
Scheduling Analysis of Fixed Priority

Hard Real-Time Systems with

Multiframe Tasks

Areej Zuhily

Submitted for the degree of doctor of philosophy

University of York

Department of Computer Science

January 2009

2

Abstract

Scheduling analysis of real time systems has been studied bymost re-

searchers assuming the tasks of the systems have constant worst case

execution time bounds during their cycle of execution. However, this is

not the case in a multiframe task where the execution time could be dif-

ferent from one instance to another, as in multimedia applications like

MPEG.

Some researchers have introduced sufficient scheduling analyses for

a restricted model of multiframe tasks. The contributions in this thesis

present scheduling analysis for a less strict model of multiframe tasks.

The analysis is presented in two steps. In the first step, exact scheduling

analysis is presented by response time analysis; where the worst case

response time of multiframe tasks is formulated. This formulation is

then extended to multiframe tasks that are subjected to blocking, release

jitter and arbitrary deadlines. Another extension of the formulation is

given to cover frame specific deadlines; where a multiframe task has

more than one deadline relative to its frames.

With large systems of multiframe tasks, the exact response time anal-

ysis becomes computationally intractable. So, in the second step we

present and compare some sufficient approaches that analyzethe schedu-

lability of large systems with multiframe tasks. In this step we first

study the safety of each approach then we compare them to find out the

schedulability performance each of them provides.

2

Contents

1 Introduction 15

1.1 Multiframe Tasks . 16

1.2 Fixed Priority Scheduling . 17

1.3 Thesis Goal . 18

1.4 Thesis Structure . 20

2 System Model and Related Work 23

2.1 System Model . 23

2.2 Related Work to Scheduling MF Tasks within Fixed Priority Schedul-

ing Scheme . 28

2.3 Contributions of Response Time Analysis 37

2.4 Summary . 54

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks 55

3.1 Basic Response Time Analysis of AM Multiframe Tasks 56

3.2 Adding Blocking Time to the Response Time Analysis 59

3.3 Numeric Examples . 60

3.4 Evaluating Exact Response Time Scheduling Analysis forMF Tasks . 64

3.5 Summary . 70

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks 71

4.1 Analysis of AM Multiframe Tasks with Release Jitter 72

4.2 Analysis of AM Multiframe Tasks with Arbitrary Deadlines 77

4.3 Combined Analysis of Release Jitter and Arbitrary Deadlines 82

4.4 Example . 86

4.5 Summary . 89

3

Contents

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks 91

5.1 Identifying the Critical Frames .. 92

5.2 Exact Response Time Analysis of Non-AM Multiframe Tasks. . . . 96

5.3 Numeric Example . 98

5.4 Evaluating the Number of Critical Frames 101

5.5 Summary . 108

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks113

6.1 Analysis of MF Tasks with Release Jitter 114

6.2 Analysis of MF Tasks with Arbitrary Deadlines 123

6.3 Example . 127

6.4 Combined Analysis of Release Jitter and Arbitrary Deadlines 129

6.5 Example . 132

6.6 Summary . 135

7 Exact Analysis of Frame Specific Deadlines 137

7.1 Exact Response Time Analysis of MF Task with no Interference from

the Analysed Task . 138

7.2 Exact Response Time Analysis of MF Tasks Having Deadlines Be-

yond the Period . 143

7.3 Example . 147

7.4 Policy of Assigning Priorities to the MF Tasks 149

7.5 Summary . 150

8 Approaches for Sufficient Scheduling Tests 153

8.1 Maximum Approach . 154

8.2 Re-ordering Approach . 156

8.3 Complementary Approach . 158

8.4 Max Accumulations Approach . 161

8.5 Coverage of the Sufficient Approaches 164

8.6 Comparison Between Sufficient Scheduling Approaches 166

8.7 Summary and Recommendations . 184

9 Evaluation, Conclusions and Future Work 189

4

Contents

9.1 Contributions of the Thesis . 189

9.2 Future Work . 191

9.3 Concluding Remarks . 192

List of References 195

5

6

Acknowledgements

Many thanks to some organisations and people who contributed in achiev-

ing this thesis. First of all, huge thanks and gratefulness to Damascus

University who sponsored me during my study and to The University of

York who gave me the opportunity to get a degree from a 5* department.

A particular gratitude to my supervisor Prof. Alan Burns whopa-

tiently provided me valuable advice and support throughoutyears of

study. Also, many thanks to Dr. Robert Davis for the bright ideas we

end up with each time I got stuck with a problem.

A special thanks to the person who without him I would not have

finished this thesis, the one who enthusiastically encouraged me and

supported me as much as he could without any doubt, my husband,

Ehsan.

Finally, many thanks to the people who keep providing me all encour-

agement and support, my parents and family.

7

8

Declaration

Parts of this thesis have been published in some proceedingsand jour-

nals . This material represents the author’s contributions, but was pub-

lished jointly with the author’s supervisor Prof. Alan Burns.

Material based on Chapter 3 was published in the international con-

ference “International Colloquium on Theoretical Aspectsof Comput-

ing (ICTAC)”[77]. Material based on Chapter 4 was publishedin the

international conference “IEEE International Conferenceon Emerging

Technologies and Factory Automation (ETFA)”[78].

Parts of the material based on Chapter 5 was published as a technical

report [75]. Other parts of the material based on Chapters 5 and 6 were

published in the international conference “InternationalConference on

Real-Time and Network Systems (RTNS) ”[79]. An extended version of

this RTNS paper has been invited to be published in Real Time Systems

Journal.

Theorem 16 in the appendix was published in the journal “Informa-

tion Processing Letters”[76].

9

10

List of Tables

2.1 Example System . 25

2.2 Possible Interference fromτ1 . 25

2.3 Example Illustrates Lu’s Analysis- Original System’s Attributes . . . 34

2.4 Merged System Using Kuo’s Method 34

2.5 Example System . 43

2.6 Tasks Description’s . 44

2.7 Example System of Arbitrary Deadlines 46

2.8 Original Example System . 52

2.9 Transformed System Having Offsets52

3.1 Example System . 58

3.2 Example System1 . 60

3.3 Example System2 . 61

3.4 Merged System . 61

4.1 Example System Attributes . 76

4.2 Example of Arbitrary Deadline . 78

4.3 Possible Values of the Busy Periods81

4.4 Example of Arbitrary Deadlines and Release Jitter 83

5.1 Possible Interference Fromτ j . 92

5.2 Possible Interference Fromτ j . 95

5.3 Example System . 99

5.4 Cumulative Functions ofτ1 . 99

5.5 Cumulative Functions ofτ2 . 100

5.6 Possible Response Times ofτ3 . 101

11

List of Tables

5.7 Numeric Example to Illustrate Algorithm 4 105

5.8 Values of the Parameter: LocationsSync Release 105

6.1 Example System . 117

6.2 Responses ofτ3 When No Release Jitter 118

6.3 Responses ofτ3 WhenJ1 = 1 . 118

6.4 Attributes of the Tasks in the System 127

6.5 Possible Busy Periods . 128

6.6 Example System . 133

6.7 Possible Busy Periods . 134

7.1 Example System . 142

7.2 Example System . 147

7.3 Values oft . 148

7.4 Values ofw2,ṽ, f (C
q
2) . 148

7.5 Example System . 150

8.1 Original Example System . 156

8.2 Transformed System . 156

8.3 Transformed System Using Re-ordering Approach 158

8.4 Example System . 161

8.5 Transformed System Using Complementary Approach 161

12

List of Figures

2.1 Optimal Instant Situation ofτ3 . 43

2.2 Execution ofτ1 andτ2 at the Critical Instance ofτ2 44

2.3 Timeline Diagram of the System in Table 2.7 47

2.4 Usage of Offsets for Increasing Schedulability 50

2.5 Execution Scenario of the Transformed System in Table 2.9 53

3.1 Percentage of Schedulable Systems Regarding the Overall Utilisation

of the System after Applying Response Time and Lu’s Tests (N=5) . . 67

3.2 Percentage of Schedulable Systems Regarding the Overall Utilisation

of the System after Applying Response Time and Lu’s Tests (N=20) . 68

3.3 Percentage of Schedulable Systems Regarding the Overall Utilisation

of the System after Applying Response Time and Lu’s Tests (N=100) 69

4.1 Illustration of Release Jitter Problem 73

4.2 Illustration of Arbitrary Deadline Scenario- TimelineDiagram 78

4.3 Execution of the Tasks in the Example83

5.1 Mean and Most Frequent Number of Critical Frames When theRange

of Execution Times is [1,10] and [100,200] 106

5.2 Number of Schedulable Tasks Versus Number of Critical Frames When

n = 3 (10000 Tasks in Total) . 107

5.3 Number of Schedulable Tasks Versus Number of Critical Frames When

n = 5 and7 (10000 Tasks in Total) 109

5.4 Number of Schedulable Tasks Versus Number of Critical Frames When

n = 11 and13 (10000 Tasks in Total) 110

13

List of Figures

5.5 Number of Schedulable Tasks Versus Number of Critical Frames When

n = 17 and19(10000 Tasks in Total) 111

5.6 Number of Schedulable Tasks Versus Number of Critical Frames When

n = 23 and29 (10000 Tasks in Total) 112

6.1 Illustration of Release Jitter Problem 116

7.1 Timeline Figure ofτA andτB’s execution 151

8.1 Percentage of Schedulable SystemsU = 0.2 andN = 5 and10 170

8.2 Percentage of Schedulable SystemsU = 0.3 andN = 5 171

8.3 Percentage of Schedulable Systems WhenU = 0.4 andN = 5 172

8.4 Percentage of Schedulable Systems WhenU = 0.5 andN = 5 173

8.5 Percentage of Schedulable Systems WhenN = 10 andU = 0.3and0.4

174

8.6 Percentage of Schedulable Systems WhenN = 10 andU = 0.5and0.6

175

8.7 Number of Schedulable Systems WhenN = 10 andU = 0.3 176

8.8 Number of Schedulable Systems WhenN = 10 andU = 0.4 177

8.9 Number of Schedulable Systems WhenN = 10 andU = 0.5 178

8.10 Number of Schedulable Systems WhenN = 20and40 andU = 0.3 . 179

8.11 Number of Schedulable Systems WhenN = 80and100 andU = 0.3 . 180

8.12 Number of Schedulable Systems WhenN = 20and40 andU = 0.4 . 182

8.13 Number of Schedulable Systems WhenN = 80and100 andU = 0.4 . 183

8.14 Number of Schedulable Systems WhenN = 20and40 andU = 0.5 . 185

8.15 Number of Schedulable Systems WhenN = 80and100 andU = 0.5 . 186

14

1 Introduction

Timing requirements are the basic aspects of real-time systems; where a real-time sys-

tem, RTS, is a system that is required to react to stimuli fromthe environment within

time intervals dictated by the environment [25]. For example, an application running

on an operating system, like real-time Unix, can be considered as a real-time system if

it is expected to respond to a command within a defined time interval. Process control

is another example of a real-time system where the computer controls the operations

of the sensors and actuators to ensure that the correct operations are performed at the

appropriate times. RTSs are divided, according to timing requirements, into:hard

andsoft real-time systems. A hard real-time system is a system whose responses must

occur within specified deadlines. A soft real-time system isa system that functions

correctly if the deadline is occasionally missed [25, 53]. Contributions in this thesis

are concerned with hard real-time systems.

From an analysis point of view, a RTS is usually represented by a set of tasks; and

each task consists of a number of jobs that are executed in a cyclic way. Execution

of the tasks is controlled by the operating system using somescheduling algorithms1;

where the operating system controls and coordinates the useof the hardware among

the various application programs for the user tasks [59, 68]. In other words, applica-

tion software is usually designed as a number of separate tasks that are scheduled by

the operating system [67, 63] via the scheduler; which is thepart of the kernel that

determines the next runnable task [46].

The real-time tasks are divided, according to the arrival times of the tasks, into

periodic tasks and sporadic tasks. The arrival times of periodic tasks are fixed so that

each task arrives into the system every fixed interval of time, called a period. On the

1A scheduling algorithm is a set of rules that determine the executing task at a particular moment
[52]).

15

1 Introduction

other hand, the arrival times of a sporadic task are not fixed,instead, the task has a

minimum interval of time to arrive in the system. Within the contributions of this

thesis, we primarily consider periodic tasks.

A basic ordinary periodic real-time task is usually characterised by three parame-

ters. The first parameter is the execution time of the task to characterise the time that

this task takes during the execution of its jobs. The second one is the period of the task

to characterise the arrival times of this task. The third oneis the deadline of the task

to characterise the time in which this task has to complete the execution of its jobs.

Most research considers the execution time of the real-timetask as a constant value

for all invocations of its jobs. However, for some real-world applications the execution

times of the task are not constant for all its jobs. We call thetask whose execution time

could vary from one invocation to the next a multiframe task.

1.1 Multiframe Tasks

The fundamental principle in the real-timemultiframe, MF, task is that its worst-case

execution time is different from one invocation to another,for instance, a task that

executes with the worst-case execution times of 10ms and 5msis said to have two

different frames. An example, found in industrial applications [26], is a periodic task

that does a small amount of data collection in each period consuming a small execution

time, but then summarises and stores this data every n cyclesusing a much more

expensive algorithm that consumes a larger execution time.

Scheduling research into MF tasks started when Mok and Chen [56, 57] introduced

this MF concept in 1996 as a generalisation of the classic Liuand Layland model [52].

They proposed a utilisation based schedulability test, forfixed priority scheduling, un-

der Rate Monotonic, RM, [52] priority assignment2. They gave a utilisation bound, as-

suming the execution time sequence of each MF task has a particular restrictive prop-

erty calledAccumulatively Monotonic, AM. Subsequent papers have improved this

utilisation bound but their tests remain inexact (sufficient but not necessary). These

tests and the formal definition of the AM restriction will be given in Chapter 2.

2In RM priority assignment, the greater period the task has, the lower priority it is assigned.

16

1.2 Fixed Priority Scheduling

An example of scheduling MF tasks is found within the MPEG coding standard

where there are three types of video invocations (usually represented by the letters

I, P and B). The I invocation usually takes much more decodingthan the others, but

may occur only every 10 invocations. The assumption that allinvocations are I in-

vocation leads to poor utilisation and the system could be theoretically unschedulable

whilst practically it is schedulable. In addition, recently some researchers show how

to efficiently utilise MF tasks using Dynamic Voltage Scaling, DVS, techniques for

energy-efficient scheduling [74]. Adopting MF tasks in the system reduces the overall

energy consumption of the system without missing its deadlines. Also, MF tasks may

implement state machines, as in some avionics and automotive applications, with a

well defined cycle of behaviour and worst case execution timebounds for each state.

1.2 Fixed Priority Scheduling

As scheduling is a fundamental function of an operating system to determine the or-

der in which tasks execute, many researches are concerned with this area to either

construct schedulable systems or to analyze the schedulability of proposed systems.

The most popular scheduling policies are known as: Fixed Priority Scheduling (FPS),

Earliest Deadline First (EDF), and Value Based Scheduling (VBS). This thesis is con-

cerned with scheduling analysis of MF tasks for a fixed priority scheme.

Fixed priority scheduling, FPS, is a scheme where a priorityis associated with each

task in the system and the CPU is allocated to the highest priority runnable task. In

FPS scheme all invocations of each task are assigned the samepriority [53] so the

priority of each task is fixed relative to other tasks in the system.

Fixed priority scheduling is recommended for many years as it is able to predict

the ability to meet application response requirements [54]. From this recommenda-

tion, different operating systems support this fixed priority scheduling. For exam-

ple, OSCAN, which is a preemptive3 real-time multitasking operating system4, offers

3In the preemptive systems, if a higher priority task is released during the execution of a lower priority
task, there is an immediate switch to the higher priority task and the lower priority task has to wait
until the higher priority task has finished its execution.

4In the preemptive multitasking operating system, tasks arepreempted by the scheduler, and this
preemption is accomplished with the aid of a timer interrupt[35].

17

1 Introduction

priority-controlled task management [1]. Many commercialoperating systems sup-

port FPS, for example, VxWorks, which is a real-time operating system, has a priority

based preemptive scheduler[11]. PSOS, which is an object oriented operating system,

schedules tasks using priority based criteria [15].

Likewise, there are academic operating systems supportingFPS, for example, server

scheduling in the real-time operating system SHaRK can be based on fixed priority

servers [2]. MaRTE [64] is another operating system that supports FPS. LynxOS

[3], which is POSIX compatible, multitasking operating system, uses priority based

scheduling [15].

1.3 Thesis Goal

The most popular paradigms for analysing the schedulability of real time systems are

utilisation analysis and response time analysis. Having exact attributes of a system, the

utilisation based analysis provides a sufficient but not necessary scheduling test whilst

response time analysis provides an exact scheduling test inmany situations. This

thesis is concerned with the exact scheduling analysis of hard real-time systems with

MF tasks supported by preemptive FPS, where a hard real-timesystem is considered

as schedulable if all its MF tasks meet their relative deadlines.

Thesis Hypothesis

“The schedulability of real-time systems with multiframe tasks can be exactly analysed

using formulated response time analysis that is extensibleto a wide variety of situa-

tions. Where response time analysis is intractable, appropriate non-optimal heuristics

exist and allow all systems to be analysed.”

As the response time scheduling test is an exact test and the worst case response

time analysis of MF tasks has not been fully studied yet, the objective of the thesis

is to provide worst case response time analysis of MF tasks, so the schedulability of

systems with MF tasks can be decided. However, exact response time analysis of large

systems with un-restricted MF tasks is intractable, so the other objective of the thesis

18

1.3 Thesis Goal

is to provide some approaches to determine the schedulability of large systems with

general MF tasks. The objectives of the thesis can be achieved in three steps as in the

following:

1. In the first step, we present exact worst case response timeanalysis for systems

with AM multiframe tasks. Analysis in this step starts from introducing a basic

response time analysis and ends up with the response time analysis of AM mul-

tiframe tasks with blocking, release jitter, and arbitrarydeadlines (i.e. including

deadline greater than period).

2. Then in the second step, we relax the AM restriction and extend the response

time analysis to cover non-AM multiframe tasks. In this step, a new concept

calledcritical frame is used. In general, testing the schedulability of a set of

MF tasks requires all possible phases of the tasks to be examined, which leads

to an exhaustive enumeration problem (i.e. an intractable problem). However,

for a particular application, not all invocations may need to be examined. We

show how the critical frames, that can give rise to the worst-case response times

of lower priority tasks, can be identified and their usage reduces the processing

required for the response time analysis. Analysis in this step is developed in

two further directions, the first direction is to be applicable to MF tasks with

blocking, release jitter and arbitrary deadline; whilst the second direction is

to cope with the scenario of having different deadlines per MF task where the

deadline is relative to the frame of the MF task.

3. Having an intractable scheduling problem for large systems with non-AM mul-

tiframe tasks, some tractable but sufficient approaches areintroduced in this

step. Three of these tests depend on transforming all multiframe tasks in the

system into AM tasks, which have only one critical frame, andthen applying

the exact response time formula on the transformed systems.The fourth ap-

proach depends on off-line calculation of the maximum interference from all

higher priority MF tasks within the deadline of the analysedtask. These differ-

ent approaches are then compared.

19

1 Introduction

1.4 Thesis Structure

This thesis is divided into nine chapters starting from thisintroduction and ending

up with the conclusions of the contributions, whilst chapters in between are arranged

according to the dependency and generalisation level. Chapter 2 defines the system

model that is used throughout the thesis and presents a historical study of related

research that has been done in fixed priority scheduling of multiframe tasks.

In Chapter 3, the exact scheduling analysis of a specific restricted model (i.e. Accu-

mulatively Monotonic (AM) model), is given. The goals of this chapter is to present

the basic response time formula of the AM multiframe tasks and show the performance

of this exact scheduling analysis by a comparison with the most recent published, but

non-optimal, schedulability analysis. Exact analysis in this chapter considers the situ-

ation where tasks share resources, which causes blocking tothe MF tasks. Chapter 4

extends the analysis of the AM model, that is given in Chapter3, to include blocking,

release jitter and to cope with the arbitrary deadline scenario.

Chapter 5 relaxes the restriction of AM and presents the basic exact response time

analysis of non-AM multiframe tasks, where the number of frames that have to be

considered in such analysis is reduced using the critical frame concept. An evaluation

of this analysis is given in this chapter by investigating the number of critical frames of

randomly generated multiframe tasks. Further, this analysis is extended in Chapter 6 to

again include blocking, release jitter and to cope with the arbitrary deadline scenario.

Chapter 7 presents an exact response time analysis of MF tasks, where each frame

of a MF task has its own deadline which could be different fromother deadlines of

the frames of the same MF task. A new concept calledcovering framesis used in the

analysis to reduce the number of frames that have to be analysed per MF task. An

optimal priority assignment is also considered in this chapter.

As the schedulability analysis becomes intractable for large systems, Chapter 8 in-

troduces four approaches for sufficient schedulability tests of systems with non-AM

multiframe tasks. A comparison between those four approaches is presented in this

chapter to show the percentage of their scheduling performance rates.

The final evaluations and conclusions of the contributions in this thesis are given in

20

1.4 Thesis Structure

Chapter 9. Further directions for future work are also presented in this chapter.

21

22

2 System Model and Related Work

This chapter defines the model of the basic system that is analysed in this thesis and

provides a review for all related contributions to this thesis. The following section

introduces the basic system model whilst Sections 2.2 and 2.3 present a historical

review of the related work.

2.1 System Model

The basic system model that is considered in this thesis is a system that consists of

N multiframe tasks that execute on a uniprocessor using the preemptive fixed priority

scheduling policy. Each MF taskτi consists, in its turn, of a sequence ofni frames

that are distinguished by their execution times; where a MF task, τi, hasni worst

case execution times,Ck
i ;k = 0..ni − 1. All frames in the same MF task have the

same priority which is represented by the priority of the MF task and these priorities

are assigned according to a priority assignment such as RateMonotonic (RM) [52,

45] which is an optimal priority assignment for certain systems with MF tasks [57].

Priorities of the MF tasks in the system are ordered consecutively with τ1 having the

highest priority in the system andτN the lowest priority (i.e. 1 inτ1 refers to the

highest priority andN in τN refers to the lowest priority).

MF tasks in the system are permitted to share resources, so there could be a situation

where the execution of a MF task is stopped by a lower prioritytask and we say

that the MF task is blocked by a lower priority task. However,due to using some

priority ceiling protocols, a MF task has an opportunity to be blocked at most once

per invocation during its execution. So, we assume in the model that each MF taskτi

is considered to have a maximum blocking time equal toBi . Further explanation for

23

2 System Model and Related Work

blocking and priority protocols is given in Section 2.3.2. All system overheads such

as context switch are ignored and assumed to be zero as we assume that there is an

immediate switch between the MF tasks in the system.

Without loss of generality, we assume that the sequence of the execution time values

is always within shortest form; wherethe shortest form of a sequenceis the shortest

sub-sequence when repeated a number of times generates the original sequence. This

is because from the analysis point of view, the behaviour of the execution of a MF

task whose execution times consist of repetitive subsequences is the same as the be-

haviour of the original sequence. For example, the execution behaviour of the MF task

whose execution times are presented by the sequence(8,1,4,3,8,1,4,3) is the same

as the execution behaviour of the subsequence(8,1,4,3). The extracted subsequence,

(8,1,4,3), is referred to as the shortest form of the sequence(8,1,4,3,8,1,4,3).

Frames of the same MF task,τi , arrive in the system with minimum inter ar-

rival time, Ti, and as soon as they have arrived, they are released having a relative

deadlineDi . Ti is presented as constant for all frames of a MF task. So, a MF

taskτi is characterised by a triple< Ci ,Ti ,Di >, whereCi is a vector ofni values,

Ci = (C0
i ,C

1
i , ..,C

ni−1
i), whilst Ti andDi are vectors with one value. As an initial re-

striction on the model,Di is considered to be less than or equal toTi so no execution

(i.e. interference) from the analysed task itself is considered when analysing its worst

case response time.

Later on in Chapters 4, 6 and 7, the basic system model is extended from three

points of view. Firstly, in Sections 4.1 and 6.1 the MF taskτi is considered to have

release jitter,Ji , so the minimum time between two successive releases of a MF task is

less than the fixed time intervalTi. Secondly, in Sections 4.2 and 6.2τi is considered to

haveDi > Ti soτi could have interference from previous frames during the execution

of τi itself. Thirdly, in Chapter 7 each frame of a MF task has a deadline that could be

different from other frames in the same MF task, soDi is a vector ofni values that are

relative to the frames of the MF task,τi but no blocking or release jitter are considered

in this chapter.

As this thesis is about the scheduling analysis of MF tasks from the worst case

response time point of view, a definition of the symbolRi is given in the following.Ri

24

2.1 System Model

of the MF taskτi is defined as the longest time from when any frame ofτi is released

until it finishes its execution, soRi has only one value per MF taskτi . However, in

Chapter 7 the MF taskτi hasni deadlines relative to each frame ofτi , soRi in this case

is a vector ofni values relative to the deadlines ofτi .

To illustrate the problem of analysing the response time of MF tasks, Table 2.1

represents a simple example system with 2 tasksτ1 andτ2 whereτ1 is a MF task with

4 frames represented by the execution time values 8, 1, 4 and 3, andτ2 has just one

frame.

task, τi Ci Ti = Di priority
τ1 8, 1, 4, 3 10 1
τ2 x 20 2

Table 2.1: Example System

Initial Frame Location exe. seq. 1 inv. 2 inv. 3 inv. 4 inv.
0 8, 1, 4, 3 8 9 13 16
1 1, 4, 3, 8 1 5 8 16
2 4, 3, 8, 1 4 7 15 16
3 3, 8, 1, 4 3 11 12 16

Table 2.2: Possible Interference fromτ1

Finding the worst case response timeR2 of τ2, whatever its execution time is, re-

quires finding the maximum amount of possible interference fromτ1. Table 2.2 shows

values of interference thatτ1 generates from different initial frames in the execution

sequence (exe. seq. and inv. respectively stand forexecution time sequenceand

number of invocations). It can be seen from Table 2.2 that the maximum amount of

interferenceτ1 generates, in the case of one invocation (i.e. 1 inv.), is when it is firstly

released having an execution time of 8. While the maximum amount of interference,

in the case of two invocations, is when it is firstly released having an execution time

of 3 followed by 8. The maximum amount of interference, in thecase of three in-

vocations, is whenτ1 is firstly released having an execution time of 4 followed by 3

25

2 System Model and Related Work

followed by 8. While, in the case of four invocations, the amount of interference from

τ1 remains the same (i.e. 16 in this example) whatever the release frame is.

Frames that could generate the maximum amount of interference are calledcritical

frames; which are, in this example, frame whose execution times are8, 4, and 3, but

not 1 since any of 8, 4, 3 can be considered as a critical frame on behalf of 1 (full

details of the reasons are given in Chapter 5). A frame of a MF taskτ j is considered

as critical when it has two properties; firstly, it can generate the maximum amount

of interference within lower priority task for at least one number ofτ j ’s invocations;

and secondly there are no other frames inτ j that generates greater or equal amount of

interference for all possible number ofτ j ’s invocations.

So, to calculate the amount of interference a frame release generates within the

response time of a lower priority task, we have to know the relative number of invo-

cations (i.e. interference) the MF task is experiencing within this response time. For

this reason we define acumulative functionof thexth frame release1 of a MF taskτ j

to represent the amount of interference this frame generates. Definition 1 illustrates

this cumulative function.

Definition 1 . Given a MF taskτ j with nj execution times(C0
j ,C

1
j , ..,C

(n j−1)
j). The

cumulative function (ξ j) of the xth frame release for a given number ofτ j ’s invo-

cations,k, is the amount of interference that the MF task generates starting from that

frame and proceeding for that number of invocations and is given by Equation (2.1)

ξ x
j (k) =

x+k−1

∑
f=x

C
f mod nj
j (2.1)

wherex= 0, ..,n j −1, and k= 1,2, .., for example, the value ofξ 0
1 (2) for the MF task

τ1 in Table 2.1 is 9. In fact, for an ordinary single frame task the cumulative function

is well defined asξ j(k) = kCj because of the constancy ofCj for all frames of the

multiframe task.

From the criticality point of view, a frame in a MF task is considered critical when

it can give rise to the maximum interference within lower priority tasks and so it can

1xth frame release is the frame that is released with thexth execution time of the MF task.

26

2.1 System Model

lead to the worst case response time of a lower priority task.On the other hand, when

the cumulative function of a frame of a MF task is always greater than the cumulative

function of all other frames of the same MF task for at least one possible number of

interference, this frame definitely generates the maximum interference within lower

priority tasks for that number of interference. The following definition formally intro-

duces a condition on a frame of a MF task to be a definitely critical frame.

Definition 2 . The xth frame of a MF task τ j , whose execution time sequence is

in its shortest form, is definitely critical if ∃ k = 1,2, ..,n j −1,∀y 6= x :

ξ x
j (k) > ξ y

j (k) (2.2)

For example, the first frame (i.e. the frame whose location is0) of the MF taskτ1 in

Table 2.1 is a critical frame because∃ k = 1,∀y 6= 0;ξ 0(1) > ξ y(1).

We call the frame whose execution time is maximum thePeak Frame.

Definition 3 A Peak frame of a MF task is one of the frames, in the MF task, whose

execution time is the maximum of the execution times of this MF task.

For example, the MF taskτ, whose execution time sequence is(8,4,8,3), has two

peak frames with locations 0 and 2, where their execution times are both 8.

Note from Definition 2 that having the execution time sequence in its shortest form

means that if we have more than one peak frame then at least oneof the peak frames

must be a critical frame; otherwise the execution time sequence is not in its shortest

form. For example, in the above MF taskτ whose two peak frames with locations 0

and 2, the first peak is critical but the other one is not.

Mok and Chen [56] force one of the peak frames of a MF task to be the only critical

frame of this MF task by introducing the accumulatively monotonic, AM, condition

on the execution time sequence. The AM condition depends on the peak frame being

the only frame that generates the maximum amount of interference for all possible

number of interference (i.e. invocations). Informally, all frames of the AM multiframe

task are dominated by one of its peak frames. The AM restriction is mathematically

27

2 System Model and Related Work

formalised by an equation using themod function to reach the execution time values

from its sequence. Equation (2.3) represents this AM restriction

m+ j

∑
k=m

C(k mod n) ≥
i+ j

∑
l=i

C(l mod n); (2.3)

∀i, j = 0,1,2, ..,n−1;

whereCm is one of the peak values in a list of execution times(C0,C1, ..,Cn−1) that

satisfies Equation (2.3). For example, for the AM multiframetask whose execution

time sequence isC = (8,4,8,3), m= 0 andC0 = 8, also the frame whose execution

time isC0 is the only critical frame of this AM multiframe task.

2.2 Related Work to Scheduling MF Tasks within

Fixed Priority Scheduling Scheme

The most popular scheduling tests for real-time systems within fixed priority policy

are the utilisation test and the response time test. In the utilisation test, the system can

be scheduled if the overall processor utilisation of the system is less than a pre-defined

upper bound. In the response time test, the system can be scheduled if all its tasks meet

their relative deadlines, and the task meets its deadline ifits worst case response time

is less than or equal to its relative deadline.

As this thesis is concerned with the worst case response timescheduling analysis

of multiframe tasks within fixed priority policy, previous contributions within fixed

priority scheduling policy must be covered within two fields. The first field is the

contributions of scheduling MF tasks, which covers the contributions within the util-

isation domain and other scheduling contributions relatedto MF tasks. The second

field is response time analysis.

The MF model is a generalisation of Liu and Layland’s model where in Liu and

Layland’s model the execution time of the task is constant for all its jobs, so the first

contribution to start the review with is Liu and Layland’s contribution. Liu and Lay-

land [52] were the first who employed FPS on the uni processor system, the following

28

2.2 Related Work to Scheduling MF Tasks within Fixed Priority Scheduling Scheme

section explains Liu and Layland model.

2.2.1 Liu and Layland Contributions

Liu and Layland introduced a simple system model with the following assumptions:

1. tasks of the system are periodic, independent, fully preemptive and with no

overheads;

2. no sharing of resources is permitted, so the runnable taskis always the highest

priority task;

3. all tasks are released at the beginning of their relative periods;

4. deadline of each task is equal to its period;

5. no task may suspend itself.

Worst case execution time of each task is considered as constant for all its jobs, so they

do not vary from one invocation to another of the task. Tasks in this model are assigned

priorities according to what is called Rate Monotonic, RM. In RM priority assignment,

priorities are assigned to the tasks according to their periods; where the shorter period

the task has, the higher priority it obtains. The executing task at a specific moment

is the runnable task whose priority is the highest one. Liu and Layland [52] and

Labetoulle [45] showed, for a single processor, that if a task set can be scheduled with

any priority assignment it is scheduled with the RM assignment. In this sense RM is

optimal.

Liu and Layland [52] and Serlin[65], with the RM algorithm for FPS, introduced

a sufficient but not necessary utilisation scheduling test.The test was based upon

the upper bound of the processor utilisation factor; where they proved that a task set

is schedulable if its processor utilisation is less than or equal to a pre-defined upper

bound. This test is represented by Equation (2.4).

i=N

∑
i=1

Ci

Ti
≤ N(2

1
N −1). (2.4)

29

2 System Model and Related Work

WhereCi stands for the execution time of theith task,Ti represents the period of the

ith task, andN is the number of tasks in the system. When the number of tasksN,

becomes very large, the upper bound of the processor utilisation factor simplifies to

0.693. This utilisation scheduling test is inexact as it is sufficient but not necessary,

hence it is pessimistic. For example assume we have a simple system with two tasks,

each task has a worst case execution time equals half of its relative period (i.e.C1 = T1
2

andC2 = T2
2) and one of the periods is half of the other period (i.e.T2 = 2T1) then the

task set, depending on Liu and Layland’s test (i.e. Equation(2.4)), is unschedulable.

However, the set is in practice schedulable as when the two tasks are released at the

same time (which is the worst case situation) the first task executes for one half of its

period and the second task executes for the other half of its period and both of them are

schedulable. Lehoczky et al. [48] estimated the average maximum utilisation for rate

monotonic fixed priority scheduling and they showed by simulation that this average

is around 88% for uniformly distributed tasks.

Within the context of the preemptive system, the critical instance of a task is defined

as the instant when this task is preempted the most so the processor is occupied the

most with the execution of this task. Liu and Layland proved in their model that the

critical instance, for any task, occurs, when the task is released simultaneously with

all higher priority tasks in the system. So, the critical instance of the system is when

all tasks in the system are simultaneously released at the same time.

However, this model restricts the worst case execution timefor each task to be con-

stant for all its jobs. In 1996 Mok and Chen [56, 57] relaxed this constancy restriction

to introduce the multiframe model; and proposed a utilisation based schedulability

test, for fixed priority scheduling, under RM priority assignment assuming the AM

restriction for all multiframe tasks in the system. The following section covers Mok

and Chen’s contribution.

2.2.2 Mok and Chen Contribution

In Mok and Chen’s model [56, 57], execution time values of each task in the system

are not presented as a constant value any more. Instead the execution time values

of each task are presented as a vector and the values of this vector satisfy the AM

30

2.2 Related Work to Scheduling MF Tasks within Fixed Priority Scheduling Scheme

restriction that is given by Equation (2.3). In the AM multiframe task, one of the peak

frames always generates the maximum amount of interferencewithin the execution

of lower priority tasks, for any number of its invocations (i.e. interference). So, an

AM task has only one critical frame which is the peak frame whose execution time

satisfies Equation (2.3). For example, the critical frame ofthe multiframe task whose

execution time sequence isC = (8,4,8,3), is the first frame whose execution time is

8 (i.e. the 8 that is followed by 4 but not the 8 that is followedby 3).

In Mok and Chen’s model, all jobs of a MF task are assigned the same priority

which is called the priority of the MF task. Mok and Chen proved that the optimal

priority assignment of a system with AM multiframe tasks is RM, where the lower

period the MF task has the higher priority it is assigned. Also, they considered the

critical instance of an AM multiframe task as the instant from when its critical frame is

released simultaneously with the critical frames of all higher priority AM multiframe

tasks. So, this AM multiframe task is schedulable if it is schedulable at its critical

instance.

The main contribution of Mok and Chen was in the utilisation domain. They

proved an upper bound for the peak utilisation of a system with AM multiframe

tasks. They proved that the system is schedulable if its peakutilisation factor which

is given byUm = ∑N
i=1

max
ni−1
j=0 {C j

i }

Ti
, is less than or equal to an upper bound given by

r.N.((r+1
r)

1
N −1). Equation (2.5) represents the schedulability test of a system withN

AM multiframe tasks.

N

∑
i=1

maxni−1
j=0 {C j

i }

Ti
≤ r.N.((

r +1
r

)

1
N

−1); (2.5)

wherer is the minimum ratio, over all AM multiframe tasks in the system, of the

execution times of the critical frame and the frame that follows the critical.r is given

by r = minN
i=1{r i}; r i , in its turn, is given byr i = 1 if N = 1 or r i =

C0
i

C1
i

if N > 1. Note

that Equation (2.5) returns to Liu and Layland’s test when the execution times of each

MF task are constant. This is because, for Liu and Layland’s model,r = 1 asC0
i = C1

i

and maxni−1
j=0 {C j

i } = Ci.

Although Mok and Chen’s utilisation test is an improvement test of Liu and Lay-

31

2 System Model and Related Work

land, both tests are inexact (i.e. sufficient but not necessary) as well as being only

applicable to RM priority assignment. However, Mok’s utilisation bound has been

improved by subsequent papers but these tests remain inexact. The following section

covers subsequent contributions for scheduling MF tasks including the contributions

that improved Mok and Chen’s utilisation bound.

2.2.3 Subsequent Contributions for Scheduling MF Tasks

As Mok and Chen’s test was the first scheduling test for MF tasks, Han [37] presented

another scheduling test and compared its results with the results of Mok and Chen’s

test. Han’s scheduling test [37] was also under RM priority assignment and was better

than Mok’s test in the sense that multiframe task sets with peak utilisation (i.e. the

utilisation of the peak frame) larger than Mok’s bound were not feasible using Mok

and Chen’s utilisation bound but can be found feasible by Han’s test. The test was not

based on utilisation test, it was based upon transforming the AM system to a system

with harmonic periods, using a proposed algorithm for the transformation process,

and then if the transformed system is schedulable, the original system is schedulable.

Although Han showed by evaluation that his test is always better than Mok and Chen’s

test, Han’s model restricts periodic AM multiframe tasks inthe system while Mok’s

model is applied to sporadic AM multiframe tasks as well as periodic. However, both

tests are inexact and only applicable to RM priority assignment as well as assume a

non-flexible model as the model has to satisfy all restrictions of Liu and Layland’s that

are given in Section 2.2.1 apart from having non constant execution times and also all

execution time sequences have to be AM.

Another scheduling test was given by Kuo et al. [44] who improved Mok’s utilisa-

tion bound; where they gave another improved utilisation bound for a schedulability

test of systems with AM multiframe tasks. The main idea of thetest was to merge the

tasks whose periods are harmonic (i.e. one of the period is a multiple of the others) to

reduce the number of tasks that has to be considered in the schedulability test and then

apply Mok’s bound to the merged tasks. The combined task, under Kuo’s test, will

have a period of̂T and a sequence of execution timesĈ j with the size ˆn; whereT̂ is the

maximum period of the merging tasks, ˆn is the least common multiple of the number

32

2.2 Related Work to Scheduling MF Tasks within Fixed Priority Scheduling Scheme

of execution times of the merged tasks, andĈ j is given by the following formula

Ĉ j =
N

∑
i=1

(

(T̂
Ti

)−1

∑
k=0

C
(j(T̂

Ti
)+k) mod ni

i);

where j = 0,1, .., n̂−1,N is the relative number of tasks that are under merging proce-

dure,ni andTi are respectively the relative number of frames and the relative period of

the ith AM multiframe task. The example below gives more explanation about these

calculations.

In 2007, Lu et al. [55] improved Kuo’s utilisation test and presented new schedul-

ing conditions for AM multiframe tasks within the utilisation domain and assuming

RM priority assignment. They considered the ratio of the periods in their test. The

improvement was that they used Kuo’s method to merge the tasks and then they ap-

plied their test to the merged tasks. The schedulability status, under their approach,

depends on the total peak utilisation,U , of the AM multiframe tasks being less than a

defined upper bound. They called this upper bound theConditional Boundfunction,

CB. Symbolically, the AM task set is schedulable if inequality(2.6) is satisfied.

U ≤CB; (2.6)

where the total peak utilisation,U , is the summation of all peak utilisations of the

multiframe tasks in the system; and it is given by

U =
N̂

∑
i=1

max
0≤ j≤ni−1

{
Ĉ j

i

T̂i
}.

Whilst theCB function is defined by Equation (2.7); for number of tasks,N > 1,

and with regard to two parametersr andz.

CB(r,z) = z+ r(z−1)+ r(N̂−1)((
1
z
)

1
N̂−1

−1) (2.7)

wheren̂i and T̂i are respectively the number of frames and the period of theith MF

task.r is given as

r = min1≤i≤N̂ {r i}, wherer i is defined depending on ˆni as

33

2 System Model and Related Work

r i =
Ĉ0

i
Ĉ1

i
; f or n̂i > 1, andr i = 1; f or n̂i = 1.

z is given as

z= max{min1≤i≤N̂−1{
Vi
T̂N̂
}, r

1+r }, whereVi is called a virtual period and is given by

Vi = ⌊ T̂N
T̂i
⌋T̂i .

Section 3.4 in Chapter 3 compares between the response time scheduling test of AM

multiframe tasks and Lu’s scheduling test as Lu’s analysis is the most recent published

scheduling analysis for MF tasks within FPS. So, we fully illustrate Lu’s test by the

following detailed example to give more explanation of the test.

Example

Table 2.3 represents an example system that consists of five tasks with their attributes.

task C T = D
τ1 (1) 3
τ2 (2) 9
τ3 (3,1) 18
τ4 (2,1) 20
τ5 (6,3) 60

Table 2.3: Example Illustrates
Lu’s Analysis- Original
System’s Attributes

task Ĉ T̂
τ̂1 (7,5) 18
τ̂2 (31,27) 60

Table 2.4: Merged System Using
Kuo’s Method

Using Lu’s approach,τ1, τ4, andτ5 are merged using Kuo’s method [44] tôτ2 with

a period equal to the maximum period ofT1,T4 andT5; which is 60 in this example.

τ̂2 has number of execution times equal to the least common multiple ofn1, n4 andn5;

which is 2 in this example. Values of̂τ2’s execution times are found by applying

Ĉ j
2 =(

(60
T1

)−1

∑
k=0

C
(j(60

T1
)+k) mod n1

1)+(

(60
T4

)−1

∑
k=0

C
(j(60

T4
)+k) mod n4

4)+(

(60
T5

)−1

∑
k=0

C
(j(60

T5
)+k) mod n5

5)

f or j = 0,1.

Therefore,Ĉ0
2 = 31 andĈ1

2 = 27. Also,τ2 andτ3 are merged, using Kuo’s method,

to τ̂1 with the number of execution time equal to ˆn1 = 2 and execution time values

34

2.2 Related Work to Scheduling MF Tasks within Fixed Priority Scheduling Scheme

Ĉ1 = (7,5) and a period of 18. Table 2.4 represents the attributes of themerged tasks.

Once the merged tasks are identified, the scheduling test is to check if the total peak

utilisation,U , is less than or equal to a pre defined conditional bound,CB. U , is the

summation of all peak utilisations of the multiframe tasks in the system; and it is given

by

U =
2

∑
i=1

max
0≤ j≤n̂i−1

{
Ĉ j

i

Ti
} =

7
18

+
31
60

= 0.905.

CB is found depending on two parametersr andz.

r is given asr = min1≤i≤N̂ {r i}, wherer i is the ratio of the first two execution times

of τ̂i and is defined by

r i =
Ĉ0

i

Ĉ1
i

,so r1 = 7
5, r2 = 31

27.

Therefore,r = min{7
5,

31
27} = 1.148.

z is given byz= max{min1≤i≤N̂−1{
Vi
TN̂
}, r

1+r }, whereVi is called a virtual period and

is given by

Vi = ⌊ T̂N
T̂i
⌋T̂i = ⌊60

T̂i
⌋T̂i . So,V1 = ⌊60

18⌋18= 54.

Therefore,z= max{54
60,

1.148
1+1.148} = 0.9.

Oncer andz are identified,CB(r,z) is given by

CB(r,z) = z + r(z−1) + r(N̂−1)((1
z)

1
N̂−1 −1)

= 0.9 + 1.148(0.9−1) + 1.148(2−1)((1
0.9)

1
2−1 −1)

= 0.912.
Therefore, the total peak utilisation of the system is less than the conditional bound

function (CB) of the merged tasks (i.e.U < CB) which means using Lu’s test that the

original system that is given by Table 2.3 is schedulable.

Moving on to non-AM multiframe tasks, Takada et al. [69] investigated the schedu-

lability of the general MF tasks and gave a necessary and sufficient condition for

the schedulability of the MF model, under the fixed priority scheme. They showed

that the complexity of the feasibility decision becomes at least2 ∏N
i=1ni. They also

introduced an efficient feasibility decision algorithm using a maximum interference

function. However, Takada’s estimation of the complexity of the exact analysis is pes-

2∏N
i=1ni means the product of all numbers of frames over all tasks in the system.

35

2 System Model and Related Work

simistic as we show in Chapter 5 that the complexity of the exact scheduling analysis

is ∏N
i=1(ni −1) in the worst case. Also, his test was applicable to a restricted model

where the deadline of the task should not extend beyond its period.

Baruah et al. [13] used the fixed point approach motivated by the response time

analysis to give a tractable but sufficient schedulability test for a system of general

MF tasks. They preprocessed the execution time sequences ofthe MF tasks taking into

account the maximum amount of interference that higher priority MF tasks provide.

Then, they apply the fixed point algorithm to estimate the worst case response time of

the peak frame of the lower priority MF task considering the maximum amount of in-

terference each higher priority MF task can provide. Although this analysis is in some

sense related to response time domain, the test is inexact asit estimates the maximum

interference before processing the response time analysis; while in our contribution

we provide an exact analysis of the response time. However, an approach called com-

plementary approach; which is equivalent to Baruah et al.’sapproach is presented in

Chapter 8 in this thesis.

Baruah et al. [12] also did some work in scheduling multiframe tasks related to

Earliest Deadline First, EDF, scheduling scheme; which is an alternative scheduling

scheme. However, this thesis is concerned with FPS so this EDF approach is not

expanded upon here.

As can be seen from the above contributions, all schedulability analyses are inex-

act as all of them are either in the utilisation domain or onlysufficient. For example,

Lu’s analysis improves previous results, but still remainsinexact as well as it is de-

pendent on the RM priority assignment. Moreover, their testis only applicable to a

system whose deadlines are identical to their relative periods. Whilst response time

analysis that is presented in this thesis gives an exact scheduling analysis for less strict

models (systems with sharing resources, release jitter andarbitrary deadlines) and is

applicable to any priority assignment.

36

2.3 Contributions of Response Time Analysis

2.3 Contributions of Response Time Analysis

Most research within fixed priority scheduling assume RM as an optimal priority as-

signment assuming deadlines of the tasks are identical to their relative periods. How-

ever, if deadlines of the tasks are permitted to be less than their relative periods RM

priority assignment is not optimal any more [41] and Deadline Monotonic, DM, takes

the place [51] (the smaller relative deadline the task has the higher priority it is as-

signed). So, as most utilisation scheduling tests depend onRM priority assignment

or restrict the system to satisfy most of Liu and Layland’s assumptions, studying the

schedulability of a system from the utilisation point of view is not flexible enough to

be extendable to the systems with sharing resources, release jitter, and arbitrary dead-

lines. However, Harter [58] solved this problem by introducing the idea of analysing

the schedulability of a system using worst case response time analysis.

2.3.1 Basic Response Time Analysis

Basically, analysing the worst case response time of a taskτi within Liu and Lay-

land’s model can be achieved once three issues are identified: τi ’s critical instance,

τi ’s amount of execution and the amount of execution of tasks other thanτi . Joseph

and Pandya [40] followed by Audsley et al. [9] mathematically applied response time

analysis and introduced an iterative equation, Equation (2.8), for finding the worst case

response time of a taskτi assuming the basic model of Liu and Layland (see Section

2.2.1 for details). They assumed Liu and Layland’s criticalinstance [52]; where the

worst case response time, of a task is when this task is released simultaneously with

all higher priority tasks.

Ri = Ci + Ii = Ci + ∑
j∈hp(τi)

⌈
Ri

Tj
⌉Cj (2.8)

hp(τi) is the set of tasks whose priorities are higher than the priority of τi . As τi is a

preemptive task,Ii = ∑ j∈hp(τi) ⌈
Ri
Tj
⌉Cj represents the maximum amount of interference

from higher priority tasks within the execution ofτi. In other words,Ii represents the

maximum amount of interference within the worst case response time ofτi, from the

37

2 System Model and Related Work

tasks whose priorities are higher than the priority ofτi .

As the priorities of the tasks are assigned from 1 being the highest priority andN is

the lowest,hp(τi) returns to the values 1, .., i −1. So, Equation (2.8) is rewritten to

be as Equation (2.9)

Ri = Ci + Ii = Ci +
i−1

∑
j=1

⌈
Ri

Tj
⌉Cj . (2.9)

To solve Equation (2.9), a recurrence relation is given as inEquation (2.10); where

l = 0,1,2, ... andR0
i = Ci . The smallest non-negative solution of Equation (2.10) rep-

resents the worst case response time ofτi , Ri. In other words, the worst case response

time is obtained when it is found thatRl+1
i = Rl

i = Ri (for the smallest value ofl).

However, in the case thatRl+1
i becomes greater than the deadline ofτi , thenτi is not

guaranteed to meet its deadline, so we say that the task is unschedulable.

Rl+1
i = Ci +

i−1

∑
j=1

⌈
Rl

i

Tj
⌉Cj . (2.10)

Equation (2.9) assumes that there is no sharing resources between the tasks, so only

the runnable task,τi , can access the resource. In fact, there are situations whereτi asks

for resources that are occupied by tasks whose priorities are lower thanτi, soτi can

not access this resource until the lower priority tasks giveup this resource. In this case

we say thatτi is blocked awaiting lower priority tasks to finish their execution. The

following section gives details about response time analysis of tasks with blocking.

2.3.2 Tasks with Blocking Time

To explain the blocking scenario, assume there are two tasksτ1 andτ2 attempting to

access shared data (τ1 has higher priority thanτ2). If τ2 gains access first and thenτ1

request access to the shared data; the higher priority taskτ1 would be blocked until the

lower priority taskτ2 completes its access to the shared data. Blocking in this example

is a form of priority inversion; whereτ2 completes its execution with a priority higher

than or equal toτ1, asτ2 executes beforeτ1 whilst τ1 actually has higher priority than

τ2.

38

2.3 Contributions of Response Time Analysis

Long duration of blocking could lead to missed deadlines of the task and so the sys-

tem could be unschedulable as, in some cases, a low priority task may unnecessarily

block the execution of higher priority tasks. So, researchers in this area attempt to

minimise this blocking time to reduce the chance of missing the timing requirements.

This minimisation was achieved by introducing some priority inheritance protocols.

Lampson and Redell [47] were the first who discussed priorityinheritance in the

context of monitors. Each monitor was associated with the priority of the highest

priority task which enters that monitor. Then, whenever a task enters a monitor, its

priority increases temporarily, to the monitor’s priority.

In 1990, Sha and his colleagues [66] gave two protocols to minimise this blocking

time, basic priority inheritance protocol and priority ceiling protocol . The following

are the details of these protocols.

Basic Priority Inheritance Protocol (BPIP)

The basic priority inheritance protocol is described as following: when a taskτk blocks

one or more higher priority tasks, it ignores its original priority and executes the criti-

cal section with the highest priority level of all tasksτk blocks. After exiting its critical

section,τk returns to its original priority level. Sha and his colleagues proved in their

work that, under BPIP, if there arem semaphores that can blockτi, thenτi can be

blocked at mostm times.

Priority Ceiling Protocols (PCP)

In the priority ceiling protocols, priorities of the tasks at run time are not strictly fixed,

although priorities of the tasks and resources are assignedbefore run time. The best

known two priority ceiling protocols are the original ceiling priority protocol and the

immediate ceiling priority protocol.

In the original ceiling priority protocol [66], each resource has a static ceiling value

which is the maximum priority of the tasks that use this resource. Whilst the task

that shares the resources has two kinds of priorities one of them is fixed which is the

original default priority and the other is dynamic which copes with the execution of

the critical sections. The dynamic priority of the task is the maximum of its own

default priority and any it inherits due to blocking higher priority tasks. A task can

lock a resource if its dynamic priority is higher than the ceiling of any currently locked

resource. The benefit of the original ceiling priority protocol is that once the task is

39

2 System Model and Related Work

released it will be blocked at most once during its execution.

In the immediate ceiling priority protocol, each resource has a static ceiling value

which is the maximum priority of the tasks that use this resource. Whilst a task that

shares the resources has two kinds of priorities one of them is fixed which is the

original default priority and the other is dynamic which copes with the execution of

the critical sections. The dynamic priority of the task is the maximum of its own

default priority and the ceiling values of the shared resources. Priority of the task

at run time is chosen according to its dynamic priority. The benefit of the immediate

ceiling priority protocol is that the task could be blocked at most once at the beginning

of its execution.

The immediate priority ceiling protocol was derived from the basic protocol for in-

corporation in programming languages and operating systemstandards. For example

it is available in Ada, in POSIX (where it is known as the Priority Protect Protocol)

and Real-Time Java (where it is known as Priority Ceiling Emulation) [25]. Immediate

ceiling priority protocol is a significant protocol for tasks executing on a uni processor

because applying immediate ceiling protocol to a uni processor system with sharing

resources allows the task to be blocked at most once at the beginning of its execution.

This is because once a taskτi requires an occupied resource,τi ’s priority increases to

the maximum ceiling value of the shared resources. So, once the resource becomes

free,τi access it and completes its execution with its dynamic priority without any in-

terruption from any lower priority task. In addition, Pilling, Burns and Raymond [60]

proved formally that immediate ceiling protocol prevents the deadlocks3. Also, im-

mediate ceiling protocol prevents transitive blocking as the task returns to its default

priority after finishing the execution of its critical section.

In 1991, Baker [10] extended the PCP to the Stack Resource Policy, SRP, that sup-

ports three issues: multiunit resources, sharing runtime stack resources, and EDF as

well as FPS, schemes. SRP depends on the preemption level of the task; which might

be its priority in some cases. As this thesis uses PCP rather than SRP no more details

of SRP are introduced.

3In the deadlock situation, a task is blocked forever as it andanother tasks are waiting each other to
finish its critical section, and thus neither ever does.

40

2.3 Contributions of Response Time Analysis

Adding Blocking Time to the Response Time Analysis

We showed in the previous discussion that PCP allow the task to be blocked at most

once during its execution, so the worst case response time formula of the task that is

subjected to blocking must take into account the maximum expected blocking time.

Audsley et al. [9] enhanced the response time equation (i.e.Equation (2.9)) to include

the maximum blocking time,Bi , as in Equation (2.11) assuming the PCP.

Ri = Ci +Bi +
i−1

∑
j=1

⌈
Ri

Tj
⌉Cj (2.11)

Similar to how Equation (2.9) is solved, Equation (2.11) is solved by forming a re-

currence relation as in Equation (2.12); wherel = 0,1,2, ... andR0
i = Ci . The smallest

non-negative solution of Equation (2.12) represents the worst case response time of

τi . In other words, the worst case response time ofτi is obtained when it is found that

Rl+1
i = Rl

i = Ri for the smallest value ofl . However, in the case thatr l+1
i becomes

greater than the deadline ofτi , τi is not guaranteed to meet its deadline, so we say that

the task is unschedulable.

Rl+1
i = Ci +Bi +

i−1

∑
j=1

⌈
Rl

i

Tj
⌉Cj (2.12)

2.3.3 Tasks Subjected to Release Jitter

One of the flexibilities of the response time scheduling testis being applicable to tasks

that are subjected toRelease Jitter. A periodic taskτ j has to arrive in the system

within a fixed time which is its period,Tj , then it will be released as soon as it ar-

rives. However, when this periodic taskτ j is subjected to release jitter, its arrival time

becomes under some circumstances different from its release time. So,τ j does not

become strictly periodic and a variation in its release times has arisen. So, release

jitter of a taskτ j is defined as the maximum variation inτ j ’s release times [39]. To

clarify, whenτ j is subjected to release jitter, its release times take placesomewhere

within time interval of lengthJj and then every periodTj . Mathematically, letsk
j be

41

2 System Model and Related Work

the time when thekth release ofτ j takes place, then

k.Tj + x ≤ sk
j ≤ k.Tj + y; ∀k∈ Z (2.13)

where Jj = y − x.

More explanations and diagrams are given in Chapters 4 and 6 when a generalised

model of MF tasks that are subjected to release jitter is analysed.

The problem of release jitter happens when the task is not released as soon as it

arrives [71, 70]; which mostly happens within two popular situations represented by

“end to end jitter” [61] and granularity of the system timer.The situation of “end to

end jitter” is an important issue to be considered in distributed systems as a task could

be delayed awaiting the arrival of a periodic message that isnot delivered completely

regularly. Whilst the situation of granularity of the system timer is an important issue

to be considered in uni processor systems. The following is an illustration of both

situations of granularity of the system timer and “end to endjitter”.

From the granularity of the system timer point of view, in some cases, the granular-

ity of the system timer forces the periodic task to experience release jitter because of

the bounded time the scheduler mechanism takes to recognisethe arrival of a task [9].

For instant, a task with period of 10 but a system granularityof 9 will imply a jitter

value of 8 at time 18 the periodic task will be released for its2nd invocation.

From end to end jitter point of view, the following example clarifies this phe-

nomenon, assume there are, on different processors, two related periodic tasks:τ f

andτ j with the same period. Taskτ f callsτ j as soon asτ f has finished its execution.

Due to system load,τ f does not finish its first execution until the end of its period;

while it executes at the very beginning of its next period. Asa result,τ j is released

twice within its period instead of once (i.e. the time between the two successive frames

of τ j , on the processorτ j is executing on, is less than the usual minimum inter arrival

time of the taskτ j). It is obvious that as a result of this scenario, the amount of inter-

ference from taskτ j , on a lower priority taskτi on the same processor, may be greater

than that assumed for with a purely periodic task.

As an estimation of jitter, some researchers [36] considered the optimal instant of

42

2.3 Contributions of Response Time Analysis

the task, that was presented by Bril et al. [21], and derived an upperbound for jitter

considering the best case response time (BCRT). An optimal instant of a task occurs

when the completion of the task coincides with a simultaneous release of all higher

priority tasks. BCRT, in its turn, was defined as the minimum response time of a

task. Figure 2.1 explains the optimal instant ofτ3 for a system with three tasks with

attributes in Table 2.5.

task C T = D
τ1 3 10
τ2 11 19
τ3 5 56

Table 2.5: Example System

release

finish executing

executing

time

τ1

τ2

τ3

Figure 2.1: Optimal Instant Situation ofτ3

Kim et al. [42] and Bril et al. [21] enhanced the best case response time analysis

and gave simpler best case response time equation. However,this thesis is concerned

with the worst case response time analysis, hence no need forfurther details about

best case response time analysis.

43

2 System Model and Related Work

Release jitter analysis can also be used for predicting the behaviour of deferrable

servers [18] and devices such as Bus Gurdians [23].

Worst Case Response Time for Tasks Subjected to Release Jitter

As tasks with release jitter are not purely periodic, the worst case response time for-

mula (i.e. Equation (2.9)) requires modification to cope with the release jitter situation.

The first issue to be considered in any response time analysisis to identify the criti-

cal instance of the analysed taskτi . Tindell [71, 70] identified the critical instance of

τi within the release jitter situation as whenτi is released at the same time as when

higher priority tasks finish waiting. For example, considera system with the attributes

in Table 2.6. Figure 2.2 represents the critical instance ofthe taskτ2.

Task T C J
τ1 11 5 2
τ2 13 4 4

Table 2.6: Tasks Description’s

4

release

arrive

0 11

meet its deadline

τ1

τ2
9

Figure 2.2: Execution ofτ1 andτ2 at the Critical Instance ofτ2

As the interference from higher priority tasks could be increased by release jitter,

the required modification within the response time formula is at the sideIi of the

44

2.3 Contributions of Response Time Analysis

response time formula (i.e. Equation (2.9)). Audsley and his colleagues [9] modified

the side of the interference and gave a complete formula for the response time that

takes into account release jitter situation. They gave Equation (2.14) that represents

the interference on the worst case response time ofτi , Ri , from all higher priority tasks

assuming Tindell’s critical instance.

Ii =
i−1

∑
j=1

⌈
Ri +Jj

Tj
⌉Cj . (2.14)

So, the worst case response time ofτi is presented in Equation (2.15)

Ri = Ci +Bi + Ii. (2.15)

Solving Equation (2.15) is similar to Equation (2.10) by forming a recurrence relation

and onceRl+1
i = Rl

i has been found, the worst case response time ofτi is Ri = Rl+1
i .

Schedulability ofτi is guaranteed ifRi ≤ Di − Ji , however, ifRl+1
i becomes greater

thanDi − Ji , the task is not guaranteed to meet its deadline so we say thatτi is un-

schedulable.

Optimal Priority Assignment for Tasks with Release Jitter

Although the response time formula is applicable to any priority assignment, an in-

teresting issue to mention in fixed priority scheduling for tasks with release jitter is

that neither deadline monotonic nor rate monotonic priority assignments are optimal

in the case of release jitter. Priorities are assigned according to the optimal prior-

ity assignment technique that depends on feasibility. Audsley[5], in his report, cov-

ered this technique, which is explained, in summary, as following. For a task set

S= {τ1,τ2, ...τN}, firstly, attempt to find a taskτA that is feasible at priority level

j = N. Next, find a feasible task at priorityj = N−1. Successively, feasible tasks will

be found at prioritiesN to 1. If a feasible task, at priority leveli, could not be found,

no feasible priority assignment function exists. Full details can be found in Audsley’s

report [5].

However, Burns et al. [24] mentioned, without proof, that for tasks that are sub-

jected to release jitter, priorities should be assigned according to (D-J) since DM is no

45

2 System Model and Related Work

longer optimal. In (D-J)-Monotonic priority assignment, the lower value of(D− J)

the task has, the higher priority it is assigned. Aproof of the optimality of (D-J)-

Monotonic priority assignment is given in the appendix4.

2.3.4 Tasks with Arbitrary Deadlines

Up to this point, contributions within fixed priority scheduling have been covered for

a system model whose tasks are assumed to have deadlines lessthan or equal to their

relative periods. So the response time of the analysed task does not need to take

into account interference from the analysed task itself as it is not released during its

execution. However, some contributions have been done for systems whose tasks have

deadlines greater than their relative periods.

Lehoczky [49] proved that the critical instance of a task within the arbitrary dead-

line model is the simultaneous release of the task itself andhigher priority tasks. He

also introduced a sufficient but not necessary feasibility tests based upon utilisation.

The test was an extended utilisation test of Liu and Layland’s test with the restriction

that all tasks have deadlines equal to multiple of their periods. However, as this the-

sis is interested in response time scheduling, no further details of scheduling within

the utilisation domain for arbitrary deadline model are given; whilst response time

scheduling is covered.

To illustrate the arbitrary deadline scenario, Figure 2.3 represents the timeline dia-

gram of a small example system that is given by Table 2.7. The system consists of two

tasksτ1 andτ2; where the deadline ofτ2 extends beyond its period.

task C T D
τ1 2 5 5
τ2 4 7 8

Table 2.7: Example System of Arbitrary Deadlines

Figure 2.3 shows howτ2’s second invocation has interference fromτ2’s first invoca-

tion; where the second release ofτ2 does not start its invocation until its first invocation

4This proof was also published in [76].

46

2.3 Contributions of Response Time Analysis

 meet deadline

releasefirst invocation of

second invocation of

invocation of τ1

τ1

τ2

τ2

τ2

1st release ofτ2 2ed release ofτ2

Figure 2.3: Timeline Diagram of the System in Table 2.7

has finished. So, response time ofτ2 has to take into account the interference from the

task itself as well as interference from higher priority tasks. In other words, response

time formula (i.e. Equation (2.9)) requires modification tocope with the tasks whose

deadlines are greater than their periods.

Tindell [70, 71, 72] modified Equation (2.9) and analysed theresponse time of tasks

with arbitrary deadlines, blocking, and release jitter within the same model. Analysis

of the response time ofτi is summarised in five steps. In the first step, define the busy

period of a task as the time from when this task is released until it finishes the execution

that is related to this release. In the second step, defineq andr i(q) as the number of

invocations ofτi and the length of the continuousq busy periods respectively. In the

third step,r i(q) is found by a recurrence relation as in Equation (2.16).

r i(q) = Bi +qCi + ∑
∀ j∈hp(i)

⌈
r i(q)+Jj

Tj
⌉Cj (2.16)

Solving Equation (2.16) is achieved by forming an iterativeequation as in Equation

(2.17).

47

2 System Model and Related Work

r l+1
i (q) = Bi +qCi + ∑

∀ j∈hp(i)

⌈
r l
i (q)+Jj

Tj
⌉Cj (2.17)

wherer0
i = qCi andl = 0,1, .. until r l+1

i = r l
i . However, ifr l+1

i (q)−(q−1)Ti > Di −Ji ,

τi is not guaranteed to meet its deadline and we say thatτi is unschedulable.

Forth step of the analysis is to find all needed busy periods for the analysis. Assum-

ing wi(q) is theqth busy period ofτi , wi(q) is given by Equation (2.18).

wi(q) = r i(q)− (q−1)Ti +Ji (2.18)

q is a finite integer value starting from 1 until no further interference fromτi occurs;

which happens when the busy period ofτi finishes within the period it is released in.

In other words,q = 1,2, .. until condition (2.19) is satisfied.

wi(q) ≤ Ti −Ji (2.19)

Once all busy periods ofτi are identified, the last step of the analysis is to find the

worst case response time ofτi , Ri , by maximising the busy periods over all number of

its possible invocations.

Ri = max
q=1,2,..

{wi(q)} (2.20)

The following simple numeric example clarifies how to apply response time anal-

ysis to tasks with arbitrary deadlines. Suppose a example system in Table 2.7, for

simplicity of the explanation we assumed all blockings and jitter in the example are

zero. To analyze the response time ofτ2, we begin with findingr2 andw2 of τ2 by

applying Equations (2.17) and (2.18) respectively for different values ofq.

q = 1

r0
2(1) = 4

r1
2(1) = 4+ ⌈4

5⌉2 = 6

r2
2(1) = 4+ ⌈6

5⌉2 = 8

r3
2(1) = 4+ ⌈8

5⌉2 = 8

Therefore,r2(1) = 8. So,w2(1) = 8−0(7) = 8. Asw2(1) > T2, we increaseq to be 2

and findr2(2) andw2 by applying Equations (2.17) and (2.18) respectively.

48

2.3 Contributions of Response Time Analysis

q = 2

r0
2(2) = 8

r1
2(2) = 8+ ⌈8

5⌉2 = 12

r2
2(2) = 8+ ⌈12

5 ⌉2 = 14

r3
2(2)= 8+⌈14

5 ⌉2= 14. Therefore,r2(2) = 14. So,w2(2)= 14−1(7) = 7 w2(1)≤T2;

which satisfies the condition of Equation (2.19), so we stop increasing the values ofq.

Therefore, by applying Equation (2.20), we find that the worst case response time of

τ2 is R2 = max{8,7} = 8

Analysis in this section assumes that each task in the systemhas constant execution

time. However, Section 4.2 in Chapter 4 and Section 6.2 in Chapter 6 relax the restric-

tion of constant execution time and present full analysis ofthe worst case response

time of MF tasks within arbitrary deadlines.

2.3.5 Tasks with Offsets

Fixed priority scheduling contributions that have been mentioned so far consider sys-

tem models where the critical instance of a task is the simultaneous release of the task

itself and all higher priority tasks. In 1980, Leung and Mirrell [50] generalised Liu

and Layland’s [52] model from the point of view that all tasksare not always released

at the beginning of their relative periods. Instead, the first invocation of each task

in the system is allowed to have a specific offset and then the other invocations (i.e.

second, third, ..) are released at the beginning of the relative period. The motivation

behind the offset model is to increase the feasibility of thesystem. For example, a

system with two tasks, that have periods of 10, execution time of 2 and deadline of

2, is unschedulable if the tasks do not have offsets, but the system is schedulable if

either tasks has an offset equals to 2. Figure 2.4 illustrates how bothτ1 andτ2 are

schedulable whenτ2 has an offset equals to 2.

Leung and Mirrell [50] gave an interval of the scheduling analysis duration, of a

taskτi , that was improved later on by Audsley [6].

In the offset analysis, many researchers used a concept called transaction; that is

a collection of related tasks and each task, that is a member of the transaction, has

49

2 System Model and Related Work

0

meet its deadline

miss its deadline

release

2 10

τ1

τ2
0

meet its deadline

miss its deadline

release

2 10

τ1

τ2

(Case 1:O f f sets= 0) (Case 2:τ2 has Offset = 2)

Figure 2.4: Usage of Offsets for Increasing Schedulability

a relative offset. Tindell [70] gave an exact but not tractable test for a system with

offsets. The intractability problem comes from the fact that the critical instance of

a system with offsets is hard to identify and it is no longer asin Liu and Layland’s

model. The second case in Figure 2.4 is an example to deny Liu and Layland’s critical

instance. So, the basic feasibility analysis can not be applied directly to a system with

offsets. Bate[16, 17] presented a tractable but non-exact “composite” approach to

analyze task sets featuring offsets. The approach depends on transferring the system

into another one by composing, according to a specific algorithm, tasks with non-

zero offsets and the same period; into one task with zero offset. The benefit of the

composite task approach is that the computational complexity is kept sufficiently low.

Many researches have been done in scheduling systems with offsets like Audsley

et al. [8] who presented some work for a system with offsets using Generalised Chi-

nese Remainder Theorem [43]; where they introduced the concept of common release.

Goossens et al. [34, 33] who showed that neither RM nor DM is optimal for systems

with offsets and presented two scheduling rules to choose the offsets, one of them is

optimal but computationally unreasonable for large systems; while the other one is a

50

2.3 Contributions of Response Time Analysis

nearly optimal heuristic scheduling rule. Baruah et al. [14] and Goossens [32] who

have shown that if an offset free system with arbitrary deadlines is not schedulable

for all non-negative integer offset assignments, then thisis also the case for all offset

assignment with a granularity ofm for all m (m is a non zero positive integer).

In 2006, Traore et al. [73] mentioned in their paper that the MF model is a particular

case of tasks with offset (transactions), so they assumed that their offset analysis can

be applied to the systems with MF tasks; where a MF taskτi can be modeled to a

transaction with period equalsniTi (ni andTi are respectively the number of frames

and the period of the MF taskτi). In fact, analysis in this thesis would assume that

the multiframe model is different from the transaction model as Traore’s suggestion

could only be applicable to a very strict MF models. For example, this offset analysis

is applicable only to MF task that is AM (having its critical frame at the first position

of its execution time sequence) and all frames in the same MF task have the same

deadline; whilst offset analysis is not applicable to the general MF task and frame

specific deadlines.

The incorrectness of the assumption that the MF model is a particular case of the

offset model lies in the fact that offset model fails to correctly identify the worst-

case combination of MF tasks. For example, a MF task with execution times(1,2),

deadline 2 and period 10 would be considered equivalent, forscheduling analysis

purposes, to two tasksτ1
1 andτ2

1 such that both have deadline 2 and period 20,τ1
1

has an execution time equals 1, andτ2
1 has an execution time equals 2 and also has an

offset fromτ1
1 by 10 units (in the sense that the first invocation ofτ1

1 is released at 0 and

successive invocations are released exactly 20 units apart, while the first invocation of

τ2
1 is released at 10 and successive invocations are released exactly 20 units apart).

However, to see why such an approach for scheduling analysisis incorrect, consider

a MF system consisting of two tasks; the one above, and the task τ2 with execution

time 1, deadline 2, and period 20. Using the same assumption,this second MF task

would be transformed to a task with execution time 1, and its first invocation at 0

and the successive invocations exactly 20 units apart. The system would therefore

be considered schedulable asτ2
1 andτ2 are not released simultaneously according to

the offset assumption. However, in realityτ2 is actually unschedulable because we

assume in the system model that all frames of a MF have same priority and periods,

51

2 System Model and Related Work

task C D T
τ1 (3,2) (5,5) 10
τ2 (8,6,7,4) (15,9,9,10) 15

Table 2.8: Original Example System

so bothτ1
1 andτ2

1 have the same priority and periods. So there is a situation where

τ2
1 andτ2 are released simultaneously which results thatτ2 does not meet its deadline

and so it is unschedulable.

However, even for the AM multiframe tasks whose deadlines are different from one

frame to another within the same MF task, Traore’s suggestion is not applicable. For

example, assume a system in Table 2.8, according to Traore’ssuggestion, the system

will be transformed to the system in Table 2.9.

task O f f set C D T
τ1 (0,10) (3,2) (5,5) 20
τ2 (0,15,30,45) (8,6,7,4) (15,9,9,10) 60

Table 2.9: Transformed System Having Offsets

So the frames ofτ1 andτ2 whose execution times are 3 and 7 respectively, do not

share a simultaneous release in the transformed system (Figure 2.5) whilst in reality

they do. Figure 2.5 represents the execution scenario of thesystem in Table 2.9.

According to the offset analysis,τ2 is considered as schedulable as all its deadlines

are met. Whilst in reality it is not schedulable; as whenτ2 is released having an

execution time of 7 simultaneously withτ1 having the execution time of 3,τ2 does not

meet its deadline as its response will extends beyond 9.

Therefore, this thesis considers the MF model as a differentmodel from the offset

model.

2.3.6 Other Contributions Related to Response Time Analysis

within Fixed Priority Scheduling

Eisenbrand et al. [29] has recently showed that the responsetime computation for

RM preemptive scheduling is NP-hard. However, some research [38, 22, 28] has been

52

2.3 Contributions of Response Time Analysis

executing release meet deadline

tau1

tau2

3 2 3 2 3 2

8 6 7 4

10

15 30 45

Figure 2.5: Execution Scenario of the Transformed System inTable 2.9

done to improve the efficiency of the exact response time test, providing an effective

initial value of the fixed point solution of the response timeequation.

Another sufficient response time test was developed by Fisher and Baruah [31, 30];

where they estimated the workload requested by higher priority tasks using an ex-

act request bound function for a specific number of invocations and a linear function

thereafter. In 2007, Richard et. al. [62] extended this workto include tasks that are

subjected to release jitter.

Bini and Baruah [19] derived a closed form upper bounds on theresponse times

and an associated linear-time sufficient test for independent preemptive tasks with

arbitrary deadlines but no jitter. Davis et al.[27] had derived another flexible closed

form upper bounds on the response times of tasks with arbitrary deadlines, release

jitter and blocking.

53

2 System Model and Related Work

2.4 Summary

As can been from all covered contributions, all contributions that are related to schedul-

ing MF tasks are inexact. Moreover, non of the exact worst case response time con-

tributions within fixed priority scheduling considered MF tasks. However, this thesis

presents an exact scheduling test of MF tasks by analysing their worst case response

times. The analysis depends on formulating the response time of a MF task assuming

the MF tasks are released synchronously (i.e. they share a common release). The

response time analysis in this thesis is hierarchically presented depending upon the

generalisation of the MF model starting by the classic AM model and AM with block-

ing time, release jitter and arbitrary deadlines then ending up with non-AM model

with blocking time, release jitter, arbitrary deadlines and frame specific deadlines.

54

3 Basic Exact Scheduling Analysis of

AM Multiframe Tasks

This chapter1 provides exact and tractable analysis based on the responsetime for-

mulation for multiframe tasks when the AM restriction is applied. In general, to test

the schedulability of a set of multiframe tasks, regardlessof the AM restriction, re-

quires examining all possible phases of the tasks [69]; which leads to an intractability

problem for the scheduling analysis. But, having the AM restriction applied to a mul-

tiframe task, we show that only thecritical frame can give rise to the worst-case re-

sponse times for lower priority tasks. As a result the analysis is tractable. The follow-

ing section provides the response time analysis of basic AM multiframe tasks2.This

basic analysis is given in two stages, firstly we give the basic formula of the worst case

response time of an AM multiframe task. Secondly, we extend this formula to include

blocking time. An evaluation of this analysis is given as a comparison between this

exact scheduling analysis and the most recent published, but non-optimal, scheduling

analysis.

This chapter is organised as follows: the following sectiongives the exact response

time analysis of AM multiframe tasks; then the analysis is developed to include block-

ing in Section 3.2. Numeric examples are given in Section 3.3to illustrate the two

scheduling schemes: the worst case response time scheduling analysis of AM mul-

tiframe tasks and Lu’s scheduling analysis [55]; which is the most recent published

scheduling analysis for multiframe tasks. In this section (i.e. Section 3.3), we also

show how the response time analysis determines the schedulability of the system

1Material based on this chapter was published in [77].
2A basic AM multiframe task means that the task does not have release jitter and does not include

invocations from previous frames of the analysed MF task butis permitted to share resources, so it
has blocking.

55

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

where Lu’s analysis does not. Section 3.4 provides an analysis of randomly gener-

ated task sets to show how the response time test is better than any one previously

published. A summary of the chapter is provided in Section 3.5.

3.1 Basic Response Time Analysis of AM Multiframe

Tasks

This section covers the response time analysis of a basic multiframe task assuming

that all multiframe tasks in the system satisfy the AM restriction (i.e. Equation (2.3)).

The worst case response time of the AM multiframe task is the maximum response

time of all frames of the MF task assuming their critical instance. Mok and Chen [56]

identified the critical instance of an AM multiframe task as the simultaneous release

of the critical frames3 of both the analysed MF task and MF tasks whose priorities are

higher than the analysed task (see Section 2.2.2 for details). As we assume that no

frame interferes with any other frame in the same MF task, we will consider Mok and

Chen’s critical instance of the AM multiframe task to analyze its worst case response

time.

For the AM multiframe task,τ j , the cumulative function of its only critical frame is

presented by Equation (3.1)

ξ mj
j (k) =

mj+k−1

∑
l=mj

Cl mod n
j ;k = 1,2, .. (3.1)

wheremj is the location of the critical frame of the AM multiframe task. For example,

the value ofξ 0
1 (3) for the AM multiframe taskτ1 whose execution times are(8,4,8,3)

is 20. Using Equation (3.1) to present the amount of interference the higher priority

AM multiframe tasks generate, the basic response time formula that is represented

by Equation (2.9) is modified to be in the form used in the following theorem (i.e.

Theorem 1).

3In the AM multiframe task, the critical frame is a peak frame.

56

3.1 Basic Response Time Analysis of AM Multiframe Tasks

Theorem 1 Given a real-time system consisting of N independent AM multiframe

tasks, the worst case response time of the multiframe taskτi is given by the smallest

non-negative solution to Equation (3.2):

Ri = Cmi
i +

i−1

∑
j=1

ξ mj
j (⌈

Ri

Tj
⌉) (3.2)

whereξ mj
j (⌈Ri

Tj
⌉) is the cumulative function of the critical frame ofτ j as defined by

Equation (3.1).

Proof: As Ri is the worst case response time of the taskτi , then for each multiframe

task whose priority is higher than the priority ofτi (i.e. τ j : j = 1..i −1); the number

of invocations ofτ j within Ri is given by⌈Ri
Tj
⌉ assuming the simultaneous release of

the critical frames ofτ j andτi . So, whenτ j is released with its critical frame, the

amount of interference thatτ j generates withinRi is given by:ξ mj
j (⌈Ri

Tj
⌉). In addition,

as the critical instance ofτi is the simultaneous release of the critical frames of allτ j ;

for j = 1, ..i−1, the maximum amount of interference that allτ j generate withinRi is

given by adding all interference that is generated by the higher priority AM multiframe

tasks (i.e.∑i−1
j=1ξ j(⌈

Ri
Tj
⌉)).

In addition, the maximum amount of timeτi takes for execution is represented by

Cmi
i . So the response time ofτi is given by Equation (3.2); which presents the execu-

tion of both the AM multiframe taskτi itself as well as interference from all higher

priority AM multiframe tasks.�

Equation (3.2) can be solved by a recurrence relation as in Equation (3.3).

Rl+1
i = Cmi

i +
i−1

∑
j=1

ξ mj
j (⌈

Rl
i

Tj
⌉) (3.3)

whereR0
i = Cmi

i and l = 0,1,2, .. until Rl+1
i = Rl

i . However, ifRl+1
i becomes greater

than the relative deadline,τi is not guaranteed to meet its deadline. In other words, if

Rl+1
i > Di thenτi is unschedulable.

Equation (3.2) calculates an exact worst case response timeof an AM multiframe

task assuming exact attributes of the system. On the other hand, a schedulable real

57

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

time system is the system whose all tasks can be scheduled on time. In other words,

a schedulable real time system is the system whose all tasks meet their relative dead-

lines. Also, a task, in its turn, meets its deadline when its worst case response time

is less than or equal to its relative deadline. So, the scheduling test, of a system with

AM multiframe tasks, is presented as follows: a system with AM multiframe tasks is

schedulable if and only if all its multiframe tasks meet their relative deadlines. Where

the AM multiframe task meets its deadline if its worst case response time, that is cal-

culated by Equation (3.2), is less than or equal to its relative deadline. The following

example illustrates this test.

Example

Table 3.1 presents an example of two AM multiframe tasks,τ1 andτ2. To analyze

task C D T
τ1 (4,3,1,8) 9 10
τ2 (2,7,2) 20 20

Table 3.1: Example System

the schedulability of the system, we first identify the location of the critical frames

(i.e. mi). As there is only one peak frame per MF task, the critical frame is the peak

frame4, so,m1 = 3 andm2 = 1.

Becauseτ1 is the highest priority MF task in the system, its worst case response

time isR1 = Cm1
1 = 8 < D1. To analyze the worst case response time ofτ2, we apply

Equation (3.3) fori = 2 andR0
2 = Cm2

2 = 7, so we get

Rl+1
2 = Cm2

2 +∑2−1
j=1 ξ mj

j (⌈
Rl

2
Tj
⌉),

l = 0, R1
2 = 7+ξ m1

1 (⌈
R0

2
T1
⌉),

R1
2 = 7+ξ 3

1 (⌈ 7
10⌉),

R1
2 = 7+8 = 15.

Similarly, we findR2
2 = 19 for l = 1 andR3

2 = 19 for l = 2. AsR3
2 = R2

2, the worst case

response time ofτ2 is R2 = 19< D2. Therefore,τ2 is schedulable.

As τ1 andτ2 are schedulable, the whole system is schedulable.

4If the MF task has more than one peak frame, then we apply Equation (2.3) for all peak frames and
choose the frame that satisfies this equation as the criticalframe.

58

3.2 Adding Blocking Time to the Response Time Analysis

3.2 Adding Blocking Time to the Response Time

Analysis

As mentioned earlier in Chapter 2, blocking of a task is when this task is waiting

for lower priority tasks to complete some execution. So, when we have a system

of multiframe tasks, we expect more than one blocking value for the execution of

τi from each lower priority MF task that shares the same resource with τi. That is

because also all lower priority tasks are multiframe tasks and therefore could have

different execution times. However, using priority ceiling protocols [66, 60] allows

the task to be blocked at most once during its execution, so weonly add, to the worst

case response time formula, the maximum of the expected blocking values which we

symbolise asBi . Thus, assuming thatτi has a maximum blocking ofBi , the worst case

response time formula, is presented by Equation (3.4) as a collection of three kinds of

execution: maximum execution of the task itselfCmi
i , maximum blocking timeBi and

maximum interference from the higher priority multiframe tasks,∑i−1
j=1ξ j(⌈

Ri
Tj
⌉).

Ri = Cmi
i +Bi +

i−1

∑
j=1

ξ mj
j (⌈

Ri

Tj
⌉) (3.4)

Similar to above, Equation (3.4) is solved using a recurrence relation given by Equa-

tion (3.5); wherer0
i = Cmi

i andl = 0,1,2, ... until Rl+1
i = Rl

i . The worst case response

time of τi is obtained when it is found thatRl+1
i = Rl

i (= Ri for the smallest value

of l). However, whenRl+1
i becomes greater than the deadline of the task,τi is not

guaranteed to meet its deadline, so we say that the task is unschedulable.

Rl+1
i = Cmi

i +Bi +
i−1

∑
j=1

ξ mj
j (⌈

Rl
i

Tj
⌉) (3.5)

This response time scheduling analysis is an efficient scheduling test, better than

the utilisation test that is given by Lu et. al [55], from three points of view. Firstly,

the response time test is a sufficient and necessary test whenBi is exact, which means

that the response time test is an exact test. Secondly, it is applicable to the system

model when the tasks have deadlines less than their relativeperiods. Thirdly, the

59

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

response time test does not depend on the priority assignment scheme of the tasks

in the system. For example, the response time test is still applicable to the system

model where priorities are assigned according to RM, DM or any other fixed priority

assignment scheme; while the utilisation based test is not.

For more illustration of the efficiency of the response time test, we compare this

analysis with the most recent published scheduling test (i.e. Lu’s test [55]); in two

steps. In the first step we give in the following section two numeric examples, the first

one illustrates the worst case response time analysis that is presented in this section.

The second example is a modified example of the first one; this example illustrates the

analysis of Lu’s test and at the same time shows the insufficiency of Lu’s test. In the

second step we give, in a following section, an evaluation ofthe comparison between

the worst case response time analysis and Lu’s analysis.

3.3 Numeric Examples

Table 3.2 represents an example task set of 5 AM multiframe tasks with their param-

eters and their worst case response times according to RM priority assignment (the

smaller period the task has the higher priority it is assigned). To simplify the example,

we assume that all deadlines are identical to their relativeperiods and all blocking

terms are zero.

task C T = D R
τ1 (1) 3 1
τ2 (2) 9 3
τ3 (3,1) 18 8
τ4 (2,1) 20 14
τ5 (6,3) 60 32

Table 3.2: Example System1

Lu et al. [55] noted that the schedulability of this task set is unknown using Kuo’s

[44] method5, while response time analysis shows that the task set is schedulable as

5Details of applying Lu’s test is given in Section 2.2.3.

60

3.3 Numeric Examples

explained below, so the worst case response time test is better than Kuo’s test [44].

Also, the analysis gives an exact value of the worst case response time of each AM

multiframe task in the system. For example, to find the worst case response time of

τ4, we solve Equation (3.4) fori = 4 by applying Equation (3.5) so we get

Rl+1
4 = Cm4

4 +
2

∑
j=1

ξ mj
j (⌈

Rl
4

Tj
⌉);

whereCm4
4 = 2,R0

4 = 2.

l = 0, R1
4 = 2+ξ m1

1 (⌈
R0

4
T1
⌉)+ξ m2

2 (⌈
R0

4
T2
⌉)+ξ m3

3 (⌈
R0

4
T3
⌉)

R1
4 = 2+ξ m1

1 (⌈2
3⌉)+ξ m2

2 (⌈2
9⌉)+ξ m3

3 (⌈ 2
18⌉) = 2+1+2+3 = 8.

Similarly, we findRl+1
4 , for l = 1,2,3,4,5, so we getR2

4 = 10,R3
4 = 13,R4

4 = 14,R5
4 =

14 respectively. AsR4
4 = R5

4, we stop increasingl and the worst case response time of

τ4 is 14 which is less than the deadline ofτ4, soτ4 is schedulable.

Similarly, we find all worst case response times of all AM multiframe tasksτ1,τ2,τ3,

τ4,τ5 as given in Table 3.2 (i.e. the R column). As all of the worst case response times

are less than their relative deadlines, all multiframe tasks in the system are schedula-

ble. So, the system is schedulable.

However, if we modify the execution times of the taskτ4 to be (3,2) instead of

(2,1) and keep all other parameters as in Table 3.2 (see Table 3.3);we find that the

schedulability of the system is unknown using Lu’s method but it is schedulable using

our response time analysis. The following is the explanation.

task C T
τ1 (1) 3
τ2 (2) 9
τ3 (3,1) 18
τ4 (3,2) 20
τ5 (6,3) 60

Table 3.3: Example System2

task Ĉ T̂
τ̂1 (7,5) 18
τ̂2 (34,30) 60

Table 3.4: Merged System

Using Lu’s approach6, τ1, τ4, andτ5 are merged using Kuo’s method [44] toτ̂2 with

6Further details can be found in Section 2.2.3.

61

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

a period equals to the maximum period ofT1,T4 andT5; which is 60 in this example.

τ̂2 has number of execution times equals to the least common multiple of n1, n4 and

n5; which is 2 in this example. Values of̂τ2’s execution times are found by applying

Ĉ j
2 =(

(60
T1

)−1

∑
k=0

C
(j(60

T1
)+k) mod n1

1)+(

(60
T4

)−1

∑
k=0

C
(j(60

T4
)+k) mod n4

4)+(

(60
T5

)−1

∑
k=0

C
(j(60

T5
)+k) mod n5

5)

f or j = 0,1.

So,Ĉ0
2 = 34 andĈ1

2 = 30.

Also,τ2 andτ3 are merged, using Kuo’s method, toτ̂1 with the number of execution

time equal to ˆn1 = 2 and execution time valueŝC1 = (7,5) and a period of 18. Table

3.4 represents the attributes of the merged tasks.

Once the merged tasks are identified, the scheduling test is to check if the total peak

utilisation,U , is less than or equal to a pre defined conditional bound,CB. U , is the

summation of all peak utilisations of the multiframe tasks in the system; and it is given

by

U =
2

∑
i=1

max
0≤ j≤n̂i−1

{
Ĉ j

i

Ti
} =

7
18

+
34
60

= 0.95556.

CB is found depending on two parametersr andz.

r is given as

r = min
1≤i≤N̂

{r i};

wherer i is the ratio of the first two execution times ofτ̂i and is defined by

r i =
Ĉ0

i

Ĉ1
i

,so r1 =
7
5
, r2 =

34
30

.

Therefore,r = min{7
5,

34
30} = 34

30 = 1.133333.

z is given by

z= max{ min
1≤i≤N̂−1

{
Vi

TN̂
},

r
1+ r

};

62

3.3 Numeric Examples

whereVi is called a virtual period and is given by

Vi = ⌊
T̂N̂

T̂i
⌋T̂i = ⌊

60

T̂i
⌋T̂i .

So,V1 = ⌊60
18⌋18= 54.

Therefore,z= max{54
60,

1.13333
1+1.13333} = max{0.9,0.53125}= 0.9.

Oncer andz are identified,CB(r,z) is given by

CB(r,z) = z + r(z−1) + r(N̂−1)((1
z)

1
N̂−1 −1)

= 0.9 + 1.13333(0.9−1) + 1.13333(2−1)((1
0.9)

1
2−1 −1)

= 0.91259.

Therefore, the conditional bound function (CB) of the merged tasks is less than the

total peak utilisation of the system (i.e.CB< U) which means using Lu’s test that the

schedulability of the original system that is given in Table3.3 is unknown. However,

the exact response time analysis that is given in this chapter shows that the system is

schedulable because:

R1 = 1 < 3,

R2 = 3 < 9,

R3 = 8 < 18,

R4 = 15 < 20,

R5 = 35 < 60.

The example in Table 3.3 illustrates how the worst case response time analysis is

better than Lu’s analysis, in the sense, that the schedulbility status of the example sys-

tem is not known using Lu’s test but is found using worst case response time analysis.

In the following section, we investigate the performance ofboth worst case response

time analysis and Lu’s analysis and then we make a comparisonbetween both of them

over randomly generated AM multiframe tasks.

63

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

3.4 Evaluating Exact Response Time Scheduling

Analysis for MF Tasks

We show in this section how the worst case response time test is a clear improvement,

compared to the most recent scheduling test that is represented by Lu et. al [55].

Comparison in this section requires the generation of real-time systems to check their

schedulability status under each approach (i.e. each of theresponse time and Lu’s

approaches) and then evaluate the performance of each of these two approaches to

determine to what extent the worst case response time test isbetter than Lu’s test.

This evaluation is presented as experiments that are explained in three steps, the first

step shows how each experiment is constructed, the second step illustrates how each

experiment is run, and the third step shows the results of theexperiments.

3.4.1 Experimental Setup

The generation of the real-time system means the generationof the size of the system

as well as the generation of the multiframe tasks that form the system. From the system

size point of view, we assign the number of tasks in the systemfor each experiment to

be one of the values{5,20,100}. While from the multiframe task’s generation point

of view, we require the generation of four parameters for each multiframe task,τi ,

(i.e. ni, Ti , Di, Ci ; which are respectively: number of frames, Period, Deadline, and

the execution time sequence).

The four parameters of a multiframe task are generated, in summary, as follows.

The first parameter that is the number of frames of the multiframe task is assumed

as fixed for all multiframe tasks in the system and is chosen, for each experiment, as

one of the values{3,7,13,23}. The values are chosen to be prime numbers so the

execution time sequence is guaranteed to be in its shortest form. The second and third

parameters, which are the period and deadline of the multiframe task, are assumed

to be identical to each other for each multiframe task and arerandomly generated in

the range of[1,2500] using the uniform distribution. Once the deadlines are assigned

to each task, the priorities of the tasks are also assigned according to DM (which is

equal to RM in our experiments) priority assignment.

64

3.4 Evaluating Exact Response Time Scheduling Analysis forMF Tasks

The sequence of the execution times, which is the fourth parameter, is generated in

two steps. In the first step we generate the utilisation for each frame of the multiframe

task, while in the second step we assign the execution time ofthis frame by multiplying

its utilisation by its period. The following is the full details of the generation scheme

for the execution times.

First of all, we give an overall utilisation of the system andthen we distribute this

utilisation to all multiframe tasks in the system. Bini et al. [20] introduced an efficient

algorithm called UUniFast algorithm; which is used to randomly distribute the overall

utilisation of the system to all tasks in the system. The algorithm is summarised by

the pseudocode that is given by Algorithm 1; whereAverageUti represents the vector

of the average utilisation portions for the MF tasks in the system.

Algorithm 1 Uunifast Pseudocode

Inputs: Overall Utilisation, TasksNumber.
Outputs: Array AverageUti.

SumUti ⇐ Overall Utilisation
N ⇐ TasksNumber
for i =1 to N-1do

nextSumU⇐ SumUti.rand
1

N−i

AverageUti(i)⇐ SumUti −nextSumU
SumUti ⇐ nextSumU

end for
AverageUti(N)⇐ RemainingUti

We consider each portion of the utilisation for each multiframe task as the mean util-

isation of this multiframe task, and we multiply this mean bythe number of frames,

then we again apply the UUnifast algorithm to the results of the multiplication. In this

case, we get the utilisation of each frame in the multiframe task and therefore the exe-

cution time of this frame is the multiplication of its utilisation by its period. Algorithm

2 represents the descriptions of the way that is used in generating the execution times

of each MF task. Once we get the execution time sequence we re-arrange it to be AM

using Mok’s algorithm [57].

For each experiment, we modify one and fix two of the three attributes of the anal-

ysed system: utilisation, number of frames and number of tasks. All experiments

65

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

Algorithm 2 Generating Execution Time Vectors

Inputs: Overall Utilisation, TasksNumber, FramesNumber, Array Period.
Outputs: Matrix of ExecutionTime.

Array AveragUtilisation⇐Uuni f ast(Overall Utilisation,TasksNumber)
for i = 1 to TasksNumberdo

SumUti MF ⇐ AveragUtilisation(i) . FramesNumber
Array FrameUtilisation⇐Uuni f ast(SumUti MF,FramesNumber)
for j = 0 to FramesNumber-1do

ExecutionTime(i, j)⇐ FrameUtilisation(j) . Period(i)
end for

end for

show, as expected, that the number of schedulable systems when the exact response

time test is applied is always greater than when Lu’s test is applied.

3.4.2 Scope of Running the Experiments

We run each experiment 1000 times, for each chosen number of frames, in four steps

as following. Firstly, we generate the parameters of the experiment (i.e. number of

frames, periods, deadlines, and execution time sequences)as previously explained.

Secondly, we check the worst case response time of each task,using Equation (3.2),

whether it is less than the relative deadline. In other words, we check the schedulabil-

ity of the system by checking if the worst case response timesof all multiframe tasks

in this system are within their relative deadlines. Thirdly, for the same parameters of

the system we check the schedulability of the same generatedsystem using Lu’s test.

Lastly, for each of the two tests, we count the percentage of the number of schedulable

systems out of the 1000 ones that are randomly generated.

3.4.3 Results of the Experiments

From the utilisation point of view, we investigate the values of the utilisations that

are in(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8). Figures 3.1, 3.2, 3.3 show the percentage

of the schedulable systems versus the overall utilisation of the systems regarding two

parameters: number of tasks,N, and number of frames,n. Each line in each graph in

66

3.4 Evaluating Exact Response Time Scheduling Analysis forMF Tasks

Figures 3.1, 3.2, 3.3 shows the results of the schedulability percentages for a value of

n and a value ofN. To simplify the presentation of the results, we present only two

values ofn in each graph. So, each graph has four lines, each two lines have the same

values of parameters and present the results of both the response time test and Lu’s

test. For example, graph (a1) in Figure 3.1 shows the resultsfor 5 number of tasks

and two values ofn, that are 3 and 13; and likewise all graphs of Figures 3.1, 3.2, 3.3

show the results for different values of the number of tasks and number of frames.

Figures 3.1, 3.2, 3.3 show that when the overall utilisationof the system is very

low, 0.1, both of the response time and Lu’s tests give the same performance of 100%

schedulable systems. While when the utilisation is very high, greater than 0.6, al-

though the exact test is better than Lu’s one, the success of both tests is very low (as

these systems are indeed unschedulable). So, we emphasise the range[0.2,0.6] of the

overall utilisation to show how much the exact response timetest is better than Lu’s

test.

(a1) (a2)

Figure 3.1: Percentage of Schedulable Systems Regarding the Overall Utilisation of
the System after Applying Response Time and Lu’s Tests (N=5)

67

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

Graph (a1) in Figure 3.1 shows that there is less than 10% better performance of the

exact test than Lu’s test; when the overall utilisation of the system is 0.2, for 5 tasks

in the system, and number of frames equal to 13. While this standard of performance

rises to 20% in graph (a2) (i.e. percentage of the number of schedulable systems is

100%, according to the exact test, while this percentage is 80%, according to Lu’s

test), when the number of frames is 23 for the same other parameters.

The performance of the response time test becomes even better by increasing the

number of tasks and number of frames. For example, graphs (b1) and (b2) in Figures

3.2 show that there is 55% better performance of the exact test than Lu’s test; when

the overall utilisation of the system is 0.2, for 20 tasks in the system, and number of

frames is 13 or 23. While this standard of performance rises to 95% in graph (c2),

(b1) (b2)

Figure 3.2: Percentage of Schedulable Systems Regarding the Overall Utilisation of
the System after Applying Response Time and Lu’s Tests (N=20)

Figure 3.3 (i.e. percentage of the number of schedulable systems is 100%, according

to the exact test, while this percentage is 5%, according to Lu’s test); when the number

68

3.4 Evaluating Exact Response Time Scheduling Analysis forMF Tasks

of tasks is 100 and the number of frames becomes 23 for the utilisation 0.2.

(c1) (c2)

Figure 3.3: Percentage of Schedulable Systems Regarding the Overall Utilisation of
the System after Applying Response Time and Lu’s Tests (N=100)

All graphs apart from (a2), in Figure 3.2, show that when the overall utilisation of

the system increases up to 0.4 (and sometimes 0.5 as in graphs (b1) and (c1)) and the

number of frames is 3, or 7; the performance of the exact test stays higher than 90%

for all studied number of tasks (i.e. 5,20, and100) while at the same time, graph (b2)

shows that the performance of Lu’s test decreases to about 22% when the utilisation

is 0.3, number of tasks is 20 and number of frames is 7. Also, from graph (c2), there

is around 97% better performance of of the exact than Lu’s test; when the overall

utilisation of the system is 0.3, for 100 tasks in the system, and number of frames is

23.

In addition, graph (b1) shows that there is about 42% better performance of the exact

test when the overall utilisation of the system is 0.4, the number of frames is 13 and the

number of tasks is 20. While graph (b2) shows that there is 80%better performance

69

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

of the exact when the overall utilisation of the system is 0.3, the number of frames is

23 and the number of tasks is 20; where 80% of the number of the random tasks are

schedulable by the response time test but none of them were schedulable using Lu’s

test.

So, the percentage of the schedulability performance of theexact response time test

is much better than Lu’s test and some times reach around 100%better performance.

For example, graph (c1) shows that 100% of the random systemsare schedulable using

exact test while non of the systems are schedulable using Lu’s test; when the overall

utilisation is 0.3, the number of tasks is 100 and number of frames is 13. Similarly,

graph (c2) shows that when the overall utilisation is 0.3, the number of tasks is 100

and number of frames is 23; the percentage of the schedulablesystems using exact

test is about 97% while 0% of the systems are schedulable using Lu’s test.

3.5 Summary

In this chapter, we present an exact scheduling test for a system of AM multiframe

tasks in terms of worst case response time analysis. The testshows a clear improve-

ment in the scheduling performance from three points of view, firstly, the test is exact

and tractable. Secondly, the test is applicable to the system model when deadlines of

the tasks are less than their relative periods and regardless of the scheme for priority

assignment. For example, response time test is still applicable to the system model

where priorities are assigned according to RM, DM or even anyother priority assign-

ment scheme

Thirdly, evaluations show that this exact response time test has better performance

than the most effective utilisation-base scheduling test for AM multiframe tasks. This

improvement could reach 100% for some system parameters.

70

4 Extensions of the Exact Scheduling

Analysis of AM Multiframe Tasks

This chapter1 extends the basic system model that was given in the previouschapter

(i.e. Chapter 3) and presents the worst case response time analysis that copes with

the extended model. The extension of the basic model is achieved in two directions

relating to release jitter and arbitrary deadlines. In the first direction we assume that

each AM multiframe task,τ j , has a maximum release jitter,Jj , but its deadline is less

than its relative minimum release times. In the second direction we assume that each

AM multiframe task,τi , has a deadline could be greater than its relative period, so

an AM multiframe task,τi , could have interference from its previous frames during

its execution, but no release jitter is permitted in this stage of extension. However, a

combination of having release jitter and arbitrary deadlines is also given later on.

This chapter is organised as follows: the next section provides an exact worst case

response time analysis of AM multiframe tasks assuming thatthese tasks are subjected

to release jitter but no interference from the analysed taskitself is permitted. Section

4.2 gives an exact worst case response time analysis of AM multiframe tasks assuming

no task in the system has release jitter and, also, the analysed task could have arbitrary

deadline so there could be interference from its previous frames during its execution.

Section 4.3 analyses the worst case response time of AM multiframe tasks when these

tasks have release jitter and arbitrary deadlines at the same time. A summary of the

chapter is given in Section 4.5.

1Material based on Sections 4.1 and 4.2 have been published in[78].

71

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

4.1 Analysis of AM Multiframe Tasks with Release

Jitter

When a taskτ j is subjected to release jitter,Jj , this task is not released as soon as it

arrives in the system; where the maximum time from when it arrives in the system

and being released isJj . So, release jitter of a taskτ j could increase the number of

interference thatτ j provides within the execution of a lower priority task, in the sense

thatτ j could be released within less than its minimum inter arrivaltime,Tj . So,Tj is

not purely constant for all jobs ofτ j ; which means that the number of interference that

τ j provides withinRi (i.e. the worst case response time of a lower priority taskτi) can

not be purely presented as⌈Ri
Tj
⌉. Therefore, the basic worst case response time formula

of AM multiframe tasks (i.e. Equation (3.4)) requires a relative modification to cope

with the release jitter model. This section presents full details of this modification

assuming no interference from the analysed MF task.

To formulate the release jitter situation mathematically,assumes
mj+k
j is the time

when the frame that followsτ j ’s critical frame byk steps is released(k = 0,1,2, ..)

(this implies thats
mj
j is the time whenτ j ’s critical frame is released). As the criti-

cal frame of an AM multiframe task,τ j , always generates the maximum amount of

interference within the execution of a lower priority task,τi , for all number ofτ j ’s

invocations, we assume thatτ j ’s critical frame is released first in the execution of the

AM multiframe taskτ j . So, whenτ j is subjected to release jitter,s
mj
j takes its place

within a time interval of lengthJj < Tj whilst s
mj+k
j take their places afterk periods.

Equation (4.1) represents mathematically release jitter situation ofτ j .

kTj + x ≤ s
mj+k
j ≤ kTj + y; ∀k∈ Z(i.e. k = 0,1,2, ..) (4.1)

where Jj = y − x.

In fact,τ j indeed preemptsτi the most whens
mj
j takes place rightmost in its release

jitter interval (i.e. Jj) whilst s
mj+k
j take place leftmost in their release jitter interval,

(∀k = 1,2, ..). From Equation (4.1)s
mj
j = y ands

mj+k
j = x+ kTj ; (k = 1,2, ...). In

addition, the maximum execution of the lower priority MF task τi is presented by the

72

4.1 Analysis of AM Multiframe Tasks with Release Jitter

peak frame ofτi
2. Therefore, the worst case preemption scenario ofτi is whenτi ’s

peak frame is released simultaneously with the critical frames of all higher priority

AM multiframe tasks. Assumes is the time whenτi ’s peak frame is released, Figure

4.1 illustrates the worst case execution scenario ofτi having only two AM multiframe

tasks, a low priority oneτi and a high priority oneτ j .

executing f finish executing,Task release

x y

f

Jj Tj

x+Tj y+Tj x+2.Tj y+2.Tj

τ j

τi

C
mj
j C

mj +1
j C

mj +2
j

Ri

s

Figure 4.1: Illustration of Release Jitter Problem

As τi does not have interference from its previous frames andτi ’s peak frame pro-

vides the maximum amount of execution ofτi , analysing the peak frame ofτi is enough

to determine the schedulability status ofτi . We call the situation that leadsτi to exe-

cute for the longest time,the critical instance ofτi . The following definition illustrates

this critical instance ofτi, for the system model in this section.

Definition 4 Thecritical instance of an AM multiframe task, τi , in a system sub-

jected to release jitter is the simultaneous release ofτi ’s peak frame and the critical

frames3 of the higher priority AM multiframe tasks; taking into account that the crit-

ical frames are released at the very end of their relative release jitter interval (after

their relative arrival times) whilst next frames are released at the very beginning of

their relative release jitter interval (so, they are released as soon as they arrive).

2Or the critical frame ofτi as the critical frame of AM multiframe task is a peak frame.
3Remember that an AM multiframe task has only one critical frame.

73

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

So, the worst case response time of an AM multiframe taskτi is found by finding

the worst case response time ofτi ’s peak frame, assuming the critical instance ofτi

that is given by Definition 4. Finding this worst case response time needs the worst

case interference from all higher priority AM multiframe tasks. The following lemma

proves the worst interference from a higher priority AM multiframe taskτ j .

Lemma 1 For a real-time system whose tasks are AM multiframe tasksτ j ; j =

1,2, ..,N. Each multiframe taskτ j has a maximum release jitter equals Jj , and its

critical frame is at position mj . Assuming Definition 4,̃I j is given by Equation (4.2);

whereĨ j stands for the maximum interference from a higher priority multiframe task

τ j in Ri ; where Ri is a period of execution ofτi at its critical instant.

Ĩ j = ξ mj
j (⌈

Ri +Jj

Tj
⌉). (4.2)

Proof

We divide Ĩ j into two partsĨ j = C
mj
j + Ĩ j

rest; whereC
mj
j is the first interference that

τ j provides within(Tj −Jj) while Ĩ j
rest is the amount of interference thatτ j provides

within Ri − (Tj −Jj) starting from the release that follows the critical one. So,Ĩ j
rest is

given by: Ĩ j
rest

= ξ mj+1
j (⌈

Ri−(Tj−Jj)
Tj

⌉).

Therefore,

Ĩ j = C
mj
j + ξ mj+1

j (⌈
Ri−(Tj−Jj)

Tj
⌉)

Ĩ j = ξ mj
j (⌈

Ri−(Tj−Jj)
Tj

⌉+ 1) because the cumulative function,ξ mj
j (⌈

Ri−(Tj−Jj)
Tj

⌉+ 1),

starts from the release that is immediately previous to (mj +1) so an extra interference

has been added toξ j whilst the relative release is subtracted by one to bemj instead

of mj +1.

Ĩ j = ξ mj
j (⌈

Ri−(Tj−Jj)
Tj

+1⌉) because we add an integer to the ceiling function so we

can move this integer into the ceiling function

Ĩ j = ξ mj
j (⌈

Ri−(Tj−Jj)
Tj

+
Tj
Tj
⌉) = ξ mj

j (⌈
Ri+Jj

Tj
⌉).�

Using Lemma 1, the following theorem proves the worst case response time formula

of an AM multiframe task assuming release jitter scenario.

Theorem 2 Given a real-time system consisting of N multiframe tasksτ j ; j = 1,2, ..,N

that satisfy the AM restriction, each multiframe taskτ j has a maximum release jitter

74

4.1 Analysis of AM Multiframe Tasks with Release Jitter

equals Jj , and its critical frame is at position mj ; the worst case response time of

the multiframe taskτi is given by the smallest non-negative solution to Equation (4.3)

assuming the priority ceiling protocols [66, 60]:

Ri = Cmi
i +Bi +

i−1

∑
j=1

ξ mj
j (⌈

Ri +Jj

Tj
⌉) (4.3)

whereξ mj
j (⌈

Ri+Jj
Tj

⌉) is the cumulative function of the critical frame ofτ j as defined by

Equation (2.1) and Bi is the maximum expected blocking time ofτi.

Proof

AssumeĨ is the maximum interference from tasks whose priorities arehigher than the

multiframe taskτi . Definition 4 introducesτi ’s critical instance as the simultaneous

release of all higher priority tasks, sõI can be presented by a summation of allĨ j ;

whereĨ j is the maximum interference fromτ j :

Ĩ =
i−1

∑
j=1

Ĩ j .

Assuming Lemma 1, the maximum amount of interference from all AM multiframe

tasks that have higher priority thanτi is given by

Ĩ =
i−1

∑
j=1

ξ mj
j (⌈

Ri +Jj

Tj
⌉).

On the other hand, using priority ceiling protocols [66, 60]allows the task to be

blocked at most once during its execution, so we only add, to the worst case response

time formula, the maximum of the expected blocking values which we symbolise as

Bi .

Thus, the worst case response time formula ofτi , is presented as a collection of three

kinds of execution: maximum execution of the task itselfCmi
i , maximum blocking

time Bi and maximum interference from the higher priority multiframe tasks; which

is identical to Equation (4.3).�

75

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

Solving Equation (4.3) is given by a recurrence relation as in Equation (4.4).

Rl+1
i = Cmi

i +Bi +
i−1

∑
j=1

ξ mj
j (⌈

Rl
i +Jj

Tj
⌉); (4.4)

whereR0
i = Cmi

i and l = 0,1, .. until we getRl+1
i = Rl

i = Ri . However, ifRl+1
i + Ji

becomes greater than the deadline, we say that the system is unschedulable. This is

because the deadline of the task is relative to its arrival time4 whilst the response time

of the task is relative to its release time. Hence, the scheduling test for a taskτi with

release jitterJi is: τi is schedulable ifRi + Ji ≤ Di ; whereRi is found by applying

Equation (4.4).

Example

As an illustration of the presented analysis in this section, Table 4.1 represents a sim-

ple system example of two tasks:τ1 andτ2. Priorities of the tasks are assigned ac-

cording to (D− J)− monotonicpriority assignment that is presented by Theorem

16 in Section 2.3.3. To simplify the example, we assume all blocking times are

zero. To find the worst case response time ofτ2 we apply Equation (4.4) to get:

Task C D T J Priority
τ1 (5,4,3) 10 12 2 1
τ2 (6,4) 20 20 0 2

Table 4.1: Example System Attributes

Rl+1
2 = C0

2 +ξ 0
1 (⌈

Rl
2+J1
T1

⌉); R0
2 = C0

2 = 6.

l = 0, R1
2 = 6+ξ 0

1 (⌈6+2
12 ⌉) = 6+5 = 11,

l = 1, R2
2 = 6+ξ 0

1 (⌈11+2
12 ⌉) = 6+9 = 15,

l = 2, R3
2 = 6+ξ 0

1 (⌈15+2
12 ⌉) = 6+9 = 15= R2

2. So,R2 = 15.

R2 + J2 < D2; which is 20 in this example. Therefore,τ2 is schedulable, alsoτ1 is

schedulable becauseR1 = 5. R1+J1 < D1 as 5+2 < 10.

Hence the whole example system is schedulable.

4The arrival times of the AM multiframe taskτ j in Figure 4.1 is presented by the termx+kTj .

76

4.2 Analysis of AM Multiframe Tasks with Arbitrary Deadlines

4.2 Analysis of AM Multiframe Tasks with Arbitrary

Deadlines

This section extends the basic response time analysis that is given in Chapter 3 to be

applicable to the AM multiframe task whose deadline is arbitrary and could be greater

than its relative period. So there could be a situation wherean AM multiframe task

could suffer from interference from its previous frames during its execution. Analysis

in this section does not permit any release jitter for any AM multiframe tasks.

To start with, we modify Definition 4 of the critical instanceof an AM multiframe

task to cope with the arbitrary deadlines model. As the AM multiframe task may suffer

from interference from its previous frames and the criticalframe of the AM multiframe

task always provides the maximum amount of interference, for any possible number of

its invocations (i.e. interference); we define the criticalinstance of the AM multiframe

task as the simultaneous release of the critical frames of the analysed task and all

higher priority AM multiframe tasks as in Definition 5.

Definition 5 The critical instance of an AM multiframe task τi with arbitrary

deadlinesis the simultaneous release of the critical frame ofτi with the critical frames

of the higher priority multiframe tasks, taking into account that all τi ’s frames are

released as soon as they arrive.

Assuming this critical instance, the first step of the worst case response time analysis

of τi is to introduce the termbusy periodof a frame of a MF taskτi as the time from

when this frame is released until it finishes its execution. So, the worst case response

time of τi is the maximum of all busy periods ofτi . We symbolise the busy period of

theqth frame5 of the MF taskτi aswi(q); q = 1, ...

The restriction of having deadlines less than their relative periods leads all busy

periods of a schedulable MF task not to extend beyond its period. However, having

arbitrary deadlines could lead the busy periods of a task to extend beyond its period

and therefore its response time would include extra interference from the analysed task

itself. So, the analysis in this scenario is concerned with analysing the interference

5Althoughq’s values are 1,2, .., we sayqth to simplify the presentation.

77

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

from the analysed AM multiframe task itself as well as interference from other tasks

in the system.

To identify the amount of interference from the analysed task itself that should

be considered in its response time analysis, we have to identify the relative number of

invocations (i.e. interference) this task experiences within its busy period. To illustrate

the problem of arbitrary deadlines more, Table 4.2 gives a simple numerical example

system consisting of two tasks: a high priority taskτ1 and a low priority taskτ2. For

simplicity and clarity we assume that none of the MF tasks hasblocking; andτ1 has

one frame whilst onlyτ2 is AM multiframe task with 4 frames.

Task C D T
τ1 5 10 10
τ2 (10,6,8,4) 25 15

Table 4.2: Example of Arbitrary Deadline

Figure 4.2 shows four invocations ofτ2 starting from the execution of its critical

Priority TaskRelease of busy period

End of busy period
First busy period of

Execution of higher

Third busy period of

Second busy period of

preemption of

Fourth busy

55 5 5 5 5

5 5 4 45 1 1 3

period of τ2

τ2

τ2

τ2τ2

1st invocation

2ed invocation
3ed invocation

4th invocation

w2(1)
w2(2)

w2(3)

w2(4)

Figure 4.2: Illustration of Arbitrary Deadline Scenario- Timeline Diagram

78

4.2 Analysis of AM Multiframe Tasks with Arbitrary Deadlines

frame and, also, shows how last three invocations (i.e. 2nd invocation, 3rd invocation,

and 4th invocation) ofτ2 include interference from previous frames ofτi itself. In other

words, Figure 4.2 shows four busy periods ofτ2 (i.e. w2(q);q= 1, .., 4). As the worst

case response time of a task is the maximum busy period that this task can experience,

the worst case response time ofτ2 is w2(2); which equals 21 in this example (full

details of the analysis and calculations are provided in theexample at the end of this

section).

As can be seen from the above example, to find the worst case response time of

an AM multiframe task in the arbitrary deadline scenario, wehave to check all its

busy periods that include interference from the analysed task itself; and then take the

maximum of them. However, to find the busy period of theqth frame ofτi we first

find r i(q) that represents the time from whenτi ’s critical frame is released until the

qth frame has finished its execution; then we subtract the execution that is related to

the previous frames. The following theorem gives a formula for finding theqth busy

period ofτi (i.e. wi(q)).

Theorem 3 Having a system of AM multiframe tasks, each taskτi has an arbitrary

deadline Di , the qth busy period ofτi (i.e. wi(q)) is given by Equation (4.5) assuming

the priority ceiling protocols [66, 60].

wi(q) = r i(q)− (q−1)Ti; (4.5)

where ri(q) is found by the smallest non-negative solution to Equation (4.6).

r i(q) = ξ 0
i (q)+Bi +

i−1

∑
j=1

ξ 0
j (⌈

r i(q)

Tj
⌉). (4.6)

whereξ 0
i (q) is introduced by Definition 1 and Bi is the maximum blocking time ofτi.

Proof

The busy period of a taskτi represents two kinds of invocations: one of them belongs

to τi itself whilst the other belongs to the tasks other thanτi. Within preemptive fixed

priority scheduling, invocations of other tasks representtwo kinds of invocations one

79

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

of them is interference from tasks whose priorities are higher thanτi and the other one

is blocking from tasks whose priorities are lower thanτi .

The term that represents the interference from higher priority tasks in this scenario is

∑i−1
j=1 ξ mj

j (⌈
wi(q)

Tj
⌉); as long as two factors are considered. The first one is the previous

critical instance (as in Definition 5); and the second one is that theqth busy period

of the analysed multiframe taskτi , wi(q), is the time from when itsqth execution is

started until this execution is finished. In addition, usingpriority ceiling protocols

[66, 60] allows the task to be blocked at most once during its execution. However,

in this model, we are analysing continuous busy periods of the same priority due to

the interference from the MF task itself. So there is only oneopportunity for a lower

priority task to gain access to a shared resource and cause blocking. We therefore have

the single termBi , that is the maximum expected blocking. So, what is left to analyze

is the interference fromτi itself.

To analyze the interference from the analysed task itself, we considerq as the num-

ber of invocations ofτi , so the amount of execution thatτi provides starting from its

critical frame is given byξ mi
i (q); q = 1,2, ... Therefore, the time from when the criti-

cal frame ofτi starts its execution until achieving theqth execution,r i(q), is given as a

collection of three terms: the maximum blockingBi , the interference from the higher

priority AM multiframe tasks withinr i(q) (i.e. ∑i−1
j=1ξ mj

j (⌈ r i(q)
Tj

⌉)) and the amount of

execution ofτi itself (i.e. ξ mi
i (q)). So,r i(q) is given by Equation (4.6).

Both r i(q) andwi(q) have same end time but different start times where the dif-

ference between the two start times is(q−1)Ti havingwi(q) starts at(q−1)Ti after

r i(q). So to findwi(q), we subtract(q−1)Ti from r i(q); which is identical to Equation

(4.5).�

Solving Equation (4.6) requires a recurrence relation as inEquation (4.7).

r l+1
i (q) = ξ mi

i (q)+Bi +
i−1

∑
j=1

ξ mj
j (⌈

r l
i (q)

Tj
⌉); (4.7)

Where,r0
i (q) = ξ mi

i (q) andl = 0,1, .. until finding r l+1
i (q) = r l

i (q) = r i(q). However,

if r l+1
i (q) becomes greater than(q−1)Ti +Di we say thatτi is unschedulable.

Theorem 3 represents a formula for finding theqth busy period ofτi. Now, we have

80

4.2 Analysis of AM Multiframe Tasks with Arbitrary Deadlines

q r2(q) w2(q)
1 20 20> T2

2 36 21> T2

3 49 19> T2

4 58 13< T2

Table 4.3: Possible Values of the Busy Periods

to identify how many busy periods we have to consider. In other words, how many

values ofq we have to consider for the analysis. As the analysis is mainly interested in

the interference from the analysed task itself, we will consecutively analyze the busy

periods until no interference from the frames ofτi itself occurs; which means that the

busy period is finished within the same period it is released in. Therefore,q takes

values asq = 1,2, .. until wi(q) ≤ Ti is satisfied.

Once all needed busy periods are identified, the final step of the analysis is to find

the maximum busy period which represents the worst case response time ofτi , Ri .

Symbolically,Ri is found by maximisingwi(q) over all possible values ofq as in the

following equationRi = maxq=1,2,.. wi(q).

Example

In this example, we apply the response time analysis that is presented in this section

to check the schedulability ofτ2 in the example system that is given by Table 4.2. To

begin with, we give a starting values forr0
2(q) asr0

2(q) = ξ 0
2 (q); then, we give values

to q starting from 1. So, whenq = 1, r0
2(1) = ξ 0

2 (1) = 10. Then we apply Equation

(4.7) for l = 0,1,2 so we get

l = 0, r1
2(1) = ξ 0

2 (1)+ξ 0
1 (⌈

r0
2(1)
T1

⌉) = 10+ξ 0
1 (⌈10

10⌉) = 15,

l = 1, r2
2(1) = ξ 0

2 (1)+ξ 0
1 (⌈

r1
2(1)
T1

⌉) = 10+10= 20,

l = 2, r3
2(1) = 20= r2

2(1). So,r2(1) = 20.

Now, we find the busy period of the first frame ofτi by applying Equation (4.5):

w2(1) = 20− 0(15) = 20 > T2. So we increaseq to be 2 and similarly we apply

Equation (4.7) and (4.5) to get all possible values ofr2(q) andw2(q) as in Table 4.3.

As we getw2(4) < T2, we stop increasingq.

To get the worst case response time ofτ2, R2, we now maximise over all possible

busy periods in Table 4.3. Therefore,R2 = max{20,21,19,13} = 21< D2, soτ2 is

81

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

schedulable6. Also τ1 is schedulable becauseR1 = 5 < D1. Hence, the whole system

example is schedulable.

4.3 Combined Analysis of Release Jitter and Arbitrary

Deadlines

This section combines the two models of Sections 4.1 and 4.2 within one model and

presents an exact worst case response time analysis of AM multiframe tasks that are

subjected to both release jitter and arbitrary deadlines atthe same time. So, each AM

multiframe taskτi has a sequence of execution timesCi , a maximum release jitterJi , a

deadlineDi , and a periodTi . In fact, whenτi is subjected to release jitter, there could

be a situation where the minimum time between two successiveframes of its frames

is Ti − Ji instead ofTi , so havingDi greater thanTi − Ji means that there could be a

situation whereτi is released more than once during its execution and therefore an

interference from the analysed taskτi itself could happen during an execution of one

of its frames. So, analysis of the worst case response time ofτi must take into account

interference fromτi itself as well as interference from other tasks in the systemtaking

into account the situation of having two consecutive framesof a taskτ j (j = 1, ..i)

within time intervalTj −Jj instead ofTj . Without lose of generality, we assume that

the first frame of each AM multiframe taskτi is its critical frame, somi = 0;∀i =

1, ..,N.

As all MF tasks in the system satisfy the AM restriction, the situation that leads to

the worst case response time ofτi is when its critical frame is released simultaneously

with the critical frames of all higher priority AM multiframe tasks. That is because the

critical frame of an AM multiframe task always provides the maximum interference

in the execution of the same or lower priority tasks. So, whenτi has interference from

previous invocations of its frames, the maximum generated interference fromτi comes

from when its critical frame is released.

Also, due to release jitter situation, allτ j (j = 1, .., i) could be released up toJj units

6Note how the worst case response time ofτ2 does not fall into the busy period of its critical frame,
but in the busy period of its second frame (i.e. the frame whose execution time is 6). .

82

4.3 Combined Analysis of Release Jitter and Arbitrary Deadlines

after they arrive. So, from the preemption point of view,τi is preempted the most by

a higher priority AM multiframe taskτ j when the critical frames of bothτi andτ j are

simultaneously released rightmost in their release jitterinterval whilst next frames are

released leftmost in their release jitter interval as explained by Figure 4.1 in Section

4.1.

For more illustration, Figure 4.3 shows the execution behaviour of the example

system in Table 4.4 whose both AM multiframe tasks are subjected to release jitter

and arbitrary deadlines whereτ2 has deadline greater than its period. Figure 4.3

Task C D T J
τ1 (2,1) 5 5 1
τ2 (4,3,1) 10 6 2

Table 4.4: Example of Arbitrary Deadlines and Release Jitter

execution of

execution of

’s second frame

’s third frame

’s first frame

task is released

task is arrived

execution of preemption of

execution of

deadline met

τ1

τ1

τ2τ2

τ2

τ2

τ2

J1

J2

1st frame execution

2nd frame execution

3ed frame execution

Figure 4.3: Execution of the Tasks in the Example

shows the worst case preemption ofτ2’s peak frame where this preemption situation

lets two frames ofτ2 to interfere with the execution of the following frames. So,τi ’s

83

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

critical instance that leads to its worst case response timecan be modeled by Definition

6.

Definition 6 Thecritical instance of an AM multiframe task τi, in a system sub-

jected to release jitter and arbitrary deadlines, is the simultaneous release of the

critical frame ofτi with the critical frames of the higher priority multiframe tasks, tak-

ing into account that the critical frames are released at thevery end of their relative

release jitter interval (after their relative arrival times) whilst next frames are released

at the very beginning of their relative release jitter interval (so, they are released as

soon as they arrive).

Note the differences between Definitions 4, 5 and 6. In Definition 4, the critical in-

stance ofτi is characterised, from theith level point of view, by its peak frame whilst

in Definition 6 this critical instance is characterised by its critical frame. In addition,

Definition 5 assumes that the arrival time ofτi is the same as its release time for all

τi ’s frames whilst Definition 6 assumes that release time ofτi ’s critical frame is after

its arrival time.

Analysis in this section considers Definition 6 to analyzeτi ’s worst case response

time. As a first step of the worst case response time analysis of τi , we define the busy

period of a frame ofτi as the time from when this frame is released until it finishes its

execution. So, the worst case response time ofτi is the maximum busy period ofτi

over allτi ’s frames that include interference fromτi itself. Assumeq is the number of

invocations ofτi (q = 1,2, ..), to find the busy period of theqth frame ofτi we follow

two steps: first we findr i(q) that represents the time from whenτi ’s critical frame is

released until theqth frame has finished its execution; then we subtract the execution

that is related to the previous frames. The following theorem proves the technique that

is used to find theqth busy period ofτi.

Theorem 4 Having a system of AM multiframe tasks, each taskτi has an arbitrary

deadline Di and is subjected to release jitter Ji, the qth busy period ofτi (i.e. wi(q)) is

given by Equation (4.8) assuming the priority ceiling protocols [66, 60].

wi(q) = r i(q); f or q = 1,

= r i(q)− (q−1)Ti +Ji ; f or q > 1.

(4.8)

84

4.3 Combined Analysis of Release Jitter and Arbitrary Deadlines

where ri(q) is found by the smallest non-negative solution to Equation (4.9).

r i(q) = ξ 0
i (q)+Bi +

i−1

∑
j=1

ξ 0
j (⌈

r i(q)+Jj

Tj
⌉). (4.9)

whereξ 0
i (q) is introduced by Definition 1 and Bi is the maximum blocking time ofτi.

Proof

r i(q) represents two kinds of execution; one is related to the execution of τi and the

other is related to MF tasks other thanτi. The execution that is related toτi is rep-

resented by its cumulative functionξ 0
i (q) and the execution that is related to the MF

tasks other thanτi is represented by blocking from lower priority tasks and interfer-

ence from higher priority tasks.

As priority ceiling protocols allow the task to be blocked atmost once during its exe-

cution and asr i(q) is a continuous execution of the same priority MF task, the blocking

term from lower priority tasks is represented by the maximumexpected blocking time

Bi . Furthermore, as we assume the simultaneous release ofτi and higher priority tasks

(Definition 6 of the critical instance ofτi), the interference from the MF tasks whose

priorities are higher thanτi is presented by a summation of all interference from those

tasks.

AssumeĨ j is the interference from a higher priority AM multiframe task τ j in r i(q),

applying Lemma 1 leads tõI j being presented byξ mj
j (⌈

r i(q)+Jj
Tj

⌉. So, the maximum

interference from the MF tasks whose priorities are higher thanτi ’s is presented by

∑i−1
j=1 ξ 0

j (⌈
r i(q)+Jj

Tj
⌉). Therefore,r i(q) is a collection ofξ 0

i (q), Bi and∑i−1
j=1 ξ 0

j (⌈
r i(q)+Jj

Tj
⌉);

which is identical to Equation (4.9).

r i(q) consists ofq number ofτi ’s execution starting fromτi ’s critical frame. So,

the first busy period ofτi is the busy period ofτi ’s critical frame. In addition,wi(q)

starts from when theqth frame of τi is released whilstr i(q) starts from when the

first frame is released; also, both ofwi(q) andr i(q) have the same end duration. So,

when q = 1 both of wi(1) and r i(1) have the same start and end duration; which

means thatwi(1) = r i(1). However, whenq > 1, wi(q) andr i(q) have different starts

where the first frame starts its execution atJi and theqth frame starts its execution at

85

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

(q− 1)Ti − Ji . So,wi(q) = r i(q)− ((q−1)Ti − Ji) = r i(q)− (q−1)Ti + Ji which is

identical to Equation (4.8).�

Equation (4.9) is solved by a recurrence relationship givenby Equation (4.10);

wherer0
i (q) = ξ 0

i (q) and l = 0,1,2, ... r i(q) is found oncer l+1
i (q) = r l

i (q) is satis-

fied. However, ifr l+1
i (q) > (q−1)Ti −Ji +Di we say that the AM multiframe taskτi

is unschedulable because one ofτi ’s frames could miss its deadline in this case.

r l+1
i (q) = ξ 0

i (q)+Bi +
i−1

∑
j=1

ξ 0
j (⌈

r l
i (q)+Jj

Tj
⌉). (4.10)

Final step of the worst case response time analysis ofτi in this section is to identify

the upper bound ofq that we have to consider in the response time analysis. In other

words, how many invocations ofτi we have to consider in the analysis. Actually,q

takes values from 1 until no interference fromτi occurs; which happens when the

relative busy period falls in the same period thatτi is released in. In other words,

q = 1,2, ... until we getwi(q) < Ti −Ji for q = 1 or wi(q) < Ti for q > 1. Therefore,

the worst case response time ofτi , Ri, is the maximum busy period over all values of

q. Symbolically,

Ri = max
q=1,2,..

{wi(q)}.

As the deadline of a task is relative to the arrival time of thetask while the response

time is relative to the release time, the scheduling test of the model in this section is

the following: τi is schedulable if its worst case response timeRi is less than or equal

to Di −Ji .

As this section generalises the analysis of both analyses inSections 4.1 and 4.2,

the following section presents an example that applies all details of the worst case

response time analysis that is presented in this section.

4.4 Example

Assume the system in Table 4.4, with no blocking assumed. To find the worst case re-

sponse time ofτ2, we first find the busy periodswi(q) depending onr i(q) by applying

86

4.4 Example

Equations (4.10) and (4.8) fori = 2 andr0
2(q) = ξ 0

2 (q) , so we get:

r l+1
2 (q) = ξ 0

2 (q)+Bi +∑1
j=1 ξ 0

j (⌈
r l
2(q)+Jj

Tj
⌉).

q = 1, r l+1
2 (1) = ξ 0

2 (1)+ξ 0
1(⌈

r l
2(1)+J1

T1
⌉). To solve this equation,

l = 0, r1
2(1) = ξ 0

2 (1)+ξ 0
1 (⌈

r0
2(1)+J1

T1
⌉)

= 4+ξ 0
1 (⌈

4+1
5

⌉)

= 4+2 = 6.

l = 1, r2
2(1) = ξ 0

2 (1)+ξ 0
1 (⌈

r1
2(1)+J1

T1
⌉)

= 4+ξ 0
1 (⌈

6+1
5

⌉)

= 4+3 = 7.

l = 2, r3
2(1) = ξ 0

2 (1)+ξ 0
1 (⌈

r2
2(1)+J1

T1
⌉)

= 4+ξ 0
1 (⌈

7+1
5

⌉)

= 4+3 = 7 = r2
2(1).

So,r2(1) = 7, thereforew2(1) = r2(1) = 7.

w2(1) > T2−J2, so we increaseq to 2 and apply Equations (4.10) and (4.8) fori = 2,

q = 2 andr0
2(2) = ξ 0

2 (2) = 7, so we get

q = 2, r l+1
2 (2) = ξ 0

2 (2)+ξ 0
1(⌈

r l
2(2)+J1

T1
⌉). To solve this equation,

l = 0, r1
2(2) = ξ 0

2 (2)+ξ 0
1 (⌈

r0
2(2)+J1

T1
⌉)

= 7+ξ 0
1 (⌈

7+1
5

⌉)

= 7+3 = 10.

l = 1, r2
2(2) = ξ 0

2 (2)+ξ 0
1 (⌈

r1
2(2)+J1

T1
⌉)

= 7+ξ 0
1 (⌈

10+1
5

⌉)

87

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

= 7+5 = 12.

l = 2, r3
2(2) = ξ 0

2 (2)+ξ 0
1 (⌈

r2
2(2)+J1

T1
⌉)

= 7+ξ 0
1 (⌈

12+1
5

⌉)

= 7+5 = 12= r2
2(2).

So, r2(2) = 12, thereforew2(2) = r2(1)−T2 + J2 = 12−6+ 2 = 8. w2(1) > T2, so

we increaseq to 3 and again apply Equations (4.10) and (4.8) fori = 2, q = 3 and

r0
2(3) = ξ 0

2 (3) = 8, so we get

q = 3, r l+1
2 (3) = ξ 0

2 (3)+ξ 0
1(⌈

r l
2(3)+J1

T1
⌉). To solve this equation,

l = 0, r1
2(3) = ξ 0

2 (3)+ξ 0
1 (⌈

r0
2(3)+J1

T1
⌉)

= 8+ξ 0
1 (⌈

8+1
5

⌉)

= 8+3 = 11.

l = 1, r2
2(3) = ξ 0

2 (3)+ξ 0
1 (⌈

r1
2(3)+J1

T1
⌉)

= 8+ξ 0
1 (⌈

11+1
5

⌉)

= 8+5 = 13.

l = 2, r3
2(3) = ξ 0

2 (3)+ξ 0
1 (⌈

r2
2(3)+J1

T1
⌉) = 8+ξ 0

1 (⌈
13+1

5
⌉) = 13= r2

2(3).

So,r2(3) = 13, thereforew2(3) = r2(3)−2T2+J2 = 13−12+2= 3. w2(1) < T2, so

we stop increasingq. Hence, the worst case response time ofτ2 is the maximum of

the busy periods we have got

R2 = max{7,8,3} = 8.

As a resultR2 ≤D2−J2, soτ2 is schedulable7, alsoτ1 is schedulable becauseR1 = 2<

D1−J1. Therefore, the whole example system that is given in Table 4.4 is schedulable.

7Note how the worst case response time ofτ2 is fallen in the busy period of its second frame.

88

4.5 Summary

4.5 Summary

This chapter has shown that the worst case response time analysis of AM multiframe

tasks is tractable and flexible enough to be extended in two directions. Firstly, the

worst case response time analysis is applicable to the system model whose AM mul-

tiframe tasks are subjected to release jitter. Secondly theworst case response time

analysis is applicable to the system model whose AM multiframe tasks have arbitrary

deadlines. Furthermore, this chapter gives full details ofthe exact worst case response

time analysis of AM multiframe tasks that are subjected to release jitter and arbitrary

deadlines at the same time.

89

90

5 Exact Scheduling Analysis of

Non-AM Multiframe Tasks

The previous two chapters presented the worst case responsetime analysis of mul-

tiframe tasks that are restricted to satisfy the AM restriction. In this chapter1, the

restriction of having AM multiframe tasks is relaxed, so, the assumption that having

only one critical frame per MF task is not satisfied any more; which affects the re-

sponse time analysis of the MF tasks. Initially, the worst case response time analysis

of the general MF taskτi requires checking all possible combinations of all frames of

the MF tasks whose priorities are higher thanτi ; which means we have to consider

∏i−1
j=1n j different combinations2 of the frames [69]. However, having introduced the

critical frame concept (see Section 2.1) leads to the requirement of only checking the

critical frames of the MF tasks whose priorities are higher thanτi ’s. Evaluation shows

that this usage of the critical frames reduces the number of required combinations for

finding the worst case response time ofτi .

This chapter is organised as follows: Section 5.1 introduces a criterion to identify

the critical frames per MF task. Using critical frames, Section 5.2 presents the exact

response time formula of general MF tasks. Section 5.3 explains the application of the

response time analysis of general MF tasks by a numeric example. Section 5.4 gives

a formal evaluation of the number of critical frames in practice.

1Material based on Sections 5.1 and 5.2 in this chapter was published in [79].
2remember that∏i−1

j=1n j means the product ofn j for j = 1, .., i −1. ∏i−1
j=1n j = n1.n2.n3. .. ni−1.

91

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

5.1 Identifying the Critical Frames

Recall Definition 2 in Section 2.1, a frame of locationx is considered critical when

this frame provides a maximum interference for at least one number of its invocations.

However, this definition is not enough for non-AM multiframetasks, for example

Table 5.1 shows all possible interference from a MF taskτ j with an execution time

sequence(8,5,7,6,8,5). Applying Definition 2 onτ j leads to having only one critical

frame whose execution time is 6. However, this criterion does not cover all critical

frames of a non-AM multiframe task as the critical frame, whose execution time is 6, is

not the only critical frame because it does not provide the maximum interference in the

case of one, three and five interference fromτ j . So, Definition 2 does not identify all

critical frames of a non-AM multiframe task. This is becausethere could be a frame,

of a MF taskτ j , that does not satisfy Equation (2.2) but is critical; because, from one

side, it provides the maximum interference for a specific number ofτ j ’s invocations,

and from another side, the frames that satisfy Equation (2.2) do not provide more

interference than it does. This section presents a criterion for identifying the set of

critical frames for a non-AM multiframe task.

Location of exe. seq. 1 inv. 2 inv. 3 inv. 4 inv. 5 inv. 6 inv.
Released Frame

0 (8,5,7,6,8,5) 8 13 20 26 34 39
1 (5,7,6,8,5,8) 5 12 18 26 34 39
2 (7,6,8,5,8,5) 7 13 21 26 34 39
3 (6,8,5,8,5,7) 6 14 19 27 32 39
4 (8,5,8,5,7,6) 8 13 21 26 33 39
5 (5,8,5,7,6,8) 5 13 18 25 31 39

Table 5.1: Possible Interference Fromτ j

To identify the critical frames of a MF task, we follow a reversing scenario where

we first identify the non-critical frames then consider the remaining frames of this MF

task as critical. To identify the non-criticality of a framewhose execution time isCy
j of

the MF taskτ j , we invert Definition 2 in Section 2.1. So, we say that the frame whose

execution time isCy
j is not critical if there is another frame ofτ j whose execution

time isCx
j ; where the amount of interference that this frame provides is always greater

92

5.1 Identifying the Critical Frames

than or equal to the amount of interference that the frame whose execution time isCy
j

provides for all number ofτ j ’s invocations. In other words, the cumulative function of

the frame whose execution time isCx
j is always greater than or equal to the cumulative

function of the frame whose execution time isCy
j for all number ofτ j ’s invocations.

However, we sufficiently consider onlyn j −1 invocations ofτ j because the amount

of the generated interference from any ofτ j ’s frames increases with a fixed rate after

n j −1 invocations.

To symbolise the definition of the non-critical frame of a MF task τ j having n j

execution times(C0
j ,C

1
j , ..,C

(n j−1)
j) within its shortest form, we consider the frame

whose execution time isCy
j is definitely not critical if∃x = 0, ..,n j − 1 and x 6= y;

where Equation (5.1) is satisfied∀k = 1,2, ..,n j −1

ξ x
j (k) ≥ ξ y

j (k). (5.1)

The non-criticality criterion that is represented by Equation (5.1) means that the amount

of interference the frame whose execution time isCy
j generates is never more than the

amount of interference the frame whose execution time isCx
j generates, so the frame

whose execution time isCy
j is never critical. We call the frame whose execution time

is Cy
j in this case thedominated frame. So, applying this criterion on all frames of a

MF task judges the non-critical frames, and therefore the remaining frames of the MF

task are critical.

In fact, although this criterion of identifying critical frames is safe, it does not pro-

vide an optimal set of critical frames of a MF task. This is because there could be a

frame, in the generated set, that is dominated by more than one other frames in the

same generated set. However, finding the minimum set of critical frames is equiva-

lent to the set-covering problem[4] and is known to be NP-complete, so we apply the

non-criticality criterion which is tractable. One successful application of this crite-

rion results in the frames whose execution time is the minimum are never critical, the

following theorem proves this.

Theorem 5 Given a MF taskτi whose execution time is in its shortest form, with ni

frames where ni > 1, a minimum frame3 is never a critical frame.

3The minimum frame is the frame whose execution time is the minimum value of the execution times.

93

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

Proof

The cumulative functions of the two frames whose execution times are respectively

the minimum and next to the minimum are respectively given byEquations (5.2) and

(5.3)

ξ min
i (k) =

min+k−1

∑
j=min

C(j mod ni)
i , (5.2)

ξ min+1
i (k) =

min+k

∑
j=min+1

C(j mod ni)
i ; (5.3)

wheremin is the location of the minimum execution time in its sequence.

For eachk = 1,2, .. , we subtract Equation (5.2) from Equation (5.3), so we get

ξ min+1
i (k)−ξ min

i (k) = C((min+k) mod ni)
i −C(min mod ni)

i .

As Cmin
i is the minimum execution time of all frames, the right side ofthe equation is

never negative so the left side of the equation is also never negative. So,ξ min+1
i (k) ≥

ξ min
i (k);∀k = 1,2, ..; which means that each frame with the minimum execution time

is always dominated by the frame it is followed by.�

Corollary 1 When a MF task has more than one minimum in its sequence of execu-

tion times, then all minimum frames are not critical.

Proof

Followed directly from Theorem 5 where each minimum frame (i.e. the frame with

the minimum execution time) is dominated by the followed frame, which means that

all minimum frames are not critical.�

For example, Table 5.2 presents all possible interference from a MF taskτ j with

an execution time sequence(8,3,8,3,3,4). We can see from this table that, for all

number of interference, the amount of interference the minimum frame provides is

always less than or equal to the amount of interference the followed frame provides.

So, each minimum frame is dominated by the frame that is followed by and therefore

all minimum frames are non-critical.

Theorem 5 shows that in the worst case, when there is only one minimum frame

of τi and there is no dominated frames other than one minimum, there is a maximum

94

5.1 Identifying the Critical Frames

Location of exe. seq. 1 inv. 2 inv. 3 inv. 4 inv. 5 inv. 6 inv.
Released Frame

0 (8,3,8,3,3,4) 8 11 19 22 25 29
1 (3,8,3,3,4,8) 3 11 14 17 21 29
2 (8,3,3,4,8,3) 8 11 14 18 26 29
3 (3,3,4,8,3,8) 3 6 10 18 21 29
4 (3,4,8,3,8,3) 3 7 15 18 26 29
5 (4,8,3,8,3,3) 4 12 15 23 26 29

Table 5.2: Possible Interference Fromτ j

of ni −1 critical frames as only this minimum is definitely non-critical. So, for a MF

task with at least two different execution times, the framesthat have to be checked for

the critical criterion are the frames whose execution timesare not minimum. So, in

the worst case, the maximum number of enumeration that is needed in evaluating the

response time of a MF taskτi is ∏i−1
j=1(n j −1) and not as previously claimed∏i−1

j=1n j

[69].

Moreover, dominated frames, of which the minimums are one example, are never

critical while the remaining frames are critical. So, the number of enumeration that

is needed in evaluating the response time of a MF taskτi could be even less than

∏i−1
j=1(n j −1) when the dominated frames are discard from the criticality criterion.

Once the critical frame set for each MF task is identified, theworst case response

time analysis uses the combinations of the critical frame sets of higher priority MF

tasks to find the worst case response time of a lower priority MF task. The critical

frame set is represented by the locations of the relative critical frames in the MF task,

so the combinations of the critical frame sets are relatively represented by the com-

binations of the indices of the critical frames. So, assumeL̂ j is the set of the critical

frame locations of the MF taskτ j . Then, fromL̂ j we defineV̂i to represent the com-

binations of the critical frames of higher priority MF tasksas the cartesian product of

all sets of the critical frame locations for all tasks whose priorities are higher thanτi .

This cartesian product̂Vi is defined as follow:

Let V̂1 = {}, V̂2 = L̂1 and fori > 2 defineV̂i to be the cartesian product ofL̂1, ..., ˆLi−1.

95

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

In other words,

V̂i = L̂1 × L̂2 × .. × ˆLi−1.

For example, assume we haveL̂1 = {1,2,4}, L̂2 = {0,1} andL̂3 = {3,6}. ThenV̂1, V̂2

andV̂3 are found as follows

V̂1 = {},

V̂2 = L̂1 = {(1),(2),(4)},

V̂3 = L̂1 × L̂2 = {(1,0),(1,1),(2,0),(2,1),(4,0),(4,1)}.

The following section useŝVi in presenting the worst case response time analysis.

5.2 Exact Response Time Analysis of Non-AM

Multiframe Tasks

This section presents the response time analysis of multiframe tasks that do not satisfy

the AM restriction. The system model in this section assumesthe basic MF model that

is introduced in Section 2.1. In this model, all MF tasks are not subjected to release

jitter and no interference from the analysed task is permitted. However, sharing re-

sources is permitted and is represented for each MF taskτi by the maximum blocking

timeBi .

Usually, the first step of analysing the worst case response time of τi is to identify

the situation that leads to this worst case response time. This situation is called the

critical instance ofτi. From the preemption point of view,τi ’s response is the worst

whenτi is preempted the most. In addition,τi is preempted the most when the amount

of interference from the higher priority MF tasks is the maximum. As the critical

frames of a MF task are the only frames that provide the maximum interference in the

execution of lower priority MF tasks, we now identify the critical instance of a MF

taskτi as in Definition 7; where the peak frame ofτi is the frame that generates the

worst case execution amount ofτi assuming no interference fromτi itself.

Definition 7 . The critical instance of a MF task τi is the simultaneous release of

the peak frame ofτi with the critical frames of the higher priority MF tasks, that lead

to the worst case response time ofτi.

96

5.2 Exact Response Time Analysis of Non-AM Multiframe Tasks

Assuming the critical instance in Definition 7, the responsetime analysis ofτi con-

siders its peak frame and the previous reduced set of critical frames for each MF task

whose priority is higher than the priority ofτi . So, to find the worst case response time

of τi we have to maximise its response time over all critical framecombinations of the

higher priority MF tasks. Symbolically, the worst case response time ofτi has to be

maximised over all values in̂Vi ; which is given by Equation (5.4).

Ri = max
ṽ∈V̂i

{Ri,ṽ}; (5.4)

where{Ri,ṽ} is the response time ofτi that is relative to the simultaneous release, of

critical frames of higher priority MF tasks, that is presented by the combination ˜v from

the cartesian product̂Vi and is found by Equation (5.5) as in the following theorem.

Theorem 6 Ri,ṽ is the worst case response time, of a non-AM multiframe taskτi, that

is relative toṽ which represents one of the simultaneous releases of the critical frames

of higher priority MF tasks. Assuming Definition 7, Ri,ṽ is given by Equation (5.5)

assuming priority ceiling protocols [66, 60].

Ri,ṽ = Cmi
i +Bi +

i−1

∑
j=1

ξ ṽ j
j (⌈

Ri,ṽ

Tj
⌉); (5.5)

where mi is a location of a peak frame of the MF taskτi . ṽ j is the jth element of the

vectorṽ (i.e. the index ofτ j ’s critical frame that is relative to the combinatioñv).

Proof As we are assuming a simultaneous release of bothτi and higher priority MF

tasks, the worst case response time ofτi can be presented by a summation of the worst

case execution ofτi , maximum interference from higher priority MF tasks withinthis

execution, and maximum blocking from lower priority tasksBi as priority ceiling

protocols let the task to be blocked at most once during its execution. The worst case

execution ofτi is represented by the execution time of its peak frame (i.e.Cmi
i).

On the other hand, the interference from the higher priorityMF tasks are presented

by a summation of the interference from each higher priorityMF task. AssumẽI is the

amount of interference that is generated by the MF tasks whose priorities are higher

97

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

thanτi ’s,

Ĩ =
i−1

∑
j=1

Ĩ j ; (5.6)

whereĨ j is the amount of interference that is generated by the MF taskτ j .

We already know thatRi,ṽ starts from whenτi is released; andτi is released simulta-

neously withτ j which is released every periodTj ; so the number of interference from

τ j within Ri,ṽ is

⌈
Ri,ṽ

Tj
⌉.

However,τ j is first released having an execution timeC
ṽ j
j , so the amount of interfer-

ence that is generated byτ j is given by:

Ĩ j = ξ ṽ j
j (⌈

Ri,ṽ

Tj
⌉).

Therefore, substituting̃I j in Equation (5.6) ends up with Equation (5.5).�

Equation (5.5) is solved by forming a recurrence relation given by Equation (5.7).

Rl+1
i,ṽ = Cmi

i +Bi +
i−1

∑
j=1

ξ ṽ j
j (⌈

Rl
i,ṽ

Tj
⌉) (5.7)

where4 R0
i,ṽ = Cmi

i andl = 0,1, .. until Rl+1
i,ṽ = Rl

i,ṽ. However, ifRl+1
i,ṽ becomes greater

thanDi, we say thatτi is not schedulable.

5.3 Numeric Example

This section presents a simple example system to illustratethe application of the pre-

sented exact response time analysis of the non-AM multiframe tasks. Table 5.3 repre-

sents the parameters of this example that consists of three MF tasksτ1, τ2 andτ3.

This example shows how using the critical frames in the analysis reduces the num-

4To reduce the number of iterations over calculations for theresponse time of a MF taskτi , an alterna-
tive value ofR0

i,ṽ can be found as the minimum interference within the execution of τi ’s peak frame

(i.e. R0
i,ṽ = ∑i−1

j=1minx∈L j {ξ x
j (⌈

C
mi
i
Tj

⌉)}.

98

5.3 Numeric Example

task C T = D priority
τ1 3, 4, 6, 8, 7, 5 10 high
τ2 5, 6, 10, 7 40 medium
τ3 1, 2, 3 60 low

Table 5.3: Example System

ber of combinations that are needed for the response time analysis. For example,

previously before presenting the critical frame concept, we had to evaluate the re-

sponse time ofτ3 over all possible combinations of the frames ofτ1 andτ2; which

means we have to do 24 evaluations (becauseτ1 has 6 frames andτ2 has 4 frames

so the number of combinations is 6×4 = 24). However, as minimum frames are not

critical, the number of evaluations reduces, in the first step, to 5×3 = 15. Also, as

dominated frames are never critical, so considering only the critical frames of bothτ1

andτ2 reduces the number of needed evaluations to only 6 as explained below.

To find the critical frames ofτ1 andτ2, we first find the cumulative functions for

each frame. Tables 5.4 and 5.5 show the amount of cumulative functions each frame

of each MF taskτ1 andτ2 generates; which are represented by the functionξ , (1 inv.

meansk = 1 for ξ x
j (k), and so on).

frame location 1 inv. 2 inv. 3 inv. 4 inv. 5 inv.
0 3 7 13 21 28
1 4 10 18 25 30
2 6 14 21 26 29
3 8 15 20 23 27
4 7 12 15 19 25
5 5 8 12 18 26

Table 5.4: Cumulative Functions ofτ1

Once all cumulative functions are found, we apply Equation (5.1) to each frame

to identify the critical ones5. So,τ1 andτ2 have less thann j −1 critical frames; for

j = 1,2; where applying Equation (5.1) toτ1 shows that the frame with the execution

time 8 dominates both frames with the execution times 7 and 5.So, both frames

5Note how the minimum frame is always dominated by the frame that it is followed by.

99

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

frame location 1 inv. 2 inv. 3 inv.
0 5 11 21
1 6 16 23
2 10 17 22
3 7 12 18

Table 5.5: Cumulative Functions ofτ2

with the execution times 7 and 5 are never critical. The same argument is applied to

the frame with the execution time 10 inτ2; where it dominates the frame with the

execution time 7. So, the critical frame locations ofτ1 andτ2 which are presented by

L̂1 andL̂2 areL̂1 = {1,2,3} andL̂2 = {1,2}. As a result,

V̂1 = {}

V̂2 = {(1),(2),(3)}

V̂3 = L̂1× L̂2 = {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}

Therefore, to find the worst case response time ofτ2 andτ3 we have to evaluate

their response time over the critical frames ofτ1 andτ2 while τ1 is the highest priority

MF task, its worst case response time isR1 = 8 < D1. So,τ1 is already schedulable.

For τ2 andτ3 we apply Equation (5.7) for the relative ˜vi .

For the worst case response time ofτ2,

R1
2,(1) = 10 + ∑1

j=1 ξ ṽ j
j (⌈10

Tj
⌉) = 10 + ξ 1

1 (⌈10
10⌉) = 10 + 4 = 14,

R2
2,(1) = 10 + ∑1

j=1 ξ ṽ j
j (⌈14

Tj
⌉) = 10 + 10 = 20,

R3
2,(1) = 10 + ∑1

j=1 ξ ṽ j
j (⌈20

Tj
⌉) = 10 + 10 = 20= R2

2,(1). So,R2,(1) = 20

Similarly, we find thatR2,(2) = 36 andR2,(3) = 30. So,R2 = max{20,30,36} = 36.

R2 < D2 soτ2 is schedulable.

To find the worst case response time ofτ3, for each combination ˜v∈ V̂3, we find the

relative response time ofτ3 by applying Equation (5.7). For example, to findR3,(1,1),

we do the followingR0
3,(1,1) = 3,

R1
3,(1,1) = 3 + ∑2

j=1ξ ṽ j
j (⌈ 3

Tj
⌉) = 3 + 4 + 6 = 13,

R2
3(1,1) = 3 + ∑2

j=1ξ ṽ j
j (⌈13

Tj
⌉) = 19

100

5.4 Evaluating the Number of Critical Frames

R3
3,(1,1) = 19= r2

3(1,1). So,R3,(1,1) = 19.

Similarly we find allR3,ṽ for all elements inV̂3 to get the values in Table 5.6. There-

fore6, R3 = max{19,30,29,38,39,36} = 39. R3 < D3, soτ3 is schedulable.

frame location 0 1 2 3 4 5
0 - - - - - -
1 - 19 30 29 - -
2 - 38 39 36 - -
3 - - - - - -

Table 5.6: Possible Response Times ofτ3

As τ1, τ2 andτ3 are schedulable, the whole example system is schedulable.

Although evaluating the exact worst case response time is still formally an in-

tractable problem as in the worst case there could be a maximum of ∏ j(n j −1) eval-

uations, the exact analysis can be applied to many non-AM multiframe tasks. The

following section investigates the number of critical frames likely to occur in practice.

5.4 Evaluating the Number of Critical Frames

In this section, we evaluate the number of critical frames that are likely to occur to

see how often we could optimise the response time analysis ingeneral. This is done

in summary by generating a set of random execution time sequences; which represent

the execution time sequence of the MF tasks. Then, for each execution time sequence

we find its relative number of critical frames. The followingtwo sections show the

scope of the experiments (i.e. choosing parameters and how each of the experiments

is running) while the last section presents the results of the experiments.

6Note the maximum is only over 6 values instead of 24.

101

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

5.4.1 Experimental Setup

The experiments in this chapter require the generation of a multiframe task to find its

relative number of critical frames. Generating the multiframe task, in its turn, requires

generating two parameters, first one is the number of frames of the multiframe task

and second one is the shortest form of the execution time sequence.

To guarantee the execution time sequence to be in its shortest form (as we request in

the system model, see Section 2.1 for details), the experiments are done for all prime

numbers in the range[3,29] to be as the number of frames. That is because a sequence

with at least two different values and of a prime size can not consist of repetitive

sub sequences. After identifying the number of frames of theMF task, we randomly

generate the execution times using a uniform distribution.Values of the execution

time sequences are randomly generated within two ranges[1,10] and[100,200]. This

is to try different ratios of the execution time values; where the ratio of the first range

is 5 times the second one.

5.4.2 Scope of Running the Experiments

The experiments are done in two sessions: one session is whenexecution times are

generated within range[1,10] and the other is when execution times are generated

within range[100,200]. Within each session we run the experiment 10000 times for

each chosen number of frames in four steps as following. Firstly, we construct a mul-

tiframe task by generating the parameters of the experiment(i.e. number of frames

and execution time sequence) as explained in the previous subsection (i.e. Section

5.4.1). Secondly, we count the number of critical frames of the generated parameters

(i.e. the generated MF task) by checking Equation (5.1) for each of its frames. Algo-

rithm 3 represents the psodocode of the algorithm used for finding the indeces and the

number of critical frames. Thirdly, we repeat this experiment for the same parameters

10000 times and then calculate the mean number of critical frames. Lastly, to present

clearer overview on the generated data with the knowledge that the number of criti-

cal frames does not exceedn−1 wheren is the number of frames, we find the most

frequent number of critical frames that appears the most within the 10000 set for the

102

5.4 Evaluating the Number of Critical Frames

same generated parameters.

Each experiment is done for each prime number of frames within range[3,29] and,

as can be seen from Figure 5.1, each graph (i.e.[1,10] and[100,200]) has three lines

two of them represent the two functions: the mean number of critical frames and

the most frequent number of critical frames; and the third line represents the lowest

bound of the percentage that is greater than the two mentioned functions of the critical

frames. Consequently, each point in Figure 5.1 represents one of two options (i.e.

regarding to the line that it belongs to). The first option is the mean number of critical

frames for the relative number of frames out of 10000 set of randomly generated

execution times. The second option is the number of criticalframes that is appeared

the most, for the same relative number of frames, in the same 10000 set of generated

execution times.

5.4.3 Algorithms of the experiment

To clarify the experiment steps’, we present here all algorithms that are related to the

experiments. To start with, Algorithm 3 represents the required steps for finding the

number of critical frames.

103

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

Algorithm 3 Finding Number of Critical Frames

Inputs: Array ExecutionTimes.
Outputs: Array Critical Indices, Integer SizeCriticals.

if FramesNumber= 1 then
Critical Indices⇐ 0
SizeCriticals⇐ 1

else
CumulatMatrix ⇐ cumulative matrix o f ExecutionTimes
SizeCriticals⇐ FramesNumber− 1
for i = 0 to FramesNumber - 1do

for j = 0 to FramesNumber - 1do
Counter⇐ 0
if i 6= j then

for k = 0 to FramesNumber - 1do
if CumulatMatrix(i,k)≤CumulatMatrix(j,k) then

Counter⇐Counter+ 1
end if

end for
if Counter=FramesNumber - 1then

ExecutionTimes⇐ − 1
SizeCriticals⇐ SizeCriticals − 1

end if
end if

end for
end for
Counter2⇐ 0
for i = 0 to FramesNumber - 1do

if ExecutionTimes(i) 6= −1 then
Critical Indices(Counter2)⇐ i
Counter2⇐Counter2 + 1

end if
end for

end if

Algorithm 4 illustrates the steps that are followed to find the combinations of the

critical frames that are presented by the cartesian productVi in Section 5.1.

For more illustration of the steps in Algorithm 4, we presentthe following numeric

example. Assume we have the inputs that are given in Table 5.7. Applying the steps

in Algorithm 4 leads to the parameters in Table 5.8; which leads to the needed combi-

nations.

104

5.4 Evaluating the Number of Critical Frames

Algorithm 4 Finding Combinations of Critical Frames

Inputs: CounterCartesian, TaskLevel, Critical Indices.
Outputs: Array LocationsSyncRelease.

Require: TaskLevel 6= 1
if TaskLevel= 2 then

LocationsSyncRelease⇐Critical Indices(1)
else

Multiple : array o f size TaskLevel−2⇐ 1
for i = TaskLevel-2 to 1do

Multiple(i)⇐ Multiple(i +1) . SizeCriticals(i +1)
end for
LocationsSyncRelease(TaskLevel−1) ⇐
Critical Indices(CounterCartesian mod SizeCriticals(TaskLevel−1))
for j = TaskLevel-2 to 1do

LocationsSyncRelease(j) ⇐
Critical Indices(⌊CounterCartesian

Multiple(j) ⌋ mod SizeCriticals(j))
end for

end if

Task SizeCriticals Critical Indices Multiple
τ1 3 (0,1,2) 2
τ2 2 (0,1) -
τ3 1 (0) -

Table 5.7: Numeric Example to Illustrate Algorithm 4

Counter first TaskLevel−1 Locations
element element Sync

Release
0 Critical Index(⌊0

2⌋ mod3) = 0 Critical Index(0 mod2) = 0 (0,0)
1 0 1 (0,1)
2 1 0 (1,0)
3 1 1 (1,1)
4 2 0 (2,0)
5 2 1 (2,1)

Table 5.8: Values of the Parameter: LocationsSyncRelease

105

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

5.4.4 Results of the Experiments

([1,10])

([100,200])

Figure 5.1: Mean and Most Frequent Number of Critical FramesWhen the Range of
Execution Times is [1,10] and [100,200]

Figure 5.1 presents the evaluation of the number of criticalframes over 10000 MF

tasks with randomly generated execution time values. This evaluation is presented by

106

5.4 Evaluating the Number of Critical Frames

the two functions: the mean number of critical frames and themost frequent number

of critical frames over the 10000 randomly chosen multiframe tasks. Figure 5.1 shows

that both functions of the mean and the most frequent number of critical frames are

less than 60% of the original number of frames for the range ofthe execution times

[1,10]; whilst these functions are less than 65% of the original number of frames for

the range of the execution times[100,200]. This implies that the number of critical

frames in practice is likely to be significantly less than(n−1). In addition, Figure 5.1

demonstrates a linear relationship between the number of frames and the number of

critical frames; which implies that these conclusions can be extrapolated to tasks with

more than 29 frames.

To give a better coverage of the generated data, Figures 5.2 -5.6 give details of

where each point in Figure 5.1 comes from. In other words, Figures 5.2 - 5.6 show

the distribution of the number of critical frames, over the 10000 randomly chosen

multiframe tasks for each ofn wheren represents the number of frames and has one

of the values{3,5,7,11,13,17,19,23,29}. We can see from all mentioned figures

(3 frames)

Figure 5.2: Number of Schedulable Tasks Versus Number of Critical Frames When
n = 3 (10000 Tasks in Total)

that reaching the peak when the range of execution times is[1,10] is faster than when

the range is[100,200]. To illustrate more, we can deduce from the above figures that

107

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

the bigger ratio the execution times have the less number of critical frames they could

contain.

Although we can see a similar behaviour for all graphs in Figures 5.2 - 5.6, an ex-

ample is given here to support and illustrate the previous mentioned deduction. Figure

5.6 (29 frames) shows that when the range of the execution times is[1,10] (i.e. ratio is

10), the maximum number of tasks (i.e. about 1150 out of the 10000) have 16 critical

frames while about 800 tasks have the same number of criticalframes when range of

the execution times is[100,200] (i.e. ratio is 2). On the other hand, for the same gen-

erated set of data, when the ratio is 2, similar number of tasks (i.e. nearly 1150, 1200

and 1150 tasks out of 10000 tasks) have the number of criticalframes equal 18,19,20

critical frames respectively; while about 950, 750 and 500 tasks have the same number

of critical frames (i.e. 18,19,20 respectively) when the ratio is 10; which supports the

idea of the bigger ratio the execution times have, the lower number of critical frames

the MF task could get.

5.5 Summary

This chapter is concerned with the basic response time analysis of MF tasks when the

AM restriction is relaxed. The analysis is done in two main steps and then evaluated.

Firstly we introduce the critical frame concept, secondly we use this concept to give

the basic response time formula of non-AM multiframe tasks.Evaluating the critical

frame concept is also given to show how this concept improvesthe response time anal-

ysis by reducing the number of combinations that need to be examined to determine

the worst case response time of a MF task. Although we proved that number of critical

frames could reach in the worst case ton−1 wheren is the original number of frames

of the MF task, evaluation shows that number of critical frames are mostly less than

65% of the original number of the frames.

108

5.5 Summary

(5 frames)

(7 frames)

Figure 5.3: Number of Schedulable Tasks Versus Number of Critical Frames When
n = 5 and7 (10000 Tasks in Total)

109

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

(11 frames)

(13 frames)

Figure 5.4: Number of Schedulable Tasks Versus Number of Critical Frames When
n = 11and13 (10000 Tasks in Total)

110

5.5 Summary

(17 frames)

(19 frames)

Figure 5.5: Number of Schedulable Tasks Versus Number of Critical Frames When
n = 17and19(10000 Tasks in Total)

111

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

(23 frames)

(29 frames)

Figure 5.6: Number of Schedulable Tasks Versus Number of Critical Frames When
n = 23and29 (10000 Tasks in Total)

112

6 Extension of the Exact Scheduling

Analysis of Non-AM Multiframe

Tasks

This chapter1 extends the system model that was given in Chapter 5 and presents the

worst case response time analysis of each relative extendedmodel. This extension is

firstly done in two directions relative to release jitter andarbitrary deadlines. In the

first direction we assume that each MF taskτ j has a maximum release jitterJj but no

interference from the analysed MF task itself is allowed. Inthe second direction, the

analysed MF task,τi , is permitted to have a deadline greater than its period soτi could

have interference from previous frames during its execution. Then, the two models of

release jitter and arbitrary deadline are combined and the relative exact response time

analysis is presented.

This chapter is organised as follows: the next section presents the worst case re-

sponse time analysis of MF tasks that are subjected to release jitter. The worst case

response time analysis of MF tasks whose deadlines are arbitrary is presented in Sec-

tion 6.2. Section 6.3 presents an example to illustrate the analysis of the arbitrary

deadlines senario. Section 6.4 presents the worst case response time analysis of MF

tasks whose deadlines are arbitrary and are subjected to release jitter. In Section 6.5

we present an example to illustrate the analysis of the combined model of release jitter

and arbitrary deadlines .

1Parts of Sections 6.1 and 6.2 in this chapter are published in[79].

113

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

6.1 Analysis of MF Tasks with Release Jitter

Section 4.1 in Chapter 4 explained how release jitter affects the periodicity of the

tasks. However, we presented in Chapter 5 the worst case response time analysis of

purely periodic non-AM multiframe tasks. In this section, we cover the extension

of this analysis when non-AM multiframe tasks are subjectedto release jitter. The

analysis is presented in a self contained manner rather thanas an extension to the AM

analysis of Section 4.1.

When a taskτ j is subjected to release jitter, its release time takes placesomewhere

after its arrival time in an interval of length equals to the maximum release jitter,Jj .

To symbolise the release jitter problem mathematically, let ak
j andsk

j be the times when

the (k+ 1)th frame2 of τ j arrives and is released respectively.ak
j andsk

j must satisfy

Equations (6.1) and (6.2) asτ j arrives periodically and has to be released after its

arrival time within a maximum interval of time equals toJj .

ak
j = x+kTj ; (6.1)

ak
j ≤ sk

j ≤ y+kTj ; (6.2)

y−x = Jj and k= 0,1,2, ..

As release jitter affects the periodicity of the release times of τ j , the worst case

situation of a lower priority taskτi is whenτ j is released the most duringτi ’s exe-

cution because, in this case,τ j provides the maximum number of interference within

τi ’s execution. However, the maximum number of releases thatτ j practices is when

its release times are close to each other as much as possible.The following lemma

explains this situation.

Lemma 2 Having τ j subjected to release jitter, Jj , τ j is released the most when its

first frame is released rightmost in its release jitter interval while subsequent frames

are released leftmost in this release jitter interval.

Proof
2Althoughk = 0,1, .., for simplicity of the presentation we say(k+1)th.

114

6.1 Analysis of MF Tasks with Release Jitter

Substitute Equation (6.1) for Equation (6.2), so we get

x+kTj ≤ sk
j .

Now, substitutek+1 for k to get the following inequality

x+(k+1)Tj ≤ sk+1
j .

Subtractsk
j from both sides of this inequality, so

x+(k+1)Tj −sk
j ≤ sk+1

j −sk
j .

We already know, from Equation (6.2), that−sk
j ≥−(y+kTj). So,

x+(k+1)Tj − (y+kTj) ≤ x+(k+1)Tj −sk
j ≤ sk+1

j −sk
j .

Tj − (y−x) ≤ sk+1
j −sk

j .

Therefore,

sk+1
j ≥ sk

j +Tj −Jj . (6.3)

Equation (6.3) presents a relationship between release times of each two successive

frames whenτ j is subjected to release jitter. Without lose of generality and to clasp

the first two releases ofτ j ’s frames, we assumeτ j first arrives as early as possible (i.e.

first arrival time isx) but is released as late as possible so release time of the first frame

(i.e. k = 0) is s0
j = y which is rightmost ofτ j ’s release jitter interval.

For k > 0, τ j is released the most when release times of its successive frames are

closest to each other. In other words,τ j is released the most whensk+1
j equals to the

actual lower bound value ofsk+1
j . We already know thatsk

j ≥ ak
j andak

j = x+kTj , so

Equation (6.3) becomes

sk+1
j ≥ x+kTj +Tj −Jj ,

sk+1
j ≥ x+(k+1)Tj −Jj .

As ak+1
j = x+(k+1)Tj ,

sk+1
j ≥ ak+1

j −Jj .

115

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

However,sk+1
j ≥ ak+1

j as the release time of a task is always after its arrival time.

So,sk+1
j should not take values in the range[ak+1

j − Jj ,a
k+1
j). Therefore, the lowest

value thatsk+1
j takes isak+1

j ; which means that the latest timeτ j is released after

the first release is as soon as it arrives. However, the arrival times are always at the

beginning of release jitter interval; which is leftmost of release jitter interval. Soτ j is

released the most when the first frame is released rightmost of its release jitter interval

while next frames are released leftmost of its release jitter interval.�

Figure 6.1 illustrates the situation whereτ j is released the most in the interval[s1
i , f].

executing f finish executing,Task release

x y

f

Jj Tj

x+Tj y+Tj x+2.Tj y+2.Tj

τ j

τi

C0
j C1

j C2
j

Ri

s0
i

Figure 6.1: Illustration of Release Jitter Problem

Lemma 2 presents the situation whereτ j is invoked for the maximum number of

times. Asτ j is a MF task, the amount of invocation (i.e. interference on lower priority

tasks) that is relative to this maximum number is relativelydifferent according to the

first released frame ofτ j . However, we explained in Section 5.1 how critical frames

of a MF task are the only frames that provide the maximum amount of interference in

lower priority tasks. The following lemma proves that this critical frame set remains

the same whenτ j is subjected to release jitter.

Lemma 3 Having non-AM multiframe taskτ j subjected to release jitter, its critical

frame set remains the same as whenτ j does not have release jitter.

116

6.1 Analysis of MF Tasks with Release Jitter

Proof

The maximum amount of interference from a MF taskτ j , for all number of interfer-

ence (i.e.∀k = 1,2, ..), are generated by its critical frames. On the other hand, release

jitter of τ j could affect the number of interferenceτ j generates on a lower priority task

but does not affect the execution times of the frames. So, theframe that is relative

to the maximum interference on this lower priority task could be different from the

one that is relative to the maximum interference whenτ j was not subjected to release

jitter. However, both frames are from the critical frame setbecause this set depends

on the maximum amount of interference thatτ j generates for all its possible number

of interference. So, even if the number of interference increases by release jitter, the

relative critical frame will be one of the original criticalframe set. Therefore, the crit-

ical frame set keeps the same as explained in Section 5.1.�

Example

The following example illustrate Lemma 3. Suppose a system with three MF tasks in

Table 6.1, the critical frame locations ofτ1 andτ2 are{1,2,3,4} and{1,2,3} respec-

tively.

task C T priority
τ1 3, 4, 6, 7, 8, 6, 8 10 high
τ2 5, 6, 7, 10 40 medium
τ3 1, 2, 3 60 low

Table 6.1: Example System

Firstly, we present all possible response times ofτ3 assuming there is no release

jitter for any tasks in the system. Table 6.2 presents all possible response times that are

relative to all critical frames ofτ1 andτ2. So, we see from the table that the worst case

response time ofτ3 is 50 and the relative critical frames ofτ1 andτ2 are the execution

times whose locations are 3 and 3 respectively; which represent the execution times 7

and 10 respectively.

Now, assumeτ1 has release jitter of 1 then this release jitter gives rise toan extra

interference fromτ1 and therefore its critical frame is changed to be relative tothe

new number of interference. To find out how the critical frameis changed, Table 6.3

117

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

frame location 0 1 2 3 4 5 6
0 - - - - - - -
1 - 19 30 30 34 - -
2 - 20 37 39 35 - -
3 - 30 40 50 38 - -

Table 6.2: Responses ofτ3 When No Release Jitter

presents all possible response times ofτ3 (calculated3 by applying Equation (6.5))

that are relative to all critical frames ofτ1 andτ2. We see from this table that the

worst case response time ofτ3 is now 56 and critical frames ofτ1 andτ2 are 6 and

10 respectively. At the same time, according to the frames of7 and 10 ofτ1 andτ2,

the relative response time ofτ3 in the caseJ1 = 1 is R3 = 54. So, the specific critical

frame ofτ1 has changed when release jitter exists but is still one member of the critical

frame set.

frame location 0 1 2 3 4 5 6
0 - - - - - - -
1 - 19 36 38 34 - -
2 - 27 37 39 35 - -
3 - 38 56 54 38 - -

Table 6.3: Responses ofτ3 WhenJ1 = 1

As a first step in any worst case response time analysis of a task τi we have to iden-

tify its critical instance that is considered as the worst case situation inτi ’s response

time analysis. For preemptive real-time tasks under fixed priority scheduling,τi ’s re-

sponse time is the worst whenτi is preempted the most during its execution. A higher

priority MF taskτ j preemptsτi the most whenτ j provides as much interference as

possible inτi ’s execution. Havingτ j andτi subjected to release jitter and consider-

ing Lemma 2,τ j interferesτi the most when bothτ j andτi start their first executions

simultaneously andτ j ’s first frame is released rightmost in its release jitter interval

while subsequent frames are released leftmost in this release jitter interval. On the

other hand, asτ j is a non-AM multiframe task, its critical frames provide themaxi-

3Full details of the calculation are given by the example at the end of this section.

118

6.1 Analysis of MF Tasks with Release Jitter

mum amount of interference in lower priority tasks. Also, asτi does not preempt itself,

studying the schedulability status ofτi ’s peak frame is enough to decide its schedula-

bility status. Therefore, we define the critical instance ofa non-AM multiframe task

τi as in the following definition.

Definition 8 Having a system whose MF tasks are subjected to release jitter, the

critical instance of a non-AM multiframe task τi is the simultaneous release of its

peak frame and the critical frames, of the higher priority MFtasks, that lead to the

worst case response time ofτi; where the simultaneous release takes its place at the

end (i.e. rightmost) of their release jitter intervals whilst subsequent releases of the

frames that follow the critical frames take their place leftmost in their relative release

jitter intervals.

Figure 6.1 illustrates this critical instance by presenting the simultaneous release of

two MF tasks; a higher priority MF taskτ j and a lower priority MF taskτi.

Assuming Definition 8 of the critical instance and accordingto Lemma 3, analysis

of the worst case response time ofτi has to be maximised over all combinations of the

critical frames of the higher priority MF tasks. However, assumeRi,ṽ is τi ’s response

time that is relative to a specific combination, that is represented4 by ṽ, of the critical

frames of the higher priority MF tasks; to findRi,ṽ we have to find the amount of in-

terference from the higher priority MF tasks withinRi,ṽ. The following lemma proves

a formula for finding this amount of interference.

Lemma 4 Given a real-time system consisting of N non-AM multiframe tasksτ j ;

j = 1,2, ..,N, each MF taskτ j has a maximum release jitter equals Jj . Assuming

Definition 8 where the simultaneous release of the critical frames of the higher priority

MF tasks is represented bỹv, Ri,ṽ is the response time ofτi that is relative to a specific

ṽ; the maximum amount of interference in Ri,ṽ from the tasks whose priorities are

higher thanτi is given by Equation (6.4).

i−1

∑
j=1

ξ ṽ j
j (⌈

Ri,ṽ+Jj

Tj
⌉). (6.4)

4ṽ∈ V̂i ; whereV̂i is given in Section 5.1 as the cartesian product of the locations of the critical frames
of τ j , more details in Section 5.1.

119

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

Proof

AssumeĨ is the maximum amount of interference from tasks whose priorities are

higher thanτi , then we can presentĨ as a summation of all interference from higher

priority tasks because of the simultaneous release of all higher priority MF tasks (Def-

inition 8). So,

Ĩ =
i−1

∑
j=1

Ĩi ;

whereĨ j is the maximum amount of interference from the higher priority MF taskτ j .

According to Definition 8 we divide this amount into two parts

Ĩ j = C
ṽ j
j + I rest

j ;

whereC
ṽ j
j is the first interference thatτ j provides within(Tj − Jj) while I rest

j is the

amount of interference thatτ j provides withinRi,ṽ−(Tj −Jj) starting from the release

that follows the first one. So,I rest
j is given by:

I rest
j = ξ (ṽ j+1)

j (⌈
Ri,ṽ− (Tj −Jj)

Tj
⌉).

Therefore,

Ĩ j = C
ṽ j
j + ξ (ṽ j+1)

j (⌈
Ri,ṽ−(Tj−Jj)

Tj
⌉)

Ĩ j = ξ ṽ j
j (⌈

Ri,ṽ−(Tj−Jj)
Tj

⌉+ 1) because the cumulative function starts from a previous

release so an extra interference has been added,

Ĩ j = ξ ṽ j
j (⌈

Ri,ṽ−(Tj−Jj)
Tj

+1⌉) because we add an integer to the ceiling function so we

can move this integer into the ceiling function,

Ĩ j = ξ ṽ j
j (⌈

Ri,ṽ−(Tj−Jj)
Tj

+
Tj
Tj
⌉) = ξ ṽ j

j (⌈
Ri,ṽ+Jj

Tj
⌉).

So, the maximum amount of interference from tasks whose priorities are higher

than the MF taskτi, assumingC
ṽ j
j is the first execution time ofτ j (remember that ˜v j

is a location of a critical frame, ofτ j , that is relative to the combination ˜v), is given by

Equation (6.4).�

Having a formula for the amount of interference from higher priority MF tasks,

what is left in the response time analysis is to find the formula that representsRi,ṽ for

120

6.1 Analysis of MF Tasks with Release Jitter

a specific combination, ˜v ∈ V̂i , of the critical frames of all higher priority MF tasks.

The following theorem proves a formula ofRi,ṽ.

Theorem 7 Given a real-time system consisting of N non-AM multiframe tasksτ j ;

j = 1,2, ..,N, each MF taskτ j has a maximum release jitter equals Jj and has its peak

frame at position mj ; assuming Definition 8, the worst case response time ofτi, that

is relative toṽ ∈ V̂i is given by the smallest non-negative solution to Equation (6.5)

assuming priority ceiling protocols [66, 60].̃v represents a combination vector of the

critical frame locations of the MF tasks whose priorities are higher thanτi.

Ri,ṽ = Cmi
i +Bi +

i−1

∑
j=1

ξ ṽ j
j (⌈

Ri,ṽ+Jj

Tj
⌉) (6.5)

whereṽ j is the jth element of the vector̃v.

Proof

As τi does not preempt itself, the maximum amount ofτi ’s execution is represented by

its peak frame. Also, priority ceiling protocols let the task to be blocked at most once,

so we just add the maximum blocking time to the response time formula. In addition,

Lemma 4 presents a formula for the amount of interference from higher priority MF

tasks. So as we are assuming the simultaneous release ofτi and higher priority MF

tasks, we can present the worst case response time ofτi as a summation of its execution

and interference from the higher priority MF tasks. Therefore, the worst case response

time of the taskτi is given by the smallest non negative solution to Equation (6.5).�

Solving Equation (6.5) is given by forming a recurrence equation given by Equation

(6.6).

Rl+1
i,ṽ = Cmi

i +Bi +
i−1

∑
j=1

ξ ṽ j
j (⌈

Rl
i,ṽ+Jj

Tj
⌉) (6.6)

whereR0
i,ṽ = Cmi

i andl = 0,1, .. till Rl+1
i,ṽ = Rl

i,ṽ = Ri,ṽ. However, ifRl+1
i,ṽ > Di −Ji , we

say thatτi is not schedulable.

Corollary 2 The worst case response time of a non-AM multiframe taskτi in a system

121

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

subjected to release jitter is given by Equation (6.7)

Ri = max
ṽ∈V̂i

{Ri,ṽ} (6.7)

Proof

For each combination of ˜v ∈ V̂i, we find the worst case response time ofτi that is

relative to this combination ˜v. Therefore, the worst case response time ofτi is the

maximum of all of them as in Equation (6.7).�

Schedulability Test

As the response time is calculated from the time whenτi is released while deadline

is scheduled from whenτi arrives in the system, the response time scheduling test is

given as following:τi is schedulable ifRi ≤ Di −Ji .

Example

Recall the example in Table 6.1 with no blockings andJ1 = 1,J2 = 0, and J3 = 0, to

find the worst case response time ofτ3 we apply Equation (6.6) for all ˜v∈ V̂3; where

V̂3 = {(1,1),(2,1),(3,1),(4,1),(1,2),(2,2),(3,2),(4,2),(1,3),(2,3),(3,3),(4,3)}. For

example, when ˜v = (2,3) then

Rl+1
3,(2,3) = Cm3

3 +∑2
j=1 ξ ṽ j

j (⌈
Rl

3,(2,3)+Jj

Tj
⌉)

Rl+1
3,(2,3)

= 3+ξ 2
1 (⌈

Rl
3,(2,3)+1

T1
⌉)+ξ 3

2 (⌈
Rl

3,(2,3)

T2
⌉)

l=0, R0
3,(2,3) = 3;

l=1, R1
3,(2,3) = 3+ξ 2

1 (1)+ξ 3
2(1) = 3+6+10= 19.

l=2, R2
3,(2,3) = 3+ξ 2

1 (⌈19+1
10 ⌉)+ξ 3

2 (⌈19
40⌉) = 3+13+10= 26.

l=3, R3
3,(2,3) = 3+ξ 2

1 (⌈26+1
10 ⌉)+ξ 3

2 (⌈26
40⌉) = 3+21+10= 34.

l=4, R4
3,(2,3) = 3+ξ 2

1 (⌈34+1
10 ⌉)+ξ 3

2 (⌈34
40⌉) = 3+27+10= 40.

l=5, R5
3,(2,3) = 3+35+10= 48.

l=6, R6
3,(2,3) = 3+35+15= 53.

l=7, R7
3,(2,3) = 3+38+15= 56.

l=8, R8
3,(2,3) = 3+38+15= 56.

So, R3,(2,3) = 56. Similarly, we find allR3,ṽ for all ṽ ∈ V̂3 to get values that were

previously presented by Table 6.3. Therefore,R3 is the maximum of all values in Ta-

ble 6.3, soR3 = max{19,36,38,34,27,37,39,35,38,56,54,38}= 56≤ D3. So,τ3 is

schedulable.

122

6.2 Analysis of MF Tasks with Arbitrary Deadlines

6.2 Analysis of MF Tasks with Arbitrary Deadlines

The previous section presents an extension of the worst caseresponse time analysis

of the non-AM multiframe tasks from the point of view that tasks have release jitter

but the analysed task does not have interference from its previous frames during its

execution. This section presents another extension of the worst case response time

analysis of the non-AM multiframe tasks; where the MF tasks have arbitrary deadlines

but does not have release jitter. In other words, the deadline of the analysed task could

be greater than its period, so analysis of the worst case response time has to take into

account the interference from the analysed MF task itself aswell as interference from

higher priority MF tasks.

As a first issue we start by identifying the situation of the MFtaskτi that could lead

to its worst case delay of its response time; which we call thecritical instance ofτi .

As there is a possibility of having interference from the task itself within its execu-

tion as well as the interference from the higher priority MF tasks, to demonstrate the

maximum amount of interference fromτi, we have to consider its own critical frames

besides the critical frames of the higher priority MF tasks.So, the arbitrary dead-

line scenario leads us to the situation of analysing all critical frames of the analysed

MF task instead of analysing only its peak frame because its critical frames are the

frames that generate the maximum amount of interference within the same or lower

priority tasks. In other words, the critical instance ofτi is presented by the following

definition.

Definition 9 . The critical instance of a non-AM multiframe task τi whose dead-

line is arbitrary is the simultaneous release, that leads to the worst case response time

of τi , of the critical frames of bothτi and all MF tasks whose priorities are higher than

τi ’s.

In the previous section, the simultaneous releases of the critical frames of the MF

tasks whose priorities are higher thanτi are represented by the cartesian productV̂i of

L̂ j ; where j = 1, 2, .., i−1. However, Definition 9 considers all simultaneous releases

of the critical frames of the analysed MF taskτi and the MF tasks whose priorities are

higher thanτi ’s. So, we represent the simultaneous releases in this section by the

123

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

cartesian product̂Vi of L̂ j ; where j = 1, 2, .., i. Therefore, the response time ofτi has

to be analysed for all its critical frames whose locations are presented by ˜vi , which is

the ith element of the vector ˜v ∈ V̂i , as well as critical frames of higher priority MF

tasks, whose locations are presented by ˜v j ; j = 1,2, .., i −1.

To analyze the response time ofτi that is relative to the combination of the critical

frames ˜v, the first step is to define the busy period of a frame of a MF taskas the time

from when this frame is released until it finishes its execution that is relative to this

frame. So, assuming Definition 9, the worst case busy period of τi that is relative to

the combination ˜v is the maximum busy period ofτi taking into account that the busy

period could include interference fromτi itself.

Assumeq is the number of invocations ofτi (q = 1,2, ..), to find the worst case

busy period of theqth frame5 of τi that is relative to the combination ˜v we follow two

steps: first we findr i,ṽ(q) that represents the time from whenτi ’s critical frame whose

location is ˜vi is released until theqth frame has finished its execution; then we find

wi,ṽ(q) that represents theqth busy period ofτi that is relative to the combination of

the critical frames ˜v by subtracting the overlap invocations that are not relatedto the

busy period of theqth frame. The following theorem proves the technique that is used

to find wi,ṽ(q).

Theorem 8 Having a system of non-AM multiframe tasks, each MF taskτi has an

arbitrary deadline Di . Assuming Definition 9, the qth busy period ofτi that is relative

to the combinatioñv (i.e. wi,ṽ(q)) is given by Equation (6.8) assuming the priority

ceiling protocols [66, 60].

wi,ṽ(q) = r i,ṽ(q); f or q = 1,

= r i,ṽ(q)− (q−1)Ti; f or q > 1.

(6.8)

where ri,ṽ(q) is found by the smallest non-negative solution to Equation (6.9).

r i,ṽ(q) = ξ ṽi
i (q)+Bi +

i−1

∑
j=1

ξ ṽ j
j (⌈

r i,ṽ(q)

Tj
⌉). (6.9)

5With the knowledge thatq’s values start with 1,2, ..

124

6.2 Analysis of MF Tasks with Arbitrary Deadlines

whereξ ṽi
i (q) is introduced by Definition 1 and Bi is the maximum blocking time ofτi .

Proof

As we are assuming the simultaneous release ofτi and higher priority MF tasks,r i,ṽ(q)

can be represented by a summation of two kinds of execution; one is related to the

execution ofτi and the other is related to MF tasks other thanτi . The execution that

is related toτi is represented by its cumulative functionξ ṽi
i (q) and the execution that

is related to the MF tasks other thanτi is represented by blocking from lower priority

tasks and interference from higher priority tasks.

As priority ceiling protocols allow the task to be blocked atmost once during its ex-

ecution and asr i,ṽ(q) is a continuous execution of the same priority MF task, the block-

ing term from lower priority tasks is represented by the maximum expected blocking

timeBi. Furthermore, as we assume the simultaneous release ofτi and higher priority

tasks (Definition 9 of the critical instance ofτi), the interference from the MF tasks

that have higher priority thanτi is presented by a summation of all interference from

those tasks.

AssumeĨ j is the interference from a higher priority MF multiframe task τ j in r i,ṽ(q),

applying Lemma 1 leads tõI j being presented byξ ṽ j
j (⌈

r i,ṽ(q)
Tj

⌉ (with the assumption

that Jj = 0). So, the maximum interference from the MF tasks whose priorities are

higher thanτi ’s is presented by∑i−1
j=1 ξ ṽ j

j (⌈
r i,ṽ(q)

Tj
⌉). Therefore,r i,ṽ(q) is a collection of

ξ ṽi
i (q), Bi and∑i−1

j=1ξ ṽ j
j (⌈

r i,ṽ(q)
Tj

⌉); which is identical to Equation (6.9).

r i,ṽ(q) consists ofq number ofτi ’s execution starting fromτi ’s critical frame whose

location is ˜vi . So, the first busy period ofτi is the busy period of the ˜vi
th critical frame

of τi . In addition,wi,ṽ(q) starts from when theqth frame ofτi is released whilstr i,ṽ(q)

starts from when the first frame is released; also, both ofwi,ṽ(q) andr i,ṽ(q) have the

same end. So, whenq = 1 both ofwi,ṽ(1) and r i,ṽ(1) have the same start and end;

which means thatwi,ṽ(1) = r i,ṽ(1). However, whenq > 1, wi,ṽ(q) and r i,ṽ(q) have

different starts wherer i,ṽ(q) starts at 0 andwi,ṽ(q) starts at(q−1)Ti. So,wi,ṽ(q) =

wi,ṽ(q)− (q−1)Ti which is identical to Equation (6.8).�

Equation (6.9) is solved by forming a recurrence relationship as in Equation (6.10);

wherel = 0,1, .. until gettingr l+1
i,ṽ (q) = r l

i,ṽ(q). However ifr l+1
i,ṽ (q) > (q−1)Ti +Di

125

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

thenτi is not schedulable asτi would have passed theqth deadline in this case.

r l+1
i,ṽ (q) = ξ ṽi

i (q)+Bi +
i−1

∑
j=1

ξ ṽ j
j (⌈

r l
i,ṽ(q)

Tj
⌉). (6.10)

Theorem 8 provides a way for finding theqth busy period ofτi that is relative to the

combination ˜v; for q = 1, 2, ... To identify the worst busy period that is relative to the

combination ˜v, we have to maximise all relative busy periods that includesinterference

from τi . In other words, we have to maximisewi,ṽ(q) over allq; whereq takes values

from 1 until τi stops interfering within its invocations. So, we keep increasing values

of q and findingwi,ṽ(q) until Equation (6.11) is satisfied.

wi,ṽ(q) ≤ Ti. (6.11)

That is because satisfying Equation (6.11) means thatτi has finished its execution

within the period it is released in; and no further interference fromτi itself will occur.

Therefore, the worst case busy periodwi,ṽ that is relative to the combination ˜v∈ V̂i is

the maximum busy period over all q that is bounded by Equation(6.11). Mathemati-

cally, wi,ṽ is found by Equation (6.12).

wi,ṽ = max
q=1,2,..

{wi,ṽ(q)}. (6.12)

Therefore, to find the worst case response time ofτi , Ri, we have to maximise all

worst case busy periodswi,ṽ over all possible combinations, ˜v. In other word, the worst

case response time ofτi is given by Equation (6.13).

Ri = max
ṽ∈V̂

{wi,ṽ} (6.13)

Scheduling Test

The schedulability test ofτi within the arbitrary deadline scenario is as follows:τi is

schedulable if its worst case response time, that is calculated by Equation (6.13), is

less than or equals to its deadline (i.e.Ri ≤ Di).

126

6.3 Example

6.3 Example

Assume a system with three independent tasksτ1, τ2 andτ3 with the parameters given

in Table 6.4. For simplicity of the example we assume all blockings are 0. To identify

task C T D priority
τ1 5, 3, 4, 6, 8, 7 10 10 1
τ2 6, 10, 7, 5 40 40 2
τ3 6, 7, 8 50 60 3

Table 6.4: Attributes of the Tasks in the System

the schedulability status ofτ3, we have to find its worst case response time. AsD3 >

T3, we need to evaluate the response time ofτ3 over all its critical frames of the MF

tasksτ1, τ2 andτ3.

Using analysis in Section 5.1, locations of the critical frames L̂ j ; j = 1,2,3 are

found as follows

L̂1 = {2,3,4},

L̂2 = {0,1} and

L̂3 = {1,2}.

So, the cartesian productV̂3 of L̂ j ; j = 1, ..3 is found as

V̂3 = {(2,0,1),(2,0,2),(2,1,1),(2,1,2),(3,0,1),(3,0,2),(3,1,1),(3,1,2),(4,0,1),

(4,0,2),(4,1,1),(4,1,2)}.

Now, we apply the response time analysis in this section in two steps. In the first step,

we findwi,ṽ using Theorem 8 and Equation (6.10) and in the second step, wefind the

worst case response timeRi by maximisingwi,ṽ over all ṽ∈ V̂3.

For example for the combination ˜v = (2,0,1), applying Theorem 8 leads to

r3,(2,0,1)(q) = ξ 1
3 (q)+∑2

j=1ξ ṽ j
j (⌈

r3,(2,0,1)(q)

Tj
⌉)

q = 1, thenr3,(2,0,1)(1) = 7 +∑2
j=1ξ ṽ j

j (⌈
r3,(2,0,1)(1)

Tj
⌉)

By solving this iterative equation, we find thatr3,(2,0,1)(1) = 38. So,

127

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

w3,(2,0,1)(1) = 38≤ T3.

So restriction (6.11) is satisfied and therefore, no need to increaseq’s values any more.

Thus,w3,(2,0,1) = 38.

Similarly, we findr3,(2,0,2)(1) = 8 +∑2
j=1 ξ ṽ j

j (⌈
r3,(2,0,2)(1)

Tj
⌉) = 39. So,w3,(2,0,2)(1) =

39. In the same way, we find allw3,ṽ usingr3,ṽ(q) to get the results in Table 6.5. Where

we calculate all possible worst case busy periods that are relative to all critical frames

of τ3 and higher priority MF tasks. Note from Table 6.5 that valuesof q increases to

ṽ q r3,ṽ(q) w3,ṽ(q) w3,ṽ

(2,0,1) 1 38 38 38
(2,0,2) 1 39 39 39
(2,1,1) 1 57 57> T3

(2,1,1) 2 69 19 max{57,19} = 57
(2,1,2) 1 58 58> T3

(2,1,2) 2 68 18 max{58,18} = 58
(3,0,1) 1 39 39 39
(3,0,2) 1 40 40 40
(3,1,1) 1 46 46 46
(3,1,2) 1 47 47 47
(4,0,1) 1 36 36 36
(4,0,2) 1 37 37 37
(4,1,1) 1 40 40 40
(4,1,2) 1 58 58> T3

(4,1,2) 2 79 29 max{58,29} = 58

Table 6.5: Possible Busy Periods

2 for the combinations(2,1,1), (2,1,2), and(4,1,2) as the relativew3,ṽ(1) is greater

thanT3.

Once all worst case busy periods that are relative to all ˜v ∈ V3 are identified, the

worst case response time ofτ3, R3, is the maximum of all identified busy periods

and found by applying Equation (6.13) (i.e.w3,ṽ’s column in Table 6.5). Thus,R3 =

max{38,39,57,58,39,40,46,47,36,37,40,58}= 58< D3, soτ3 is schedulable.

128

6.4 Combined Analysis of Release Jitter and Arbitrary Deadlines

6.4 Combined Analysis of Release Jitter and Arbitrary

Deadlines

Section 6.1 restricts the system to have deadlines less thantheir relative periods and

Section 6.2 restricts the system to have no release jitter. In this section we relax the

two previous restrictions and present the worst case response time analysis of systems

whose deadlines are arbitrary and the MF tasks are subjectedto release jitter.

The first issue of the analysis is to identify the situation that leads to the worst

case response time of the analysed MF task. Within the context of the analysis in

this section, we consider the simultaneous release, of the critical frames for both the

analysed MF task and higher priority MF tasks, is the situation that leads to the worst

case response time of the analysed task. We call this situation the critical instance of

a MF task; which is given by Definition 10.

Definition 10 . The critical instance of a non-AM multiframe task τi whose dead-

line is arbitrary and the MF tasks are subjected to release jitter is the simultaneous

release, that leads to the worst case response time ofτi , of the critical frames of both

τi and all MF tasks whose priorities are higher thanτi ’s; where the simultaneous re-

lease takes its place rightmost in their release jitter interval whilst subsequent releases

of the frames that follow the critical frames take their place leftmost in their relative

release jitter intervals.

Definition 10 considers the simultaneous releases of the critical frames of bothτi

and higher priority MF tasks. So, we use the presentation of the simultaneous releases

as in the previous section; which is the cartesian productV̂i of L̂ j ; whereL̂ j is the

critical frame locations ofτ j ; j = 1, 2, .., i. Note thatV̂i takes into account the critical

frames of the analysed MF task; where their locations are presented byL̂i . So,V̂i is

a set of vectors, each vector represents a combination of thecritical frames of bothτi

and higher priority MF tasks.

Assuming Definition 10, we divide the response time analysisinto two steps. Firstly,

for each simultaneous release ofτi and higher priority MF tasks (i.e. ˜v∈ V̂i), we find

wi,ṽ that is the worst case busy period ofτi that is relative to ˜v ∈ V̂i . Secondly, we

129

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

maximise all found worst case busy periods over all combinationsṽ∈ V̂i .

To find wi,ṽ, we have to consider all busy periods that could include interference

from τi itself as well as higher priority MF tasks. So, assumingwi,ṽ(q) is theqth busy

period, ofτi , that is relative to6 ṽ, wi,ṽ(q) is found by firstly findingr i,ṽ(q). r i,ṽ(q) is the

response time ofq frames starting from the frame that is synchronised with thehigher

priority MF tasks. The following lemma introduces a formulafor finding r i,ṽ(q).

Lemma 5 Having a MF taskτi in a system that is subjected to release jitter and

arbitrary deadlines. ri,ṽ(q) is τi ’s response time, that is relative tõv which represents

a combination of the critical frames of bothτi and the higher priority MF tasks, of q

frames starting from the frame whose location isṽi . ri,ṽ(q) is found by the smallest

non-negative solution to Equation (6.14) assuming the priority ceiling protocols [66,

60].

r i,ṽ(q) = ξ ṽi
i (q)+Bi +

i−1

∑
j=1

ξ ṽ j
j (⌈

r i,ṽ(q)+Jj

Tj
⌉). (6.14)

whereξ ṽi
i (q) is introduced by Definition 1 and Bi is the maximum blocking time ofτi .

Proof

As we assume a simultaneous release of all higher priority MFtasks at the starting

time of r i,ṽ(q), we can representr i,ṽ(q) by a summation of the amount of execution of

τi and the amount of interference from higher priority MF tasks. Using Lemma 4, the

maximum interference withinr i,ṽ(q) from higher priority MF tasks and that is relative

to the combination ˜v is given by

i−1

∑
j=1

ξ ṽ j
j (⌈

r i,ṽ(q)+Jj

Tj
⌉).

Furthermore, the amount of execution ofτi for q frames starting from the frame whose

location is ˜vi is given byξ ṽi
i (q). In addition, asr i,ṽ(q) represents a continuous execu-

tion of a same priority MF task, the priority ceiling protocols [66, 60] would not allow

this MF task to be blocked for more than once at most during theexecution ofr i,ṽ(q).

So, we just need to add the maximum blocking time tor i,ṽ(q). Therefore,r i,ṽ(q) is

represented by the summation of the three terms as in Equation (6.14).�

6ṽ represents the simultaneous release of the critical framesof bothτi and higher priority MF tasks.

130

6.4 Combined Analysis of Release Jitter and Arbitrary Deadlines

Solving Equation (6.14) is done by forming a recurrence relationship as in Equation

(6.15).

r l+1
i,ṽ (q) = ξ ṽi

i (q)+Bi +
i−1

∑
j=1

ξ ṽ j
j (⌈

r l
i,ṽ(q)+Jj

Tj
⌉); (6.15)

wherel = 0, 1, 2, .. until r l+1
i,ṽ (q) = r l

i,ṽ(q). However, ifr l+1
i,ṽ (q) > (q−1)Ti +Di −Ji

thenτi is not schedulable.

Oncer i,ṽ(q) is calculated,wi,ṽ(q) is found by taking out the overlapping execution

that does not belong to the execution of theqth frame. The following theorem proves

a formula for findingwi,ṽ(q).

Theorem 9 Having a system of non-AM multiframe tasks, each taskτi has an arbi-

trary deadline Di and is subjected to release jitter Ji and a simultaneous release of the

critical frames ofτi and higher priority MF tasks that is presented by their locationsṽ.

The qth busy period ofτi that is relative toṽ (i.e. wi,ṽ(q)) is given by Equation (6.16).

wi,ṽ(q) = r i,ṽ(q); f or q = 1,

= r i,ṽ(q)− (q−1)Ti +Ji ; f or q > 1.

(6.16)

Proof

wi,ṽ(q) starts from when theqth frame (starting from the frame whose location is ˜vi)

of τi is released; and ends by when this frame has finished its execution. r i,ṽ(q) starts

from whenτi ’s frame whose location is ˜vi is released and ends by when theqth frame

of τi has finished its execution. So, whenq = 1, r i,ṽ(q) andwi,ṽ(q) start and end at the

same time sowi,ṽ(q) = r i,ṽ(q). However, whenq ≥ 1, r i,ṽ(q) andwi,ṽ(q) end at the

same time butr i,ṽ(q) starts earlier thanwi,ṽ(q) so the amount ofr i,ṽ(q) is greater than

wi,ṽ(q). To find wi,ṽ(q) we subtract the start time ofwi,ṽ(q) (i.e. ṽi +(q−1)Ti − Ji)

from the start time ofr i,ṽ(q) (i.e. ṽi) becausewi,ṽ(q) starts later thanr i,ṽ(q). In other

words,

r i,ṽ(q)−wi,ṽ(q) = ṽi +(q−1)Ti −Ji − ṽi .

Therefore,wi,ṽ(q) = r i,ṽ(q)− (q−1)Ti +Ji ; which is identical to Equation (6.16).�

Theorem 9 finds theqth busy period, ofτi , that is relative to ˜v. To find the worst

case busy period that is relative to ˜v we have to maximise the busy periods that are

131

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

relative toṽ over all values ofq as in the following Corollary.

Corollary 3 wi,ṽ is the worst busy period of a MF taskτi that is relative to the si-

multaneous release, of the critical frames, that is represented byṽ. wi,ṽ is given by

Equation (6.17).

wi,ṽ = max
q=1,2,..

{wi,ṽ(q)}; (6.17)

where q= 1,2, .. until wi,ṽ(q) ≤ Ti − Ji for q = 1 and wi,ṽ(q) ≤ Ti for q > 1. This is

becauseτi , in this case, stops interfering its execution when wi,ṽ(q) falls in the same

period it is released in.

Up to this point, for each ˜v we have identified the relative worst case busy period.

So, to find the worst case response time ofτi we have to maximise thesewi,ṽ over all

possible combinations ˜v as in the following Corollary.

Corollary 4 The worst case respons time of a MFτi , in a system that is subjected

to release jitter and arbitrary deadlines, is the maximum worst case busy period of

τi over all combinations of the critical releases of the higherpriority MF tasks. This

maximisation is presented by Equation (6.18).

Ri = max
ṽ∈V̂i

{wi,ṽ} (6.18)

Schedulability Test

We already know thatRi is found from whenτi is released whileDi is scheduled from

whenτi arrives in the system. So, the schedulability test is as the following: τi is

schedulable ifRi ≤ Di −Ji ; whereRi is found by applying Equation (6.18).

6.5 Example

To apply the analysis in this section, assume a simple example system that consists

of two tasks;τ1 with only one frame andτ2 with three frames. To simplify the ex-

ample we assume all blocking times are zero. To analyze the schedulability ofτ2 we

132

6.5 Example

task C T D J
τ1 3 5 5 1
τ2 (2,3,4) 10 20 2

Table 6.6: Example System

have to maximise all its worst case busy periods over all ˜v∈ V2 which represent the

combinations of the critical frames of bothτ2 and higher priority MF tasks.

First of all, using policy in Section 5.1, we find the criticalframe locations ofτ1 and

τ2 (i.e. L1 andL2 respectively). So,L1 = (0) andL2 = (1,2) and therefore,

V2 = {(0,1),(0,2)}.

Now, for each ˜v∈V2 we find all busy periods that could include interference from

τ2. In other words, we apply Theorem 9 to findw2,ṽ(q) for all q = 1, 2, .. until

w2,ṽ(q) ≤ T2− J2 for q = 1 or w2,ṽ(q) ≤ T2 for q > 1. So, forṽ = (0,1), we have to

find w2,(0,1)(q) which requires findingr2,(0,1)(q) by applying Equation (6.15) where

B2 = 0.

q = 1, r l+1
2,(0,1)

(1) = ξ 1
2 (1)+∑2−1

j=1 ξ ṽ j
j (⌈

r l
2,(0,1)(1)+Jj

Tj
⌉). To solve this equation,

l = 0, r1
2,(0,1)(1) = ξ 1

2 (1)+ξ 0
1 (⌈

r0
2,(0,1)(1)+J1

T1
⌉).

= 3+ξ 0
1 (⌈

3+1
5

⌉)

= 3+3 = 6.

l = 1, r2
2,(0,1)(1) = ξ 1

2 (1)+ξ 1
1 (⌈

r1
2(1)+J1

T1
⌉)

= 3+6 = 9.

l = 2, r3
2,(0,1)(1) = 3+6 = 9 = r2

2(1).

So,r2,(0,1)(1) = 9, thereforew2,(0,1)(1) = r2,(0,1)(1) = 9. w2,(0,1)(1) > T2−J2, so we

increaseq to 2 and apply Equations (6.15) and (6.16) fori = 2, q = 2 andr0
2,(0,1)(2) =

ξ 1
2 (2) = 7, so we get

133

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

r l+1
2,(0,1)(2) = ξ 1

2 (2)+ξ 0
1(⌈

r l
2,(0,1)(2)+J1

T1
⌉).

By solving this equation we get,r2,(0,1)(2) = 19, thereforew2,(0,1)(2) = r2(1)−T2+

J2 = 19− 10+ 2 = 11. w2,(0,1)(2) > T2, so we increaseq to 3 and again apply

Equations (6.15) and (6.16) to getr2,(0,1)(3) = 24, sow2,(0,1)(3) = 24−20+ 2 = 6.

w2,(0,1)(3)≤T2, so we stop increasingqand finding more busy periods that are relative

to ṽ = (0,1).

As all needed busy periods are identified, we now findw2,(0,1) by applying Corollary

3 (i.e. Equation (6.17)). Therefore,

w2,(0,1) = max{9,11,6} = 11.

Similarly, when ˜v = (0,2) we findw2,(0,2)(q) for q = 1,2, .. until w2,(0,2)(q) ≤ T2,

so we get the values in Table 6.7.

ṽ q r2,ṽ(q) w3,ṽ(q) w3,ṽ

(0,1) 1 9 9 > T2

2 19 11> T2
3 24 6 max{9,11,6} = 11

(0,2) 1 13 13> T3

2 18 10≤ T3 max{13,10} = 13

Table 6.7: Possible Busy Periods

Thus, the worst case response time ofτ2 is found by applying Equation (6.18)

R2 = max{11,13} = 13≤ D2−J2.

So,τ2 is schedulable.

134

6.6 Summary

6.6 Summary

This chapter has shown the flexibility of the response time scheduling analysis of non-

AM multiframe tasks by extending the analysis in two ways. One is to include MF

tasks that are subjected to release jitter, and the other is to include MF tasks whose

deadlines are arbitrary so interference from the analysed MF task has been taken into

account. Then, the two models have been combined and the exact response time

analysis has been presented for the new combined model.

135

136

7 Exact Analysis of Frame Specific

Deadlines

Up to this chapter, the response time analysis of MF tasks assumes that all frames of

the MF task have the same deadline, so analysing the maximum response of the critical

frames is enough to decide the schedulability of the MF task itself. In this chapter, we

generalise the system model to the situation that is called the frame specific deadline

model; where the MF task could have different deadlines relative to each of its frames.

So, each MF taskτi hasni deadlines(Dk
i); for eachk = 0, ..,ni −1. The model in this

chapter covers the arbitrary deadlines model but no blocking from lower priority tasks

is allowed to simplify the presentation.

The frame specific deadline model rises an issue of how to optimise the priority

assignment for the MF tasks in the system. This chapter suggests an optimal priority

assignment that can be used in this model.

This chapter is organised as the following: the next sectionpresents the worst case

response time analysis of the model assuming that all deadlines of each MF task are

less than their relative period, and that priorities have been allocated. Section 7.2

relaxes the restriction on the deadlines and presents the worst case response time anal-

ysis of the model assuming that all deadlines of each MF task are arbitrary, so inter-

ference from the analysed task itself has to be taken into account in the analysis. In

Section 7.3, the analysis is practically illustrated by a numeric example. Section 7.4

covers the priority assignment that is used for the frame specific deadlines model.

137

7 Exact Analysis of Frame Specific Deadlines

7.1 Exact Response Time Analysis of MF Task with no

Interference from the Analysed Task

In general, asτi hasni deadlines relative to its frames, to test the schedulability of

the MF taskτi we have to find the worst case response time for each of its frames,

Ri(Ck
i);k = 0..ni −1, and then checkRi(Ck

i) ≤ Dk
i for all values ofk. However, when

there is no interference from previous frames of the same task, there are some cases

where there is no need to check the schedulability of allni frames. One of these cases

is when the schedulability of thexth frame implies the schedulability of theyth frame,

so no need to explicitly check the schedulability of theyth frame. This argument leads

to a concept of coverage.

Definition 11 . Having two frames x and y of a MF taskτ, we say thatframe x

covers frame y if the schedulability of x implies the schedulability of y.

Applying Definition 11 reduces the number of frames that are needed for checking

the schedulability status of the MF task; where only uncovered frames are required

for testing the schedulability of the MF task. Within the following two subsections

we first introduce a criterion for identifying the covered frames, then we introduce

the response time analysis within the frame specific deadlines scenario assuming no

interference from the analysed task itself.

7.1.1 Identifying Covered frames

To investigate a criterion for identifying covered frames,we first introduce a sim-

ple example to illustrate how the schedulability of an uncovered frame leads to the

schedulability of the covered frame. Assume a MF taskτi with two frames one frame

has a worst-case execution time of 3 (i.e.C0
i = 3) and a deadline equals 10 (i.e.

D0
i = 10); and another frame withC1

i = 2 andD1
i = 12. Then, the schedulability of

the first frame leads to the schedulability of the second frame becauseC0
i > C1

i and

D0
i < D1

i . Informally, if 3 units of execution can be achieved in 10 units then, clearly,

2 units of execution are achievable in 12 units. Furthermore, if 3 units are executable

in 10 units then 2 units are guaranteed to be also executable in 9 units. The following

138

7.1 Exact Response Time Analysis of MF Task with no Interference from the Analysed Task

lemma introduces a schedulability criterion for a frame of aMF task depending on the

schedulability of another frame of the same MF task.

Lemma 6 For a MF taskτi whose execution times are Ck
i , deadlines are Dki ; k =

0, ..,ni −1, and Ri(Cx
i) is the worst case response time of an arbitrary frame whose

execution time is Cxi , then having Ri(Cx
i) ≤ Dx

i leads to Ri(Cx
i − p) ≤ Dx

i − p; where p

is an integer and Cxi ≥ p≥ 0.

Proof As we assumed no interference from same priority tasks, findingRi(Cx
i) is found

as a collection of two kinds of execution one is the executionof the xth frame ofτi

which is represented byCx
i , and the other is related to the interference on the execution

of Cx
i . In other words,

Ri(C
x
i) = Cx

i + I(Cx
i)

WhereI(Cx
i) stands for the interference on thexth execution ofτi. So, havingRi(Cx

i)≤

Dx
i means thatCx

i + I(Cx
i) ≤ Dx

i and therefore for any positive integerp that is less

thanCx
i then

Cx
i − p + I(Cx

i) ≤ Dx
i − p (7.1)

similarly, Ri(Cx
i − p) is found as

Ri(C
x
i − p) = Cx

i − p + I(Cx
i − p)

where,

Cx
i − p + I(Cx

i − p) ≤ Cx
i − p + I(Cx

i) (7.2)

because obviouslyI(Cx
i − p) ≤ I(Cx

i) for each simultaneous release of the frames

whose execution times areCx
i − p andCx

i with the higher priority MF tasks.

It is clear that the right side of inequality (7.2) is identical to the left side of inequal-

ity (7.1). Therefore, we can say that

Ri(C
x
i − p) ≤ Cx

i − p + I(Cx
i) ≤ Dx

i − p.

In other words,Ri(Cx
i − p) ≤ Dx

i − p.�

139

7 Exact Analysis of Frame Specific Deadlines

Having Lemma 6, the following theorem introduces a criterion for identifying cov-

ered frames of a MF task.

Theorem 10 For a MF taskτi whose execution times are Ck
i and deadlines are Dki ;

k = 0, ..,ni−1, the xth frame ofτi covers the yth frame if Cx
i ≥Cy

i and Dx
i ≤ Dy

i +(Cx
i −

Cy
i).

Proof: To prove the theorem, we assume thatxth frame is schedulable and then check

the schedulability of theyth frame. As thexth frame is schedulable then,Ri(Cx
i) ≤ Dx

i ;

whereRi(Cx
i) is the response time of thexth frame. Using Lemma 6, we find that

Ri(C
x
i) ≤ Dx

i ⇒ Ri(C
x
i − p) ≤ Dx

i − p where Cx
i ≥ p≥ 0.

Let p = (Cx
i −Cy

i), so,

Ri(C
x
i − (Cx

i −Cy
i)) ≤ Dx

i − (Cx
i −Cy

i)

Therefore,

Ri(C
y
i) ≤ Dx

i − (Cx
i −Cy

i) (7.3)

We already have

Dx
i ≤ Dy

i +(Cx
i −Cy

i) (7.4)

So, by substituting inequality (7.4) for inequality (7.3) we getRi(C
y
i) ≤ Dy

i +(Cx
i −

Cy
i)− (Cx

i −Cy
i). Hence,Ri(C

y
i) ≤ Dy

i .

Therefore, theyth frame is schedulable; which means that the schedulability of the

xth frame leads to the schedulability of theyth frame. So,xth frame coversyth frame.�

Using Theorem 10 in the scheduling analysis of the MF taskτi , whose frames have

specific deadlines, reduces the number of frames that are required for the scheduling

test ofτi . This is because of the efficiency of only analysing the uncovered frames for

the schedulability status. The following is the policy of analysing the response time

of the uncovered frames.

140

7.1 Exact Response Time Analysis of MF Task with no Interference from the Analysed Task

7.1.2 Response Time Analysis

To analyze the schedulability of a MF task with frame specificdeadlines, we just

need to analyze the worst case response time of its uncoveredframes. Once all its

uncovered frames are schedulable we say that the MF task is schedulable.

To analyze the response time of an uncovered frame of a MF task, we apply the

worst case response time analysis of non-AM multiframe tasks that is given in Section

5.2 substituting the execution time of the analysed uncovered frame for the execution

time of the peak frame. For more clarification, to analyze theresponse time of the

uncovered frame whose execution time isCx
i we first find the worst case response time

of this frame that is relative to the combination ˜v ∈ V̂i by applying Equation (7.5);

which is an application of Equation (5.5) withCmi
i = Cx

i .

Ri,ṽ(C
x
i) = Cx

i +
i−1

∑
j=1

ξ ṽ j
j (⌈

Ri,ṽ(Cx
i)

Tj
⌉); (7.5)

whereṽ represents the combination of the critical frames of MF tasks whose priorities

are higher thanτi .

Equation (7.5) can be solved by forming an iterative equation given by Equation

(7.6).

Rl+1
i,ṽ (Cx

i) = Cx
i +

i−1

∑
j=1

ξ ṽ j
j (⌈

Rl
i,ṽ(C

x
i)

Tj
⌉); (7.6)

R0
i,ṽ(C

x
i) =Cx

i andRi,ṽ(Cx
i) is found whenRl+1

i,ṽ (Cx
i) = Rl

i,ṽ(C
x
i). However, ifRl+1

i,ṽ (Cx
i) >

Dx
i then the frame whose execution time isCx

i is not schedulable and thereforeτi is not

schedulable.

To find the worst case response time of the frame whose execution time isCx
i , we

maximiseRi,ṽ(Cx
i) over all ṽ ∈ V̂i . In other words, we apply Equation (5.4) with the

sameV̂i that is defined in Section 5.1.

Example

Assume a simple system with two MF tasksτ1 with only one frame andτ2 with

4 different frames as in Table 7.1. To analyzeτ2’s response time we firstly have to

identify its covered frames. To identify the covered framesof τ2 we apply the criterion

of Theorem 10 onτ2’s frames starting with its peak frame.

141

7 Exact Analysis of Frame Specific Deadlines

task C D T Priority
τ1 3 6 10 high
τ2 (1,3,5,2) (8,10,8,5) 10 low

Table 7.1: Example System

Basically, the third frame ofτ2 (i.e. the frame whose execution time is 5) covers all

other frame ofτ2. That is because

5 > 1 and 8≤ 8+4, so the frame whose execution time is 5 covers the frame whose

execution time is 1.

5 > 3 and 8≤ 10+2, so the frame whose execution time is 5 covers the frame whose

execution time is 3.

5 > 2 and 8≤ 5+3, so the frame whose execution time is 5 covers the frame whose

execution time is 2.

Therefore, to check the schedulability status ofτ2 we just need to analyze the worst

case response time of the frame whose execution time is 5 and its location is 2. For

this reason, we first find̂V2 = {(0)} because we only have one higher priority task

with only one frame. Then we apply Equation (7.6) so we get.

Rl+1
2,(0)(C

2
2) = C2

2 +ξ 0
1 (⌈

Rl
2,(0)(C

2
2)

T1
⌉);

Solving this equation leads toR2,(0)(C
2
2) = 8, soR2(C2

2) = 8 ≤ D2
2 = 8. So, the

frame whose execution time is 5 is schedulable and thereforeτ2 is schedulable.

7.1.3 Improving the Efficiency of the Analysis

One way of improving the efficiency of response time analysisof the uncovered

frames, that are obtained by Theorem 10, is to reduce the number of iterations that

are used in the recurrence relations that solve the responsetime equations. An expedi-

tious way of solving the response time equation (i.e. Equation (7.6)) is to first analyze

the schedulability of the frame whose execution time is the minimum and once found

142

7.2 Exact Response Time Analysis of MF Tasks Having Deadlines Beyond the Period

schedulable we then solve the recurrence relation of the response time of the frame

whose execution time is immediately greater than the minimum and we start the solu-

tion with the response time of the frame whose execution timeis the minimum. For

example, if we are checking the schedulability status of three frames with the exe-

cution times and deadlines(2,3,8) and(10,15,30) respectively, the execution time

value of 2 is used as a starting point of the recurrence relation of the response time

equation. Once we get the worst case response time less than 10 (for example 8) then

we check the frame with the greater execution time (i.e. the second frame with the

execution time 3). The starting point of the recurrence relation of the response time

equation is now 8 instead of the 3 (i.e.R0
i,ṽ(3) = Ri,ṽ(2)), as the solution for the value

3 cannot be less than the solution of 2. Similarly, when the new response time is found

less than 15 (e.g. 12) then we check the third frame with the execution time 8 with

starting point of 12. In fact, this means that we do not re-runthe solution process for

each frame of the analysed MF task.

7.2 Exact Response Time Analysis of MF Tasks Having

Deadlines Beyond the Period

The analysis in the previous section was based on analysing the interference from

higher priority MF tasks and does not consider any interference from the analysed MF

task itself. However, this section covers the worst case response time analysis of MF

tasks whose deadlines are greater than their periods so interference from the analysed

task itself has to be taken into account.

The coverage concept that is introduced in the previous section is not applicable any

more when the MF task has arbitrary deadlines. This is because there could be two

frames of a MF taskτi whose execution times areCx
i andCy

i ; whereCx
i > Cy

i but the

interference fromτi within Cy
i is greater than the interference fromτi within Cx

i ; in the

sense that resultsRi(Cx
i) < Ri(C

y
i). Therefore the schedulability of the frame whose

execution time isCx
i does not necessarily lead to the schedulability of the framewhose

execution time isCy
i . Therefore, to analyze the schedulability of the MF taskτi we

have to analyze the worst case response time of all its frames.

143

7 Exact Analysis of Frame Specific Deadlines

To analyze the response time of a frame of a MF taskτi, we have to consider all

simultaneous releases of all frames ofτi with the higher priority MF tasks. This is

because the simultaneous release of the higher priority tasks leads to the worst case

preemption of a lower priority task. In addition, we analyzethe simultaneous release

of each frame ofτi and critical frames of higher priority MF tasks to analyze the

interference that could be generated by each frame ofτi within the analysed frame. To

clarify the policy of the analysis, assume we are analysing the frame whose location

is q in the MF taskτi , so we have to consider in the analysis all simultaneous releases

of all frames ofτi with the critical frames of higher priority MF tasks to checkif the

simultaneous release could leadτi to interfere with the frame whose location isq.

Assumef is the location of the frame ofτi that is released simultaneously with the

higher priority MF tasks, so values off are f = 0,1, ..,ni − 1. For the purpose of

the analysis, we recall the term busy period of a frame, that is the time from when

this frame is released until it finishes its execution. The worst case response time

of the frame whose location isq is the maximum busy period of this frame for all

simultaneous releases of all frames whose locations aref = 0,1, ..,ni − 1 with the

critical frames of the higher priority MF tasks. So, response time analysis also has

to consider all combinations of the critical frames of the higher priority MF tasks. In

other words, the worst case response time analysis has to consider all combinations

of f and critical frames of higher priority MF tasks. We present this combination as

ṽ∈ V̂i whereV̂i is given by

V̂i = L̂1 × L̂2 × .. × ˆLi−1;

whereL̂ j ; j = 1, 2, , .. , i −1 is the set of locations of the critical frames of the MF

taskτ j .

The following observation is pertinent to the situation when a frame ofτi could

interfere with another frame of the same MF task.

Observation 1 Having MF taskτi with ni frames that are indexed from0 to ni −1.

Whenτi is released with the frame whose location is f ,τi interferes with the frame

144

7.2 Exact Response Time Analysis of MF Tasks Having Deadlines Beyond the Period

whose location is q when the number of interference fromτi is:

q− f +1; when q≥ f ,

n− (f −q−1); when f> q.

(7.7)

Basically, Observation 1 measures, on one direction, the number of frames thatf has

to enter to reach the frame whose location isq taking into account its own frame and

theq frame. For example, whenn = 5, q = 0, and f = 2; the frame whose location is

f has to enter 4 frames to reach the frame whose location isq becausef has to pass

the frames whose locations are 2,3,4 and 0.

As the worst case response time of a frame is the longest busy period that this

frame can practice, we have to find a way that calculates the busy periods of this

frame. However, finding the busy period has to take into account the interference from

the MF task itself as well as the interference from higher priority MF tasks. Taking

Observation 1 into account, the following theorem proves a formula for finding the

busy period of the frame whose location isq of a MF taskτi . This busy period is

relative to the simultaneous release of the frame whose location is f of the MF taskτi

and the critical frames, whose locations are presented by ˜v∈ V̂i, of the higher priority

MF tasks.

Theorem 11 Having a system of MF tasks. wi,ṽ, f (C
q
i) is the busy period, of a frame

of a MF taskτi , with location q that is relative to the simultaneous release of the

frame whose location is f fromτi with the critical frames of the higher priority MF

tasks whose locations are presented byṽ. wi,ṽ, f (C
q
i) is given by Equation (7.8) .

wi,ṽ, f (C
q
i) = r i,ṽ, f (C

q
i)− (t−1)Ti; (7.8)

where

r i,ṽ, f (C
q
i) = ξ f

i (t)+
i−1

∑
j=1

ξ ṽ j
j (⌈

r i,ṽ, f (C
q
i)

Tj
⌉); (7.9)

145

7 Exact Analysis of Frame Specific Deadlines

and where t is given by

t = q− f +1; when q≥ f ,

t = n− (f −q−1); when f> q.

(7.10)

Proof

To prove the theorem, we will assume that the simultaneous release of the frame whose

location is f leads to continuous busy periods ofτi ’s frames until interfering the frame

whose location isq. So, according to Observation 1,τi is invoked fort number of

times (t is given by Equation (7.10)) starting from the frame whose location is f . So,

the amount of execution thatτi has to perform is given byξ f
i (t) and therefore, the time

that is consumed for achieving this amount of execution is presented byr i,ṽ, f (C
q
i) and

given by Equation (7.9).

The busy period of the frame whose location isq starts from when this frame is re-

leased until finishing its execution that is presented byCq
i . On the other hand,r i,ṽ, f (C

q
i)

starts from when the frame whose location isf is released until the frame whose lo-

cation isq finishes its execution. So, bothr i,ṽ, f (C
q
i) andwi,ṽ, f (C

q
i) have same end

and different starting point. So, as the busy period of a frame is the time from when

this frame is released until finishing its execution, the busy period of the frame whose

location isq is given by Equation (7.8).�

Equation (7.9) is solved by forming a recurrence relationship as in Equation (7.11)

r l+1
i,ṽ, f (C

q
i) = ξ f

i (t)+
i−1

∑
j=1

ξ ṽ j
j (⌈

r l
i,ṽ, f (C

q
i)

Tj
⌉) (7.11)

wherer0
i,ṽ, f (C

q
i) = ξ f

i (t), and l = 0,1,2, .. until r l+1
i,ṽ, f (C

q
i) = r l

i,ṽ, f (C
q
i). However, if

r l+1
i,ṽ, f (C

q
i)− (t−1)Ti > Dq

i , τi is not schedulable.

Note that if one of the busy periods ofτi extends beyond its deadlines, the frame

will miss its deadline and will not be schedulable and therefore the whole MF task

will not be schedulable. So, ifwi,ṽ, f (C
q
i) > Dq

i , thenτi is unschedulable.

Corollary 5 Having wi,ṽ(C
q
i) as the worst case busy period, of the frame whose lo-

146

7.3 Example

cation is q and that is relative to the combinations of the critical frames of the higher

priority MF tasks. wi,ṽ(C
q
i) is the maximum busy period over all simultaneous releases

of τi ’s frames. In other words,

wi,ṽ(C
q
i) = max

f=0,1,..,ni−1
{wi,ṽ, f (C

q
i)} (7.12)

Corollary 6 The worst case response time of a frame whose location is q is given by

Equation (7.13).

Ri(C
q
i) = max

ṽ∈V̂i

{wi,ṽ(C
q
i)} (7.13)

Scheduling Test

The schedulability test of a MF task in the frame specific deadline scenario is the

following: τi is schedulable ifRi(C
q
i) ≤ Dq

i ; ∀q = 0, 2, ..ni −1; whereRi(C
q
i) is

found by Equation (7.13).

7.3 Example

task C D T Priority
τ1 3 6 5 high
τ2 (5,2,1,3) (20,10,8,10) 10 low

Table 7.2: Example System

Assume a simple system with two MF tasks,τ1 with only one frame andτ2 with

4 different frames as in Table 7.2. To analyze the schedulability of τ2, we have to

analyze all simultaneous releases ofτ2 andτ1 and also we have to find̂V2 which is L̂1

because we only have two tasks.

L̂1 = {0}. So,V̂2 = {0}.

f belongs to the set of all frame locations ofτ2, so , f ∈ {0, 1, 2, 3}. Now, to analyze

147

7 Exact Analysis of Frame Specific Deadlines

the worst case response time of the frame whose location isq, we have to find its

maximum busy period over all simultaneous releases of the frames whose locations

are f ∈ {0, 1, 2, 3} and for each ˜v∈ V̂i . So, for eachf andq we first find the relative

t by applying Equation (7.10) so we get values in Table 7.3. Then for each ˜v∈Vi we

find the response time oft frames starting from the frame whose location isf and

ending by the frame whose location isq; which is presented byr i.ṽ, f (C
q
i) and found

by applying Equation (7.9). Therefore, the busy period of the frame whose location is

q, wi.ṽ, f (C
q
i), that is relative tof andṽ is found by applying equation (7.8).

f −→
q ↓ 0 1 2 3
0 1 4 3 2
1 2 1 4 3
2 3 2 1 4
3 4 3 2 1

Table 7.3: Values oft

f −→
q ↓ 0 1 2 3 R2(C

q
2)

0 14 -1 4 10 14
1 9 5 -1 -10 9
2 0 -1 4 -1 4
3 -1 -5 0 9 9

Table 7.4: Values ofw2,ṽ, f (C
q
2)

For example, to findw2,ṽ,0(C1
2) (i.e. f = 0 andq = 1) we first findt = 2. Then we

find r2,ṽ,0(C1
2) by applying Equation (7.9). ˜v= (0) asV̂2 has only one value that is(0).

So,

r2,(0),0(C
1
2) = ξ 0

2 (2)+
1

∑
j=1

ξ ṽ j
j (⌈

r2,ṽ,0(C1
i)

Tj
⌉).

By solving this equation we getξ 0
2 (2) = 7, r1

2,(0),0 = 7+6 = 13.

r2
2,(0),0(C

1
2) = 7+9 = 16.

r3
2,(0),0(C

1
2) = 7+12= 19.

r4
2,(0),0(C

1
2) = 7+12= 19= r3

2,(0),0(C
1
2).

So,r2,(0),0(C
1
2) = 19.

To find w2,(0),0(C
1
2) we apply Equation (7.8) to get

w2,(0),0(C
1
2) = r2,(0),0(C

1
2)−T2 = 19−10= 9

Similarly, we find allw2,(0), f (C
1
2) for all possible values off so we get the values

in the third line of Table 7.4. As there is only one value of ˜v = (0), there is only one

combination of the critical frames of the higher priority tasks. So,

w2, f (C1
2) = w2,0, f (C1

2). Therefore, to find the maximum busy period of the frame

148

7.4 Policy of Assigning Priorities to the MF Tasks

whose location is 1, we maximisew2, f (C1
2) over all values off . In other words,

R2(C1
2) = maxf∈{0,1,2,3}{w2, f (C1

2)} = 9 < D1
2.

Similarly,

w2, f (C
q
2) = w2,0, f (C

q
2); ∀q = 0,1,2,3 . So,

R2(C0
2) = maxf∈{0,1,2,3}{w2, f (C0

2)} = 14< D0
2.

R2(C2
2) = maxf∈{0,1,2,3}{w2, f (C2

2)} = 4 < D2
2.

R2(C3
2) = maxf∈{0,1,2,3}{w2, f (C3

2)} = 9 < D3
2.

As all R2(C
q
2) ≤ Dq

2 ∀q = 0,1,2,3, τ2 is schedulable.

Release jitter could also be added to this analysis following the approaches that is

given in Sections 4.3 and 6.4.

7.4 Policy of Assigning Priorities to the MF Tasks

All frames of a MF task have the same priority and also no blocking is allowed in the

model, so the response time of each frame ofτi is not dependent upon lower priority

tasks and also does not increase when it is assigned a higher priority nor decrease

when it is assigned a lower priority. In addition, the response time of each frame of

τi is also not dependent upon the relative priority ordering ofhigher priority MF tasks

because we check all combinations of the critical frames of bothτi and higher priority

MF tasks to check the schedulability ofτi . So, the optimal priority assignment that

is presented in [7, 5] and reviewed in Section 2.3.3 is applicable to our model; where

the priority assignment scheme depends on finding the MF taskthat is schedulable at

the lowest priority (i.e. priority ofN) then the schedulable MF task that is relative to

the priorityN−1, and so on until we get all priorities assigned to the MF tasks whilst

preserving schedulability. If we did not find a schedulable MF task at one level of the

priorities then the system is unschedulable for any priority assignment.

Example

To illustrate the policy of the priority assignment, Table 7.5 presents a simple example

of two MF tasksτA andτB; whereτA has only one frame andτB has three frames with

three deadlines. Clearly, DM priority assignment is not applicable to this example as

the deadline ofτA lies between the deadlines ofτB.

149

7 Exact Analysis of Frame Specific Deadlines

task C D T
τA 3 6 10
τB (1,3,4) (5,10,8) 5

Table 7.5: Example System

Furthermore, if we assignτA the lowest priority (i.e. 2), we find thatτA is un-

schedulable whenτB is released with the execution time of 3 or 4; whilstτA andτB are

schedulable whenτB is assigned priority 2. Figure 7.1 presents the timeline diagram

to illustrate the execution ofτA andτB when they are assigned different priorities. Fig-

ure 7.1 shows that in the worst case, the response times ofτB when it is assigned the

priority 2 are(6,7,4).

7.5 Summary

This chapter has presented exact worst case response time scheduling analysis for MF

tasks whose frames could have different deadlines (i.e. frame specific deadlines). The

analysis is presented in two steps regarding to the state of the MF’s deadlines.

In the first step we restrict the deadlines to be less than or equal to the relative period,

so no interference from the analysed task is considered. In this state, we introduced a

coverage concept to reduce the number of frames, of the analysed task, that are needed

for checking the schedulability status of the analysed MF task. This chapter has shown

that we sufficiently need to analyze the uncovered frames of the analysed MF task to

check its schedulability status. Further to the presentation of the basic response time

analysis of frame specific deadlines, we have introduced a way to reduce the number

of iterations used in finding the response time of a frame of a MF task.

In the second step we have relaxed the restriction of having deadlines less than the

relative period and presented exact response time analysis. The coverage criterion

that was presented in the first step is not applicable to MF tasks whose deadlines

are arbitrary. Although the coverage criterion could be improved to cope with the

arbitrary deadlines, we analysed all frames for checking the schedulability status of

the analysed MF task.

150

7.5 Summary

miss deadline meet deadline

release

3 4

2

10
τA

τB

(execution o fτA andτB whenτA’s priority is the lowest)

release

meet deadlineexecution with third release

execution with first release

3 3 3

3 4 1 3

execution with second release

14

τA

τB

(execution ofτA andτB whenτB’s priority is the lowest)

Figure 7.1: Timeline Figure ofτA andτB’s execution

Finally, in this chapter we have considered a priority assignment for frame specific

deadlines model. We have shown that the priority assignmentthat was presented by

151

7 Exact Analysis of Frame Specific Deadlines

Audsley [7, 5] is applicable to this model and we have explained the procedure of its

application by a simple numeric example.

152

8 Approaches for Sufficient

Scheduling Tests

Exact response time scheduling analysis becomes exhaustively intractable when the

systems are respectively large. However, sufficient tractable approaches solve this

problem; where a real-time system is exactly schedulable ifit is schedulable using a

specific approach. This chapter introduces and compares four sufficient approaches

with the usage of the given response time analysis in this thesis. These approaches are

called the maximum, the reordering, the complementary and the max accumulations

approaches. The first three approaches depend on transforming all multiframe tasks

in the system into AM tasks that have one critical frame, and then applying the exact

response time formula on the transformed system. The fourthapproach depends on

pre-calculation of an upper bound interference from higherpriority MF tasks within

the deadline of the analysed task.

Comparisons between the approaches are done in two steps: inthe first step we

compare the results of the approaches with the exact resultshaving small systems with

5 or 10 MF tasks; where the exact analysis is tractable. In thesecond step, we evalu-

ate the comparison between the approaches, for big systems with 20,40,80, and 100

tasks, without taking the exact results into account so the comparison is done accord-

ing to the approach that provides the best results.

The contents of this chapter is presented as the following: the first section introduces

the maximum approach and proves the safety of this approach.Similarly, second,

third and fourth sections cover the reordering, complementary and max accumulations

approaches. In Section 8.5, we discuss the covering order ofthe approaches in the

context of scheduling sufficiency. Section 8.6 compares, byevaluations, all mentioned

153

8 Approaches for Sufficient Scheduling Tests

approaches. Summary of the chapter is given in the last section.

8.1 Maximum Approach

The major principle of the intractability problem of analysing the response times of

non-AM multiframe tasks for big systems is the problem of analysing all simultane-

ous releases of all frames of the MF tasks. So, the first way to think of solving this

intractability problem is to substitute the execution times of each multiframe task by

its maximum execution time and then apply the basic originalresponse time schedul-

ing analysis1 on the substituted tasks. We call the substituted task in this modelthe

maximum approximation; where its period and deadline are identical to those of the

original MF tasks while its execution time is constant and equals the maximum exe-

cution time of the original MF task. In other words, given a multiframe taskτ j having

n j frames with execution times (i.e.Ck
j ;k = 0..n j −1); themaximum approximation

of τ j is: a taskτ̂ j that results by substitutingτ j ’s peak frame for all frames ofτ j . So,

τ̂ j ’s deadline and period are respectivelyD̂ j = D j andT̂j = Tj but the execution time,

Ĉj , is constant for all its jobs and equals to the maximum execution time of τ j (i.e.

Ĉj = C
mj
j)2. For example, the maximum approximation of the MF taskτ j whose ex-

ecution times, deadline, and period are< (3,7,4),10,15> is the taskτ̂ j whose just

mentioned attributes are< 7,10,15>.

In the maximum approach, we transform all multiframe tasks in the system to their

relative maximum approximations and then check the schedulability of the trans-

formed system using basic response time test [40]. To be moreaccurate, checking

the schedulability of a multiframe task relies on testing the schedulability of its peak

frame assuming the maximum approximations for all higher priority MF tasks. The

test assumes that having schedulable transformed system means that the original sys-

tem is schedulable.

To consider the scheduling test using maximum approach as a sufficient scheduling

test for a MF task, this approach has to be safe. The followingtheorem proves the

1We mean by the basic original response time scheduling analysis the response time analysis of the
tasks whose execution times are constant for all of their jobs.

2Note thatC
mj
j is the execution time ofτ j ’s peak frame.

154

8.1 Maximum Approach

safety of the maximum approach.

Theorem 12 Given a system S with N multiframe tasks, S= {τi ; i = 1 .. N}. A

multiframe taskτi is definitely schedulable if its peak frame is schedulable using the

maximum approach.

Proof

The execution time of the maximum approximation is always greater than or equal

to the execution times of the original MF task. In other words, Ĉj ≥ Cl
j ; ∀l =

0, ..,n j −1. So, the cumulative functions of the maximum approximation is always

greater than or equal to the cumulative functions of the original MF task for the same

number of invocations and regardless of the releasing frameof the original MF task.

Symbolically,
ˆξ j(k) ≥ ξ l

j (k) ;∀k = 1, ..,n j ,∀l = 0, ..,n j −1.

Therefore, the amount of interference the maximum approximation provides within

lower priority task is always greater than or equal to the amount of interference the

original MF task provides within this lower priority task; for each number of invoca-

tions (i.e. interference). So, the response time of the multiframe taskτi under maxi-

mum approach is greater than or equals to the exact worst caseresponse time of the

original MF task (i.e.R̂i ≥ Ri). Thus, havingτi as a schedulable task under maximum

approach means that it is exactly (i.e. definitely) schedulable.�

The following example illustrates the procedure of analysing a MF task using the

maximum approach.

Example

Table 8.1 represents a simple numeric example system consisting of two MF tasks. To

analyze the schedulability ofτ2 we will consider the maximum approximation ofτ1.

Table 8.2 represents the attributes of the merged system using maximum approxima-

tions for the MF tasks whose priorities are higher thanτ2(i.e. τ1)).

The response time ofτ2 using maximum approach is found by applying Equation

(2.9) on the attributes in Table 8.2 which leads the responsetime being 17< D2. As

τ2’s response time under maximum approach meets the deadline,τ2 is schedulable.

155

8 Approaches for Sufficient Scheduling Tests

task C T = D
τ1 (1,6,1,1,2) 10
τ2 (1,2,5) 20

Table 8.1: Original Example
System

task C T
τ̂1 (6) 10
τ2 (1,2,5) 20

Table 8.2: Transformed System

The exact response time ofτ2 according to the exact analysis given in Chapter 5 is

12. So, althoughτ2’s response according to the maximum approach is safe and easy

to apply, it evaluates a very pessimistic response time. Pessimism of the maximum

approach comes from the fact that the execution times of the maximum approximation

could be hugely deviated from the real execution times of theoriginal MF tasks. For

example, the execution times ofτ̂1 in Table 8.2 has the deviations(5,0,5,5,4) from

each execution time of the original MF taskτ1. So the amount of interference thatτ̂1

generates when̂τ1 provides four interference would be 24 while in reality the amount

of interference thatτ1 generates for four interference is only 10 in the worst case,so

there is a deviation of 14 from the real amount of interference. To reduce the deviation

of the approximation from the real values of the execution times we introduce another

schedulability test called theReordering approach. The advantage of the maximum

approach is however its ease of application.

8.2 Re-ordering Approach

Another way of solving the intractability problem of analysing response times of MF

tasks is to safely transform the non-AM multiframe tasks into AM multiframe tasks

that generate the same or greater amount of interference within lower priority tasks.

One way of performing this transformation is to transform the MF taskτ j into its

re-ordering approximationτ̃ j with a deadline and a period identical toτ j ’s while its

execution time sequence is a descended sequence of the execution times ofτ j ; so the

reordering approximation satisfies the AM restriction and therefore it has only one

critical frame. For example, the execution time sequence ofthe re-ordering approxi-

mation ofτ j whose execution times are(1,6,1,1,2) is (6,2,1,1,1).

156

8.2 Re-ordering Approach

In the reordering approach, we transform all multiframe tasks in the system to their

relative re-ordering approximations and then check the schedulability of the trans-

formed system using the response time formula of the AM multiframe tasks (i.e.

Equation (3.2)). To be more accurate, checking the schedulability of a MF task relies

on testing the schedulability of its peak frame assuming thereordering approximations

for all higher priority MF tasks. The test shows that having aschedulable transformed

system means that the original system is schedulable.

As mentioned earlier, the schedulability test using reordering approach must be def-

initely safe to be considered, the following theorem provesthe safety of the reordering

approach.

Theorem 13 Given a system S with N MF tasks, S= {τ j ; j = 1 .. N}. Each multi-

frame taskτ j has nj execution times. A lower priority multiframe taskτi is definitely

schedulable if it is schedulable assuming the re-ordering approximations for all mul-

tiframe tasks whose priorities are higher thanτi ’s.

Proof

For any arbitrary order of an execution time sequence of a multiframe taskτ j ; the

descending order of that sequence provides, for any number of invocations ofτ j , the

maximum amount of interference on lower priority tasks. So,for any number of

invocations ofτ j , the peak frame in the re-ordering approximation that is relative toτ j

generates amount of interference greater than or equal to the amount that the original

τ j generates. Therefore, the response time of a lower prioritytaskτi under reordering

approach is always greater than or equals to the exact worst case response time of

τi due to the bigger amount of interference the reordering approximations of higher

priority tasks provide. As a result, schedulability ofτi using re-ordering approach

means that its response time meets its deadline, therefore its exact response time is

within its deadline and hence,τi is schedulable.�

The following example illustrates the procedure of analysing the response time of

MF tasks using re-ordering approach.

157

8 Approaches for Sufficient Scheduling Tests

Example

Table 8.3 represents the re-ordering approximation of the MF taskτ1 that is given in

Table 8.1. To analyze the schedulability ofτ2, we will consider this approximation

of the only MF task whose priority is higher thanτ2, then apply Equation (3.2) to

the attributes in Table 8.3. So, the response time ofτ2 according to the re-ordering

task C T
τ̃1 (6,2,1,1,1) 10
τ2 (1,2,5) 20

Table 8.3: Transformed System Using Re-ordering Approach

approach is 13 which is much closer to the exact response timeof τ2 than when using

the maximum approach as explained in the previous section.

However, although re-ordering approach evaluates better response than the maxi-

mum approach, there are some situations in which the re-ordering approach evaluates

a pessimistic response of the original MF task. For example,the execution time se-

quence of the reordering approximation, that is relative tothe multiframe task whose

execution times are(1,10,1,1,1,8,4,1), is (10,8,4,1,1,1,1,1). So, the amount of in-

terference that the reordering approximation provides fortwo invocations is 18 while

in reality the maximum amount of interference the original relative multiframe task

provides for just two invocations is just 12. To think positively towards optimising the

approach so it gives response time value closer to the exact one, we introduce another

schedulability test called theComplementary approach.

8.3 Complementary Approach

The complementary approach is another way of solving the intractability problem of

response time analysis of non-AM multiframe tasks by transforming the tasks into

AM multiframe tasks. In this approach, we apply Mok and Chen [57]’s way of mod-

elling a MF task to what we call thecomplementary approximation. All attributes of

the complementary approximation are identical to the original MF task apart from the

execution time values where they are derived from the original execution times as the

158

8.3 Complementary Approach

subtraction between each two consecutive maximums of interference that the original

multiframe task provides. Symbolically, given a multiframe taskτ j havingn j execu-

tion times (i.e.Cl
j ; l = 0..n j −1); its complementary approximationis the multiframe

taskτ j whose execution timesCk
j ;k = 0..n j −1 are derived from the execution times

of τ j according to the Formula (8.1).

Ck
j = max

l=0..n j−1
{ξ l

j (k+1)}− max
l=0..n j−1

{ξ l
j (k)}; where; k = 0..n j −1 (8.1)

The following example illustrates Formula (8.1), assume a multiframe taskτ j with

the execution times(1,10,1,1,1,3,3,1), τ j could provide the sequence of maximum

amounts of interference, regarding to the number of its invocations, as following

(10,11,12,15,18,19,20,21). So, the execution times of the complementary approxi-

mation,Cj , is found by subtracting each two consecutive values in the former sequence

assuming that maxl=0..n j−1{ξ l
j (k)}= 0 whenk= 0, and thereforeCj =(10,1,1,3,3,1,

1,1). Note thatCj has only one critical frame that is the first frame whose execution

time is 10 while the original multiframe task has three critical frames which are the

one that is at position 1 where the execution time is 10, the one that is at position 5

where the execution time is 3 and the one that is at position 6 where the execution

time is again 3. To explain more, the complementary approximation satisfies the AM

restriction [57] so that is why it has only one critical frame.

The main idea of the complementary approach for testing the schedulability of

a multiframe taskτi is to check the schedulability of its peak frame assuming the

complementary approximations for all higher priority multiframe tasks. So, ifτi is

schedulable under complementary approach thenτi is definitely schedulable; while

unschedulability ofτi under complementary approach does not mean thatτi is not

schedulable. However, to make certain that this approach isapplicable to the schedul-

ing tests so what we can argue it is safe, we have to prove the safety of this test.

Although [57] proved the safety of the transformation to thecomplementary approx-

imations, the following theorem proves the safety of the complementary approach

within the response time scheduling context.

Theorem 14 Given a system S with N multiframe tasks, S= {τ j ; j = 1 .. N}, each

159

8 Approaches for Sufficient Scheduling Tests

multiframe taskτ j has nj execution times. A lower priority multiframe taskτi is defi-

nitely schedulable if it is schedulable under the complementary approach.

Proof

To start with, we investigate the amount of interference that the complementary ap-

proximationτ j generates, within the execution of the lower priority tasks, for f num-

ber of its invocations, then we find out what this amount is equivalent to. The execu-

tion times ofτ j are given by Equation (8.1), so the amount of interferenceτ j generates

is given by the following function:

f−1

∑
k=0

(max
l=0..n j−1

{ξ l
j (k+1)}− max

l=0..n j−1
{ξ l

j (k)})

which is equal to

maxl {ξ l
j (1)}

+ maxl {ξ l
j (2)} − maxl {ξ l

j (1)}

+ maxl {ξ l
j (3)} − maxl {ξ l

j (2)}

+ .

+ .

+ maxl {ξ l
j (f)} − maxl {ξ l

j (f −1)}

= maxl {ξ l
j (f)}

which is identical to the maximum amount of interference that τ j generates for the

same number of invocationsf ; which is given by the following cumulative function:

max
l=0..n j−1

{ξ l
j (f)}.

So,∀ f = 1..n j −1, the maximum amount of interference thatτ j generates is always

equal to the maximum amount of interference thatτ j generates within the lower pri-

ority multiframe tasks. Therefore, consideringτ j for all MF tasks whose priorities are

higher thanτ j doesn’t affect the schedulability ofτ j since the amount of interference

from the higher priority tasks withinτ j is the same in both cases.�

Example

The following example explains the procedure of analysing the schedulability of a MF

160

8.4 Max Accumulations Approach

task using complementary approach. To analyze the schedulability of τ2 in the system

in Table 8.4, we will consider the complementary approximation of τ1, then apply

Equation (3.2) to the attributes in Table 8.5. So, the response time ofτ2 assuming

task C T = D
τ1 (1,10,1,1,1,8,4,1) 15
τ2 (1,2,6) 20

Table 8.4: Example System

task C T = D
τ1 (10,2,1,1,10,1,1,1) 15
τ2 (1,2,6) 20

Table 8.5: Transformed System
Using Complementary
Approach

the complementary approximation ofτ1 is 18≤ D2. As the response time meetsτ2’s

deadlineτ2 is definitely schedulable. Note that the exact response timeof τ2 is 17;

which is less than estimated by the complementary approach.

As a matter of fact, the complementary approach is an equivalent approach to the

one that was presented by Baruah et.al [13] in 1999. The difference between the two

approaches is the way that each of them is presented.

8.4 Max Accumulations Approach

The previous three approaches (i.e. Maximum, Reordering, and Complementary ap-

proaches) were based on solving the intractability problemof response time schedul-

ing of non-AM multiframe tasks by using transformation waysof converting the non-

AM multiframe tasks into AM tasks. However, as we are only considering suffi-

cient scheduling tests, here we consider an alternative means of constructing sufficient

scheduling test.

This section introduces a straightforward approach that does not analyze any re-

sponse times and does not need any transformation. The main idea of the presented

approach is to pre-calculate the worst case expected interference within the deadline

of the analysed multiframe task and then add this interference to its maximum exe-

cution time. If the calculated amount is less than or equal tothe deadline then the

161

8 Approaches for Sufficient Scheduling Tests

analysed task is schedulable. We call this way of testing theschedulability theMax

Accumulations Approach.

Max accumulations approach is a simple way of testing the schedulability of MF

tasks using off line calculations of the expected amount of interference within the

deadline of the analysed task. We assume two aspects of this approach, the first aspect

is the synchronous release of the analysed task and higher priority MF tasks. The

second aspect is that, for the schedulable MF task, all MF tasks whose priorities are

higher than the analysed MF task that are released within thedeadline of the analysed

task have finished their execution, within this deadline, with the maximum amount of

interference they can provide.

To explain the procedure of the approach, we give the analysed MF task a virtual

busy period; which is the execution time of its peak frame plus all interference from

higher priority MF tasks within its deadline. So, the schedulability test is the follow-

ing: τi is schedulable if its virtual busy period that is calculatedby Equation (8.2) is

less than or equal to its deadline.

Cmi
i +

i−1

∑
j=1

max
l=0,..n j−1

{ξ l
j (⌈

Di

Tj
⌉)}. (8.2)

Similar to the previous three approaches, the scheduling approach has to be safe

to be accepted. The following theorem proves the safety of the max accumulations

approach.

Theorem 15 If a MF task is schedulable using max accumulations approach, it is

definitely schedulable.

Proof

Trivial, as the interference from higher priority MF tasks using max accumulations

approach is greater than or equal to the exact interference from higher priority MF

tasks. So, the virtual busy period of the analysed task is greater than or equal to

its exact response time. Therefore, if the virtual busy period of the analysed task is

less than or equal to its deadline, its exact response time isless than or equal to its

deadline.�

162

8.4 Max Accumulations Approach

For more clarifications, Algorithm 5 presents the pseudocode of calculating the

virtual busy period that is given by Equation (8.2).Max Cum in this algorithm is a

non-square matrix and hasN raws and maximum number of columns equalsn; where

n = maxj=1, .., N {n j}. The valueMax Cum(j,k) represents the maximum cumulative

function of the MF taskτ j for k number of its invocations. In other words,

Max Cum(j,k) = max
l=0,..n j−1

{ξ l
j (k)}. (8.3)

The benefit ofMax Cum is to determine the term maxl=0,..n j−1{ξ l
j (⌈

Di
Tj
⌉)} in Equa-

tion (8.2). However, Algorithm 5 is followed by a numeric example to illustrate the

procedure of the max accumulations approach.

Algorithm 5 Finding Virtual Busy Period

Inputs: N: Number of Tasks, TaskLevel, ExecutionTimes sequences .
Outputs: V Busy Period: Estimated amount of execution withinDi .

Max Cum(j,k)⇐ matrix of maxl=0,..n j−1{ξ l
j (k)}; j = 1, .., N andk = 1, .., n j

V BusyPeriod⇐ 0
for j = 1 to TaskLeveldo

V BusyPeriod⇐V BusyPeriod+Max Cum(j,⌈Di
Tj
⌉)

end for

Example

Assume the system that was previously given by Table 8.4 in the previous section. To

test the schedulability ofτ2 we first findMax Cumthat is given by Algorithm 5; for

j = 1,2, k = 1, ..n j . Max Cumis found by applying Equation (8.3), so we get:

Max Cum=

(

10 12 13 14 24 25 26 27

6 8 9

)

.

Therfore, the virtual busy period ofτ2 (i.e. V BusyPeriod in Algorithm 5) is found

163

8 Approaches for Sufficient Scheduling Tests

by applying Equation (8.2). In other words,

V BusyPeriod(2) = C2
2 +Max Cum(1,⌈

D2

T1
⌉)

= 6+Max Cum(1,⌈
20
15

⌉)

= 6+12

= 18.

As V BusyPeriod(2) = 18≤ D2 we say thatτ2 is schedulable.

8.5 Coverage of the Sufficient Approaches

Up to this point, we have covered four sufficient scheduling approaches but what we

do not know about is the schedulability coverage of each of them. In other words, what

is the order of the approaches in which if a task is schedulable using one approach it is

definitely schedulable using followed approaches. In this section, we discuss the cov-

erage order of the approaches depending on the amount of interference, from higher

priority tasks, each approach estimates as the difference between the approaches is

the estimation of this interference. As the first three approaches (i.e. the maximum,

the reordering and the complementary approaches) use the same manner of using re-

sponse time analysis but different ways of transforming MF tasks into AM multiframe

tasks, we discuss the coverage order of these approaches andleave the coverage order

of the max accumulations approach to be determined by the experiments.

As a matter of fact, the estimated interference from higher priority MF tasks under

maximum approach is greater than or equal to the estimated interference from higher

priority MF tasks under any of the other approaches. This is because in the maximum

approach, the execution times of the higher priority MF tasks are estimated by their

maximum execution times. So, if a task is schedulable under the maximum approach,

it is definitely schedulable under any of the reordering or complementary approaches.

In this sense, we say that the schedulability of a MF task using maximum approach is

sufficient to determine the schedulability of this MF task using any of the other two

approaches. Therefore, the maximum approach covers the other two approaches.

164

8.5 Coverage of the Sufficient Approaches

To determine the second approach after the maximum approachaccording to the

coverage criterion, we compare the estimated interferencefrom higher priority tasks

under each of the reordering and complementary approaches.We already know that

the descending order of a sequence of integers always provides equal or greater sum-

mation of any consecutive numbers than any other order of theoriginal sequence. On

the other hand, the reordering approximation transform theexecution time sequence

of the original MF task into a descent sequence. So, the cumulative functions of the

reordering approximation ˜ξ l
j (k) are greater than or equal to the cumulative functions

of the original MF taskξ l
j (k). In other words,

˜ξ l
j (k) ≥ ξ l

j (k); ∀l = 0,1, ..,n j −1, ∀k = 1,2, ...

So,
˜ξ l

j (k) ≥ max
l=0,1,..,n j−1

ξ l
j (k); ∀k = 1,2, ... (8.4)

The right side of Equation (8.4) represents the estimation amount of interference

from the complementary approximationτ j for k number of its invocations. So, the

amount of interference from higher priority MF tasks under reordering approach is

greater than or equal to the amount of interference from higher priority MF tasks

under complementary approach. Therefore, if a task is schedulable using reordering

approach, it is definitely schedulable under the complementary one. In this sense we

say that the reordering approach covers the complementary approach.

As a result of the previous discussion, the coverage order ofthe approaches starts

with the maximum approach followed by the reordering approach followed by the

complementary approach. In addition, the ease of applying the tests goes in the same

direction where the easiest is the maximum then the reordering then the complemen-

tary. One aim of the experiments is to determine if it is worthwhile to apply the more

complicated tests.

165

8 Approaches for Sufficient Scheduling Tests

8.6 Comparison Between Sufficient Scheduling

Approaches

In this section, we compare by evaluation the previous mentioned approaches to con-

sider the trade off between the ease of use against accuracy.In the comparison, we

look at the scheduling performance each approach provides.Evaluations are done by

generating random real-time systems.

The comparison is done, in summary, in two ways; one for smallsystems where

the exact test is possible and another for large systems where the exact test is not

possible. The system is considered as large (or big) when theexperiments took more

than one day to process the exact analysis of the system, using the departmental PC.

This is because the exact analysis of a MF task must maximise its busy periods over

all combinations of the critical frames of all higher priority MF tasks. So, the function

of the worst case response time of a MF task is a polynomial function so the exact

response time analysis is NP-hard. Hence, the analysis is intractable.

In the first set of experiments we find the percentage of the schedulable systems,

for each approach, out of the exactly schedulable systems. The second way is based

on finding the number of schedulable systems under each approach out of 10000 ran-

domly generated systems. The following sections show the scope and algorithm of the

experiments (i.e. choosing parameters and how each of the experiments is run) whilst

the last section presents the results of the experiments.

8.6.1 Experimental Setup

Experiments in this chapter require the generation of real-time systems to check their

schedulability under each approach and then compare them. The generation of a real-

time system, in its turn, means the generation of the size of the system as well as the

generation of the multiframe tasks that form the system. From the system size point

of view, the exact experiments (i.e. experiments that take the exact test into account)

are done for systems with 5 and 10 multiframe tasks because once the size of the

system becomes greater than 10 multiframe tasks, the time ofrunning the experiments

166

8.6 Comparison Between Sufficient Scheduling Approaches

becomes too long. On the other hand, the non-exact experiments are done for systems

with 5,10,20,40,80,100 multiframe tasks.

From the multiframe task’s generation point of view, we require generating four

parameters for each multiframe task,τi , (i.e. ni, Ti , Di , Ci ; which are respectively:

number of frames, Period, Deadline, and the execution time sequence). These four

parameters of the MF task are generated similarly to what is done in Chapter 3 and

5 as the following. The number of frames of the multiframe task is assumed as fixed

for all multiframe tasks in the system and it is chosen, for each experiment, as a prime

number in the range[3,29]. Choosing prime numbers for the number of frames is

to follow similar scenario to what was introduced before in Chapters 3 and 5 so all

parts of the thesis can be coherent and therefore, the results of the chapters can be

compared to each other. Second and third parameters that arethe period and deadline

of the multiframe task are assumed to be identical to each other and are randomly

generated in the range of[1,2500] using uniform distribution. Once the deadlines are

assigned to each task, the priorities of the tasks are also assigned according to DM

assignment; where the lower deadline the task has, the higher priority it is assigned

[51].

The sequence of the execution times, which is the fourth parameter, is generated

similarly to Chapter 3. Algorithm 2 illustrates the procedure of this generation; which

uses UUnifast algorithm [20] that is illustrated by Algorithm 1. Further details can be

found in Chapter 3.

8.6.2 Scope of Running the Experiments

We run the experiment 10000 times for each chosen parameterson five steps as follow-

ing. Firstly, we generate the multiframe tasks by generating the parameters of the ex-

periment (i.e. number of frames, periods, deadlines, and execution time sequence) as

previously explained. Secondly, from the execution times,we find the critical frames

of the generated multiframe tasks. Thirdly, we calculate the exact worst case response

time of each task taking into account all critical frames of the higher priority multi-

frame tasks and then check if it is within its deadline. In other words, we check the

schedulability of the system by checking the schedulability of all multiframe tasks

167

8 Approaches for Sufficient Scheduling Tests

in this system. Fourthly, for the same parameters of the system we find the relative

approximations of each approach and check the schedulability of the approximations.

Lastly, for each approach and for small systems, we find the percentage of the schedu-

lable systems out of the ones that are exactly schedulable; whilst for big systems we

find the number of schedulable systems out of the 10000 generated systems.

For the small systems where the exact schedulability test ispossible, we investigate

all values of the utilisations within(0.2,0.3,0.4,0.5,0.6)but we did not investigate the

values that are less than 0.2 or greater than 0.6. That is because, for the most assumed

number of frames, the number of the exact schedulable systems is very high and close

to 100% when the overall utilisation of the system is below 0.2 as well as the number

of the exact schedulable systems becomes very low and close to zero when the overall

utilisation of the system goes beyond 0.6.

For the big systems where the exact schedulability test is not possible, we investi-

gate the values of the utilisations that is in[0.3,0.5] = (0.3,0.4,0.5). That is because

the range ofU within [0.3,0.5] represents a converted range for most behaviours of

the number of exactly schedulable systems; where the numberof schedulable systems

decreases within this range from around 100% to around only 10% (see Chapter 3

Figure 3.2) which gives importance to investigate the percentage of the improvement

each approach gives.

8.6.3 Results of the Experiments

This section discusses the results of the experiments in twogroups: the first group that

is presented by Figures 8.1 - 8.6 considers the systems with 5or 10 MF tasks where

the systems are small enough to exactly test their schedulability. The second group

that is presented by Figures 8.7 - 8.15 does not take the exactanalysis into account as

the systems are too big to exactly test their schedulability.

Figures 8.1 - 8.6 present the percentage of the number of schedulable systems for

each of the four approaches (i.e. maximum, reordering, complementary, max accu-

mulations approaches) out of the systems that are exactly schedulable. For more clar-

ification for the results, those figures include the exact line which is the one hundred

168

8.6 Comparison Between Sufficient Scheduling Approaches

percent of the exact schedulable systems. Results show thatfor small systems the

closest approach to the exact one is the complementary one with different scheduling

performance for all chosen parameters of the experiments; while the worst approach

is always the maximum one, even when the overall utilisationof the system is very

low 0.2 where the results of the approaches are so close to each other as in the last

graph in Figure 8.1; where the systems have 10 MF tasks. Another example in Figure

8.1 is the first graph where it shows that, for systems with 5 MFtasks and number

of frames is less than 19, more than 95% of the exactly schedulable systems are also

schedulable by the four approaches; whilst this percentagedecreases to about 91%

using the maximum approaches when the number of frames increases to 23 frames.

So, the complementary approach gives between 5% and 9% better performance than

the maximum approach when the number of frames is between 19 and 23.

In addition, Figures 8.2, 8.3 and 8.4 show that when the systems have only 5 MF

tasks the performance of the complementary approach becomes even better than the

other approaches. For example, Figure 8.2 shows that when the overall utilisation of

the system is 0.3 the complementary results is very close to the exact results. Also,

this figure shows that when the overall utilisation of the system is 0.3 the complemen-

tary approach gives more than 95% schedulable systems for all chosen parameters;

where its performance reduces from about 100% to 95% when thenumber of frames

increases from 7 to 23; while at the same time the performanceof the max accumu-

lations approach, reordering approach, maximum approach reduce from 98%, 98%,

and 83% respectively to about 82%, 58%, and 18% respectivelywhen the number

of frames increases from 7 to 23. So, the complementary approach gives ranges of

[2%,13%], [2%,37%], and[17%,77%] better performance than the maximum accu-

mulations approach, reordering approach and maximum approach when the number

of frames increases from 7 to 23. Similarly, Figure 8.3 showsthat when the overall

utilisation of the system is 0.4 the complementary approach gives ranges of[8%,19%],

[5%,61%], and[45%,91%] better performance than the maximum accumulations ap-

proach, reordering approach and maximum approach respectively when the number

of frames increases from 5 to 23.

Using same argument, Figure 8.4 shows that when the overall utilisation of the sys-

tem is 0.5 the complementary approach gives ranges of[10%,22%], [1%,61%], and

169

8 Approaches for Sufficient Scheduling Tests

Figure 8.1: Percentage of Schedulable SystemsU = 0.2 andN = 5 and10

170

8.6 Comparison Between Sufficient Scheduling Approaches

[49%,90%] better performance than the maximum accumulations approach, reorder-

ing approach and maximum approach when the number of frames increases from 3 to

19.

Figure 8.2: Percentage of Schedulable SystemsU = 0.3 andN = 5

171

8 Approaches for Sufficient Scheduling Tests

For more investigation, Figures 8.5 and 8.6 present the scheduling performance for

systems with 10 MF tasks and from different overall utilisations point of view. The

first graph in Figure 8.5 shows that for the systems with 10 MF tasks and 0.3 overall

utilisation, the performance of all four approaches is veryclose to the performance

of the exact analysis for MF tasks with 3 or 5 frames. However,Figures 8.5 and

8.6 show that when the overall utilisation of the system increases from 0.4 to 0.6 the

complementary approach and reordering approach give similar performance when the

number of frames is 3 whilst the complementary approach gives ranges of[0%,21%]

and[61%,97%] better than the max accumulations and maximum approaches respec-

tively. However, the performance of the reordering approach decreases to 60% when

the number of frames becomes 5; whilst the complementary approach gives ranges

of about[0%,30%], [0%,29%], and [61%,89%] better performance than the maxi-

mum accumulations approach, reordering approach and maximum approach when the

overall utilisation increases from 0.4 to 0.6 and the number of frames is 5.

Figure 8.3: Percentage of Schedulable Systems WhenU = 0.4 andN = 5

172

8.6 Comparison Between Sufficient Scheduling Approaches

Figure 8.4: Percentage of Schedulable Systems WhenU = 0.5 andN = 5

On the other hand, for more coverage of the performance of theapproaches, Fig-

ures 8.7 - 8.15 present the schedulability performance for big systems where the exact

schedulability analysis is intractable. The schedulability performance in these fig-

ures is represented by the number of schedulable systems outof the 10000 randomly

generated systems. All results show that the best approach for the big systems is

the complementary approach while the worst one is the maximum one. For exam-

ple, Figure 8.7 shows that for systems with an overall utilisation of 0.3, 10 MF tasks

and number of frames is 29, there are 6400 schedulable systems out of the 10000

generated systems using complementary approach while there are 5500 schedulable

systems out of the 10000 generated systems using max accumulations approach. So

the complementary approach gives 9% (i.e.6400−5500
10000 %) better performance than the

reordering approach for the mentioned parameters. Using similar argument Figure 8.7

also shows that the complementary approach provides rangesof [0%,9%], [0%,42%],

and[0%,64%] better performance than the max accumulations, reorderingand max-

173

8 Approaches for Sufficient Scheduling Tests

Figure 8.5: Percentage of Schedulable Systems WhenN = 10 andU = 0.3 and0.4

174

8.6 Comparison Between Sufficient Scheduling Approaches

Figure 8.6: Percentage of Schedulable Systems WhenN = 10 andU = 0.5 and0.6

175

8 Approaches for Sufficient Scheduling Tests

imum approaches respectively when the overall utilisationis 0.3 and the number of

frames increases from 3 to 29.

Similarly, Figure 8.8 shows that the complementary approach provides ranges of

around[0%,10%], [0%,26%], and[10%,45%] better performance than the max ac-

cumulations, reordering and maximum approaches when the overall utilisation is 0.4

and the number of frames increases from 3 to 13. Moreover, Figure 8.8 shows that the

complementary approach provides about 75% better performance than the maximum

approach when the number of frames is 7.

However, Figure 8.9 shows that when the overall utilisationis 0.5 the performance

of the complementary approach becomes lower with increasing the number of frames,

although it provides better performance than the other approaches. For example, the

number of schedulable systems under complementary approach decreases from about

1200 out of the 10000 generated systems to 0 when the number offrames increases

from 11 to 19.

Figure 8.7: Number of Schedulable Systems WhenN = 10 andU = 0.3

176

8.6 Comparison Between Sufficient Scheduling Approaches

In the following, we discuss the schedulability performance of the approaches when

the number of MF tasks increases from 20 to 100 for each overall utilisation 0.3, 0.4,

and 0.5. Figures 8.10 and 8.11 show that for both complementary approach and max

accumulations approach, the greater number of MF tasks the system has the better

performance the approach provides whilst the other way round with both maximum

and reordering approaches. For example, for number of frames equals 29, the number

of schedulable systems using complementary approach increases from 70003 to 88004

when number of MF tasks increases from 20 to 100. Also, the second graph in Figure

8.11 shows that the complementary approach gives ranges of[0%,8%], [0%,70%] and

[0%,78%] better performance than the max accumulations approach, reordering ap-

proach and maximum approach respectively when the overall utilisation is 0.3, num-

ber of tasks is 40 and number of frames increases from 3 to 29. Moreover, Figure 8.11

shows that the maximum accumulations approach becomes veryclose to the comple-

3Found from the first graph in Figure 8.10.
4Found from the second graph in Figure 8.11.

Figure 8.8: Number of Schedulable Systems WhenN = 10 andU = 0.4

177

8 Approaches for Sufficient Scheduling Tests

Figure 8.9: Number of Schedulable Systems WhenN = 10 andU = 0.5

mentary one when the number of tasks is 80 or 100 and their performance could be

identical for number of frames less than 19.

From another point of view, Figures 8.12 and 8.13 show that when the overall util-

isation of the system is 0.4 and number of frames are less than or equals to 13 the

performance of the complementary and max accumulations approaches becomes bet-

ter with increasing the number of MF tasks in the system from 20 to 100. For example,

the number of schedulable systems under complementary and max accumulations ap-

proaches increase from 5900 and 5000 respectively when the number of frames is 11

and number of tasks is 20 in Figures 8.12 to 7000 and 6400 for the same number

of frames and number of tasks is 100 in Figures 8.13. However,the performance of

these two approaches reduces with increasing the number of frames beyond 13 and

increasing the number of tasks from 20 to 100. For example, the number of schedula-

ble systems under complementary and max accumulations approaches decrease from

about 2100 and 1800 respectively when the number of frames is19 and number of

tasks is 20 in Figures 8.12 to 900 and 800 for the same number offrames and number

178

8.6 Comparison Between Sufficient Scheduling Approaches

Figure 8.10: Number of Schedulable Systems WhenN = 20 and40 andU = 0.3

179

8 Approaches for Sufficient Scheduling Tests

Figure 8.11: Number of Schedulable Systems WhenN = 80 and100 andU = 0.3

180

8.6 Comparison Between Sufficient Scheduling Approaches

of tasks is 100 in Figures 8.13.

In addition, Figures 8.12 shows that, when the overall utilisation is 0.4 and num-

ber of MF tasks is 40, there is a sharp decrease in the performance of the reordering

approach when the number of frames increases from 5 to 11 where the number of

schedulable systems decreases from 10000 to about 1500. At the same time the num-

ber of schedulable systems using complementary approach decreases from 10000 to

about 6200. So the complementary approach provides 47% (i.e. 6200−1500
10000 %) better

performance than the reordering approach for the mentionedparameters. Using sim-

ilar argument, Figures 8.13 shows that the complementary approach gives ranges of

[0%,6%], [0%,46%] and[0%,100%] better performance than the max accumulations

approach, reordering approach and maximum approach respectively when the overall

utilisation is 0.4, number of tasks is 100 and number of frames increases in theranges

[3,13], [3,13], and[3,5] respectively.

181

8 Approaches for Sufficient Scheduling Tests

Figure 8.12: Number of Schedulable Systems WhenN = 20 and40 andU = 0.4

182

8.6 Comparison Between Sufficient Scheduling Approaches

Figure 8.13: Number of Schedulable Systems WhenN = 80 and100 andU = 0.4

183

8 Approaches for Sufficient Scheduling Tests

For more investigation about the schedulability performance of the approaches, Fig-

ures 8.14 and 8.15 present the schedulability performance of the four approaches

when the overall utilisation of the system is 0.5 and number of tasks is 20,40,80, and

100. Figures 8.14 and 8.15 show that although the performance of the complementary

and max accumulations approaches becomes low when increasing the overall utilisa-

tion and size of the system, their performance is still better than the reordering and

maximum approaches. Moreover, Figure 8.15 shows that each of the complementary,

max accumulations, reordering approaches provides about 100% better performance

than the maximum approach when the number of tasks is greaterthan 80 and number

of frames is only 3.

8.7 Summary and Recommendations

This chapter has investigated by evaluation four sufficientscheduling approaches (i.e.

Maximum, reordering, complementary, and max accumulations approaches) for rela-

tively small and big systems. The main idea of the first three approaches was to safely

transform the non-AM multiframe tasks to AM multiframe tasks and then apply the

tractable response time analysis on the transformed system. On the other hand, the

idea of the fourth approach (i.e. max accumulations approach) was to pre-calculate

the maximum execution of both the analysed task and higher priority MF tasks; then

check if this maximum execution can be achieved within the deadline of the analysed

MF task to consider it as a schedulable MF task.

Results show that for all chosen parameters the best scheduling performance is gen-

erated by the complementary approach for both big and small systems so we classify

the complementary approach as the best approach. This is because of two issues, the

first issue is that the complementary approach provides the closest results to the exact

one when the systems are small enough to exactly test their schedulability where the

maximum differentiation between the exact performance andcomplementary perfor-

mance was only about 9% showed by Figures 8.3, 8.4 and 8.6. Thesecond issue, is

that all results show that the complementary approach always provides better results

than the other three approaches for both small and big systems.

184

8.7 Summary and Recommendations

Figure 8.14: Number of Schedulable Systems WhenN = 20 and40 andU = 0.5

185

8 Approaches for Sufficient Scheduling Tests

Figure 8.15: Number of Schedulable Systems WhenN = 80 and100 andU = 0.5

186

8.7 Summary and Recommendations

Actually, we are interested in the best approach for big systems because when the

system is small we can exactly analyze it without using any approximation approach.

However, for big systems, the performance of the max accumulations approach be-

comes very close to the complementary approach where results show that in the worst

case, the complementary approach provides a maximum betterperformance of only

8%. So, from the coverage point of view, we say that the max accumulations approach

covers the complementary one; where if a task is schedulableusing max accumula-

tions approach, it is definitely schedulable using complementary one. On the other

hand, the max accumulations approach is the easiest approach to perform where no

need to do any recurrence calculations but we do need for the complementary ap-

proach. So, there is a trade off between the ease of use of the approaches and the

accuracy of the results they provide, although all of them are safe. Therefore, to ar-

range the schedulability performance of the approaches, weidentify the maximum

accumulations approaches the second approach after the complementary one with a

maximum differentiation rate between their performance ofonly 9%.

187

188

9 Evaluation, Conclusions and Future

Work

This chapter summarises the contributions of this thesis and presents an overview

of some ideas for future work. The main idea of the thesis is toexactly analyze

the schedulability of hard real time systems with MF tasks. This has been done by

analysing the response time of each MF task in the system. However, for big systems

with general MF tasks; the response time analysis is not tractable so some sufficient

approaches are introduced to test the schedulability of thesystems that can not be

exactly analysed.

9.1 Contributions of the Thesis

An exact response time scheduling test is an exact scheduling test in terms of being

sufficient and necessary for hard real-time systems. This thesis has shown the flexi-

bility of the response time analysis by analysing systems with MF tasks.

This thesis started to prove its claims when Chapter 3 presented a formula that cal-

culates the worst case response time of basic MF tasks whose execution times are ac-

cumulatively monotonic (i.e. AM). This formula allows MF tasks to share resources,

so it allows MF tasks to suffer blocking. To show the performance of the response time

analysis, this chapter compares schedulability of the presented response time analysis

with the most improved utilisation based scheduling test (i.e. Lu’s test [55]). All re-

sults show a clear improvement in the schedulability performance using response time

analysis rather than using Lu’s test where the performance of response time test can

be 100% better than Lu’s test.

189

9 Evaluation, Conclusions and Future Work

Chapter 4 has proved the flexibility of the response time analysis of MF tasks by

extending the basic response time analysis, that is presented in Chapter 3, to two

models more general than the basic model. In the first model, MF tasks are allowed

to be subjected to release jitter. In the second model, the MFtasks are allowed to

have arbitrary deadlines that could be greater than their relative periods, so the worst

case response time analysis must include some amount of execution from the analysed

task itself. Moreover, Chapter 4 has joined these two modelsand analysed the worst

case response time of AM multiframe tasks that are subjectedto both release jitter and

arbitrary deadlines.

To further generalise the response time analysis, Chapter 5has relaxed the AM

restriction and analysed the worst case response time of non-AM multiframe tasks.

Analysis in this chapter has used a new concept called a critical frame; where the

analysis has considered only the synchronous releases of the critical frames of MF

tasks whose priorities are higher than the analysed task. This chapter has shown that,

in the worst case, a MF task withn frames could haven−1 critical frames. How-

ever, evaluation has shown that the number of critical frames per MF task is likely to

be significantly less thann−1 and usually less than 65% of the original number of

frames.

Chapter 6 has extended the response time of non-AM multiframe tasks to two mod-

els. The first model is when the MF tasks are subjected to release jitter and the second

model is when the MF tasks have arbitrary deadlines. In addition, a combined analysis

of the release jitter and arbitrary deadlines has been presented in this chapter.

For further proof of the flexibility of the response time analysis of MF tasks, Chapter

7 has presented an analysis of the worst case response time ofMF tasks whose frames

can have different deadlines; which has been called the frame specific deadlines sce-

nario. A new concept called covering frame has been introduced in this chapter to

optimise the number of frames that have to be analysed when the deadlines of the MF

task are less than the relative period. However, general response time analysis has

also been presented in this chapter when the deadlines of theMF task becomes greater

than the relative period. As deadline monotonic priority assignment is not optimal

anymore within the frame specific deadline scenario, another priority assignment for

this model has been introduced in this chapter.

190

9.2 Future Work

As the response time analysis is computationally intractable for relatively big sys-

tems, Chapter 8 has introduced four sufficient and computationally tractable approaches

that can test the schedulability of big systems with non-AM multiframe tasks. These

approaches are called maximum, reordering, complementaryand max accumulations

approaches. As the response time is tractable for AM multiframe tasks, three of these

approaches have been based on transforming the non-AM multiframe tasks to AM

tasks. Whilst the fourth one has been based on pre-calculations of the maximum in-

vocations of higher priority MF tasks within the deadline ofthe analysed task. In

this chapter the safety of these four approaches has been proved, coverage of the ap-

proaches has been explained, and a comparison between the approaches by evalua-

tions has been presented. Results have shown the performance of the complementary

approach comparing to each of the other approaches. Resultshave shown that al-

though the best approach is the complementary one, its schedulability performance is

very close to the performance of the max accumulations approach when the system is

relatively big. This latter test is the easiest one to perform.

9.2 Future Work

Although this thesis has addressed some problems, there aresome issues, related to

what has been done in this thesis, are still open to be solved.The following is an

overview of these open issues arranged according to the order of the chapters.

1. The analysis in this thesis considers that priorities of the MF tasks are assigned

before performinging the analysis. However, a non covered issue in this thesis

is to find an optimal priority assignment for the MF model and whether DM is

optimal for this model.

2. The analysis in Chapters 3, 4, 5 and 6 can be improved to include variable

blocking times instead of considering it as a single value.

3. In Chapter 5, the policy of identifying the critical frames could generate critical

frames that can be safely discard from the response time analysis. Actually, this

policy can be optimised to generate an optimal number of critical frames; where

in reality there are frames in the generated critical frameswho are dominated by

191

9 Evaluation, Conclusions and Future Work

more than one other critical frames. This will involve usingthe critical frames

that have been already generated in Chapter 5.

4. Solving exact response time equations, that is presentedin Chapters 5, 6 and 7,

requires a huge number of iterations to get either a stable solution or to identify

the unschedulability of the MF task. To speed up the solutions of these exact

response time equations we could start the solutions by calculating the minimum

interference from higher priority MF tasks plus the maximumexecution time

of the analysed MF task instead of only the maximum executiontime of the

analysed task. This could be done by incorporating the work in [27] to serve as

the system model in this thesis.

5. Moving on to the frame specific deadlines scenario, that ispresented in Chapter

7, a number of issues arose within this chapter. The first issue is an improve-

ment of the identification of the covering frames in the case of having arbitrary

deadlines (i.e. Section 7.2) could be achieved using the cumulative function

that is given by Definition 1. The second issue is to find a way that can avoid

overlaps for solvingr i,ṽ, f (C
q
i). In this issue we can consider two points: one is

the minimum interference from higher priority MF tasks within the maximum

execution of the analysed MF task and another is to make use ofr i,ṽ, f (C
q
i) for a

specific value off = f1 as a starting point to solve Equation (7.9) in Theorem

11. The third issue is an open problem that is still in progress; this problem

is summarised by the following question: Is there a method that can optimise

Corollary 5 so that there is no need to check all values off ? The fourth issue is

to improve the analysis to include blocking time and releasejitter.

9.3 Concluding Remarks

In the introduction, we claimed that the

“The schedulability of real-time systems with multiframe tasks can be exactly analysed

using formulated response time analysis that is extensibleto a wide variety of situa-

tions. Where response time analysis is intractable, appropriate non-optimal heuristics

exist and allow all systems to be analysed.”

192

9.3 Concluding Remarks

This claim has been supported when three issues are considered. The first issue is

the presentation of exact worst case response time formula for AM multiframe tasks

and non-AM multiframe tasks, then extending these formulasto the situation where

MF tasks suffer from blocking, release jitter and arbitrarydeadlines. The second issue

is the presentation of exact worst case response time formula for MF tasks whose

deadlines are different from one frame to another. The thirdissue is the presentation

of four sufficient and tractable scheduling approaches thatcan be applied to large

systems.

193

194

List of References

[1] Available On linehttp://www.vector.com/vi_oscan_en.html, ac-

cessed in 07/01/2009.

[2] Available On line http://shark.sssup.it/distrib/slides/

2005_first_shark_workshop/handouts/FIRST_michael_

handouts.pdf, accessed in 07/01/2009.

[3] Available On line http://www.lynuxworks.com, accessed in

07/01/2009.

[4] Available On line http://www.mathreference.com/lan-cx-np,

vcp.html, accessed in 07/01/2009.

[5] N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks

with arbitrary start time. Technical report, University ofYork, 1991.

[6] N. C. Audsley. Flexible Scheduling of Hard Real-Time Systems. PhD thesis,

University of York, 1993.

[7] N. C. Audsley. On priority assignment in fixed priority scheduling.Information

Processing Letters, (79):39–44, 2001.

[8] N. C. Audsley and A. Burns. On fixed priority scheduling, offsets and co-prime

task periods.Information Processing Letters, pages 65–69, 1998.

[9] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell, andA. J. Wellings. Ap-

plying New Scheduling Theory to Static Priority PreemptiveScheduling.Soft-

ware Engineering Journal, 8(5):284–292, September 1993.

[10] T. P. Baker. Stack-based scheduling of realtime processes. Real Time Systems

Journal, 3(1):67–99, March 1991.

195

List of References

[11] N. Bala. Real time operating systems (rtos) modelling.Technical report, Uni-

versity of California, June 2004.

[12] S. K. Baruah, D. Chen, and A. Mok. Generalized multiframae tasks.The Inter-

national Journal Of Time Critical Computing Systems, 17:5–22, 1999.

[13] S. K. Baruah, D. Chen, and A. Mok. Static-priority scheduling of multiframe

tasks. Inproceedings11th Euromicro Conference on Real-Time Systems, pages

38–45, June 1999.

[14] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity con-

cerning the preemplive scheduling of periodic real time tasks on one processor.

Real Time Systems, 2:301–324, 1990.

[15] S. Baskiyar and N. Meghanathan. A survey of contemporary real time operating

systems.Informatica, 29:233–240, June 2005.

[16] I. Bate. Scheduling and Timing Analysis for Safety Critical Real-Time Systems.

PhD thesis, University of York, 1999.

[17] I. Bate and A. Burns. An integrated approach to scheduling, in safety-critical

embedded control systems.Real Time Systems, pages 6–37, 2003.

[18] G. Bernat and A. Burns. New results on fixed priority aperiodic servers. In20th

IEEE Real Time Systems Symposium, pages 68–78, 1-3 December 1999.

[19] E. Bini and S. K. Baruah. Efficient computation of response time bounds under

fixed-priority scheduling. InReal-Time and Network Systems (RTNS07), pages

95–104, March 2007.

[20] E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures. In

16th Euromicro Conference on Real-Time Systems (ECRTS’04), pages 196–203,

2004.

[21] R. J. Bril, L. Steffens, and W. F. J. Verhaegh. Best-caseresponse times of

real-time tasks. InPhilips Workshop on Scheduling and Resource Manage-

ment(SCHARM), pages 19–27, June 2001.

[22] R. J. Bril, W. F. J. Verhaegh, and E-J. D. Pol. Initial values for on-line response

196

List of References

time calculations. In15th Euromicro Conference on Real-Time Systems, pages

13–22, July 2003.

[23] I. Broster and A. Burns. An analysable bus guardian for event-triggered com-

munication. In24th IEEE International Real Time Systems Symposium, pages

410–420, 3-5 December 2003.

[24] A. Burns, K. W. Tindell, and A. J. Wellings. Effictive analysis for engineering

real-time fixed priority schedulers.IEEE Transactions On Software Engineering,

pages 475–480, 1995.

[25] A. Burns and A. J. Wellings.Real Time Systems and Programming Languages.

Addison-Wesley, England, 2001.

[26] A. Burns, A. J. Wellings, C.H. Forsyth, and C.M. Bailey.A performance analysis

of a hard real-time system.Control Engineering Practice, 3(4):447–464, 1995.

[27] R. I. Davis and A. Burns. Response time upper bounds for fixed priority real-time

systems. InReal time Systems Symposium, pages 407–418, December 2008.

[28] R.I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests for fixed

priority real-time systems.IEEE Transactions on Computers, 57(9):1261–1276,

September 2008.

[29] F. Eisenbrand and Th. Rothvob. Static priority real-time scheduling response

time computation is np-hard. InReal time Systems Symposium, pages 397–406,

December 2008.

[30] N. Fisher and S. Baruah. A fully polynomial-time approximation scheme for

feasibility analysis in static-priority systems with arbitrary relative deadlines. In

EuroMicro Conference on Real-Time Systems, pages 117–126, 2005.

[31] N. Fisher and S. Baruah. A fully polynomial-time approximation scheme for

feasibility analysis in static-priority systems with bounded relative deadlines. In

13th International Conference on Real-Time Systems, pages 233–249, 2005.

[32] J. Goossens.Scheduling of Hard Real Time Periodic Systems with Various Kinds

of Deadline and Offset Constraints. PhD thesis, University Liber de Bruxelles,

Belgium, 1999.

197

List of References

[33] J. Goossens. Scheduling of offset free systems.Real Time Systems, vol.24:239–

258, 2003.

[34] J. Goossens and R. Devillers. The non-optimality of themonotonic priority as-

signments for hard real-time offset free systems.Real Time Systems, vol.13:107–

126, 1997.

[35] R. Grehan, R. Moote, and I. Cyliax.Real-Time Programming, A Guide To 32-

Bit Embedded Development. Addison Wesley Longman, Inc, United States of

America, 1998.

[36] J. C. P. Gutiérrez, J. J. G. Gracı́a, and M. G. Harbour. Best-case analysis for im-

proving the worst-case schedulability test for distributed hard real-time systems.

In 10th Euromicro Workshop on Real Time Systems, pages 35–44, 17-19 June

1998.

[37] C. J. Han. A better polynomial-time schedulability test for real-time multiframe

tasks. Inproceedings of 19th IEEE Real-Time Systems Symposium, pages 104–

113, December 1998.

[38] H. Hansson and M. Sjodin. Improved response-time analysis calculations. In19

th IEEE Real-Time Systems Symposium, pages 399–408, December 1998.

[39] M. Joseph.Real Time Systems Specification, Verification and Analysis. Prentice

Hall Inc., 1st edition, 1996.

[40] M. Joseph and P. Pandya. Finding Response Times in a Real-Time system.The

Computer Journal, 29(5):390–395, October 1986.

[41] D. Katcher, H. Arakawa, and J. Strosnider. Engineeringand analysis of fixed

priority schedulers.IEEE Tran. Software Engineering, 19:920–34, 1993.

[42] T. Kim, J. Lee, H. Shin, and N. Chang. Best-case responsetime analysis for

improved schedulability analysis of distributed real-time tasks. InICDCS Work-

shop on Distributed Real-Time Systems, pages B14–B20, 2000.

[43] D. E. Knuth. The Art of Computer Programming, volume 2:Seminumerical Al-

gorithms. Addison-Wesley, 2ed edition, 1981.

[44] T.W. Kuo, L.P. Chang, Y.H. Liu, and K.J. Lin. Efficient on-line schedulability

198

List of References

tests for real-time systems.IEEE Trans. on Software Engineering, 29(8), 2003.

[45] J. Labetoulle.Computer Architecture and Networks. North-Holland, Amster-

dam, 1974.

[46] J. J. Labrosse.MicroC/OS-II The Real Time Kernel. Miller Freeman, Inc, United

States of America, 1999.

[47] B. W. Lampson and D. D.Redell. Experiences with processes and monitors in

Mesa.Communication ACM, 23(2):105–117, Feb 1980.

[48] J. lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Schduling Algo-

rithm:Exact Characterization and Average Case Behaviour.In IEEE Real Time

Systems Symposium, pages 166–171, 5-7 December 1989.

[49] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Set with Arbitrary

Deadlines. InIEEE Real Time Systems Symposium, number 11, pages 201–209,

December 1990.

[50] J. Y. T. Leung and M.L. Merrill. A note on preemptive scheduling of periodic

real time tasks.Information Processing Letters, 11(3), November 1980.

[51] J. Y. T. Leung and J. Whitehead. On the Complexity of Fixed Priority Scheduling

of Periodic, Real Time Tasks.Performance Evaluation, 2(4):237–250, Decem-

ber 1982.

[52] C. L. Liu and J. W. Layland. Scheduling Algorithm for Multiprogrammimg

in a Hard Real-Time Environment.Journal of the Association for Computing

Machinery, 20(1):46–61, January 1973.

[53] J. W. S. Liu.Real Time Systems. Prentice Hall, United States of America, 2000.

[54] C. D. Locke. Software architecture for hard real-time applications: Cyclic exec-

utives vs fixed priority executives.Real Time Systems, 4(1):37–53, March 1992.

[55] W. C. Lu, K. J. Lin, H. W. Wei, and W. K. Shih. New schedulability conditions

for real-time multiframe tasks. In19th Euromicro Conference on Real Time

Systems, (ECRTS07), Pisa, Italy, July 4-6 2007.

[56] A. K. Mok and D. Chen. A multiframe model for real time tasks. Inproceedings

199

List of References

of IEEE International Real Time System Symposium, pages 22–29, December

1996.

[57] A. K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE Trans.

on Software Engineering, 23(10):635–645, Oct 1997.

[58] K. Paul and JR. Harter. Response Times in Level-Structured Systems.ACM

Transactions on Computer Systems, 5(3), 1987.

[59] J. L. Peterson and A. Silberschatz.Operating System Concepts. Addison-Wesley

Publishing Company, United States of america, 1983.

[60] M. Pilling, A. Burns, and K.Raymond. Formal specification and proofs of in-

heritance protocols for real-time scheduling.Software Engineering Journal,

5(5):263–279, 1990.

[61] R. Rajkumar. Real time synchronisation protocols for shared memory multupro-

cessors. In10th IEEE Int.conf. on Distributed Computing Systems, 28 May-

1June 1990.

[62] P. Richard and J. Goossens. Approximate feasibility analysis and response-time

bounds of static-priority tasks with release jitters. InReal-Time and Network

Systems (RTNS07), pages 105–112, March 2007.

[63] D. L. Ripps. An Implementation Guide To Real-Time Programming. Prentice

Hall, Inc, United States of America, 1990.

[64] M. A. Rivas and M. G. Harbour. Marte os: An ada kernel for real-time embedded

applications. InInternational Conference on Reliable Software Technologies,

Ada-Europe, May 2001.

[65] O. Serlin. Scheduling of time critical processes. InAFIPS Spring Computing

Conference, 1972.

[66] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocol: An

Approach to Real Time Synchronization.IEEE Transactions on Computers,

39(9):1175–1185, Sept 1990.

[67] A. Silberschatz, P. Galvin, and G.Gagne.Applied Operating System Concepts.

John Wiley & Sons, Inc, New York, United States of America, 2000.

200

List of References

[68] A. Silberschatz, P. B. Galvin, and G. Gagne.Operating System Concepts. John

Wiley & Sons,Inc, United States of America, 2002.

[69] H. Takada and K. Sakamura. Schedulability of generalized multiframe task sets

under static priority assignment. InReal Time Computing Systems and Applica-

tions, pages 80–86, 1997.

[70] K. W. Tindell. Fixed Priority Scheduling Of Hard Real-Time Systems. PhD

thesis, University of York, 1993.

[71] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach for analyz-

ing fixed priority hard real-time tasks.Real-Time Systems, 6:133–151, 1994.

[72] K. W. Tindell and J. Clark. Holistic schedulability analysis for distributed hard

real-time systems.Microprocessing and Microprogramming, 40:117–134, 1994.

[73] K. Traore, E. Grolleau, A. Rahni, and M. Richard. Response-time analysis

of tasks with offsets. In11th IEEE International Conference on Emerging

Technologies and Factory Automation, (ETFA 2006), Prague, Czech Republic,

September 2006.

[74] C. Y. Yang, J. J. Chen, and T. W. Kuo. Efficient on-line scheduling for energy

minimization of multiframe real-time tasks on a dynamic voltage scaling proces-

sor. InIEEE Real Time Systems Symposium, number 29, pages 17–20, December

2008. Work In Progress.

[75] A. Zuhily. Exact response time analysis for multiframetasks. Technical Report

YCS 410, University ofYork, 2007.

[76] A. Zuhily and A. Burns. Optimal (D-J)-monotonic priority assignment.Infor-

mation Processing Letters, 103(6):247–250, April 2007.

[77] A. Zuhily and A. Burns. Exact response time scheduling analysis of accumula-

tively monotonic multiframe real time tasks. In5th International Colloquium on

Theoretical Aspects of Computing (ICTAC), pages 410–424, 2008.

[78] A. Zuhily and A. Burns. Exact scheduling analysis of accumulatively monotonic

multiframe tasks subjected to release jitter and arbitrarydeadlines. In13th IEEE

International Conference on Emerging Technologies and Factory Automation

(ETFA), pages 600–608, 2008.

201

[79] A. Zuhily and A. Burns. Exact scheduling analysis of non-accummulatively

monotonic multiframe tasks. In16th International Conference on Real-Time

and Network Systems (RTNS), pages 67–76, 2008.

202

Appendix

Theorem 16 The priority assignment scheme(D−J)−monotonic is an optimal pri-

ority scheme in the sense that if any task set, Q, is schedulable by priority scheme, W,

it is also schedulable by(D−J)−monotonic priority ordering.

Proof

To prove the optimality of(D−J)−monotonicpriority assignment, the priorities of

Q (as assigned byW) will be transformed until the ordering is(D− J)−monotonic

while preserving schedulability. Letτi andτ j be two tasks with successive priorities

in Q such that underW: Pi > Pj andDi −Ji > D j −Jj . If it is not possible to find tasks

τi andτ j with this property then the tasks are already in(D−J) order. Define scheme

W′ to be identical toW except that tasksτi andτ j are swapped. The schedulability of

all tasks whose priorities are higher thanτi or whose priorities are lower thanτ j are

not affected by swapping the two tasksτi andτ j . Moreover, the schedulability of task

τ j will also not be affected by the swap since it will have higherpriority than before

and therefore it will suffer less interference. It remains to prove that taskτi is still

schedulable underW′.

Let RW
j be the response time of taskτ j under schemeW, andRW′

j be the response

time of taskτ j under schemeW′. It can be seen thatRW
j ≤ D j − Jj becauseτ j is

schedulable and in the worst case may not be released until time t =Jj . In addition, it

is given thatD j −Jj < Di −Ji ≤ Di ≤ Ti. Therefore, taskτi only interferes once during

the execution ofτ j (underW). So, the worst case response time of taskτ j can be split,

under schemeW into

RW
j = Cj +Ci + ∑

k∈S

⌈
RW

j +Jk

Tk
⌉Ck, (9.1)

203

whereS is the set of tasks whose priorities are higher thanτi underW (which is equal

to the set of higher priority thanτ j underW′). Equation (9.1) can be rewritten as

RW
j −Cj = Ci + ∑

k∈S

⌈
RW

j +Jk

Tk
⌉Ck. (9.2)

The response time equation of the taskτi under schemeW′ is given by

RW′

i = Ci + ∑
k∈hp(i)

⌈
RW′

i +Jk

Tk
⌉Ck.

Hence,

RW′

i = Ci + ⌈
RW′

i +Jj

Tj
⌉Cj + ∑

k∈S

⌈
RW′

i +Jk

Tk
⌉Ck. (9.3)

Assuming Lemma 1 (given below),RW
j is a solution of this equation forRW′

i ; which

means thatRW′

i ≤ RW
j .

On the other hand, we have thatRW
j ≤ D j −Jj as well asD j −Jj < Di −Ji .

Therefore,

RW′

i < (Di −Ji)

which implies that taskτi is schedulable after swapping tasksτi andτ j .

Now, priority schemeW′ can be transformed toW′′ by choosing two more tasks

that are in the wrong order for(D−J)−monotonic, and swapping them. Each such

swap preserves schedulability. Eventually, there will be no more tasks to swap and the

priority ordering will be exactly(D−J)−monotonic. Hence,(D−J)−monotonicis

optimal.�

Lemma 7 The response time of the taskτ j under scheme W, RW
j , is a solution of

Equation (9.3).

Proof

The idea of the proof is to substituteRW
j for RW′

i into the right side of Equation (9.3)

then we get its left side. Therefore, we say thatRW
j satisfies Equation (9.3) :

Ci + ⌈
RW

j +Jj

Tj
⌉Cj +∑k∈S⌈

RW
j +Jk

Tk
⌉Ck

204

= RW
j −Cj + ⌈

RW
j +Jj

Tj
⌉Cj

= RW
j −Cj +Cj

= RW
j

This is because of Equation (9.2) and because taskτ j is schedulable under schemeW,

soRW
j < D j −Jj ; which meansRW

j +Jj < D j < Tj . So,⌈
RW

j +Jj

Tj
⌉ = 1. �

205

