
A Unified Flow Information Language for WCET Analysis

Andreas Ermedahl†

IT-Dept. Uppsala University

Box 337, SE-751 05 Uppsala

Sweden

andreas.ermedahl@it.uu.se

Jakob Engblom†

IAR Systems AB

Box 23051, SE-750 23 Uppsala

Sweden

jakob.engblom@iar.se

Friedhelm Stappert∗

C-LAB

Fürstenallee 11, 33102 Paderborn

Germany

friedhelm.stappert@c-lab.de

Abstract

In this paper we raise the question if it is possible
to create a unified flow information language that all
WCET research groups can agree upon, and that is in-
dependent of flow analysis and calculation methods.

We discuss desired characteristics of such a flow in-
formation language and describe the type of flows that
it should be able to express. We present our previ-
ously published flow fact annotation language and dis-
cuss how it fulfils the desired language properties.

1. Introduction

A correct WCET calculation method must take into
account the possible program flow, like loop iterations
and function calls. For expressing program flows nu-
merous annotation languages have been presented in
the WCET literature. The expressiveness and the type
of flows that can be handled by these languages mostly
depend on the characteristics of flow analysis meth-
ods used, rather than being targeted for the potential
WCET tool user.

To generate a WCET estimate, we consider a pro-
gram to be processed through the phases of program
flow analysis, low level analysis and calculation. Most
WCET research groups make a similar division nota-
tionally, but sometimes integrate two or more of the
phases into a single algorithm.

The program flow analysis phase determines pos-
sible program flows, and provides information about
which functions get called, how many times loops iter-

† This work is performed within the Advanced Software Tech-
nology (ASTEC, http://www.docs.uu.se/astec) competence
center, supported by the Swedish National Board for Industrial
and Technical Development (NUTEK, http://www.nutek.se).
∗ Friedhelm is a PhD student at C-LAB (www.c-lab.de), which

is a cooperation of Paderborn University and Siemens.

ate, if there are dependencies between if-statements,
etc. The information can be obtained by manual anno-
tations (integrated in the programming language [14]
or provided separately [6, 9, 19]). The flow informa-
tion can also be derived using automatic flow analysis
methods [7, 10, 13, 22].

In the calculation phase a program WCET estimate
is derived, combining the information derived in the
program flow and low-level analysis phases. There are
three main categories of calculation methods proposed
in literature: tree-based, path-based, and IPET (Im-
plicit Path Enumeration Technique).

In a tree-based approach the WCET is calculated in
a bottom-up traversal of a tree generally corresponding
to a syntactical parse tree of the program, using rules
defined for each type of compound program statement
(like a loop or an if-statement) to determine the exe-
cution time at each level of the tree [1, 2, 16, 20].

In a path-based approach the possible execution
paths of a program or piece of a program are explored
explicitly to find the longest path [10, 12, 22, 23]. The
path-based approach is natural within a single loop it-
eration or function.

In IPET, program flow and low-level execution time
are modeled using arithmetic constraints [6, 9, 15, 18,
21]. Each basic block and program flow edge in the
program is given a time (tentity) and a count vari-
able (xentity), and the goal is to maximize the sum∑

i∈entities xi ∗ ti, subject to constraints reflecting the
structure of the program and possible flows.

2. Representing Program Flow

The program flow phase can be further divided into
three different subphases:
1. Flow analysis: Obtaining flow information. By

manual annotations or automatic flow analysis.
2. Flow representation: Representing the results of

the flow analysis.

1

3. Calculation: Using the control flow information (as
represented in the flow representation) in the final
WCET calculation.
Some WCET methods integrate two or more of the

phases. We believe that the separation of the flow anal-
ysis from the calculation reduces the complexity of each
stage. Also, by keeping the flow analysis phase separate
from the flow representation, results from several dif-
ferent flow analysis methods and manual annotations
can be integrated and used together in the calculation
phase.

When designing a language for expressing flow infor-
mation there are a number of choices to be made:
• Expressiveness: What type of flows should be pos-

sible to express? What type of language constructs
should be used?

• Code relation: How is the information related to
different entities in the program code?

• Calculation conversion: How should the information
be used in the final calculation phase?

2.1. Expressiveness
We first note, that a natural way to give flow infor-

mation is by constraining the number of times different
program entities, e.g. loops, statement, nodes or edges,
can be taken. This can either be precise bounds, e.g.
that a loop is iterated exactly ten times, or upper or
lower bounds, e.g. that node A can’t be taken more
than five times. It is also beneficial if we can relate the
executions of different program entities, e.g. that node
A and node B will always be executed together.

The language can consist of named special rela-
tions between entities (e.g. using constructs like Parks
samepath(A,B) and nopath(A,B) [19]). An alterna-
tive is to use a more generic style based on math, like
our flow fact language [6]. The benefit of a generic
math-based language is that it can express flows that
are hard to put in words and that there is no obvious
limit to the types of flows that can be expressed. On
the other hand, a special purpose language is easier to
understand, but requires that new language constructs
are invented in order to express new flows.

The language must reflect the flows found in real-
world programs. Researchers have investigated em-
bedded software [4], the RTEMS operating system [3]
and common signal-processing algorithms [8]. The re-
sults are not in complete agreement on the properties
and flows typical for embedded software, showing that
more research and knowledge is needed here.

One observation is that flow information is mostly
local in its nature, specifying something valid for a
small part of a program or a particular invocation of
a function. Thus, it is not always suitable to specify

flow information once for each entity in the program.
E.g. we would like to be able to specify that some node
A can’t be executed during the first five iterations of a
loop or give a loop bound valid for just some particular
executions of a loop. A language should allow for such
local flow information to be expressed.

2.2. Code Relation
First we note that it is natural to express flow in-

formation in relation to the entities available in the
program code. Flow information can be provided in
relation to the source code, intermediate code in a
compiler, or the object code. If provided on source
code level, the information must be mapped to the ob-
ject code to be used in the WCET calculation. In the
presence of optimizing compilers, this problem is non-
trivial [5, 17].

Automatic flow analysis is probably easier to per-
form at the source code or intermediate code, since
variables and other entities of interest are harder to
identify in optimized object code. Also, for the po-
tential WCET-tool end-user manual annotations are
typically easier to provide at the source-code level.

Another issue is if the flow information should be
included as a part of the programming language or pro-
vided outside the program. The benefit of language in-
clusion is that it forces the programmer to write code in
an analysable manner. However, this requires compiler
support and makes it harder to try different scenarios.

Specifying the flow information outside the program
source allows it to free itself from the static structure
of the program. For example, by using a call-graph
representation, we can differ between invocations of the
same function when called from different places in the
code. An example of the extended version is our scope
graph represention [6].

A good language should provide stability in that pro-
gram changes not related to annotated code should not
force the annotations to change. For example, a prob-
lem with expressing flow information on the object code
level is that the information might need to be regener-
ated every time the program code changes.

An important issue is the ability to handle unstruc-
tured code, e.g. due to uses of goto and jumps into
loops. An optimizing compiler might produce unstruc-
tured object code from structured source code, and au-
tomatic code for state machines also tends to be un-
structured. A general purpose flow information lan-
guage must be general enough to express flows over
such unstructured code.

2.3. Calculation Conversion
Regardless of the flow information language used

the extracted flow information must be ”compiled” or

2

if(i < 10) A; // Stmt B and C

else B; // can not be
if(i <= 7) C; // taken together
else D;

for(i=0;i<10;i++) // bound: 10
for(j=i;j<10;j++) // local bound: 10

E; // E executed at
// most 55 times

if(cond)

x = true; // stmt: F
for(...) // Execution of G

if(x) G; // is implied by F

(a) Infeasible path (b) Triangular loop (c) Deeply nested dependency

Figure 1. Example of Code with Different Type of Flows

”adapted” to the calculation method used. The adap-
tation must be safe: never exclude execution paths
which are considered possible by the flow information,
and tight : including as few extra execution paths com-
pared to the provided flow information. Figure 1 gives
example code showing that not all calculation methods
can take advantage of all types of flow information.

The tree-based method [1, 2, 16, 20] is conceptually
simple and computationally cheap, but has problems
handling flow information, since the computations are
local within a single program statement and thus can-
not consider dependencies between statements. For ex-
ample, the code and flow information in Figure 1(a)
causes problems in a tree-based calculation method
since the timing of the first if-statement will be cal-
culated in isolation from the second if-statement.

The path-based approach is natural within a sin-
gle loop iteration or other executions of one loop
[11, 23]. The method has problems with flow informa-
tion stretching over loop borders and/or flow informa-
tion on the total number of times entities are taken. For
example, the path-based method has problems han-
dling the “triangular” loop dependency in Figure 1(b).
If WCET calculation is performed locally, the WCET
calculation for the inner loop will assume 10 iterations,
and the WCET calculation for the outer loop will use
10 executions of the inner loop, leading to the body
of the inner loop being counted 100 times, when it is
actually never executed more than 55 times.

For IPET very complex flows can be expressed using
constraints, but all flow information needs to be given
on a global program level [6, 9, 15, 18, 21]. This con-
tradicts the need to specify flow information in a local
context. As shown in [6], local flows can be handled by
unrolling the program and lifting the information to a
global level. Since flow information is given as relations
over count variables some type of flow implications are
problematic to express. E.g. Figure 1(c) shows an ex-
ample of code where we would like to express an impli-
cation dependency like: “if F is taken once then (and
only then) G can be taken several times, but if F is not
taken then G can not be taken either”.

3. Our Flow Fact Language

This chapter describes our previously published flow
fact annotation language [6] and discusses how it fulfils
the desired language properties.

(a) Program code

do
{
 if(...) A
 do
 {
 if(..) B
 ... C
 else
 ... D
 if(...) E
 ... F
 else
 ... G
 }
 while(..) H
 else
 ... I
 }
while(...) J

(b) Scope graph with attached flow facts

loopbound: 10
outer:<1..5>:xJ

= 1
outer:[]:xB

£ 55

loopbound: 10
inner:<>:xC + xF

£

1

inner:<6..10>:xC
=

0

inner:[1..10]:xG
=

3

D

E

C

B

sc
op

e
in

ne
r

sc
op

e
ou

te
r

xA

xDxC

xBDxBC

xDExCE
xHB

xB

xI

xHJ

xAI

xIJ

GF xGxF

xEGxEF

xGHxFH
H

A

xAB

J

I

Figure 2. Scopes with Attached Flow Facts

The program representation used is the scope graph.
It is a hierarchical representation of the dynamic struc-
ture of the program. Each scope corresponds to a
certain repeating or differentiating execution context
in the program, e.g. loops and function calls, and de-
scribes the execution of the object code of the program
within that context. Figure 2(b) shows the scope graph
generated for the code in Figure 2(a).

A scope consists of a number of nodes and edges. A
node belongs to exactly one scope, and represents the
execution of a certain basic block in the program in the
environment given by the scope and its ancestors. For
each scope, a header node must be given. If the scope
iterates, each iteration must pass the header node, and
a bound on the number of iterations has to be provided.

To express more complex program flow information
than just basic loop bounds each scope can carry a set
of flow facts [6]. The flow facts use constraints local
to a scope to describe the flow. The constraints can
be given for a range of iterations, or all iterations of
a certain loop. They can also be local within a single
iteration (“foreach facts”) or represent a total over all
iterations (“total facts”).

The scope graph in Figure 2(b) has been decorated
with some flow facts.

Flow fact inner:<>:xC + xF ≤ 1 is a foreach fact
and gives that the nodes C and F cannot be executed
on the same iteration of the scope inner (an infeasible
path), while the flow fact inner:<6..10>:xC = 0 gives
that for each entry of inner, during iterations 6 to 10
of inner, node C can not be executed.

Flow fact inner:[1..10]:xG = 3 is a total fact that
gives that, for each entry of inner, during the ten first

3

iterations, node G must be taken exactly three times.
Compared to the criteria given above, we note that

the flow facts language uses the math-based style and
allows us to give local information. The information is
given outside the code and uses an expanded version of
the call graph (and thus the control flow graph). In its
current version, it cannot handle all types of unstruc-
tured code due to the need for a header, and since it
relates to the object code, it is very sensitive to pro-
gram changes.

It has been used to perform both IPET- and path-
based calculations [6, 23], but not all facts could be
used in the path-based approach. It is interesting that
the path-based calculation recognized certain types of
facts as meaning “samepath” or “not samepath”, and
exploited these by rewriting the graph.

References

[1] R. Chapman. Program Timing Analysis. Dependable Com-
puting System Centre, University of York, England, May
1994.

[2] A. Colin and I. Puaut. Worst Case Execution Time Analysis
for a Processor with Branch Prediction. Journal of Real-
Time Systems, May 2000.

[3] A. Colin and I. Puaut. Worst-Case Execution Time Anal-
ysis for the RTEMS Real-Time Operating System. In
Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

[4] J. Engblom. Static Properties of Embedded Real-Time Pro-
grams, and Their Implications for Worst-Case Execution
Time Analysis. In Proc. 5th IEEE Real-Time Technology
and Applications Symposium (RTAS’99). IEEE Computer
Society Press, June 1999.

[5] J. Engblom, P. Altenbernd, and A. Ermedahl. Facilitating
worst-case execution times analysis for optimized code. In
Proc. of the 10th Euromicro Workshop of Real-Time Sys-
tems, pages 146–153, June 1998.

[6] J. Engblom and A. Ermedahl. Modeling Complex Flows
for Worst-Case Execution Time Analysis. In Proc. 21th

IEEE Real-Time Systems Symposium (RTSS’00), Novem-
ber 2000.

[7] A. Ermedahl and J. Gustafsson. Deriving Annotations for
Tight Calculation of Execution Time. In Proc. Euro-Par’97
Parallel Processing, LNCS 1300, pages 1298–1307. Springer
Verlag, August 1997.

[8] R. Ernst and W. Ye. Embedded program timing analysis
based on path clustering and architecture classification. In
International Conference on Computer-Aided Design (IC-
CAD ’97), 1997.

[9] C. Ferdinand, F. Martin, and R. Wilhelm. Applying Com-
piler Techniques to Cache Behavior Prediction. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS’97), 1997.

[10] C. Healy, R. Arnold, F. Müller, D. Whalley, and M. Har-
mon. Bounding Pipeline and Instruction Cache Perfor-
mance. IEEE Transactions on Computers, 48(1), January
1999.

[11] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van
Engelen. Supporting timing analysis by automatic bound-
ing of loop iterations. Journal of Real-Time Systems, May
2000.

[12] C. Healy and D. Whalley. Tighter Timing Predictions by
Automatic Detection and Exploitation of Value-Dependent
Constraints. In Proc. 5th IEEE Real-Time Technology and
Applications Symposium (RTAS’99), pages 79–88, June
1999.

[13] N. Holsti, T. L̊angbacka, and S. Saarinen. Worst-Case
Execution-Time Analysis for Digital Signal Processors. In
Proceedings of the EUSIPCO 2000 Conference (X European
Signal Processing Conference), September 2000.

[14] Raimund Kirner and Peter Puschner. Transformation of
Path Information for WCET Analysis during Compilation.
In Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

[15] Y-T. S. Li and S. Malik. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. In Proc. of the
32:nd Design Automation Conference, pages 456–461, 1995.

[16] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Ki. An Accurate
Worst-Case Timing Analysis for RISC Processors. IEEE
Transactions on Software Engineering, 21(7):593–604, July
1995.

[17] S-S. Lim, J. Kim, and S. L. Min. A Worst Case Timing
Analysis Technique for Optimized Programs. In Proc. of
the fifth International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA); Hiroshima, Japan,
pages 151–157, Oct 1998.

[18] G. Ottosson and M. Sjödin. Worst-Case Execution Time
Analysis for Modern Hardware Architectures. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS’97), June 1997.

[19] C. Y. Park. Predicting Program Execution Times by Ana-
lyzing Static and Dynamic Program Paths. Real-Time Sys-
tems, 5(1):31–62, March 1993.

[20] P. Puschner and C. Koza. Calculating the Maximum Exe-
cution Time of Real-Time Programs. The Journal of Real-
Time Systems, 1(1):159–176, 1989.

[21] P. Puschner and A. Schedl. Computing Maximum Task Ex-
ecution Times with Linear Programming Techniques. Tech-
nical report, Technische Universität, Institut für Technische
Informatik, Wien, April 1995.

[22] F. Stappert and P. Altenbernd. Complete Worst-Case Exe-
cution Time Analysis of Straight-line Hard Real-Time Pro-
grams. Journal of Systems Architecture, 46(4):339–355,
2000.

[23] F. Stappert, A. Ermedahl, and J. Engblom. Efficient
Longest Executable Path Search for Programs with Com-
plex Flows and Pipeline Effects. In Proc. 4th International
Workshop on Compiler and Architecture Support for Em-
bedded Systems, (CASES 2001), November 2001.

4

