree construction algorithms [4, 66] always

assume their existence. IfLI
h
′

hasmultiple verticesu for which |pred(u)| = 0 or

|succ(u)| = 0, we insert additionalghost ipoints (see Section 3.1) toVh and link the

vertices without predecessors or without successors to these ghost ipoints.

The loop DAGs generated for our running example are depictedin Figure 4.6 to-

gether with their respective post-dominator trees (on the right of each sub-figure). In

Figure 4.6(a), only one IPG edge 13→ 14 has been added because the other edges,

namely 14→ 14 and 14→ 13, are iteration edges. In Figure 4.6(b), vertex 11 is an

abstract vertex representing the IPG transitions in the IPGloopLI
e3

. Observe that IPG

edges 15→ 13, 15→ 14, 16→ 13, and 16→ 14 have 11 as their destination since

they are all loop-entry edges into the collapsed loop. Also note that we have added

the ghost ipoint 10 because both 15,16 are entries into this loop and therefore have no

predecessors in the loop DAG. Figure 4.6(c) depicts the lastloop DAG, where vertex

12 represents the collapsed IPG loopLI
b3

.

3Recall that the IPG construction algorithm used reverse post-orderings of vertices in loops to avoid
explicit inducement of each loop DAG. In contrast,Build-Iforest requires each loop DAG to
be induced in order to construct its respective pre-dominator and post-dominator trees so that, for
example, acyclic-irreducible merge vertices can be detected.

112 4.4 The Algorithm

Figure 4.6. Induced Loop DAGs and their Post-Dominator Trees for IPG in Fig-
ure 4.4

13

13

14

14

(a) For loop LI
e3

.

10

10

11

11

15 15 1616

17

17

(b) For loop LI
b3

.

s3 s3

t3

t3

12

12

(c) For loop LI
s3

.

Once the loop DAG has been generated, the Itree modelling this acyclic region is

constructed via a call toBuildAcyclic with parameterss′, t′ (line 23); the returned

Itree is subsequently rooted under the left tree of theLOOP vertex (line 24).

The next step ofBuild-Iforest pieces together the respective Itrees constructed

to model the non-self-loop iteration edge region (aLOOP vertex) and the self-loop it-

eration edge region (either anALT vertex or aLOOP vertex). There are three cases to

handle:

1. SL(LI
h) 6= /0 andSL(LI

h) 6= /0: When|SL(LI
h)| > 1, the Itree modelling the self-

loop region ofLI
h is already anALT vertex, thus theLOOP vertex modelling

SL(LI
h) is added as a child (lines 30-31). Otherwise, we insert an additional

ALT vertex and add the respectiveLOOP vertices as children (lines 27-28).

2. SL(LI
h) 6= /0: The Itree modellingSL(LI

h) becomes the Itree representation for

the IPG loopLI
h (line 34).

3. SL(LI
h) 6= /0: The Itree modellingSL(LI

h) becomes the Itree representation for

the IPG loopLI
h (line 36).

4.4 The Algorithm 113

The root of the Itree modelling the IPG loopLI
h is stored in a temporary variable

loopRootsfor subsequent retrieval (because it will become a child of asubtree when

building the Itree representation of its outer loop). We also append the root onto a list,

calculationOrder, in case the abstract vertex representingLI
h in its outer nesting-level

is an irreducible-merge vertex and will therefore only havepointers to it (line 37).

Let us consider the (partial) state of the Itrees modelling the three cyclic regions of

the IPG in Figure 4.4 before any of their acyclic regions havebeen constructed. This

is depicted in Figure 4.7 in which Itrees are arranged from left to right according to

the order that they are built. For the IPG loopLI
e3

, there are twoLOOP vertices rooted

under anALT vertex sinceSL(LI
e3

) = {14→ 14} andSL(LI
e3

) = {14→ 13}. For the

IPG loopLI
b3

, there is a uniqueLOOP vertex whose right tree is anALT vertex since

SL(LI
b3

) = {17→ 15,17→ 16}. On the other hand, for the IPG loopLI
s3

, there is only

one (dummy) iteration edge in the right tree becauseSL(LI
s3

) = {t→ s}. Also note that

the parametrised call toBuildAcyclic is shown for each respectiveLOOP vertex.

ALT

ALT LOOPLOOP

LOOPLOOP

BuildAcyclic(13,14)

BuildAcyclic(10,17) BuildAcyclic(s3, t3)

LI
e3

LI
b3

LI
s3

14→ 14 14→ 13 17→ 15 17→ 16

t→ s

Figure 4.7. Itrees modelling Cyclic Regions in IPG of Figure 4.4

4.4.2 Build-Acyclic

This procedure builds the acyclic region induced for each IPG loop DAG LI
h
′
; its

pseudo-code is presented in Figure 4.8. It uses the algorithm described in the previous

section to avoid redundant traversal of the IPG. Therefore,it processes vertices inLI
h
′

in reverse topological order (lines 39-43), and on encountering an acyclic-irreducible

merge vertexy, the subtree modelling the region fromy to it stopping verteximerge(y)

is built (line 41). The subtree returned is subsequently stored in an arrayacyclicRoots

(line 42), which is indexed by acyclic-irreducible merge vertices, so that we can later

114 4.4 The Algorithm

analyse the properties of the subtree constructed. Furthermore, the subtree is appended

ontocalculationOrder(line 43) to allow the calculation engine to generate the WCET

estimate of this subtree before others that point to it. The final step of this procedure

is to build the Itree modelling the region froms′ to t
′ (line 44).

Input : u,v

Sort vertices inLI
h
′ topologically38

foreachy in reverse topological order of LIh
′ do39

if y is irreducible merge vertexthen40

r := Which-Sub-Tree(y, imerge(y))41

acyclicRoots(y) := r42

Appendr ontocalculationOrder43

return Which-Sub-Tree(u, v)44

Figure 4.8. Build-Acyclic: Helper Procedure in Iforest Construction.

For the loop DAGLI
e3

′
(c.f. Figure 4.6(a)), because there are no acyclic-irreducible

merge vertices, only the callWhich-Sub-Tree(13,14) is made. On the other hand,

for the loop DAGLI
b3

′
(c.f. Figure 4.6(b)), the callWhich-Sub-Tree(11,17) pre-

cedes that ofWhich-Sub-Tree(10,17) since 11 is an acyclic-irreducible merge

vertex. Again, for the loop DAGLI
s3

′
(c.f. Figure 4.6(c)) there are no acyclic-irreducible

merge vertices, thus only the callWhich-Sub-Tree(s3, t3) is made.

4.4.3 Which-Sub-Tree

This is a helper procedure which determines the type of subtree required in modelling

the paths from a source vertexu to a target vertexv; its pseudo-code is presented in

Figure 4.9. Specifically, this procedure is called fromBuildAcyclic whenu is an

acyclic-irreducible merge vertex andv = imerge(u) or whenu = s
′ andv = t

′. Note,

therefore, thatv always post-dominatesu.

Whenu only has a unique successors, we need to first determine ifs= v= ipost(u).

If this is satisfied, the Itree created byUnique-Edge-Action is returned (line 47),

otherwise we have to build aSEQ tree fromu to v (line 49).

On the other hand,u must be a branch vertex. Ifv = ipost(u) then this means that

all alternative paths fromu will merge atv, i.e. we only need anALT vertex (line 52).

4.4 The Algorithm 115

Input : u,v

if |succ(u)|= 1 then45

if ipost(u) = v then46

return Unique-Edge-Action(u, v)47

else48

return Build-SEQ-Root(u, v)49

else50

if ipost(u) = v then51

return Build-ALT-Root(u)52

else53

return Build-SEQ-Root(u, v)54

Figure 4.9. Which-Sub-Tree: Helper Procedure in Iforest Construction.

Otherwise, in addition to modelling the region fromu to ipost(u), we have to model

the region fromipost(u) to v, i.e. we need aSEQ vertex (line 54).

In our running example, the following calls were made fromBuildAcyclic:

• Which-Sub-Tree(13,14): this returnsUnique-Edge-Action(13,14).

• Which-Sub-Tree(11,17): this returnsUnique-Edge-Action(11,17).

• Which-Sub-Tree(10,17): this returnsBuild-ALT-Root(10,17).

• Which-Sub-Tree(s3, t3): this returnsBuild-ALT-Root(s3, t3).

4.4.4 Unique-Edge-Action

This procedure builds the Itree for the edgeu→ v in the loop DAGLI
h
′
; its pseudo-code

is presented in Figure 4.10. BecauseLI
h
′
might contain abstract vertices, this procedure

also reconstructs the actual IPG transitions (i.e. the loop-entry and loop-exit edges of

EI) that the dummy edges between abstract vertices represent.

There are four cases to handle:

1. If u andv are both abstract vertices then we have to model all the loop-exit edges

of the IPG loopLI
u that are also loop-entry edges of the IPG loopLI

v. When

there is only one such edge, we simply return that edge (line 58), otherwise we

construct anALT vertex modelling the selection between them (lines 60-63).

2. Similarly to the previous case, ifu is an abstract vertex then we have to model all

the loop-exit edges of the IPG loopLI
u that have the destinationv. Again, when

116 4.4 The Algorithm

Input : u,v

if u and v are abstract verticesthen55

X = {y→ z|y∈ LI
u∧z∈ LI

v}56

if |X|= 1 then57

return y→ z∈ X58

else59

a := ALT60

foreachy→ z∈ X do61

succ(a)∪= {y→ z}62

return a63

else ifu is abstract vertexthen64

X = {y→ v|y∈ LI
u}65

if |X|= 1 then66

return y→ v∈ X67

else68

a := ALT69

foreachy→ v∈ X do70

succ(a)∪= {y→ v}71

return a72

else ifv is abstract vertexthen73

X = {u→ y|y∈ LI
v}74

if |X|= 1 then75

return u→ y∈ X76

else77

a := ALT78

foreachu→ y∈ X do79

succ(a)∪= {u→ y}80

return a81

else82

return u→ v83

Figure 4.10. UniqueEdgeAction: Helper Procedure in Iforest Construc-
tion.

there is only one such edge, we simply return that edge (line 67), otherwise we

construct anALT vertex modelling the selection between them (lines 69-72).

For example, Figure 4.11 depicts the subtree created for theunique transition

s3→ 12 (c.f. Figure 4.6(c)).

3. Analogous to the previous case, except thatv is an abstract vertex and we instead

have to model all the loop-exit edges of the IPG loopLI
v that have the sourceu.

Again, when there is only one such edge, we simply return thatedge (line 76),

otherwise we construct anALT vertex modelling the selection between them

(lines 78-81).

4. The edgeu→ v actually belongs toEI and so it is simply returned (line 83).

4.4 The Algorithm 117

ALT

s3→ 15 s3→ 16

Figure 4.11. Itree modelling Loop-Entry Edges into IPG Loop LI
b3

Observe that the loop-exit subtree of an IPG loop can handle IPG transitions that

were constructed from CFG* loops containingbreak statements. The reason is that

the algorithm is not concerned with the source of the loop exit out of the CFG* loop;

rather, it only needs to know that a transitionu→ v can occur from an ipointu inside

a CFG* loopLh to an ipointv inside an outer CFG* loopLh′ .

4.4.5 Build-ALT-Root

This procedure builds anALT root modelling the paths inI from a given branch vertex

u to ipost(u); its pseudo-code is presented in Figure 4.12. It depends on the construc-

tion of an auxiliary data structure that we call theCompressed Post-Dominator Tree

(CPDT) (line 70). This basically models the nearest merge node m that is the imme-

diate post-dominator of a subset ofsucc(u) and enables theALT subtree to be pieced

together during a bottom-up traversal.

The CPDT, denotedTcom
post, is iteratively computed by performing Least-Common

Ancestor (LCA) queries onT
LI

h
′

post with a query setQ. The queries inQ are all unordered

pairs taken from adynamicvertex setX; initially X = succ(u). Each lca query returns

a vertexw. If, for a vertexx∈X, w is the vertex with the largest height inT
LI

h
′

post amongst

all lca queries involvingx, thenw is set as the parent ofx in Tcom
post. Furthermore, ifw

was not initially a vertex inTcom
post, it is inserted into a temporary vertex setX′; once

all queries inQ have been answered,X is assigned the elements ofX′ and the query

process continues until there is a unique vertex inX′. The unique vertex remaining in

X′ must beipost(u) (otherwiseu would have a different immediate post-dominator).

For example, let us consider how the CPDT is constructed for the branch vertex 10

in Figure 4.6(b). The initial vertex set isX = {15,16}, and therefore, there is only

one lca query to be answered, namelylca(15,16) in T
LI

h
′

post. The answer returned is

118 4.4 The Algorithm

17= ipost(10). Thus the query process stops and the parent of both 15 and 16 in the

CPDT is 17.

Input : u
a := ALT84

Tcom
post := Build-Compressed-Tree(T

LI
h
′

post,succ(u))85

for i := height(Tcom
post) downto 1 by −1 do86

foreachv with level(v) = i do87

s := Build-SEQ-Root(v, parent(v))88

if v is leaf then89

succ(s)∪= {Unique-Edge-Action(u, v)}90

else91

a′ := mergeRoots(v)92

if v∈ succ(u) then93

succ(a′)∪= {Unique-Edge-Action(u, v)}94

s∪= {a′}95

if parent(v) = ipost(u) then96

succ(a)∪= {s}97

else98

a′ := ALT99

succ(a′)∪= {s}100

mergeRoots(parent(v)) := a′101

if ipost(u) ∈ succ(u) then102

succ(a)∪= {Unique-Edge-Action(u, ipost(u))}103

return a104

Figure 4.12. Build-ALT-Root: Helper Procedure in Iforest Construction.

The ALT vertexa is subsequently built by visiting the nodes of the CPDT level

by level in a bottom-up fashion (lines 86-101). For each vertex v at level i, we

first construct the subtree to model the paths fromv to parent(v) (line 88). Note

that we explicitly callBuild-SEQ-Root to carry out this construction (and not

Which-Sub-Tree) because we know it has to be aSEQ vertexs; that is, the subtree

must represent the transitionu→ v andthe paths fromv to parent(v).

The properties ofv within Tcom
post are then examined. Whenv is a leaf, we append the

subtree modelling the unique transitionu→ v to theSEQ vertex (line 90). Otherwise,

v is an internal vertex, indicating that there arealternativepaths from the children of

v that merge atv. In this case, the algorithm will have constructed anotherALT vertex

a′ (as discussed below) modelling these paths. (Observe thatv 6= ipost(u) because the

level by level of traversal ofTcom
post halts at level 1 andipost(u) is the root.) Therefore,

a′ is added to theSEQ root (line 95).

4.4 The Algorithm 119

This completes the construction of theSEQ vertexs, so now the algorithm deter-

mines whichALT vertexs should be added as a child. Ifparent(v) = ipost(u) then

s should be added to the mainALT vertexa because we have reached the end of the

traversal of the CPDT (line 97). Otherwise, as noted above, weneed anotherALT

vertexa′ to model the flow of control that merges before reachingipost(u); s is added

as a child ofa′ in this case (line 100) anda′ is stored in arraymergeRootsindexed by

parent(v) so that we can retrieve it at the next level in the CPDT (line 101).

The final task of this procedure is to check whether there is a transitionu→ ipost(u)

(line 102), in which case we also have to add its Itree model tothe ALT vertex

(line 103).

ALT

SEQ SEQ

10→ 15 10→ 16

Build-SEQ-Root(15,17) Build-SEQ-Root(16,17)

Figure 4.13. Itree modelling Paths from Branch Vertex 10 in IPG Loop LI
b3

For example, let us consider how theALT vertex is constructed for the branch ver-

tex 10 in Figure 4.6(b). There are only two edges to analyse inits CPDT: 17→ 15

and 17→ 16. Let us consider the edge 17→ 15 because the operations performed

for 17→ 16 will be analogous. The paths 15
+
→ 17 are constructed with the call

Build-SEQ-Root(15,17), which will return aSEQ vertex having a singleALT

child (because 15 is a branch vertex itself). The transition10→ 15 is then added to

theSEQ vertex by a call toUnique-Edge-Action: this will return the single edge

10→ 15 since neither of these vertices are abstract ones. The (partial) state of the

Itree modelling this is shown in Figure 4.13.

4.4.6 Build-SEQ-Root

This procedure builds aSEQ root from a given source vertexu to a target vertexv;

its pseudo-code is presented in Figure 4.14. Note that thatv is guaranteed to post-

dominateubecause the places from which it is called — namely inWhich-Sub-Tree

120 4.4 The Algorithm

(at lines 49 and 54) andBuild-ALT-Root (at line 88) — always satisfy this prop-

erty. The basic intuition of this procedure, therefore, is to append the subtrees on the

pathu
+
→ ipost(u) = v1

+
→ ipost(v1) = v2

+
→ . . .

+
→ ipost(vi) = v onto theSEQ root in

that order.

Input : u,v
s := SEQ105

x := u106

repeat107

if x is abstract vertexthen108

if x is irreducible mergethen109

succ(s)∪= {
−→

loopRoots(x)}110

else111

succ(s)∪= {loopRoots(x)}112

if x is irreducible mergethen113

if acyclicRoots(x) is IPG edgethen114

succ(s)∪= {acyclicRoots(x)}115

else116

succ(s)∪= {
−→

acyclicRoots(x)}117

y := imerge(x)118

else119

y := ipost(x)120

if |succ(x)|> 1 then121

succ(s)∪= {Build-ALT-Root(x)}122

else123

succ(s)∪= {Unique-Edge-Action(x, y)}124

x := y125

until y = v126

return s127

Figure 4.14. Build-SEQ-Root: Helper Procedure in Iforest Construction.

This is done iteratively by successively updating two temporary verticesx andy that

always satisfyy E v. Initially, x is set tou (line 106) and iteration halts oncey = v

(line 126).

On each iteration, we determine which subtree should be appended to theSEQ root

by analysing the properties ofx as follows:

• Whenx is an abstract vertex, this indicates that the path fromu to v executes the

IPG loopLI
x. If x is an acyclic-irreducible merge vertex then we insert a pointer

to theLOOP vertex modellingLI
x (line 110). Otherwise,LI

x controls a region

in the current loop DAG (i.e. it is either a SESE or MESE region) and thus

4.4 The Algorithm 121

its LOOP vertex is retrieved fromloopRootsand rooted under theSEQ vertex

(line 112).

• Whenx is an acyclic-irreducible merge vertex, then we first inspect the prop-

erties of the subtree that was constructed inBuildAcyclic and stored in

acyclicRoots(x). If it is an IPG edgeu→ v then we add this to theSEQ vertex

(line 115). The reason is that adding a pointer to a leaf unnecessarily increases

the size of the Iforest as it merely adds a layer of indirection to the smallest

possible Itree entity. Otherwise, we add a pointer to the subtree as required

(line 117). We then advancey so that it jumps over the already modelled sub-

graph (line 118).

• Whenx is not an acyclic-irreducible merge vertex,y is updated to its immediate

post-dominator (line 120). Ifx is a branch vertex then we append theALT vertex

returned byBuild-ALT-Root onto theSEQ root (line 122); otherwise there

is a unique transitionx→ yand the subtree returned byUnique-Edge-Action

is instead appended (line 124).

At the end of the iteration,x is advanced to the position ofy (line 125).

ALT

ALT

ALT

ALT

ALT ALT

ALT

ALT

ALT

SEQ

SEQ SEQ

SEQ

SEQ

LOOPLOOP

LOOP

LOOPLe3

−→
Le3

−→
Le3

14→ 14

14→ 1714→ 17

13→ 14 14→ 13

10→ 15

15→ 17

15→ 13 15→ 14

10→ 16

16→ 17

16→ 13 16→ 14

s3→ 15 s3→ 16

17→ 15 17→ 16

17→ t3

s3→ t3

t3→ s3

Figure 4.15. The Iforest of the IPG in Figure 4.4

122 4.5 Iforest Calculations: Timing Schema and Calculation Order

The final Iforest generated for the IPG in Figure 4.4 is shown in Figure 4.15.

4.5 Iforest Calculations: Timing Schema and

Calculation Order

An Iforest is just another program representation and therefore, like the IPG, it does

not implicitly provide a mechanism from which a WCET calculation can be com-

puted. In this section, we first discuss how to control the order of the computations

on individual Itrees in the Iforest, before introducing thetiming schema that drive the

calculation over Itrees.

Controlling the calculation order of Itrees is necessary because of the creation of

a forest of Itrees as opposed to a unique Itree. For this reason, when the timing

schema traverses a particular Itree, the WCETs of any pointer references that it has

must already have been computed. The algorithm described inthe previous section

constructed this ordering on the fly by appending the roots ofItrees onto the list

calculationOrderas they are built. Therefore, all the calculation engine need do is

process the Itrees incalculationOrderand then transfer the WCET estimate deter-

mined at the root to all pointer references.

Informally, the timing schema are a set of formulae that decide how to compute

a WCET at each internal vertex in the hierarchical representation (either the AST or

the Itree) from the WCETs of their children and the type of vertex. In this way, the

calculation engine traverses the tree in a bottom-up fashion, and upon reaching the

root, the WCET estimate is produced.

The original timing schema [88, 94] proposed for the AST, however, are not ap-

plicable to our tree-based calculation engine because the two representations have

different properties; for example, our subtrees representing conditional constructs (i.e.

the alternative vertex) are not the same asif-then-else constructs in the AST

which always evaluate the conditional expression regardless of the path taken. We in-

stead present the following set of timing schema to be used oneach Itree in the Iforest,

4.6 Evaluation 123

which are conceptually similar to the original formulae4:

σ(SEQ)= ∑
s∈succ(SEQ)

σ(s) (4.1)

σ(ALT) = max
si∈succ(ALT)

(σ(s1),σ(s2), . . . ,σ(sn)) (4.2)

σ(LOOP) = σ(succle f t(LOOP))∗k+σ(succright(LOOP))∗k (4.3)

In these equations,σ denotes the WCET of a particular Itree construct. Equa-

tion (4.1) states that the WCET of a sequence vertex is the sum ofthe execution times

of its children. Equation (4.2) states that the WCET of an alternative vertex is the

child that has the greatest execution time. Equation (4.3) states that the WCET of a

loop vertex is the sum of the contribution of the acyclic region modelled by the left

tree and the iteration edge selected from the right tree, both of which are factored by

the loop bound obtained forLI
h (either through static analysis techniques or through

trace parsing).

4.6 Evaluation

In this section, we evaluate the Itree by considering a synthetic example program

instrumented according to two different instrumentation profiles. We also evaluate this

program in Chapter 5 in order to contrast the precision of our tree-based calculation

engine against that of the remodelled IPET.

Figure 4.16 depicts the program under consideration in bothCFG and AST formats.

Here, we will compare the Itree specifically with the AST since the latter is the only

hierarchical representation we are aware of that drives tree-based calculations (in static

analysis). Moreover, this allows us to pinpoint sources of pessimism in the Itree.

Let us assume that the WCETs of basic blocks have been extracted: either through

4Recall that the basic units of computation of an IPG are its edges. If an edge is atrace edgethen its
WCET is extracted during trace parsing as described in Section 3.5.2. If an edge is acontext edge
then its WCET is computed by the calculation engine as described in Section 3.5.3. Otherwise, if
an edge is aghost edgethen it is assigned a WCET of 0.

124 4.6 Evaluation

Figure 4.16. Example Program.

s10

t10

a10

b10

c10d10

e10 f10

g10 h10

(a) The CFG.

0 5 6 04

6106

8

9

78

(35) (35) (10)

(35)(35)(35)

(35) (21)

(35)

(30)

ALT1

SEQ1

LOOP1

SEQ2

LOOP2

s10 t10a10 b10

b10

c10

d10

e10

e10

f10

g10

h10

(b) The AST.

building a processor model or from measurements. This information is directly below

each basic block in the AST of Figure 4.16(b) wherebys10 andt10 have WCETs of

0 because they are ghost ipoints (the meaning of the WCETs in brackets will become

clear shortly but suffice to say they are used for an additional comparison). Let us

further assume that the loop bound ofLe10 is 5 and that the loop bound ofLb10 is 10.

A simple tree-based calculation on the AST, according to thetiming schema origi-

nally proposed in [88], would proceed bottom-up in the following manner:

1. At LOOP2: the WCET is(8+7)∗5 = 75.

2. At SEQ2: the WCET is 75+8 = 83.

3. At ALT1: the WCET ismax(83,9) = 83.

4. At LOOP1: the WCET is(6+10+83+6)∗10= 1050.

5. At SEQ1: the WCET is 0+5+1050+6+4+0 = 1065.

Observe that 1065 is an accurate WCET estimate with the timing information pro-

vided.

4.6 Evaluation 125

4.6.1 Instrumentation Profile One

Figure 4.17 presents the first instrumentation profile from which we will evaluate the

Itree. The CFG* in Figure 4.17(a) has been generated from the CFG in Figure 4.16(a),

thus the loops have the same relative loop bounds. The Itree in Figure 4.17(c) repre-

sents edges in the IPG by the labels associated with them in Figure 4.17(b) — these

edge labels will also be useful in Chapter 5 when building the Integer Linear Program

from the IPG.

Observe in particular that the instrumentation profile is path reconstructible, which

means that there is a unique path between ipoints in the CFG* (see Section 3.1).

Let us therefore consider the WCET of each IPG edgeu→ v to be the sum of the

WCET of each basic block in the setB(P(u→ v)). For example, becauseB(P(s10→

100)) = {a10,b10,d10,e10}, the WCET ofe100 = 5+ 6+ 10+ 8 = 29. (Recall from

Clarification 1 that this thesis does not consider the probe effect, thus we assume

ipoints incur zero overhead.) The WCET of every IPG transitionderived in this way

is shown underneath the corresponding edge label in Figure 4.17(c). Furthermore, let

us assume that the loop bound supplied for each CFG* loop is transferred onto the

corresponding IPG loop. (Recall from Section 3.3.2 that, foran iteration edgeu→ v,

the position ofv with respect to the loop exits ofLh determines how the bound forLh

is transferred ontou→ v. In particular, see Equation (3.3).)

The timing schema presented in the previous section proceeds in a bottom-up man-

ner on the Itree as follows:

1. At LOOP5: the WCET is 15∗4 = 60.

2. At SEQ4: the WCET is 60+21= 81.

3. At ALT5: the WCET ismax(6,81) = 81.

4. At ALT6: the WCET ismax(24,25) = 25.

5. At LOOP4: the WCET is(81∗10)+(25∗9) = 1035.

6. At LOOP3: the WCET is 30∗9 = 270.

7. At ALT4: the WCET ismax(270,1035) = 1035.

8. At ALT3: the WCET ismax(29,30,35) = 35.

126 4.6 Evaluation

Figure 4.17. First Instrumentation Profile on Program from Figure 4.16 to Eval-
uate Itree.

s10

t10

100 101

102

a10

b10

c10d10

e10 f10

g10 h10

(a) The CFG*.

s10

t10

100 101

102

e100
e101

e102

e103

e104

e105

e106

e107

e108
e109

e110

(b) Resultant IPG.

29 30 35

10

15

30

24 256

21

15

ALT2

ALT3 ALT4

ALT5 ALT6

SEQ3

SEQ4

LOOP3 LOOP4

LOOP5

e100 e101 e102

e103

e104

e105

e106 e107

e108

e109

e110

(c) The Itree.

4.6 Evaluation 127

9. At SEQ3: the WCET is 35+1035+10= 1080.

10. At ALT2: the WCET ismax(1080,15) = 1080.

Because the WCET estimate on the AST was 1065, we may conclude that the

WCET estimate derived from the Itree has been overestimated by15 cycles. The

underlying cause of the overestimation is the irreducibility in the outer IPG loopLI
b10

.

For this reason, the Itree models the entry transitions intothat region, the acyclic tran-

sitions in that region, and the iteration edges of that region in distinct subtrees without

relation to each other. This forces the calculation engine into producing a structurally

infeasible path because it conservatively picks the subtrees with the longest execution

times. In this case, the actual longest path through the outer IPG loop includes exe-

cution of the inner loop, which the calculation engine correctly chooses in the acyclic

region modelled byALT5; however, this implies that the iteration edge 102→ 100 must

also be selected, whereas the calculation engine chooses the iteration edge 102→ 101

at ALT6, accounting for 9 cycles of overestimation. The other 6 cycles of overestima-

tion come fromALT3 because the chosen entry transitions10→ 102 should have been

s10→ 100 given that all iterations of that loop pass through vertex 100.

However, the original motivation for introducing the IPG was not when the units

of computation are basic blocks, but when timing traces are the only sources of such

information. Let us therefore re-calculate a WCET estimate using the AST by instead

extracting the WCETs of its basic blocks from the ipoint transitions (these values are

shown in brackets in Figure 4.16(b)); this will serve to validate our original claim at

the beginning of Chapter 3 that WCET estimates derived from static analysis program

models become inflated due to sparse instrumentation.

The steps taken in the calculation on the AST are as follows:

1. At LOOP2: the WCET is(35+21)∗5 = 280.

2. At SEQ2: the WCET is 280+35= 315.

3. At ALT1: the WCET ismax(315,30) = 315.

4. At LOOP1: the WCET is(35+35+315+35)∗10= 4200.

5. At SEQ1: the WCET is 0+35+4200+35+10+0 = 4280.

In comparison to the WCET estimate computed through the Itree,this WCET es-

128 4.6 Evaluation

timate is an overestimation of≈ 300%. In this case, therefore, it is the IPG’s unit of

computation that prevents conservative analysis.

4.6.2 Instrumentation Profile Two

Figure 4.18 presents the second instrumentation profile from which we will evaluate

the IPG. The CFG* in Figure 4.18(a) is similar to that in Figure4.17(a): ipoint 103 is

in the same location as ipoint 100 and ipoint 104 is in the samelocation as ipoint 101.

However, the essential difference is that ipoint 102 has effectively been moved to the

new location occupied by ipoint 105. We will observe that this minor modification to

the instrumentation profile changes the Itree calculation considerably.

As for the previous instrumentation profile, let us again consider the WCET of each

IPG edgeu→ v to be the sum of the WCET of each basic block in the setB(P(u→ v)),

as shown underneath the corresponding edge label in Figure 4.18(c), and that the loop

bound supplied for each CFG* loop is transferred onto its corresponding IPG loop.

Note that both Itrees contain the same timing information, thus we are able compare

the WCET estimates that they each compute.

Following are the steps taken in this calculation:

1. At LOOP6: the WCET is 15∗4 = 60.

2. At SEQ6: the WCET is 60+8 = 68.

3. At ALT7: the WCET ismax(39,46,37,22) = 46.

4. At LOOP9: the WCET is(68∗10)+(9∗46) = 1094.

5. At LOOP8: the WCET is 9∗31= 279.

6. At LOOP7: the WCET is 9∗30= 270.

7. At ALT8: the WCET ismax(279,1094,270) = 1094.

8. At ALT10: the WCET ismax(21,30) = 30.

9. At ALT9: the WCET ismax(24,31,16) = 31.

10. At SEQ5: the WCET is 30+1094+31= 1155.

11. At ALT4: the WCET ismax(1155,15) = 1155.

4.6 Evaluation 129

Figure 4.18. Second Instrumentation Profile on Program from Figure 4.16 to
Evaluate Itree.

s10

t10

103

104

105

a10

b10

c10d10

e10

f10

g10 h10

(a) The CFG*.

s10

t10

103

104

105

e111

e112

e113

e114

e115
e116

e117 e118

e119

e120

e121

e122

e123

e124

(b) Resultant IPG.

21 30 24 31 16

15

31

39 46 37 228

15

30
ALT7

ALT8 ALT9ALT10

ALT11

SEQ5

SEQ6

LOOP6

LOOP7LOOP8 LOOP9
e111 e112

e113

e114

e115 e116

e117

e118

e119 e120

e121

e122

e123

e124

(c) The Itree.

130 4.7 Discussion and Related Work

In comparison to the Itree calculation performed in the firstinstrumentation profile,

this is an≈ 7% overestimation. Again, the underlying cause of the overestimation is

the irreducibility of the outer IPG loop, specifically because theLOOP9 chooses iter-

ation edgee119 to execute 9 times in sequence. Clearly, from the structural properties

of the IPG, this is not a feasible execution path.

However, also observe that this WCET estimate is still an improvement on the

WCET estimate (of 4280) that was computed from the AST in which the WCETs

of basic blocks were extracted from timing traces.

4.7 Discussion and Related Work

A similar technique to break up a flow graph into a number of control regions has

been introduced [55] in which SESE regions are identified andthe hierarchical con-

tainment between them is captured in a program structure tree. Although at first this

might appear analogous to the SESE, SEME, and MESE regions introduced above, our

consideration of control regions differs in two fundamental aspects. First, the notion

of acyclic reducibility clearly precludes cyclic flow graphs, but their SESE regions do

not; however, the intention of our work was to specifically assess the hierarchical rela-

tionship between acyclic regions, and not to redefine (cyclic) reducibility. Second, the

conditions that they require to identify a SESE region use the pre-dominance and post-

dominance relations. In particular, a SESE region(a,b) is defined to be one satisfying

both a D b andb E a (together with another property that is of no relevance here).

Our conditions are more stringent in that we use theimmediatepre-dominance and

post-dominance relations in conjunction with the pre-dominance and post-dominance

frontier relations.

The acyclic reducibility property can be considered equivalent to whether a flow

graph is Two-Terminal Series-Parallel (TTSP) [119]. A TTSPgraph is recursively

defined as follows:

• A graph consisting of an entry and an exit vertex joined by a single edge is

TTSP.

• Series-Composition: If G1 andG2 are TTSP graphs with terminals(s1, t1) and

4.8 Summary 131

(s2, t2), respectively, then the graphG with terminals(s1, t2) obtained by identi-

fying verticest1 ands2 is TTSP.

• Parallel-Composition: If G1 and G2 are TTSP graphs with terminals(s1, t1)

and (s2, t2), respectively, then the graphG with terminals(s1, t1) obtained by

identifying verticess1 with s2 andt1 with t2 is TTSP.

In essence, a series-composed graph would be modelled by aSEQ vertex, whereas

a parallel-composed graph would be modelled by anALT vertex. Note in particular

that these rules of construction would only result in acyclic-reducible graphs since two

disjoint graphs are only joined at their respective entry and exit points, i.e. the single

entry and single exit points are maintained.

TTSP graphs fall into a broader category of graph, those which have boundedtree

width [115]. This is essentially an estimate of how close a graph isto a tree. The

acyclic reducibility property can be similarly viewed, although we principally use it

to identify vertices in the graph at which reduction into a tree would cause redundant

graph traversal. To our knowledge, nobody has proposed how to use the properties of

TTSP graphs or tree width with the same task in mind.

4.8 Summary

A popular calculation technique used in WCET analysis is basedon a hierarchical

program representation. In this chapter, we considered a tree-based approach to com-

puting a WCET estimate from the IPG program model and made the following key

contributions:

• We presented properties of a novel hierarchical form calledthe Itree, which

models traditional high-level constructs such as sequence, selection, and itera-

tion, except with respect to the IPG.

• We introduced the acyclic reducibility property, which is applicable to the class

of (generalised) acyclicflow graphs, and essentially categorises branch and

merge vertices either as acyclic-reducible or acyclic-irreducible. We showed

that detection of acyclic-irreducible merge vertices can prevent redundant traver-

sals of the IPG when building its Itree representation. Avoiding such traversals

132 4.8 Summary

instead produces a forest of Itrees (called the Iforest) in which Itrees essentially

point to other Itrees.

• We presented an algorithm that decomposes the IPG into an Iforest. The algo-

rithm is not restricted to a particular class of IPGs; that is, it handles arbitrary

instrumentation even if that produces arbitrary irreducible regions in the IPG.

The only restriction is that the CFG* (from which the IPG is constructed) is

reducible, but the algorithm supports multiple exits out ofloops and multiple

loop-back edges commonly associated withbreak andcontinue statements,

respectively.

• We introduced the timing schema that drives the calculationover individual

Itrees in the Iforest. In addition, we showed how the calculation engine con-

trols the order of computations over the Iforest so that the WCET estimate of a

referenced Itree is available when required.

• Finally, we evaluated our tree-based calculation engine byconsidering an exam-

ple program instrumented with two different (sparse) instrumentation profiles,

from which we concluded the following:

– When the atomic units of computation are derived from trace parsing, the

Itree generates more accurate WCET estimates than the traditional AST-

based calculation. This forms part of the validation of our initial conjec-

ture at the beginning of Chapter 3, that the IPG program model should be

chosen ahead of existing static analysis program models when instrumen-

tation is sparse. This will be confirmed in Chapter 6 when evaluating a

real application.

– Our tree-based calculation is sensitive to the locations ofipoints because of

the problem of irreducibility. This forces the Itree into making a trade-off

between the space overhead incurred and the precision of theanalysis.

5 IPET Calculations on IPGs

The previous chapter presented a tree-based calculation engine operating on theIn-

strumentation Point Graph (IPG), which first decomposes the IPG into a novel hi-

erarchical form, theItree. However, tree-based calculations suffer from the inability

to incorporate extra path information, obtained normally through flow analysis tech-

niques [46, 47, 99], into the calculation, resulting in a less precise analysis.

A more pronounced problem is the overestimation caused by arbitrary irreducible

IPGs in hierarchical form. To avoid the complexity, it is possible to placeinstrumen-

tation points (ipoints) at particular locations so that the resultant IPGis reducible.

However, there are clear disadvantages of forcing instrumentation to particular loca-

tions. First, we must assume control of the instrumentationprofile, which contravenes

our goal of targeting systems that are instrumented as-is. This is especially true when

a hardware debug interface, such as Nexus [1] or the EmbeddedTrace Macrocell

(ETM) [33] is the chosen tracing mechanism. The second problem is that we might

inadvertently increase the number of ipoints, potentiallyincurring a timing penalty,

depending on how timing traces are extracted. Even more, it is sometimes not possi-

ble to increase the number of ipoints due to so-calledipoint budgets, particularly when

analysing large systems. Lastly, if a user is selecting the location of ipoints, it is much

more convenient to do this at the source level without the concern of how they affect

structural properties of the underlying analysis engine.

The unequivocal outcome is that the calculation technique operating on the IPG

must handle arbitrary irreducibility without causing undue pessimism. In this respect,

the Implicit Path Enumeration Technique (IPET) has already been proven to be

suitable [73, 95] because it does not explicitly modelglobal flow graph structure.

Rather, the IPET expresses the computation of the WCET on a givenflow graph as an

133

134 5.1 Preliminaries

Integer Linear Program (ILP), which has a known solution method. Therefore, the

IPET essentially builds a constraint model relatinglocal flow graph structure, i.e. at

each vertex, to path-related information regarding loop bounds and infeasible paths.

The key aspect of the IPET, therefore, is that irreducibility is not an issue as long

as there is support from loop identification algorithms. In Chapter 3, we presented

a mechanism to identify irreducible IPG loops, thus implying that the IPET can be

reformulated so that it pertains to arbitrary IPGs — this is the main contribution of the

chapter.

We begin, in Section 5.1, by recalling some properties of theIPG that were pre-

sented in Chapter 3. Section 5.2 then remodels the basic ILP created by the IPET to-

wards the IPG and discusses how ILP solvers compute anupper boundon the WCET

from this basic ILP. In Section 5.3, we discuss thedisconnected circulation prob-

lem [95], which relates to any flow graph modelled by the ILP. ForControl Flow

Graphs (CFG), this can be solved through the addition ofrelative capacity con-

straints into the basic ILP: this extended model has been proven to return an exact

WCET estimate [95]. Thus, we show how to model relative capacity constraints for

the IPG. Next, Section 5.4 evaluates the WCET estimates returned by the IPET against

those produced by our tree-based calculation engine, whichwas described in Chap-

ter 4. We show that, in contrast to the tree-based approach, the IPET always returns

an accurate WCET estimate as it determines a feasible execution path. Section 5.5

discusses the current limitations of our remodelled IPET, before we finally summarise

the chapter in Section 5.6.

5.1 Preliminaries

An IPG I = 〈I,EI ,s, t〉 has a set of cycle-inducing edges callediteration edges. In

Chapter 3, we showed that it is generally very difficult to identify iteration edges using

state-of-the-art loop detection techniques due to the arbitrariness of IPGirreducibility

(see Definition 7 in Chapter 3). We instead assumed the CFG*C= 〈VC = B∪ I,EC,s, t〉

from which I is constructed to be reducible and used theLoop-Nesting Tree(LNT)

(see Definition 8 in Chapter 3)TC
L of C to determine which edge insertions intoI cause

5.2 Basic ILP of the IPET 135

cycles.

A structural connection therefore exists between a CFG* loop, denotedLh, and an

IPG loop, denotedLI
h (denoted in this way to reflect the structural connection toLh).

We defined a functionΩ : L →L I , whereL is the set ofinstrumentedCFG* loops

andL I is the set of IPG loops. Every IPG loopLI
h has aniteration edge set, denoted

IE(LI
h).

An iteration edgeu→ v can belong to multiple iteration edge sets. In essence,

u→ v is a multi-edge such that the multiplicity ofu→ v is equal to the number of

iteration edge sets to which it belongs. For this reason, this chapter considers an IPG

I = 〈I,EI ∪{t→ s},s, t〉 to be amulti-digraph . (The additional edget→ s is included

to guarantee that the IPG is a maximalStrongly Connected Component(SCC), a

condition necessary to represent execution paths through circulations.)

Detection ofloop-entry and loop-exit edges for each IPG loopLI
h is achieved by

performing least-common ancestor queries onTC
L with the set offorward edges inEI .

There are two mechanisms by which edge frequencies in an IPG can be bounded.

The first is by counting the maximum number of times each executes duringtrace

parsing, resulting in afrequency bound. However, this potentially creates underesti-

mation because it relies more heavily on good quality testing to exercise the maximum

number of executions of each IPG edge.

The alternative is to obtainrelative bounds, which constrain execution of IPG loops

relative to the next outer nesting level. These can also be extracted by the trace parser

using structural properties ofI . However, we also allow for relative bounds supplied

by static analysis techniques [47, 52] (or via interaction with a user). As such bounds

are typically with respect to a CFG* loopLh, these can be subsequently transferred

onto the IPG loopLI
h.

5.2 Basic ILP of the IPET

Both Puschner and Schedl [95] and Li and Malik [71, 72, 74, 73] have proposed almost

analogous ways to reduce the WCET computation stage to an ILP. Each approach has

136 5.2 Basic ILP of the IPET

its merits. On the one hand, Puschner-Schedl presented a rigorous theoretical model

based on thecirculation problem [57] — which itself is a generalisation of thenet-

work flow problem [30, 57] — before transforming this into an ILP. They were first

to elaborate upon the disconnected circulation problem, which is especially problem-

atic in the IPG due to irreducibility, as discussed in Section 5.3. For this reason, and

to retain consistency, we attempt to use terminology and notation as presented by

Puschner-Schedl, only deviating as necessary. On the otherhand, Li-Malik presented

the ILP in a more descriptive manner, and thus we often digress to their explanations.

Furthermore, they discussed how to solve sets ofdisjunctive constraints, which are

normally needed when extra path information is included in the calculation.

The basic ILP produced by the IPET consists of the following components:

• An objective function.

• Program structural constraints.

• Capacity constraints.

• Non-negativity constraints.

5.2.1 The Objective Function

In general terms, a solution to an ILP minimizes or maximizesan objective function

composed ofn decision variables, subject to a number of constraints thatmust be

satisfied simultaneously. For the WCET problem, the objectivefunction models the

execution counts of IPG edges (i.e. these are the decision variables), which should be

maximized to deliver the WCET estimate.

Following is the objective function:

Z = ∑
u→v∈EI

wcet(u→ v)· f (u→ v) (5.1)

whereZ is the returned WCET estimate,wcet(u→ v) the WCET of an IPG edge

(derived from trace parsing), andf (u→ v) a non-negative execution count of an IPG

edge that is set by the ILP solver.

Note that, for an iteration edgeu→ v with multiplicity n, the objective function

5.2 Basic ILP of the IPET 137

containsn decision variables foru→ v, all of which have the same WCET.

5.2.2 Program Structural Constraints

These constraints represent the basic properties of program structure, intuitively stat-

ing that flow into a vertex equals flow out. These can be deriveddirectly from the IPG

and are stated formally as follows:

∀ v∈ I : ∑
p∈pred(v)

f (p→ v) = ∑
s∈succ(v)

f (v→ s) (5.2)

Note here the subtle difference between the network flow and the circulation prob-

lems. The flow conservation property of the network problem is applicable to all

vertices,exceptthe dummy verticess andt. However, the flow conservation property

of the circulation problem is applicable to all vertices because of the existence of the

edget→ s.

5.2.3 Capacity Constraints

As Li-Malik affirmed, the maximisation of (5.1) is∞ because eachf (u→ v) can

be assigned the value∞, i.e. each loop can iterate forever. Capacity constraints are

therefore needed which bound both the minimum and maximum execution count of

each edge. In the circulation problem, these capacity constraints are functionsb : EI →

R andc : EI → R such that:

∀ u→ v∈ EI : b(u→ v)≤ f (u→ v)≤ c(u→ v) (5.3)

138 5.2 Basic ILP of the IPET

For an IPG, the capacity constraints of eachu→ v∈ EI are defined as follows:

b(u→ v) =

1 if u→ v = t→ s,

0 otherwise.
(5.4)

c(u→ v) =

1 if u→ v = t→ s,

bmax(u→ v) otherwise.
(5.5)

wherebmax(u→ v) represents the maximum number of executions of an IPG edge in

a single execution. The upper capacity constraint on the dummy edget→ s is 1 to

indicate that the path through the procedure is executed once.

For maximum precision,bmax needs to be provided for each edge as this constrains

the valid execution paths further. However, the minimal information that we must

provide is a bound on each iteration edgeu→ v because these are the cycle-inducing

edges ofI — the solver can then determinebmax of other edges from the structural

constraints.

An iteration edgeu→ v is bounded as follows. LetLI
h be theinnermostIPG loop

such thatu→ v ∈ IE(LI
h) and assumebrel(h) is its relative bound, either obtained

through trace parsing or through static analysis; then,bmax(u→ v) = brel(h). However,

brel(h) is only relative to the next outer nesting level, thusbmax(u→ v) must also be

factored by the relative bounds on all outer loops, i.e.bmax(u→ v) is an upper capacity

constraint representing its worst-case number of executions. If the multiplicity of

u→ v is greater than one then all other decision variables foru→ v are set to 0. This

is because the upper capacity constraint onu→ v represents the maximum number of

executions ofu→ v across all IPG loops in which it is contained.

Further note that incorporating frequency bounds into the ILP offers better precision

as it constrains the execution count of an IPG edge to that only observed in testing.

As already noted above, the accuracy of frequency bounds depends on suitable testing

and coverage, although Chapter 6 will observe a marked improvement in the WCET

estimate when such bounds are incorporated.

5.2 Basic ILP of the IPET 139

5.2.4 Non-Negativity Constraints

The non-negative constraints state that the execution count of edges must never be

negative. That is,f (u→ v)≥ 0, for all u→ v∈ EI .

5.2.5 Solution to the IPET

The basic ILP is therefore formed of Equations (5.1), (5.2),and (5.15). In solving this

model via standardLinear Program (LP) solvers, the WCET is returned, together

with a setting of the execution counts for each IPG edge in theworst case. In this way,

all paths are implicitly considered since the solver attempts different assignments to

the execution counts in determining the worst case [73]. In general, we cannot deter-

mine theexactlongest path from the execution counts because the order of execution

is missing.

5.2.6 An Example

We illustrate the computation of a WCET estimate from a basic ILP using Figure 5.1.

In particular, we compare the WCET estimate with that computedfor its CFG* be-

cause this allows us to describe the disconnected circulation problem in greater detail.

Figure 5.1(a) depicts a CFG* in which every basic block has been annotated with

its WCET. Also note that there are two loopsLb1 andLe1, whose relative bounds we

assume are 10 and 5, respectively.

Let us perform the calculation on the CFG* using a simple path-based approach1.

The longest path throughLb1 is either p : b1→ d1→ f1→ 2→ g1→ k1→ 3, or

p′ : b1→ d1→ h1
5
→ 1

5
→ i1

5
→ h1→ j1→ k1→ 3. Furthermore, the longestacyclic

path froms1 to t1 is q : s1→ a1→ b1→ c1→ t1. Following are the WCETs of these

paths:

1Producing the ILP of the CFG* causes unnecessary clutter andthe reader can easily verify that both
a path-based calculation and an ILP deliver the same WCET estimate.

140 5.2 Basic ILP of the IPET

Figure 5.1. Example to Demonstrate an ILP for an IPG.

7

6

5

20

15

10

5

3

10

3

s1

t1

12

3

a1

b1

c1 d1

f1

g1

h1

i1

j1

k1

(a) The CFG*.

s1

t1

1 2

3

e1

e2

e3

e4

e5e6

e7

e8

e9

e10

e11

e12

(b) The IPG.

IPG edgeu→ v B(P(u→ v)) wcet(u→ v)
e1 {a1,b1,d1,h1} 32
e2 {a1,b1,d1,h1, j1,k1} 41
e3 {a1,b1,d1, f1} 42
e4 {a1,b1,c1} 18
e5 {g1,k1} 21
e6 {i1,h1, j1,k1} 24
e7 {i1,h1} 15
e8 {b1,d1,h1} 27
e9 {b1,d1,h1, j1,k1} 36
e10 {b1,d1, f1} 37
e11 {b1,c1} 13
e12 λ 0

(c) Data associated with IPG edges.

5.2 Basic ILP of the IPET 141

Path WCET

p 58

p′ 111

q 18

Evidently, the worst-case path through the CFG* is either 10p+ q or 10p′+ q.

Simple arithmetic shows that 10p′+q is the chosen path with anaccurateWCET of

1128.

The IPG resulting from this CFG* is depicted in Figure 5.1(b),including the dummy

edget1→ s1. Observe that there is a unique sequence of basic blocks on each ipoint

transition, i.e. the instrumentation profile is path reconstructible. Let us therefore

consider the WCET of each IPG edgeu→ v to be the sum of the WCET of each basic

block in the setB(P(u→ v)). This information is displayed in Figure 5.1(c) in which

the edget1→ s1 has a WCET of 0 as its path expression is empty.

Let us provide upper capacity constraints on the iteration edges of the IPG by

transferring the relative bounds of the CFG* loops onto the corresponding IPG loop.

For the inner IPG loop,IE(LI
h1

) = {e7}. According to Equation (3.3) (in Chap-

ter 3), the relative bound ofe7 is 4 becauseLh1 has a relative bound of 5. Therefore,

c(e7) <= 4∗10= 40 asLI
h1

is nested inLI
b1

, the latter which has a relative bound of

10. For the outer IPG loop,IE(LI
b1

) = {e8,e9,e10}. As the relative bound ofLb1 is 10,

these edges have a relative bound of 9, which is also their upper capacity constraint.

These observations lead to the following ILP:

142 5.2 Basic ILP of the IPET

32e1+41e2+42e3+18e4+21e5+24e6+15e7+27e8+36e9+37e10+13e11+0e12

(5.6)

e1 +e2 +e3 +e4 = e12 (5.7)

e5 = e3 +e10 (5.8)

e6 = e4 +e11+e7 (5.9)

e8 +e10+e11 = e2 +e5 +e6 (5.10)

e12 = e4 +e11 (5.11)

e12 = 1 (5.12)

e7 <= 40 (5.13)

e8 +e9 +e11 <= 9 (5.14)

The objective function is Equation (5.6). Structural constraints are Equations (5.7)

through (5.11), which can be generated directly from the IPG. Upper capacity con-

straints are Equations (5.12) through Equation (5.14) in which Equation (5.12) states

that the procedure is executed once.

Solving this ILP returns the following non-zero execution counts of edges:

Edgeu→ v f (u→ v)

e3 1

e5 10

e7 40

e10 9

e11 1

e12 1

Therefore, the WCET estimate is(1∗42)+ (10∗21)+ (40∗15)+ (9∗37)+ (1∗

13)+(1∗0) = 1198. As both the CFG* and the ILP contain the same timing informa-

tion, we may conclude that this is an overestimation. The execution path through the

IPG that these execution counts induce is exhibited by the thick lines in Figure 5.1(b).

Clearly, this is not a feasible execution path ase7 is completely disconnected. This is

the sole cause of overestimation, the reasons for which are explored further in the next

5.3 Inaccuracies in the Basic ILP: Disconnected Circulations 143

section.

5.3 Inaccuracies in the Basic ILP: Disconnected

Circulations

Despite the fact that the basic ILP produced by the IPET always returns an upper

bound on the WCET — thus conforming with the safety requirementof WCET anal-

ysis — the previous example demonstrated that it can be subject to unnecessary pes-

simism. This is because initial reduction to a circulation problem does not precisely

characterise the set of execution paths through the IPG.

In particular, the basic ILP models a number of “self-contained” circulations, i.e.

loops. As the ILP solver can satisfy all upper bounds on capacity constraints simul-

taneously, an inner circulationf will become disconnected from the execution path

selected through its outermost circulationf ′ unlessthe longest path throughf ′ always

includes f . For example, in Figure 5.1(b), the iteration edgee7 is disconnected be-

cause the longest path through its outermost circulation does not include execution of

1, i.e.wcet(e5)+wcet(e10) = 21+37> wcet(e6)+wcet(e8) = 24+27.

Puschner-Schedl termed this thedisconnected circulation problem(which was not

discussed by Li-Malik) and gave the following formal description. Let I = 〈I,EI ∪

{t→ s},s, t〉 be an IPG and letf be a circulation inI . The IPGI f = 〈I,E f
I ,s, t〉,

whereE f
I = {u→ v∈ EI | f (u→ v) > 0}, is called the circulation subgraph. Then, the

execution counts returned by the ILP solver do not form a structurally feasible path —

and hence lead to overestimation — wheneverI f is not a SCC.

As Puschner-Schedl proved, the disconnected circulation problem can be solved by

relative capacity constraints, which replace the capacity constraints and essentially

constrain the execution count of subgraphs relative to their outer loop-nesting level.

To this end, it is necessary to identify the set ofimplicating edgesEimp ⊂ EI for

each IPG loopLI
h in I . An edgeu′→ v′ ∈ Eimp implies the execution ofLI

h provided

u′→ v′ /∈E(LI
h) and every execution path containingu′→ v′ contains at least one edge

u→ v∈ E(LI
h).

144 5.4 Evaluation

The implicating edges forLI
h are either its loop-entry edges or its loop-exit edges

because either of these sets “imply” that the loop in question has executed. However, it

is possible that an IPG loop has empty sets of loop-entry and loop-exit edges according

to Definition 9 (in Chapter 3). For instance, this arises when an instrumentation profile

is not path reconstructible. In this case, the implicating edges are the iteration edges

from the next outer-nesting level ofLI
h for which a subset ofV(LI

h) are destinations.

Given the implicating edges for each IPG loop, the relative capacity constraints can

be formally expressed as follows:

∑
u→v∈IE(LI

h)

f (u→ v)◦ ∑
u′→v′∈Eimp

ki· f (u
′→ v′) (5.15)

where◦ ∈ {<,≤,=} and at least oneki is greater than zero.

To demonstrate relative capacity constraints, let us return to the example of Fig-

ure 5.1 and observe that:

• The set of implicating edges forIE(LI
h1

) is {e6}.

• The set of implicating edges forIE(LI
b1

) is {e1,e2,e3}.

Since 10 and 5 are the relative loop bounds forLb1 andLe1, respectively, following

are the relative capacity constraints on these iteration edge sets:

e7 <= 4e6 (5.16)

e8 +e9 +e11 <= 9e1 +9e2 +9e3 (5.17)

Substituting these constraints for Equations (5.13) and (5.14) in the ILP results in

an accurate WCET estimate of 1128.

5.4 Evaluation

In this section, we evaluate the remodelled IPET by re-considering the synthetic ex-

ample program introduced in Section 4.6, thus allowing a comparison between the

precision of the two different calculation engines that operate on the IPG. Recall that

5.4 Evaluation 145

we instrumented the program according to two particular instrumentation profiles so

that we could evaluate the sensitivity of the analysis to thelocations of ipoints.

Figure 5.2. Example Program (Same as Figure 4.16).

s10

t10

a10

b10

c10d10

e10 f10

g10 h10

(a) The CFG.

0 5 6 04

6106

8

9

78

(35) (35) (10)

(35)(35)(35)

(35) (21)

(35)

(30)

ALT1

SEQ1

LOOP1

SEQ2

LOOP2

s10 t10a10 b10

b10

c10

d10

e10

e10

f10

g10

h10

(b) The AST.

Figure 5.2 repeats the program under consideration, in bothCFG and AST formats,

for ease of reference. Recall that we assumed the WCETs of basic blocks (displayed

below each basic block in Figure 5.2(b)) had been given and that the loop bounds

were 5 and 10 forLe10 andLb10, respectively. An accurate WCET estimate of 1065

was calculated after performing the calculation on the AST using the timing schema

proposed in [88].

5.4.1 Instrumentation Profile One

The CFG* and the IPG constructed from the assumed instrumentation profile are again

depicted in Figure 5.3. Recall that, because the CFG* has been generated from the

CFG, the loop bounds from the CFG effectively transfer onto theCFG*.

Further recall that, because the instrumentation profile ispath reconstructible, we

considered the WCET of each IPG edgeu→ v to be the sum of the WCET of each

basic block in the setB(P(u→ v)). For example, becauseB(P(s10→ 100)) = {a10,

146 5.4 Evaluation

Figure 5.3. Instrumented Program from Figure 5.2 to Evaluate the IPET
(Same as Figure 4.17 without Itree).

s10

t10

100 101

102

a10

b10

c10d10

e10 f10

g10 h10

(a) The CFG*.

s10

t10

100 101

102

e100
e101

e102

e103

e104

e105

e106

e107

e108
e109

e110

e125

(b) Resultant IPG.

29e100+30e101+35e102+15e103+15e104+21e105+

24e106+25e107+30e108+10e109+6e110+0e125
(5.18)

e100+e101+e102+e103 = e125 (5.19)

e105 = e100+e106 (5.20)

e110 = e101+e107 (5.21)

e106+e107+e109 = e102+e105+e100 (5.22)

e125 = e103+e109 (5.23)

e125 = 1 (5.24)

e106+e107+e108 <= 9e100+9e101+9e102 (5.25)

e104 <= 4e105 (5.26)

(c) The ILP created from the IPG.

5.4 Evaluation 147

b10, d10, e10}, the WCET ofe100= 5+6+10+8= 29. Furthermore, we also assumed

that the loop bound supplied for each CFG* loop is transferredonto its corresponding

IPG loop.

This timing information leads to the ILP shown in Figure 5.3(c) in which: Equa-

tion (5.18) is the objective function; Equations (5.19) through (5.23) are structural

constraints; Equations (5.25) and Equation (5.26) are relative capacity constraints; and

Equation (5.24) is the capacity constraint bounding execution through the procedure.

Solving this model by means of an ILP solver returns the following non-zero exe-

cution counts of edges:

Edgeu→ v f (u→ v)

e125 1

e100 1

e105 10

e104 40

e106 9

e109 1

Therefore, the WCET estimate is(1∗0)+(1∗29)+(10∗21)+(40∗15)+(9∗24)+

(1∗10) = 1065. As this was the value computed from the AST, we may conclude that

it is accurate. More important is that, in comparison to the Itree, which generated a

WCET estimate of 1080, there is no pessimism in the ILP. This is because the Itree

cannot adequately model the irreducible IPG loopLI
b10

consisting of iteration edges

{e106,e107,e108}, in contrast to the ILP which simply models the execution counts.

5.4.2 Instrumentation Profile Two

The CFG* and the IPG constructed from the second instrumentation profile are again

depicted in Figure 5.4. Recall that the CFG* in Figure 5.4(a) issimilar to that in

Figure 5.3(a) except that ipoint 102 has effectively been moved to the new location

occupied by ipoint 105. Whilst evaluating the Itree, we observed that this slight mod-

ification to the instrumentation profile resulted in a WCET estimate of 1155, adding

148 5.5 Discussion

more pessimism to the analysis.

The corresponding ILP is shown in Figure 5.4(c) in which: Equation (5.27) is the

objective function; Equations (5.28) through (5.32) are structural constraints; Equa-

tions (5.34) and Equation (5.35) are relative capacity constraints; and Equation (5.33)

is the capacity constraint bounding execution through the procedure.

Solving this model by means of an ILP solver returns the following non-zero exe-

cution counts of edges:

Edgeu→ v f (u→ v)

e126 1

e111 1

e115 10

e118 40

e120 9

e121 1

Therefore, the WCET estimate is(1∗ 0) + (1∗ 29) + (10∗ 15) + (40∗ 25) + (9∗

10)+(1∗6) = 1065. Once more we observe that there is no pessimism in the ILP. In

particular, the IPET is not sensitive to the locations of ipoints.

5.5 Discussion

Puschner-Schedl also detailed another inaccuracy in the basic ILP in that, although

the execution path induced by the returned execution countsis connected, it is in-

feasible. Both Puschner-Schedl and Li-Malik have describedhow to include more

sophisticated path data, e.g. mutually inclusive and exclusive paths, to constrain the

feasible execution paths further.

However, we have not considered how to include such additional constraints in our

remodelled IPET. There are a couple of reasons for this. First, we have no mechanism

by which such data are collected. On the one hand, our trace parser (described in Sec-

tion 3.5.2) only collects frequency bounds on the IPG edges,but without correlation to

5.5 Discussion 149

Figure 5.4. Second Instrumentation Profile on Program from Figure 5.2 to
Evaluate the IPET (Same as Figure 4.18 without Itree).

s10

t10

103

104

105

a10

b10

c10d10

e10

f10

g10 h10

(a) The CFG*.

s10

t10

103

104

105

e111

e112

e113

e114

e115
e116

e117 e118

e119

e120

e121

e122

e123

e124

e126

(b) Resultant IPG.

21e111+30e112+15e113+30e114+8e115+39e116+24e117+15e118+

46e119+37e120+31e121+22e122+16e123+31e124+0e126
(5.27)

e111+e112+e113 = e126 (5.28)

e115+e116+e117 = e111+e122+e120 (5.29)

e119+e120+e121 = e115 (5.30)

e122+e123 = e112+e116+e119 (5.31)

e126 = e117+e121+e123+e113 (5.32)

e126 = 1 (5.33)

e118 <= 4e115 (5.34)

e114+e116+e119+e120+e122+e124 <= 9e111+9e112 (5.35)

(c) The ILP created from the IPG.

150 5.6 Summary

other IPG edges. On the other hand, assuming static analysiscould provide such data

(with respect to basic blocks), we cannot yet transfer theseonto the IPG because our

HMB framework does not compute path expressions of IPG edges(see Clarification 6

in Chapter 3).

Another issue with path constraints is that they typically cross procedure bound-

aries. Recall, however, that our calculation engine (described in Section 3.5.3) modu-

larises the calculation of each context due to master ipointinlining. Although this is

not an issue for our tree-based calculation engine (becauseit cannot handle such con-

straints) incorporation into the IPET would require a different inlining mechanism.

For these reasons, path-related constraints are considered beyond the scope of this

thesis.

5.6 Summary

Programs that are arbitrarily instrumented often create irreducibility in the IPG, even

if the underlying graph-based model of the program (the CFG*)is reducible. This

is particularly problematic for the tree-based calculation engine proposed in Chap-

ter 4 since the hierarchical representation must trade space overheads against loss of

precision. One way to avoid such a trade-off is to assume control of the instrumen-

tation profile and guarantee well-structured IPGs. However, this restricts the type

of instrumentation employed (normally software so that an automatic tool can place

ipoints carefully) and generally prohibits the use of state-of-the-art instrumentation

profiles [2, 8, 65, 116]. Both of these limitations ultimatelycomplicate re-targeting of

our HMB framework to new systems.

In order to avoid pessimistic WCET estimates arising from pathmodelling, this

chapter demonstrated how to remodel the IPET so that it applies to the IPG. In this

context, we made the following additional contributions:

• We showed how to determine relative capacity constraints from the IPG using

its structural properties, which are needed to accurately characterise the set of

feasible execution paths through the IPG.

• We compared the IPET model with our tree-based calculation engine using the

5.6 Summary 151

same instrumentation profiles as in Section 4.6 and showed that the IPET always

returned a precise WCET estimate, in contrast to those computed through an

Itree. The main reason is that the IPET does not model programflow explicitly

and can therefore handle arbitrary irreducible IPGs without undue pessimism.

Although this is not a completely novel observation (similar weaknesses with

ASTs fuelled the migration to graph-based models and the IPET), what we may

conclude is that,for arbitrarily instrumented programs, the IPET should be the

calculation engine of choice when the IPG is the program model.

6 Prototype Tool and Evaluation

In Chapters 4 and 5 we evaluated theInstrumentation Point Graph (IPG) program

model against existing static analysis program models using both a tree-based ap-

proach and theImplicit Path Enumeration Technique (IPET). Although we were

careful to select code that is representative of real-worldapplications, a thorough

evaluation of the techniques proposed demands actual code executed with actual test

vectors. This issue is now addressed by evaluating a large-scale industrial application.

This chapter commences in Section 6.1 with an overview of ourprototype tool. Fol-

lowing that, Section 6.2 motivates our evaluation of an industrial case study — as op-

posed to the emerging WCET benchmarks [91] — and gives a detailed description of

its properties. Section 6.3 then presents four different experiments that we undertook

and evaluates the results computed through the prototype tool. Finally, Section 6.4

summarises our main findings.

6.1 Prototype Implementation

In order to automate the analytical process described in Chapters 3 through 5, we have

implemented these techniques in a prototype tool. The operation of the tool, its main

features, assumptions, and limitations can be summarised as follows:

• The first input to the tool is structural knowledge of the program at the interme-

diate code level. In particular, we require the following information:

– The basic blocks and the transitions amongst them.

– Which basic blocks are call sites, and moreover, the target (i.e. proce-

dure) of the call. This means that we cannot analyse programscontaining

153

154 6.1 Prototype Implementation

function pointers. Also recall that we assume there are no cycles in the

call graph (see Definition 11 in Section 3.5), thus no tool support is yet

available for programs containing recursion.

– Which basic blocks containinstrumentation points (ipoints) and the trace

identifier associated with each ipoint (to enable trace parsing). This sub-

tly implies that we assume no control over the assignment of trace iden-

tifiers to ipoints; consequently, we must also assume that the assignment

mechanism does not result in an IPG becoming a Non-Deterministic Finite

Automata (NDFA), otherwise our trace parsing mechanism halts. Further-

more, we do not yet support other tracing mechanisms provided by logic

analysers or, for example, Nexus [1].

The reason that the tool requires information about the program in this form

is that, for the industrial application under analysis, allobject code operations

had to be stripped out before it could be released off-site due to the sensitive

nature of the application. Therefore, we have no knowledge of the Instruction

Set Architecture (ISA) and instead had to rely on a third-party tool1 to provide

the basic properties of program structure.

It is clearly a trivial programming task to extend the input of the tool to handle

object code of other ISAs. As we do not require a processor model, therefore,

porting to new architectures is relatively straightforward.

From this information, our tool constructs theCFG* (a data structure similar to

theControl Flow Graph) of each procedure together with the call graph of the

program. Master ipoint inlining is then carried out before building the IPG of

each procedure. As noted in Chapter 3, we assume that each CFG* is reducible

after master ipoint inlining in order to detect loops in the IPG. Currently, we

have implemented Havlak’s loop detection algorithm [49, 96], which identifies

both reducible and irreducible loops. We envisage that, in the future, we can

extend the IPG construction algorithm to handle both reducible and irreducible

CFG*s.

• The second input is a trace file, which then triggers trace parsing. The trace

1RapiTime produced by Rapita Systems Ltd. [77]

6.2 Properties of the Industrial Case Study 155

parser populates an internal database structure that stores both the WCETs of

IPGs transitions and the loop bounds of CFG* loops on a per context basis.

In addition, we also obtain theMeasured Execution Time(MET), which is

simply the maximum observed time from the start of a timing trace to the end;

this value is used as a comparison against the WCET estimate that our tool

computes.

• Both full context expansion and full context unification calculations are cur-

rently supported (see Section 3.5.3). To calculate a WCET estimate for each

context, the calculation engine can choose whether to use the tree-based cal-

culation engine (described in Chapter 4) or the remodelled IPET (described in

Chapter 5). To produce a solution from the Integer Linear Program (ILP) cre-

ated by the IPET, our tool connects to thelp solve library [13], which is

freely available under the GNU public license and is generally very fast.

We do not currently accept any path information from the user. This implies that

all loop bounds used in the calculation are obtained directly from trace parsing;

any loop not triggered during testing is therefore assumed to have a bound of

zero.

• Interaction between the user and the analysis engine is handled by a Graphical

User Interface (GUI). The GUI has been implemented using theplug-in archi-

tecture and Rich Client Platform (RCP) provided by Eclipse [103].

Interaction with the GUI allows the user to view a particularintermediate data

structures (e.g. the pre- and post-dominator trees), whichare displayed by con-

necting to the uDraw(Graph) API [118]. Furthermore, the GUIdisplays a sum-

mary of the WCET report, which gives individual WCET estimates ofindividual

procedures, their measured end-to-end execution times, and very basic coverage

derived from trace parsing, such as trace edge coverage.

6.2 Properties of the Industrial Case Study

For our evaluation, we have chosen to analyse an industrial application rather than the

WCET benchmarks[91] that have recently emerged. There are a couple of reasons for

156 6.2 Properties of the Industrial Case Study

this choice that are worth discussion.

First, we initially did run our analysis on a subset of the WCET benchmarks using

random testing and, in some cases, running the benchmark with its worst-case test

vector, e.g. using a reverse sorted array for thebubblesort application. We found

that our WCET estimates always bounded the MET. This is an expected result as we

combine smaller portions of the measurements in computing aWCET estimate —

thus our HMB framework can never produce a smaller value thanthe MET. However,

we are particularly interested in the sensitivity of the analysis to the coverage of proce-

dures/contexts and how expanding or unifying contexts affects the computed WCET

estimate. Most, if not all, of the WCET benchmarks are relatively small, i.e. they

only have a few procedures with a small number of procedure calls. We believe this

is one limitation of the current set of WCET benchmarks, mainlybecause the analysis

of contexts is pivotal to the accuracy of the WCET estimate withincreasingly larger

applications.

Second, it is very difficult to compare the WCET estimates computed by our tool

with those computed by others, even with access to the same set of benchmarks. This

is because, we would additionally need the same target hardware and the same com-

piler suite configured with the same options. Although the SimpleScalar toolset [7]

provides, in theory, such a suitable framework, we are not aware of any direct compar-

ison between existing WCET analysis tools using the same SimpleScalar configura-

tion. Rather, the SimpleScalar architecture is typically configured so as to isolate the

effect of a particular hardware feature, e.g. the instruction cache, to show the relative

improvement.

Finally, to reiterate the point made at the onset of this chapter, we want to evaluate

our HMB framework on an application for which we can neither control the properties

of the program nor disable particular hardware effects.

Unfortunately, for non-disclosure reasons, we are not ableto describe the function-

ality of the industrial application. Nor can we give a breakdown of the system prop-

erties as both the source code and details of the hardware architecture were withheld.

(It is worth stressing that no static analysis tool could analyse this application because

it is impossible to build a processor model.) However, what we are able to describe is

6.2 Properties of the Industrial Case Study 157

properties of the application that are derived from the CFG*s, the call graph, and the

trace file.

6.2.1 Structural Properties

Table 6.1 gives a summary of the main properties of the program, including its instru-

mentation.

In total there are 73 loops; thus, 42 are self-loops, many of which we believe are

array initialisations as they most often appear at the beginning of a procedure. There

is a maximum loop-nesting level of 2 for non-trivial loops. In general, there are only a

few loops with respect to the overall size of the application, which is quite a common

property in embedded software.

Property Total Instrumented
Procedures 223 105
Contexts 432 228
Non-trivial Loops 31 21
Basic Blocks 7010 958

Table 6.1. Structural Properties of Industrial Case Study.

Regarding the instrumentation profile, we had no control of where or how many

ipoints were inserted. However, the third-party tool, RapiTime [77], used to instru-

ment the application generally ensures that each procedurehas a single master entry

ipoint and a single master exit ipoint, i.e. 210 of the 958 ipoints are master ipoints.

From our understanding of the application, most of the procedures that were not in-

strumented are error-handling routines, which do not contribute to the execution time

during normal operation and are not instrumented as a result.

Observe that the instrumentation profile is very sparse. Thetotal number of basic

blocks across all instrumented procedures is 6488, thus≈ 15% of this number are

instrumented. We use this property to validate our claim that the IPG should be chosen

ahead of the CFG or the Abstract Syntax Tree (AST) in a HMB framework. Although

the instrumentation profile is not path reconstructible, every iteration of every CFG*

loop could be observed in a trace, thus bounds extracted fromtrace parsing are not

158 6.2 Properties of the Industrial Case Study

subject to pessimism (see Section 3.5.2). It is also worth noting that all of the IPGs

are well structured, i.e. the instrumentation does not create IPG irreducibility as each

header of a non-trivial loop (in the CFG) contains an ipoint.

6.2.2 Testing and Coverage Properties

Table 6.2 gives a summary of the main properties of testing and coverage as extracted

from trace parsing.

The trace file contains 97,528 traces, i.e. this is the number of test vectors, and the

longest MET observed in these traces is 127,373.

Clarification 9. We use the MET to evaluate the precision of the WCET estimate com-

puted through our tool. This has become best practice in the field of WCET analysis

as the actual WCET is non-computable in the general case.

Property Value
Test Vectors 97, 528
MET 127, 373
Procedures Covered 87
Contexts Covered 166
Non-trivial Loops Covered 11

Table 6.2. Testing and Coverage Properties of Industrial Case Study.

Observe from Table 6.1 that it is desirable for the test framework to cover all 118

procedures, all 228 contexts, and all IPG trace edges acrossall contexts. This would

increase our confidence in the WCET estimate (and indeed in the MET) because no

sections of code that potentially contribute to the WCET wouldremain uncovered.

From Table 6.2, we see that≈ 83% of procedures and≈ 73% of contexts were cov-

ered. Furthermore, after trace parsing, we counted the number of trace edges triggered

in each context and then calculated how many trace edges werecovered in each pro-

cedure. On average, across all 87 covered procedures,≈ 85% of trace edges were

covered, and across all 166 covered contexts,≈ 73% of trace edges were covered.

Finally, we note that only about half of the non-trivial loops were covered.

6.3 Experimental Set-Up and Results 159

Normally we would expect a better attainment of coverage, particularly because

functional coverage metrics attempt to cover every instruction at least once. From a

timing analysis perspective, we would especially prefer better coverage of the non-

trivial loops given that most of the (average-case and worst-case) execution time of

programs is spent in loops. However, we recall from Clarification 2 (in Chapter 2)

that these issues relate to WCET coverage and are considered beyond the scope of

the thesis. For this reason, we assume that testing is good enough in analysing this

application.

6.3 Experimental Set-Up and Results

We use the industrial application described in the previoussection to perform four

experiments which aim to validate particular hypotheses inthe thesis. Each of these

is now described, together with the results computed through our prototype tool.

6.3.1 Experiment 1: IPG versus CFG*

In Chapter 3, we motivated the introduction of the IPG programmodel by claiming

that, when instrumentation is sparse, calculation techniques on existing static anal-

ysis program models are subject to unnecessary pessimism (in a HMB framework).

We can validate this claim with the industrial application since it has been sparsely

instrumented.

To do this, we used the IPET on both the IPG and the CFG* (since the CFG* is con-

ceptually similar to the CFG) and then compared their WCET estimates. We initially

considered all contexts unified, but we shall consider expanded contexts shortly. The

IPET in particular was picked as we do not have a tree representation of the CFG*,

and moreover, it generally offers greater precision.

We constructed the objective function for the CFG* as follows:

• We retrieved the WCET of each basic blockb by taking the maximum observed

WCET amongst the ipoint transitions on whichb is executed unlessb is a call

160 6.3 Experimental Set-Up and Results

site2. In this case, as we construct one CFG* per procedure, the WCET ofb was

assigned the WCET of the procedure that it calls.

• Each ipoint was given a value of 0 as we do not quantify the impact of the probe

effect in this thesis — see Clarification 1 (in Chapter 2).

The bounds on CFG* loops were those obtained from trace parsing from the corre-

sponding iteration edge set. Because every iteration of every CFG* loop is observable

in a trace, these bounds are accurate provided testing has triggered the worst-case

number of iterations.

Table 6.3 gives the computed WCET estimates and the associated(rounded) pes-

simism relative to the MET (which is 127,373).

Program Model WCET Estimate +%
IPG 646, 392 408
CFG* 17, 471, 631 13, 617

Table 6.3. Results of Experiment One.

There are a couple of interesting observations from these results. First, the WCET

estimate computed from the CFG* is several orders of magnitude higher than that

computed from the IPG. One potential problem with this — besides giving overin-

flated values — is that the longest path identified can be biased towards procedures

that are sparsely instrumented rather than the procedures that actually contribute to the

WCET. Engineers often want to reduce the WCET by optimising code on the worst-

case path, thus identifying code that does not contribute toworst-case behaviour will

result in fruitless optimisation.

Second, the WCET estimate computed from the IPG is (approximately) a four-fold

overestimation. This contrasts with most results published in the literature, which

normally report little margin of overestimation. This is even more surprising given

that the program is structurally simple, only containing a few loops.

2The astute reader will recall that, in Clarification 6, we considered the computation of path expres-
sions beyond the scope of the thesis. The natural question toask, therefore, is how we obtained the
WCETs of basic blocks from ipoint transitions. In fact, our tool implements a more sophisticated
version of the data-flow framework that we presented in Chapter 3 to construct the IPG. Simple
extensions to the data-flow equations allow the basic blocksexecuted on each ipoint transition to be
computed during construction.

6.3 Experimental Set-Up and Results 161

We investigated the reason for the pessimism by examining the individual WCET

estimates of procedures compared with their METs. (As each procedure has a single

master entry ipoint and a single master exit ipoint, these METs could be extracted

by the trace parser in the same way that the MET of the program is extracted.) As

the number of procedures is large, we have selected a few procedures with different

properties and displayed their comparisons in Table 6.4.

Procedure Properties MET WCET estimate +%
1 SLC 242 242 0
2 SLC 544 544 0
3 SLC 1, 388 1, 673 21
4 SLC 19, 092 22, 158 16
5 One loop 25, 581 57, 700 126
6 SLC & many procedure calls44, 742 419, 862 838
7 SLC & many procedure calls 9, 668 38, 344 296
8 SLC & many procedure calls24, 549 58, 008 136
9 SLC & many procedure calls96, 600 565, 309 485

Table 6.4. Comparison of Measured Execution Times (MET) and WCET esti-
mates of Selected Procedures. SLC signifies Straight-Line Code.

Procedures 1 through 4 are leaves in the call graph and generally have extremely ac-

curate WCET estimates — the margin of overestimation is comparable to that reported

in the literature using the WCET benchmarks.

Procedure 5 is also a leaf in the call graph but the overestimation is more con-

siderable due to the loop. Observe that this is precisely theadvantage that a HMB

framework offers vis-a-vis an end-to-end testing strategy. That is, the latter relies on

a test vector to trigger the loop for its maximum number of iterations with worst-case

timing behaviour, whereas the HMB framework is able to piecethis information to-

gether from the smaller units of computation and the loop bounds provided. For this

reason, we may also infer that inserting ipoints in loops provides increased confidence

in the WCET estimate as there is less reliance on the test framework to trigger each

loop for its worst number of iterations.

Procedures 6 through 9 are relatively close to the root of thecall graph and do not

contain loops. Comparing their margins of overestimation with the other straight-line

code procedures (1 through 4), we observe a marked increase.The key difference

162 6.3 Experimental Set-Up and Results

is that the paths through these procedures contain many procedure calls. Therefore,

any overestimation in a callee is propagated into the caller, and as a consequence, the

overestimation widens as the calculation engine approaches the root. This explains

the pessimism in the IPG calculation as the program under analysis contains many

procedure calls.

6.3.2 Experiment 2: Context Expansion versus Context

Unification

The previous experiment suggested that how contexts are considered in the calculation

is pivotal to the accuracy of the WCET estimate. To quantify themargin of improve-

ment (if any), we also ran the WCET calculation engine on the IPGconsidering all

contexts expanded and all contexts unified; these are on opposite ends of the sliding

scale and therefore offer the best measure of comparison.

Table 6.5 gives the computed WCET estimates and the associated(rounded) pes-

simism relative to the MET (which is 127,373).

Contexts WCET Estimate +%
Unified 646, 392 408
Expanded 610, 814 378

Table 6.5. Results of Experiment Two.

As we can see, the unified calculation is tighter by a margin of≈ 30%, principally

because the unit of computation is more accurate and this propagates up the call graph.

Clearly, more significant improvements can be expected with more powerful context-

handling techniques. For example, on architectures with a cache, the first call to a

procedure often induces a greater WCET than on all subsequent calls due to cache

misses; contexts could thus be extended to distinguish between these cases.

6.3.3 Experiment 3: Itree versus the IPET

Chapters 4 and 5 presented a tree-based and an ILP-based calculation engine, respec-

tively, which operate on the IPG. We showed, by means of a synthetic, yet realistic,

6.3 Experimental Set-Up and Results 163

example that the IPET is generally less sensitive to the instrumentation profile. Here

we wish to compare the actual differences using real code with real numbers.

Table 6.6 gives the computed WCET estimates and the associated(rounded) pes-

simism relative to the MET (which is 127,373). We performed two types of IPET

calculations. The first one (referred to as “IPET”) was the simple ILP model with

structural constraints and relative loop bounds. The second one (referred to as “IPET-

Freqs”) integrated the maximum frequency of execution of trace edges (that were

extracted during trace parsing) as execution count constraints. We did this because

tree-based calculations cannot include extra path information and we wanted to eval-

uate its affect on the precision of the WCET estimate.

Calculation WCET Estimate +%
Itree 646, 392 408
IPET 646, 392 408
IPET-Freqs 566, 527 345

Table 6.6. Results of Experiment Three.

An interesting result is that both the Itree and the IPET calculations produced the

same WCET estimate. This is due to the fact that the instrumentation profile created

reducible IPGs. This reaffirms our earlier finding from Chapter 4 that the Itree can be

competitive with other calculation methods provided instrumentation is well placed in

loops.

On the other hand, the IPET-Freqs calculation offers much more precision than that

of the Itree, which is to be expected as the bounds on the execution counts essentially

constrain the feasible execution paths. Also observe that the tightness gained with

IPET-freqs outweighs than when considering expanded contexts (c.f. Table 6.5). Al-

though, in general, using frequency bounds creates the possibility of underestimation,

what we can infer is that the IPG can gain significantly from path information supplied

by a user or from conventional static analysis tools.

164 6.3 Experimental Set-Up and Results

6.3.4 Experiment 4: Sensitivity to Coverage

Our final experiment explored how sensitive our HMB framework is to coverage. In

particular, we wanted to know how many procedures had to be covered (and the num-

ber of test vectors required) to produce a WCET estimate that bounded the MET.

To do this, we stopped the trace parser once a particular timing trace covered a set of

(as yet uncovered) procedures and then performed the calculation with the timing data

retrieved until that point. We unified all contexts and used the basic IPET (without

frequency bounds), although the previous experiment suggests that we can expect the

same WCET estimates using the Itree.

Procedures coveredTest vectors MET WCET estimate +/-%
11 1 34, 643 48, 797 -62
11 3, 405 39, 928 77, 647 -39
38 3, 406 114, 403 323, 150 +154
39 3, 407 114, 403 377, 899 +197
48 3, 909 114, 403 377, 899 +197
54 3, 953 114, 403 394, 155 +209
56 4, 492 114, 403 402, 206 +216
59 4, 495 114, 403 402, 206 +216
60 5, 136 114, 403 536, 147 +321
62 5, 603 114, 403 541, 754 +325
68 6, 138 114, 403 542, 563 +325
71 6, 139 114, 403 542, 604 +326
73 6, 140 114, 403 542, 604 +326
75 8, 147 114, 403 549, 538 +331
76 13, 117 117, 762 580, 594 +356
78 15, 228 117, 762 581, 899 +357
79 30, 123 124, 163 598, 488 +370
80 72, 816 124, 163 610, 178 +379
82 72, 819 124, 163 610, 178 +379
87 76, 556 127, 373 613, 707 +382

Table 6.7. Results of Experiment Four.

Table 6.7 presents: the number of procedures covered in the increments observed;

the number of test vectors that achieved the given coverage;the MET after that number

of test vectors; the computed WCET estimate after that number of test vectors; and

the associated (rounded) optimism/pessimism in the WCET estimate relative to the

6.3 Experimental Set-Up and Results 165

longest MET (which is 127,373). The final row in the table has 87 covered procedures

as this was the maximum covered by the test vectors (see Section 6.2). Also note that

there is no increment in the number of procedures covered between the first and second

rows; we provided this additional row because this is the last number of test vectors

for which our tool underestimates the longest MET.

Figure 6.1 is a graphical representation of the results. We have also plotted the

longest MET (of 127,373) so that the differences between them can be visualised.

0

100000

200000

300000

400000

500000

600000

700000

0 20 40 60 80 100

Procedures Covered

T
im

e
 i
n

 C
y

c
le

s

MET

WCET estimate

Longest MET

Figure 6.1. Graphical Representation of Experiment Four.

There are several interesting observations from these results. First, our HMB tool

only underestimates whilst there is≈ 13% procedure coverage (of those that can be

covered) and≈ 3% of the total number of test vectors have been employed. These are

very small numbers, however, and it is unlikely that any system would be deployed

with such little testing. On the other hand, end-to-end testing is much more sensitive

to coverage as the longest MET is not discovered until 100% procedure coverage and

≈ 78% of the total number of test vectors have been employed.

Second, our HMB tool benefits much more from increasing coverage than does end-

to-end testing. For example, the MET in the interval of 38−75 covered procedures

remains the same, but in the same interval, the WCET estimate changes considerably.

166 6.4 Summary

Especially note the difference between the WCET estimate at 59covered procedures

and at 60 covered procedures, i.e. where the covered procedures only differ by one.

An interesting future direction of research, therefore, isto guide the test framework to

procedures where execution time becomes concentrated. Clearly, this is not possible

when only measuring the MET, which highlights another potential advantage of a

HMB framework.

6.3.5 Discussion

Analogously to similar experiments reported elsewhere [26], the major bottleneck in

our experiments was trace parsing, which took approximately 8 minutes on a Pentium

4 3.2 GHz processor with 512 MB of RAM. This is not entirely surprising since the

trace file is 177 MB, thus just reading from the file (without parsing the data) consumes

considerable time, about one third of the 8 minutes. Moreover, our implementation

has not been optimised, and we therefore envisage marked improvements with a more

thoughtful implementation.

Observe, however, that this motivates sparse instrumentation further as trace file

sizes shrink and we can analyse more timing traces with the same overhead. Indeed,

this was one of the motivations for the work in [8, 65], which developed an optimal

instrumentation profile, i.e. fewest number of ipoints, whilst retaining path recon-

structibility.

Regarding the calculation, we found that solution times dwarfed the complexity of

trace parsing. That is, each modularised Itree or IPET calculation took milliseconds.

For the IPET, this is because the ILP problems collapse to Linear Program (LP) prob-

lems, which have fast solutions as discussed in Chapter 5.

6.4 Summary

This chapter analysed a large-scale industrial application that had been executed using

real test vectors on the target hardware. The analysis was automated by means of a

prototype tool that implemented the techniques described in Chapters 3 through 5.

6.4 Summary 167

We performed four different experiments with the industrial application and con-

cluded the following:

• When instrumentation is sparse and units of computation are extracted from a

trace file, calculations on the IPG program model are much more accurate than

those on conventional static analysis program models, suchas the CFG. This is

due to the fact that there is no pessimism in the unit of computation.

• For large applications, how contexts are handled is pivotalto the accuracy of

WCET estimates. Calculations on procedures near the leaves of the call graph

generally have very good precision but the overestimation widens as the calcu-

lation engine reaches the root due to an accumulation of pessimism.

• The tree-based calculation engine proposed in Chapter 4 can be competitive

with the remodelled IPET described in Chapter 5. In particular, we confirmed

the earlier finding (in Chapter 4) that the key to precise Itreecalculations is well

instrumented loops (in the structural sense).

• The biggest factor in decreasing the WCET estimate was the incorporation of

frequency bounds extracted from trace parsing. Extra path information can

therefore aid calculations on the IPG significantly.

• Increasing the amount of code coverage and test vectors doesnot necessarily

increase confidence in the longest end-to-end WCET, but our HMBframework

benefits considerably as the smaller units of computation (i.e. the ipoint transi-

tions) are stressed further.

• The majority of the analysis time in HMB frameworks is lockedin trace parsing.

Therefore, it is desirable to reduce the size of timing traces by means of sparser

instrumentation profiles, allowing more timing traces to beprocessed (without

increasing overheads) and thereby increasing the confidence in the WCET esti-

mate.

7 Conclusions and Future Work

In this final chapter we draw some conclusions and summarise the main contributions

of the thesis. We also point out several areas of future work in the HMB direction.

7.1 Summary of Contributions

In Chapter 1, we motivated the development of aHybrid Measurement-Based(HMB)

framework by noting two key points:

1. Current static analysis techniques requirepredictabilityat all levels of the anal-

ysis. However, more advanced processors are infiltrating the embedded systems

market, and these cause varying degrees of unpredictability. To manage com-

plexity, the only solution is to make conservative assumptions about processor

operation, which ultimately translates into an overestimation of the WCET.

2. Existing end-to-end testing techniques do not provide anaccurate estimate of

the WCET because they only targetfunctionalproperties of thesoftware. There-

fore, the effect of hardware is neglected, which is especially deficient given the

influence of advanced processors on the execution time of a program.

In Chapter 2, we gave a detailed account of the state-of-the-art in WCET analy-

sis and reviewed existing testing and coverage practices. We observed that, although

great strides have been taken in processor modelling, the effect of the operational in-

teraction between disparate units (e.g. a branch predictorand a cache) largely remains

untouched. Furthermore, most effort has been concentratedon modelling the CPU,

neglecting the impact of peripheral devices, such as bus contention. For these reasons,

169

170 7.1 Summary of Contributions

some researchers are now advocating the design of more predictable hardware or are

focusing their attention on reducing the WCET.

On the other hand, we also highlighted the deficiency of existing coverage metrics

that are employed in end-to-end testing to compute a WCET estimate. As a result,

HMB techniques have started to emerge. However, we noted that such techniques

currently require very specificinstrumentation point (ipoint) placement (to avoid

pessimistic WCET estimates) because they use an existing static analysis program

model — either theControl Flow Graph (CFG) or theAbstract Syntax Tree (AST)

— in the calculation stage. Not only does this limit the type of instrumentation em-

ployed (i.e. software), it prevents usage of state-of-the-art instrumentation profiles

that have been developed to reduce ipoint overheads.

Based on these observations, we motivated the development ofa new HMB frame-

work that allows forarbitrary instrumentation. In the context of this HMB framework,

we made the following contributions:

• In Chapter 3, we introduced theInstrumentation Point Graph (IPG) as a novel

program model, which models the transitions among ipoints instead of the tran-

sitions among basic blocks. This simple paradigm shift allows timing data ex-

tracted from timing traces (produced when the program is executed in the test

phase) to be mapped directly onto the IPG, avoiding any overhead associated

with basic blocks as a consequence.

We showed how to construct and analyse structural properties of the IPG using

theCFG* , an intermediate form similar to the CFG. In particular, we demon-

strated how to use the structural connection between a reducible CFG* and an

IPG in order to identify arbitrary irreducible loops in the IPG. This relation also

provides the mechanism by which loop bounds obtained through static analy-

sis [47, 51] can be transferred onto the IPG. However, because such analyses

can only ever be semi-automatic at best due to the Halting problem, we also

presented a way to extract loop bounds from timing traces using properties of

the IPG. Although the accuracy of such bounds is mainly tied to the amount

of testing undertaken (bounds can be underestimated), we also showed that the

instrumentation profile can be equally as influential (bounds can be overesti-

7.1 Summary of Contributions 171

mated).

The final contribution of this chapter was the analysis of programs with inter-

procedural relations. We described how to virtually inlinea subset of the ipoints

from each callee into the caller (but none of the transitions) so that thetrace

parser has visibility to procedure calls and returns. We showed howto extract

timing data from timing traces on a per context basis, as opposed to a per proce-

dure basis, using the set of IPGs (one per procedure). This allows the precision

of the analysis to be determined off-line as the calculationengine can unify or

expand contexts as and when requested.

• Chapter 4 presented a tree-based calculation engine that operates on theItree, a

novel hierarchical representation of the IPG which models traditional high-level

constructs such as sequence, selection, and iteration.

We presented an algorithm to decompose the IPG into Itree form. For these

purposes, we introduced the notion ofacyclic reducibility , which basically de-

cides if acyclic regions in the IPG can be decomposed hierarchically. This al-

lows branch and merge vertices to be categorised either as acyclic-reducible or

acyclic-irreducible, detection of which can prevent redundant traversals of the

IPG that instead produces a forest of Itrees, anIforest.

We presented an algorithm that decomposes the IPG into an Iforest. The algo-

rithm is not restricted to a particular class of IPGs; that is, it handles arbitrary

instrumentation even if that produces arbitrary irreducible regions in the IPG.

The only restriction is that the CFG* (from which the IPG is constructed) is

reducible, but the algorithm supports multiple exits out ofloops and multiple

loop-back edges commonly associated withbreak andcontinue statements,

respectively.

We introduced the timing schema that drives the calculationover individual

Itrees in the Iforest and then evaluated our tree-based calculation engine by con-

sidering an example program instrumented with two different (sparse) instru-

mentation profiles. We concluded that, when the atomic unitsof computation

are derived from trace parsing, the Itree generates more accurate WCET esti-

mates than the traditional AST-based calculation. Moreover, the locations of

172 7.1 Summary of Contributions

ipoints with respect to the program structure

Our tree-based calculation is sensitive to the locations ofipoints because of the

problem of irreducibility. This forces the Itree into making a trade-off between

the space overhead incurred and the precision of the analysis.

• Chapter 5 remodelled theImplicit Path Enumeration Technique (IPET) so

that it applies to the IPG. In particular, we showed how to model relative capac-

ity constraints for the IPG since these are needed to ensure that the execution

counts returned by the ILP solver form a structurally feasible execution path.

Finally, we evaluated the IPET using the same instrumentation profile as in

Chapter 4 and concluded that, because it can handle arbitraryirreducibility with-

out undue pessimism, the IPET should generally be the chosencalculation tech-

nique when the IPG is the program model.

• Chapter 6 described the implementation of the prototype tooldeveloped to sup-

port the techniques described in Chapters 3 through 5. We usedthe prototype

tool to analyse a large-scale industrial application that had been executed using

real test vectors on the target hardware.

We performed four different experiments with the industrial application and

concluded the following:

– The IPG offers better precision than existing static analysis program mod-

els when instrumentation is sparse and units of computationmust be gleaned

from timing traces.

– How contexts are handled plays a crucial role in the accuracyof WCET

estimates generated from the IPG. In general, procedures near the leaves

of the call graph have very good precision but the overestimation widens

as the calculation engine reaches the root due to an accumulation of pes-

simism.

– The tree-based calculation engine can be competitive with the remodelled

IPET on an industrial-strength application. The key, in particular, is to

place instrumentation with structural properties of the IPG in mind, i.e. to

avoid irreducibility.

7.2 Future Work 173

– Confidence in the WCET estimate computed by our HMB framework in-

creases with better code coverage and an increasing number of test vectors.

– The biggest bottleneck in our HMB framework is attributed totrace pars-

ing. This motivates a reduction in the size of timing traces by means of

sparser instrumentation profiles so that more timing tracescan be pro-

cessed whilst keeping overheads low.

The more general conclusion that we may draw from the thesis is that the instrumen-

tation profile employed largely determines the accuracy of WCET estimates computed

through a HMB framework. On the one hand, sparse instrumentation places a greater

burden on the testing front end because it is important to stress the WCETs of the

units of computation (i.e. the ipoint transitions). Underestimation is always possi-

ble if coverage is insufficient because any analysis is tied to the accuracy of its input

parameters.

On the other hand, WCET estimates have the potential to be overestimated if testing

is good but ipoints are not well placed within loops. This is because loop bounds

automatically derived from the properties of the IPG can be overestimated, whilst

the tree-based calculation engine could produce a structurally infeasible path due to

irreducibility.

However, what this thesis has contributed is a fully automatic HMB framework

based on the IPG which allows programs to be instrumented as-is without causing any

additional pessimism in the units of computation. Providedtesting is good enough

and loop bounds are accurate, WCET estimates will therefore bemore accurate than

those computed through existing static analysis program models.

7.2 Future Work

Each of the following is a future direction of work:

• One of the main assumptions of the thesis was that a suitable test framework is

in place, including, in particular, an appropriate set of coverage metrics. To date,

all such coverage metrics have targeted the functional properties of a program:

174 7.2 Future Work

a stricter set of criteria, from the timing analysis perspective, would provide

greater confidence in the WCET estimate computed through our HMB frame-

work. We believe that anyWCET coveragemetric must, amongst others, take

the following three key considerations into account:

1. The structural properties of the instrumentation profile, and specifically,

whether it is path reconstructible or not. With the same number of ipoints,

it is possible to instrument a program in two different ways such that there

is a large disparity between the respective number of ipointtransitions to

cover, e.g. by instrumenting each basic block that is a leaf in the pre-

dominator tree [116]. Simply covering each edge in the IPG might there-

fore require different test cases.

If the instrumentation profile is not path reconstructible,particular transi-

tions could execute many different paths in the program. Notonly must the

test vectors attempt to exercise each such path, but they must also attempt

to stress the path in its worst-case architectural state.

2. The properties of the processor in conjunction with the types of instruc-

tions on each ipoint transition due to the effect of the hardware architec-

ture on the time each instruction takes to complete. For instance, transi-

tions including floating-point instructions would requirebetter coverage

on processors that employed a separate floating-point pipeline as opposed

to those which had no speed-up features (because all instructions would

have fixed execution times).

3. The context of execution so that call contexts can be expanded with suffi-

cient confidence in the WCET calculation stage. Obtaining poorcontext

coverage forces the calculation to unify contexts, generally resulting in a

more conservative WCET estimate.

Each of the above three points underline the message that WCET coverage met-

rics have very different requirements than existing functional criteria.

We believe in many cases that the IPG provides a suitable infrastructure for

which attainment of WCET coverage metrics can be measured, primarily be-

cause it contains the program properties of interest, e.g. the section of code

7.2 Future Work 175

executed and the types of instructions.

• Regarding procedure calls, we assumed that recursion and function pointers

were both absent. From our experience, there are a number of embedded sys-

tems that include these features, thus currently limiting our approach. We be-

lieve that function pointers can be handled by patching the call graph during

trace parsing when the targets of calls become known.

• Our trace parsing mechanism required each IPG to be a Deterministic Finite

Automata (DFA). This generally requires a larger number of trace identifiers

and sometimes forces ipoints to particular locations (at procedure call sites) to

avoid Non-Deterministic Finite Automatas (NDFA). However, the number of

trace identifiers can be restricted by properties of the tracing mechanism, such

as the number of pins available on an external port. Extending the analysis to

handle NDFAs would, in theory, overcome these issues.

Another future area of research linked to trace parsing is the derivation of non-

functional properties from timing traces. Currently, we only retrieve loop bounds,

but there is no reason to suggest that infeasible path information cannot also be

gleaned. Indeed, such information could then be fed back into a static analysis

tool, or related to the user, for subsequent verification.

• Concerning the IPET and static analysis. Many static analysis techniques de-

rive quite sophisticated flow facts for the program under analysis, and generally,

the IPET is the only calculation technique that can suitablymodel such con-

straints. Although the mapping is normally straightforward when the CFG pro-

gram model is chosen, the IPG adds another layer of complexity because basic

blocks appear on different ipoint transitions. The biggestfactor in decreasing

the WCET estimate was the incorporation of frequency bounds extracted from

trace parsing. Extra path information can therefore aid calculations on the IPG

significantly.

A first step towards being able to transfer these data onto theIPG is to construct

the path expressions of IPG edges, which we did not consider.We believe that

the work in [102, 112] can be modified for these purposes as they have showed

how to construct the path expressions on reducible flow graphs. However, the

176 7.3 Final Remarks

main difference between that problem and the path expression problem on the

IPG is the latter only considersipoint-freepaths between ipoints, whereas the

former considers all paths between vertices.

7.3 Final Remarks

This thesis did not set out to suggest that HMB analysis can provide upper bounds

on the WCET. Rather, the starting point of the thesis was that, because modelling

advanced processors is complex, existing static analysis techniques can greatly over-

estimate the WCET. With this motivation in mind, we developed aHMB framework

based on the IPG that combines the relative strengths of static analysis and existing

testing practices, thus avoiding processor modelling altogether. This thesis contends

that the IPG is the most suitable program model when computing WCET estimates

through a HMB approach.

A Terminology and Notation

Here we review core graph and tree terminology and notation since they are not stan-

dardised in the literature. We also clarify some set notation used throughout the text.

A.1 Basic Set Notation

For a setS, we denote its cardinal as|S|. Thesingleton setShas a unique element; we

sometimes abuse notation and useS to indicate the unique elements∈ S. Thepower

setof a setS, i.e. the set of all subsets ofS, is denoted 2S.

A multiset is an unordered collection of elements where an element can occur as

a member more than once. Themultiplicity of an elementsi in a multisetS is the

number of timessi occurs inS.

A.2 Basic Graph Terminology

A graph G = 〈VG,EG〉 is a pair of finite setsVG andEG, calledvertices andedges,

respectively. We will denote the vertex and edge sets byV(G) andE(G) when context

does not disambiguate these sets amongst several graphs. There are two types of

graphs:

• An undirected graphG = 〈VG,EG〉 has an edge setEG = {{u,v}|u,v∈VG}.

• A (forward) directed graph (digraph) G = 〈VG,EG〉 has an edge setEG =

{(u,v)|u,v ∈ VG}. We sometimes denote a directed edge(u,v) asu→ v and

say thatu andv areadjacent, u is thesource, andv is thedestination. For any

u∈VG:

177

178 A.2 Basic Graph Terminology

– pred(u) = {v|(v,u) ∈ EG} denotes the set of(immediate) predecessors.

A mergevertexu is one for which|pred(u)|> 1.

– succ(u) = {v|(u,v) ∈ EG} denotes the set of(immediate) successors. A

branch vertexu is one for which|succ(u)|> 1.

Following are two derivatives of a digraphG = 〈VG,EG〉:

– Theunderlying undirected graph G′ = 〈VG,EG′〉 has an edge setEG′ =

{{u,v}|(u,v) ∈ EG∨ (v,u) ∈ EG}.

– The reversedigraphG′ = 〈VG,EG′〉 has an edge setEG′ = {(u,v)|(v,u) ∈

EG}.

A multi-digraph G = 〈VG,EG〉 is a digraph such thatEG is a multiset. Any edge in

EG appearing more than once is termed amulti-edge.

A flow graph is a weakly connected digraphG = 〈VG,EG,s, t〉 such that:

• s, t∈VG are distinguished (dummy) vertices in which|pred(s)|= 0 and|succ(t)|=

0; s is theentry vertex andt theexit vertex.

• Every vertexv is reachable froms and can reacht.

Let G= 〈VG,EG〉 andG′ = 〈VG′,EG′〉 be two graphs. IfVG′ ⊆VG andEG′ ⊆EG then

G′ is asubgraphof G, written asG′ ⊆G. Moreover,G′ is aninducedsubgraph ofG

wheneverG′ ⊆G and either:

• EG′ = {(u,v) ∈ EG|u,v∈VG′} if G is directed, or

• EG′ = {{u,v} ∈ EG|u,v∈VG′} if G is undirected.

For a graphG = 〈VG,EG〉, apath p of lengthm−1 is a sequencev1→ v2→ . . .→

vm−1→ vm such that, for all 1≤ i < m+ 1, vi → vi+1 ∈ EG. The notationu
∗
→ v

denotes a path of length zero or more, whereasu
+
→ v denotes a path of length one

or more. We say that a vertexv is reachablefrom vertex au (or alternatively,u can

reach v) if there is at least one pathu
∗
→ v. We denote the set of all paths fromu to v

asPaths(u,v). Two pathsp : u
∗
→ v andq : u

∗
→ v arevertex disjoint if u andv are the

only vertices on bothp andq. A cycle is a pathu = v1→ v2→ . . .→ vm−1→ vm = u

such thatm> 1, i.e. it cannot be empty; a digraph isacyclic if there are no cycles.

We are often interested in the connected property of a graph as follows:

A.3 Basic Tree Terminology 179

• An undirected graphG= 〈VG,EG〉 is connectedif there is a pathu
∗
→ v between

anyu,v∈VG.

• A digraphG= 〈VG,EG〉 is weakly connectedif its underlying undirected graph

G′ = 〈VG,EG′〉 is connected.

• A Strongly Connected Component(SCC) of a digraphG= 〈VG,EG〉 is a max-

imal subgraphG′ = 〈VG′,EG′〉 such that, for everyu,v ∈ VG′, there are paths

u
+
→ v andv

+
→ u. G is strongly connectedwheneverVG = VG′.

For a digraphG consisting of SCCsS1,S2, . . . ,Sn, thecomponent graphG′ of

G is built by collapsing allSi into abstract verticesuSi ; any entry edgev→ w in

G, w∈ Si, hasuSi as its destination inG′; any exit edgew→ v in G, w′ ∈ Si , has

uSi as its source inG′.

A.3 Basic Tree Terminology

A spanning treeT = 〈VG,ET〉 of a connected undirected graphG = 〈VG,EG〉 is an

induced acyclic subgraph ofG.

A rooted (directed) tree T = 〈VT ,ET , r〉 is a connected, acyclic graph with the

following properties:

• r is a distinguished vertex called theroot such that|pred(r)|= 0. We sometimes

denoter asrT .

• For eachu∈VT −{r}, |pred(u)| = 1. Further,p∈ pred(u) is theparent of u,

denotedparentT(u).

• u is aninternal vertex whenever|succ(u)| ≥ 1; eachs∈ succ(u) is achild of u.

• u is a leaf whenever|succ(u)|= 0.

• The levelof u∈VT , denotedlevel(u), is the length of the unique pathr
∗
→ u.

• Theheight of T, denotedheight(T), is defined asmax{level(u)|u∈VT}.

• If a vertexv appears on the unique pathr
∗
→ u thenv is anancestorof u and

u a descendantof v; whenv 6= u, v is a proper ancestor ofu andu a proper

descendant ofv.

180 A.4 Depth-first Search

For a rooted treeT = 〈VT ,ET , r〉, the following additional notation with respect to

verticesu,v is sometimes used:

• u [
∗
→) v to represent the path fromu to v in T, excludingv; if u= v, thenu [

∗
→) v

is the empty path.

• u (
∗
→] v to represent the path fromu to v in T, excludingu; if u= v, thenu (

∗
→] v

is the empty path.

• u (
∗
→) v to represent the path fromu to v in T, excluding bothu and v; if

v∈ succ(u), thenu (
∗
→) v is the empty path.

An ordered (rooted) treeT = 〈VT ,ET , r〉 is one in which, for each internal vertex

u, there is a total order relation〈succ(u),�〉.

For a rooted treeT = 〈VT ,ET , r〉, we say that a vertexw is the least common an-

cestorof verticesu andv, denotedw = lcaT(u,v), if w is on both pathsp : r
∗
→ u and

q : r
∗
→ v and there is noy 6= w on bothp andq with level(y) > level(w). The notion

also extends to a set of verticesV ′T ⊆VT .

A forest is a disjoint union of a set of trees{T1,T2, . . . ,Tn}.

A.4 Depth-first Search

A depth-first search(DFS) of a graphG = 〈VG,EG〉 searchesG by choosing to visit

the unexplored successors of the most recently explored vertex. The DFS ofG pro-

duces a forestF = {T1,T2, . . . ,Tn} of depth-first treesTi = (Vi,Ei, r i) where: r i is a

vertex from which a DFS was initiated; for eachv∈Vi−{r i}, parent(v) is the vertex

from which v was discovered. There is a unique tree inF wheneverG is a weakly

connected digraph and the search is initiated at a vertexv from which all vertices are

reachable. In such cases, we refer to the unique tree in the forest as theDFS spanning

tree.

The DFS imparts a classification on the set of edgesEG as follows:

• (u,v) is aDFS treeedge ifu = parent(v) in F .

• (u,v) is aDFS backedge ifv is an ancestor ofu in F .

A.5 The Dominance Relations 181

• (u,v) is aDFS forwardedge ifu 6= parent(v) is an ancestor ofv in F .

• (u,v) is aDFS crossedge if there is no ancestor-descendant relation betweenu

andv in F .

A pre-order (post-order) numbering ofVG is the order in which vertices were first

(last) visited during the DFS. A reverse post-order of an acyclic digraphG is also

termed atopological sort of G in which u appears beforev in the ordering if there is

a pathu
+
→ v in G.

A.5 The Dominance Relations

The dominance relations are used extensively at the optimisation stage of a compiler,

especially to analyse the structural properties of flow graphs.

For a flow graphG, a vertexu pre-dominatesa vertexv if every path froms to v

includesu. In addition, a vertexu post-dominatesa vertexv if every path fromv to t

includesu. Following is the notation used with respect to the dominance relations:

• u D v (respectivelyu E v) to denote thatu pre-dominatesv (respectivelyu post-

dominatesv).

• u⊲v (respectivelyu⊳v) to denote thatu strictly pre-dominatesv (respectivelyu

strictly post-dominatesv); that is,u D v andu 6= v.

• ipre(v) = u (respectivelyipost(v) = u) to denote thatu is the immediate pre-

dominator ofv (respectivelyu is theimmediate post-dominator ofv), i.e. u⊲v

and there is no vertexy 6= u such thatu⊲y⊲v.

The pre- and post-dominance relations can be succinctly represented in respective

trees:

Definition 14. Thepre-dominator treeTG
pre = 〈VG,ET ,s〉 of a flow graph G is a rooted

directed tree such that:

• ET = {(ipre(u),u)|u∈VG−{s}}.

Definition 15. The post-dominator treeTG
post = 〈VG,ET , t〉 of a flow graph G is a

rooted directed tree such that:

182 A.6 Regular Expressions

• ET = {(ipost(u),u)|u∈VG−{t}}.

Construction of the dominator trees is a well studied problem. The first near linear

time algorithm was proposed in [66], which has since been improved to make it run in

linear time [4].

We can extend the notion of pre-dominance (and post-dominance) to relate the sets

of vertices and edges ofG. That is, a vertexu pre-dominates an edgev→ w if every

path froms to v→w passes throughu, or alternatively,v→w pre-dominatesu if every

path froms to u passes throughv→ w.

Another important relation used in compiler optimisation is the dominance frontier

relation [32]:

Definition 16. For a flow graph G:

• Thepre-dominance frontierof a vertex v, denoted DFpre(v), is the set

{y|(∃p∈ pred(y))(v⊲ p∧v ⋫ y)}.

• Thepost-dominance frontierof a vertex v, denoted DFpost(v), is the set

{y|(∃s∈ succ(y))(v⊳s∧v ⋪ y)}.

A.6 Regular Expressions

We use terminology and notation consistent with that of [111, 112].

A regular expressionover a finite alphabetΣ is constructed from the following

rules:

• λ and /0 are atomic regular expressions denoting the empty string and the empty

set, respectively. For eacha∈ Σ, a is an atomic regular expression.

• If R1 and R2 are regular expressions then(R1∪R2), (R1 ·R2), and (R∗1) are

compound regular expressions denoting set union, concatenation, and reflexive,

transitive closure under concatenation, respectively.

The regular expressions obtained from this definition are fully parenthesized. How-

ever, parentheses are usually relaxed using the operator precedence of∗ over· over∪.

Notation is sometimes abused:(a·b) is written(ab); ((a∗)a) is writtena+.

A.6 Regular Expressions 183

Each regular expressionR over Σ thus represents a setσ(R) of strings overΣ as

follows:

• σ(λ) = {λ}; σ(/0) = /0; σ(a) = {a} for a∈ Σ.

• σ(R1∪R2) = σ(R1)∪σ(R2) = {w|w∈ σ(R1) or w∈ σ(R2)}.

• σ(R1 ·R2) = σ(R1) ·σ(R2) = {w|w∈ σ(R1) andw∈ σ(R2)}.

• σ(R∗) = ∪∞
k=0σ(R)k, whereσ(R)0 = {λ} andσ(R)i = σ(R)i−1 ·σ(R).

List of References

[1] The Nexus 5001TMForum. http://www.nexus5001.org, May 2008.

[2] H. Agrawal. Dominators, super blocks, and program coverage. InProceed-

ings of the ACM SIGPLAN-SIGACT symposium on Principles of Programming

Languages, January 1994.

[3] A. Aho, R. Sethi, and J. Ullman.Compilers: Principle, Techniques and Tools.

Addison-Wesley, 1986.

[4] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear

time. SIAM Journal of Computing, 28(6):2117–2132, June 1999.

[5] AMD R©. http://www.amd.com, May 2008.

[6] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding worst-case

instruction cache performance. InProceedings of the 15th Real-Time Systems

Symposium (RTSS’94), December 1994.

[7] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for computer

system modeling.IEEE Computer, 35(2):59–67, February 2002.

[8] T. Ball and J. R. Larus. Optimally profiling and tracing programs. InProceed-

ings of the ACM SIGPLAN-SIGACT symposium on Principles of Programming

Languages, February 1992.

[9] I. Bate and D. Kazakov. Towards new methods for developingreal-time sys-

tems: Automatically deriving loop bounds using machine learning. InProceed-

ings of the 11th Conference on Emerging Technologies and Factory Automation

(ETFA’06), September 2006.

[10] I. Bate and R. Reutemann. Worst-case execution time analysis for dynamic

185

186 LIST OF REFERENCES

branch predictors. InProceedings of the 16th Euromicro Conference of Real-

Time Systems (ECRTS’04), July 2004.

[11] I. Bate and R. Reutemann. Efficient integration of bimodal branch prediction

and pipeline analysis. InProceedings of the 11th International Conference on

Embedded and Real-Time Computing Systems and Applications (RTCSA’05),

August 2005.

[12] M. A. Bender and M. Farach-Colton. The lca problem revisited. InProceedings

of the 4th Latin American Symposium on Theoretical Informatics (LATIN’00),

April 2000.

[13] M. R. C. M. Berkelaar.lp solve - (mixed integer) linear programming prob-

lem solver. ftp://ftp.es.ele.tue.nl/pub/lpsolve.

[14] G. Bernat and A. Burns. An approach to symbolic worst-caseexecution time

analysis. InProceedings of the 25th IFAC Workshop on Real-Time Program-

ming, May 2000.

[15] G. Bernat, A. Colin, and S. M. Petters. Wcet analysis of probabilistic hard

real-time systems. InProceedings of the 23rd Real-Time Systems Symposium

(RTSS’02), December 2002.

[16] G. Bernat, M.J. Newby, and A. Burns. Probabilistic timinganalysis: an

approach using copulas.Journal of Embedded Computing, 1(2):179–194,

November 2005.

[17] A. Betts, G. Bernat, Raimund Kirner, Peter Puschner, and Ingomar Wenzel.

Wcet coverage for pipelines. Technical report, University of York, August

2006.

[18] F. Bodin and I. Puaut. A wcet-oriented static branch prediction scheme for real-

time systems. InProceedings of the 17th Euromicro Conference of Real-Time

Systems (ECRTS’05), July 2005.

[19] C. Burguìere, C. Rochange, and P. Sainrat. A case for static branch prediction

in real-time systems. InProceedings of the 11th conference on Embedded and

Real-Time Computing Systems and Applications, August 2005.

LIST OF REFERENCES 187

[20] A. Burns, G. Bernat, and I. Broster. A probabilistic framework for schedu-

lability analysis. InProceedings of the 3rd international embedded software

conference (EMSOFT’03), October 2003.

[21] G. C. Buttazzo.Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications. Springer Link, 1997.

[22] R. Chapman.Static Timing Analysis and Program Proof. PhD thesis, University

of York, March 1995.

[23] J. J. Chilenski and S. P. Miller. Applicability of modified condition/decision

coverage to software testing.Software Engineering Journal, 9(5):193–200,

September 1994.

[24] Hella KGaA Hueck & Co. http://www.hella.com, May 2008.

[25] A. Colin and G. Bernat. Scope-tree: a program representation for symbolic

worst-case execution time analysis. InProceedings of the 14th Euromicro Con-

ference of Real-Time Systems (ECRTS’02), July 2002.

[26] A. Colin and S. M. Petters. Experimental evaluation of code properties for wcet

analysis. InProceedings of the 24th Real-Time Systems Symposium (RTSS’03),

December 2003.

[27] A. Colin and I. Puaut. Worst-case execution time analysis for processors with

branch prediction.Real-Time Systems, 18(2-3):249–274, May 2000.

[28] A. Colin and I. Puaut. A modular & retargetable frameworkfor tree-based

wcet analysis. InProceedings of the 13th Euromicro Conference of Real-Time

Systems (ECRTS’01), July 2001.

[29] K. D. Cooper, T. J. Harvey, and K. Kennedy. Iterative dataflow analysis, revis-

ited. InProceedings of the (PLDI’02), November 2002.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to

Algorithms. MIT Press, second edition, 2001.

[31] P. Cousot and Cousot R. Abstract interpretation: A unified lattice model for

static analysis of programs by contruction or appromimation of fixpoints. In

Proceedings of the 4th ACM Symposium on Principles of Programming Lan-

guages (POPL), January 1977.

188 LIST OF REFERENCES

[32] R. Cytron, J. Ferrante, B. K. Rosen, and M. N. Wegman. Efficiently computing

static single assignment form and the control dependence graph. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 13(4):451–490,

October 1991.

[33] ARM development tools. http://www.arm.com, May 2008.

[34] J. F. Deverge and I. Puaut. Wcet-directed dynamic scratchpad memory alloca-

tion of data. InProceedings of the 19th Euromicro Conference of Real-Time

Systems (ECRTS’07), July 2007.

[35] J. L. Diaz, D. F. Garcia, K. Kim, C. Lee, L. L. Bello, J. M. Lopez, S. L. Min, and

O. Mirabella. Stochastic analysis of periodic real-time systems. InProceedings

of the 23rd Real-Time Systems Symposium (RTSS’02), December 2002.

[36] A. El-Haj-Mahmoud, A. S. AL-Zawawi, A. Anantaraman, and E. Rotenberg.

Virtual multiprocessor: an analyzable, high-performancearchitecture for real-

time computing. InProceedings of the international conference on Compil-

ers, Architectures and Synthesis for Embedded Systems (CASES’05), Septem-

ber 2005.

[37] J. Engblom.Processor Pipelines and Static Worst-Case Execution Time Anal-

ysis. PhD thesis, Uppsala University, April 2002.

[38] J. Engblom. Analysis of the execution time unpredictability caused by dynamic

branch prediction. InProceedings of the 9th Real-Time Technology and Appli-

cations Symposium (RTAS’03), May 2003.

[39] J. Engblom and A. Ermedahl. Pipeline timing analysis using a trace-driven

simulator. InProceedings of the 6th International Conference on Real-Time

Computing Systems and Applications (RTCSA’99), December 1999.

[40] A. Ermedahl. A Modular Tool Architecture for Worst-Case Execution Time

Analysis. PhD thesis, Uppsala University, June 2003.

[41] A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of

execution time. InProceedings of the International Euro-Par Conference on

Parallel Processing, August 1997.

LIST OF REFERENCES 189

[42] A. Ermedahl, F. Stappert, and J. Engblom. Clustered calculation of worst-case

execution times. InProceedings of the 2003 international conference on Com-

pilers, architecture and synthesis for embedded systems (CASES’03), Novem-

ber 2003.

[43] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theil-

ing, S. Thesing, and R. Wilhelm. Reliable and precise wcet determination for

a real-life processor. InProceedings of the 1st International Workshop on Em-

bedded Software, October 2001.

[44] G. Frantz. Digital signal processor trends.IEEE Micro, 20(6):52–59, November

2000.

[45] AbsInt Angewandte Informatik GmbH. http://www.absint.com, May 2008.

[46] J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a flow analysis for embed-

ded system c programs. InProceedings of the 10th International Workshop on

Object-Oriented Real-Time Dependable Systems (WORDS’05), February 2005.

[47] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic derivation

of loop bounds and infeasible paths for wcet analysis using abstract execution.

In Proceedings of the 27th Real-Time Systems Symposium (RTSS’06), Decem-

ber 2006.

[48] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ances-

tors. SIAM Journal of Computing, 13(2):338–355, May 1984.

[49] P. Havlak. Nesting of reducible and irreducible loops.ACM Transactions on

Programming Languages and Systems (TOPLAS), 19(4):557–567, July 1997.

[50] C. A. Healy, R. D. Arnold, F. Mueller, D. B. Whalley, and M. G. Harmon.

Bounding pipeline and instruction cache performance.IEEE Transactions on

Computers, 48(1):53–70, January 1999.

[51] C. A. Healy, M. Sj̈odin, V. Rustagi, and D. Whalley. Bounding loop iterations

for timing analysis. InProceedings of the 4th Real-Time Technology and Ap-

plications Symposium (RTAS’98), June 1998.

[52] C. A. Healy, M. Sj̈odin, V. Rustagi, D. Whalley, and R. van Engelen. Supporting

190 LIST OF REFERENCES

timing analysis by automatic bounding of loops iterations.Real-Time Systems,

18(2-3):129–156, May 2000.

[53] J. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Ap-

proach. Mogran Kaufmann Publishers, 2003.

[54] Intel R©. http://www.intel.com, May 2008.

[55] R. Johnson, D. Pearson, and K. Pingali. The program structure tree: computing

control regions in linear time. InProceedings of the ACM SIGPLAN conference

on Programming language design and implementation (PLDI’94), June 1994.

[56] N. P. Jouppi and S. J. E. Wilton. Tradeoffs in two-level on-chip caching. In

Proceedings of the 21st symposium on Computer architecture, April 1994.

[57] D. Jungnickel. Graphs, Networks and Algorithms. Springer Verlag, second

edition, 2004.

[58] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms.

Journal of the ACM, 1:158–171, January 1976.

[59] G. A. Kildall. A unified approach to global program optimization. InProceed-

ings of the first ACM Symposium on Principles of Programming Languages,

October 1973.

[60] S-K. Kim, R. Ha, and S. L. Min. Efficient worst case timing analysis of data

caching. InProceedings of the 2nd Real-Time Technology and Applications

Symposium (RTAS’96), June 1996.

[61] S-K. Kim, R. Ha, and S. L. Min. Analysis of the impacts of overestimation

sources on the accuracy of worst case timing analysis. InProceedings of the

20th Real-Time Systems Symposium (RTSS’99), December 1999.

[62] R. Kirner and P. Puschner. Transformation of path information for wcet analysis

during compilation. InProceedings of the 13th Euromicro Conference of Real-

Time Systems (ECRTS’01), June 2001.

[63] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner. Using measurements as a

complement to static worst-case execution time analysis.Intelligent Systems at

the Service of Mankind, 2:205–226, January 2006.

LIST OF REFERENCES 191

[64] P. A. Laplante. Real-Time Systems Design and Analysis. Wiley Publishers,

fourth edition, 2004.

[65] J. R. Larus. Efficient program tracing.IEEE Computer, 26(5):52–61, May

1993.

[66] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-

graph.ACM Transactions on Programming Languages and Systems (TOPLAS),

1(1):121–141, July 1979.

[67] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of

periodic, real-time tasks.Performance Evaluation, 2(4):237–250, August 1982.

[68] X. Li, T. Mitra, and A. Roychoudbury. Modeling control speculation for timing

analysis.Real-Time Systems, 29(1):27–58, January 2005.

[69] X. Li, A. Roychoudbury, and T. Mitra. Modeling out-of-order processors for

software timing analysis. InProceedings of the 25th Real-Time Systems Sym-

posium (RTSS’04), December 2004.

[70] X. Li, A. Roychoudbury, and T. Mitra. Modeling out-of-order processors for

wcet analysis.Real-Time Systems, 34(3):195–227, November 2006.

[71] Y-T. S. Li and S. Malik. Performance analysis of embedded software using

implicit path enumeration. InProceedings of the ACM/IEEE conference on

Design Automation, June 1995.

[72] Y-T. S. Li and S. Malik. Performance estimation of embedded software with

instruction cache modeling.ACM Transactions on Design Automation of Elec-

tronic Systems (TODAES), 4(3):257–279, July 1995.

[73] Y-T. S. Li and S. Malik. Performance Analysis of Real-Time Embedded Soft-

ware. Kluwer Academic Publishers, 1999.

[74] Y-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software:

Beyond direct mapped instruction caches. InProceedings of the 17th IEEE

Real-Time Systems Symposium (RTSS’96), December 1996.

[75] S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park, and C. Kim.

An accurate worst case timing analysis for risc processors.IEEE Transactions

on Software Engineering, 21(7):593–604, July 1995.

192 LIST OF REFERENCES

[76] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment.Journal of the Association for Computing

Machinery, 20(21):46–61, January 1973.

[77] Rapita Systems Ltd. http://www.rapitasystems.com/, May 2008.

[78] T. Lundqvist and P. Stenström. Integrating path and timing analysis us-

ing instruction-level simulation techniques. InProceedings of ACM SIG-

PLAN Workshop on Languages, Compilers, and Tools for Embedded Systems

(LCTES’98), June 1998.

[79] T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled

microprocessors. InProceedings of the 20th Real-Time Systems Symposium

(RTSS’99), December 1999.

[80] Sun MicroSystems. http://www.amd.com, May 2008.

[81] A. Milenkovic, M. Milenkovic, and N. Barnes. A performance evaluation of

memory hierarchy in embedded systems. InProceedings of the 35th Southeast-

ern Symposium on System Theory, March 2003.

[82] T. Mitra, A. Roychoudhury, and X. Li. Timing analysis of embedded software

for speculative processors. InProceedings of the 15th international symposium

on System Synthesis (ISSS ’02), October 2002.

[83] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers, 1997.

[84] F. Mueller. Timing predictions for multi-level caches. In Proceedings of the

ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for Real-

Time Systems (LCTES’97), June 1997.

[85] F. Mueller. Timing analysis for instruction caches.Real-Time Systems, 18(2-

3):217–247, May 2000.

[86] G. Ottosson and M. Sjödin. Worst case execution time analysis for modern

hardware architectures. InProceedings of the ACM SIGPLAN Workshop on

Languages, Compilers and Tools for Real-Time Systems (LCT-RTS’97), June

1997.

LIST OF REFERENCES 193

[87] C. Y. Park. Predicting program execution times by analyzing static and dynamic

program paths.Real-Time Systems, 5(1):31–62, March 1993.

[88] C. Y. Park and A. C. Shaw. Experiments with a program timingtool based on

source-level timing schema.IEEE Computer, 24(5):48–57, May 1991.

[89] S. M. Petters. Bounding the execution time of real-time tasks on modern pro-

cessors. InProceedings of the 7th International Conference on Embeddedand

Real-Time Computing Systems and Applications (RTCSA’00), December 2000.

[90] S. M. Petters and G. Färber. Making worst case execution time analysis for hard

real-time tasks on state of the art processors feasible. InProceedings of the 6th

International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA’99), December 1999.

[91] Mälardalen University WCET project homepage.

http://www.mrtc.mdh.se/projects/wcet, May 2008.

[92] I. Puaut. Wcet-centric software-controlled instruction caches for hard real-time

systems. InProceedings of the 18th Euromicro Conference of Real-Time Sys-

tems (ECRTS’06), July 2006.

[93] P. Puschner. Is worst-case execution-time analysis a non-problem? - towards

new software and hardware architectures. InProceedings of the Euromicro

International Workshop on WCET Analysis (ECRTS’02), June 2002.

[94] P. Puschner and C. Koza. Calculating the maximum execution time of real-time

programs.Real-Time Systems, 1(2):159–176, September 1989.

[95] P. Puschner and A. V. Schedl. Computing maximum task execution times - a

graph-based approach.Real-Time Systems, 13(1):67–91, July 1997.

[96] G. Ramalingam. Identifying loops in almost linear time.ACM Transactions on

Programming Languages and Systems (TOPLAS), 21(2):175–188, March 1999.

[97] G. Ramalingam. On loops, dominators, and dominance frontiers. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 24(5):455–490,

September 2002.

[98] C. Rochange and P. Sainrat. A time-predictable executionmode for superscalar

194 LIST OF REFERENCES

pipelines with instruction prescheduling. InProceedings of the 2nd conference

on Computing frontiers (CF’05), May 2005.

[99] C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper. Faster wcet flow

analysis by program slicing. InProceedings of the ACM SIGPLAN Conference

on Languages, Compilers and Tools for Embedded Systems (LCTES’06), June

2006.

[100] M. Schlett. Trends in embedded microprocessor design. IEEE Computer,

31(8):44–49, August 1998.

[101] J. Schneider and C. Ferdinand. Pipeline behaviour prediction for super-

scalar processors by abstract interpretation. InProceedings of the ACM SIG-

PLAN workshop on Languages, compilers, and tools for embedded systems

(LCTES’99), May 1999.

[102] B. Scholtz and J. Blieberger. A new elimination-based data flow analysis frame-

work using annotated decomposition trees. InProceedings of the 16th Interna-

tional Conference on Compiler Construction (CC’07), March 2007.

[103] The Eclipse SDK. http://www.eclipse.org, May 2008.

[104] V. C. Sreedhar.Efficient Program Analysis using DJ Graphs. PhD thesis,

McGill University, 1995.

[105] F. Stappert and P. Altenbernd. Complete worst-case execution time analy-

sis of straight-line hard real-time programs.Journal of Systems Architecture,

46(4):339–355, February 2000.

[106] F. Stappert, A. Ermedahl, and J. Engblom. Efficient longest executable path

search for programs with complex flows and pipeline effects.In Proceedings

of the international conference on Compilers, architecture, and synthesis for

embedded systems (CASES’01), November 2001.

[107] J. Staschulat and R. Ernst. Worst case timing analysis of input dependent data

cache behavior. InProceedings of the 18th Euromicro Conference of Real-Time

Systems (ECRTS’06), July 2006.

[108] V. Suhendra, T. Mitra, R. Roychoudhury, and T. Chen. Wcet centric data al-

LIST OF REFERENCES 195

location to scratchpad memory. InProceedings of the 26th Real-Time Systems

Symposium (RTSS’05), December 2005.

[109] V. Suhendra, T. Mitra, R. Roychoudhury, and T. Chen. Efficient detection and

exploitation of infeasible paths for software timing analysis. InProceedings of

the 43rd annual conference on Design automation, July 2006.

[110] R. E. Tarjan. Testing flow graph reducibility.Journal of Computer and System

Sciences, 9:355–365, December 1974.

[111] R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM,

28(3):594–614, July 1981.

[112] R. E. Tarjan. A unified approach to path problems.Journal of the ACM,

28(3):577–593, July 1981.

[113] H. Theiling. Ilp-based interprocedural path analysis. InProceedings of the Sec-

ond International Conference on Embedded Software (EMSOFT ’02), October

2002.

[114] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise wcet prediction by

separated cache and path analyses.Real-Time Systems, 18(2-3):157–179, May

2000.

[115] M. Thorup. All structured programs have small tree width and good register

allocation.Information and Computation, 142(2):159–181, May 1998.

[116] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code cover-

age testing. InProceedings of the International Symposium on Software Testing

and Analysis, July 2002.

[117] N. Tracey.A Search-Based Automated Test-Generation Framework for Safety-

Critical Software. PhD thesis, University of York, July 2000.

[118] uDraw(Graph). http://www.informatik.uni-bremen.de/uDrawGraph/, May

2008.

[119] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel

digraphs.SIAM Journal of Computing, 11(2):289–313, May 1982.

196 LIST OF REFERENCES

[120] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric timing analysis.

In Proceedings of the ACM SIGPLAN Workshop on Language, Compilerand

Tool Support for Real-Time Systems (LCTES’01), August 2001.

[121] J. Wegener and M. Grochtmann. Verifying timing constraints of real-time

systems by mean of evolutionary testing.Real-Time Systems, 15(3):275–298,

November 1998.

[122] J. Wegener and F. Mueller. A comparison of static analysis and evolutionary

testing for the verification of timing constraints.Real-Time Systems, 21(3):241–

268, November 2001.

[123] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies

in superscalar processors. InProceedings of the 5th International Conference

on Quality Software, September 2005.

[124] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner. Automatic timing model gen-

eration by cfg partitioning and model checking. InProceedings of the Design,

Automation and Test in Europe Conference and Exhibition (DATE’05), March

2005.

[125] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon. Timing

analysis for data caches and set-associative caches. InProceedings of the 3rd

Real-Time Technology and Applications Symposium (RTAS’97), June 1997.

[126] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon. Timing

analysis for data and wrap-around fill caches.Real-Time Systems, 17(2-3):209–

233, November 1999.

[127] C. Young, N. Gloy, and M. D. Smith. A comparative analysis of schemes for

correlated branch prediction. InProceedings of the 22nd Annual International

Symposium on Computer Architecture, June 1995.

[128] W. Zhao, W. Kreahling, D. Whalley, C. Healy, and F. Mueller. Improving wcet

by applying worst-case path optimizations.Real-Time Systems, 34(2):129–152,

October 2006.

[129] H. Zhu, P. A. V Hall, and J. H. R May. Software unit test coverage and ade-

quacy.ACM Computing Surveys, 29(4):366–427, December 1997.

