RoboChart
Reference Manual

Alvaro Miyazawa Ana Cavalcanti Pedro Ribeiro
Wei Li Jim Woodcock Jon Timmis

June 15, 2018

Abstract

In this report, we provide a reference manual for a UML-like notation called
RoboChart, designed specifically for modelling autonomous and mobile robots,
and including timed and probabilistic primitives. We describe the syntax of RoboChart
and its extensions, as well as the well-formedness conditions and semantics of the
language constructs. Additionally, usage of the language is discussed via an appli-

cation programming interface (API) and examples.

Contents

1 Introduction

2 Syntax
2.1 RoboChart metamodel

3 Well-formedness Conditions

3.1 CorelLanguage
3.1.1 Robotic Platforms
3.1.2 Interfaces
313 Modules.
3.14 Connection
3.1.5 Controllers
3.1.6 State Machines
317 States
3.1.8 Initial junctions
319 Junction.
3.1.10 Finalstates
3.1.11 Transitions
3.1.12 Operations

3.2 Timed Language
3.2.1 Timed Expressions
3.2.2 Timed Statements

4 Semantics

4.1 Detailed Semantics: Core Language

10

12
12

22
22
22
23
23
23
23
24
24
25
25
25
25
25
25
25
26

27

4.1.1 Modules. 28

412 Controllers e 33

413 Statemachines 36

4.1.4 Statements e e e e e e e e e e e e e 45

4.1.5 EXpressions 50

4.2 Detailed Semantics: Timed Language 58
42.1 Statemachines 58
Clocks o 59

Waiting Conditions v v i 64

Trigger Deadlines 77

Memory e 78

422 States e e e e e e e e e e e e 80

423 Timedstatements v v v v it e e e 84

5 Conclusions 86
A Complete Metamodel: Core Language 87
A.1 RoboticPlatforms 87
A2 Interfaces 88
A3 Variables 88
A4 Constants i e e e e e e e e e e e e e e e e 89
A5 Events e e e e e e 89
A.6 Required, Provided and Defined Interfaces 89
A.7 State-Machines 920
A8 States e e e e 91
A9 Finalstates o v i it 91
AlQJunctionnode 92
AllInitialnodes 92
AI2Transitions © . v v v v v e e e e e e e e e e e e e e e e 92
A13Controllers 93
A 14C0oNNECtIoON it e e e e e e e e e e e e e e e e e e 94
Ad5Modules 95
A16Statements e e e e e e e e e e e e e e e e e e 95
A7EXPressions e e 96
A18Type Declaration L 101
A19Primitive Types o Lo 101
A20Datatypes 101

A21Enumeration v v v e e e e e e e e e e e e e e e e 102

A22Type CONSLIUCIOLS « « v v v v v v e e e et e e e e e e e e 102
B Complete Metamodel: Timed Language 104
Bl Clock oo 104
B.2 Timed Statements e e 104
B.3 Timed Expressions. 105
B.4 Timed Triggers.o 105
C Credits 106
Index of Semantic Rules 110
Index of Calls to Semantic Rules 112

List of Figures

2.1 Metamodel of RoboChart packages 13
2.2 Metamodel of RoboChart modules 14
2.3 Metamodel of RoboChart controllers 14
2.4 Metamodel of RoboChart context for elements and operations 15
2.5 Metamodel of RoboChart state machines 16
2.6 Concrete syntax of transitions 16
2.7 Metamodel of RoboChart triggers 17
2.8 Concrete syntax of triggers 17
2.9 Metamodel of RoboCharttypes 18
2.10 Metamodel of RoboChart time primitives 21

List of rules

Untimed semantics 28
1 Semanticsofmodules L L L Lo 28
2 Memorychannels L 28
3 FunctionallVariables L 29
4 Function requiredVariables L Lo L L 29
5 Function allLocalVariables 29
6 Module Memory 30
7 Compositionof controllers L Lo 31
8 Renamingcontroller L L 31
9 Renamingcontrollerevents. L Lo L 32
10 Buffer 32
11 Semanticsof controllers L L oL 33
12 Controller Memory L 34
13 Compositionof machines. L L 35
14 Renamingstate machine 35
15 Renaming machineevents 36
16 Semantics of state machine L L L L L Lo 36
17 Functionsubstates o 36
18 Inmitialisation 37
19 GetandSetchannels L L 37
20 Composition Of States v i 37
21 TrIGEEr @VENTS . . v v v v v vt e e e e e e e e e e e e e e 38
22 Getandsetlocalchannels. o Lo oo 38
23 Flowevents e 38
24 Semantics Of States e 38
25 Semantics of simplestates 39
26 Semantics of composite states e 40
27 Semanticsof final states Lo Lo 40
28 Synchronisation events between parent state and substates 41
29 Triggersof substates. L 41
30 Restricted semanticsof states 41
31 Semantics Of tranSitions v vt et e e e e e e 42

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Compiletarget 42

Exitsubstates 43
State-machine Memory L 43
Semantics of triggers 44
Event for transition triggero i e 44
Memory transitions v . v i o u e e e e 44
Function transitionsFrom Lo L oo 44
Function allTransitions i 45
Function allSTMTransitions oo v vt vt vt i e 45
Semantics of statementsl 45
Read state of anexpressiono 46
Semantics of statements In CONEXT v v v v v vt bt 46
Function usedVariables oL L Lo 47
Semantics of assignment 47
Semantics of call statement L L L Lo 48
Semantics of if statements 48
Semantics of send event statements 49
Semantics of sequential composition Lo 49
Semanticsof skip L L 49
Semantics Of aCtIONS . « .« . v v vt i e 50
Semantics of eXpressions 50
Semantics of and expression oo 50
Semantics of array expression 51
Semantics of boolean expression L L L L L oL 51
Semantics of call expression. L L L oL 52
Semantics of concatenation eXpression a e 52
Semantics of not equal expression oL L L 52
Semantics of division 53
Semanticsof equality L L L L 53
Semantics of greater or equal expression L. L 53
Semantics of greaterthan L L L Lo 53
Semantics of if and only if expression L. oL L. 54
Semantics of implication L L Lo 54
Semantics of Integer eXpression v v vu e e 54
Semantics of less or equal expression L L oL 54
Semanticsof lessthan L Lo Lo L 55

68 Semantics Of MINUS o . v it 55
69 Semanticsofmodulus L L oL 55
70 Semantics of multiplication L. L oL L 55
71 Semantics of arithmetic negation 56
72 Semantics of logical negation L. L L Lo 56
73 Semantics of OF €XPIression 56
74 Semantics of parenthesised expression L oL L 56
75 Semanticsofplus L 57
76 Semantics of range exXpression e e e e 57
77 Semantics of sequence exXpressiono e 57
78 Semantics Of SEt EXPreSSION . . . v v v v v it e e 57
79 Semantics of tuple expression 58
Timed Semantics 58
80 Semantics of state machine oL L oL o 59
81 allClockVariables function 59
82 clockResetsfunction Lo 60
83 stmClocksfunction 60
84 alphaClockReset function 60
85 alphaClockReset function 60
86 alphaClockReset function 61
87 alphaClockReset function, 61
88 alphaClockResetCallArgs function 61
89 alphaClockReset function 61
90 alphaClockReset function 62
91 alphaClockReset function 62
92 alphaClockReset function 62
93 alphaClockReset function 62
94 alphaClockReset function 63
95 alphaClockReset function 63
96 alphaClockReset function 63
97 alphaClockReset function 63
98 alphaClockReset function 64
99 alphaClockReset function 64
100 wefunction oo oL 64
101 wcfunction (ParExp) L 65

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

wefunction (NOT) . . . v v v o v o e e e e 65

we function (CallExp) 65
wcArgSeq function 66
we function (And) 66
wefunction (Or) e 67
we function (Implies) L L 67
wefunction (Iff) L 67
we function (GreaterThan) L Lo 68
wc function (GreaterOrEqual) L L oL L 68
we function (LessThan)o oo o L 69
wc function (LessOrEqual)o oo 69
we function (Equals) oL Lo 70
compileWC function 70
getClockReset function L L L 70
getClockReset function o 71
getClockReset function L L 71
compileWC function 72
compileWC function L 73
compileWC function L 74
compileWC function L Lo 75
compileWC function L 76
deadlineEvents function L Lo 77
triggerEvent function Lo 77
State-machine Memory L L 78
allTriggerDeadlineTransitions function 79
memoryTransition function Lo 79
Memory deadline Lo 79
Timed semantics of states 80
Timed semantics of simple states L. 81
Timed semantics of coOmposite States v v vt 82
Semantics of trigger deadlines L L L L L Lo 83
Timed composition of states Lo 83
Semantics of timed statements 84
Function usedVariables for timed semantics 84
Semantics of Deadlines L L L 84
Semantics of Wait L 84

138 Semantics of Clock Reset

Chapter 1

Introduction

The current practice of programming mobile and autonomous robots does not reflect the
modern outlook of their applications. Such practice is often based on standard state machines,
without formal semantics, to describe the robot controller only, with time and probabilistic
properties discussed in natural language. In the design stage, the state machine guides the

development of a simulation, but no rigorous connection between them is established.

In this report, we present a state-machine based notation, called RoboChart, for the specifi-
cation and design of robotic systems. State machines are frequently, though informally, used
in presenting and explaining the patterns of behaviours of particular robotic systems. These
extra constructs embed the notions of robotic platforms and their controllers; communication
between controllers can be synchronous or asynchronous. Besides state machines, RoboChart

includes elements to organise specifications, fostering reuse and taming complexity.

The state-machine notation is fully specified, including an action language and constructs to
specify timing and probabilistic properties. Operations used in a state machine can be taken
from a domain-specific API or defined by other state machines; communication between state

machines inside a controller is synchronous. Operations can be given pre and postconditions.

The time primitives of RoboChart allow time budgets and deadlines to be specified for opera-
tions and events directly as part of a state machine. Constraints can be specified in association
with the relative-time elapsed since the occurrence of events or the entering of states. Our

time primitives are inspired by constructs of timed automata [1] and Timed CSP [10].

UML [8] state machines are popular. RoboChart, however, is customised for robotic applica-
tions, via the extra notions of robotic platform, controller, and a specialised APL. Moreover,
RoboChart provides support for time and probabilistic specifications that to make it suitable

for verification and automatic generation of simulations.

In this report, we formalise the semantics of the core and timed constructs of RoboChart using

CSP [9]. Importantly, CSP is a front end for a mathematical model that supports a number

10

analysis techniques such as model-checking, which provide a high degree of automation, as well
as more powerful (but not automatic) verification based on interactive and theorem proving,
namely, Hoare and He’s Unifying Theories of Programming [7] (UTP). Use of CSP enables
model checking with FDR [5]. On the other hand, the underlying UTP model makes our

core semantics adequate for extension to deal with time [11] and probability [14].

Chapter 2 describes RoboChart models, and Chapter 3 defines their well-formedness condi-
tions. Chapter 4 presents their semantics of RoboChart in CSP. Chapter 5 describes the API
available for modelling robotic systems. Chapter 6 presents a number of models specified in

RoboChart. Finally, Chapter 8 concludes with a summary of the results and future work.

11

Chapter 2

Syntax

In this chapter, we first describe the metamodel of RoboChart. For an overview of the language

with an example, see Appendix ?2.

Sections 2? describes the features to define time properties. Finally, Section 2.1 describes the
RoboChart metamodel.

2.1 RoboChart metamodel

As explained above, a model is organised in packages, with their definitions shared using an im-
ports mechanism similar to that of Java. Figure 2.1 defines a RoboChart package RCPackage.
It has an optional name, and optionally imports other packages. All elements of a model are
defined in a package. So, an RCPackage can include declarations of types, interfaces, modules,

robotic platforms, controllers, and state machines.

The metamodel is automatically generated from a syntax definition. It includes a notion of a
MachineContainer, which, as the same suggests, can include a number of state machines. As
shown later in Figure 2.3, a controller, like an RCPackage, is also a MachineContainer. An

interface groups variableLists, operations, and events.

The structure of a module is detailed in Figure 2.2. It comprises a number of connection
nodes and connections. ConnectionNodes are elements that can be connected, namely, plat-
forms, controllers, and state machines. In the case of module, though, the connection nodes
cannot be state machines, and this is enforced via a well formedness condition presented in
the next chapter. The RoboticPlatform can be given by a RoboticPlatformDefinition or a by a

RoboticPlatformReference. The other forms of ConnectionNode are detailed in later diagrams.

Connections are between a source (from) and a target (to) node, and in a module they estab-

lish the relationship between a platform and its controllers. Connections are established via a

12

‘ 7Y ConnectionNode B Module

[0..*] nodes &3 connections : Connection
| EQ RoboticPlatform ‘ | EQ Controller | | EQ StateMachine [0..*] machines EQ MachineContainer |
|] |] |] |

[0..#]interfaces

[0..#] controllers E RCPackage

[0..*] rebots = name : EString
| H Interface ¢ imports : Import -

= variableList : | bleList Q 5t operations : Operation

E TypeDecl |:-r S : [0..#] modules
B operat nerat [0.*] types = functions : Function

= ayvent Event

0.%

Figure 2.1: Metamodel of RoboChart packages

source (efrom) and a target (eto) events. They can be asynchronous and bidirectional, as in-
dicated by the boolean attributes async and bidirec. An event may or not have a Type, which

defines the values that can be communicated via the connection, if any.

As mentioned before, a module gives a complete account of a robotic system. It defines a
robotic platform, or includes a reference to a platform defined elsewhere, to indicate the facil-
ities available. Modules associate their robotic platforms with particular controllers to specify
behaviour. RoboChart state machines are not designed to model parallel or distributed be-

haviours. These should be modelled at the level of controllers and modules.

The structure of a Controller is shown in Figure 2.3. It can be specified by a ControllerDefinition
or a ControllerReference, which just names a controller defined elsewhere. A ControllerDefinition

encapsulates any number of state machines and defines a Context.

The structure of a Context is detailed in Figure 2.4, but briefly it defines the variables, includ-
ing constants, operations, events, and provided, required, and defined interfaces of an element.
Defined interfaces of an element declare the variables and events that are used for the speci-
fication of its behaviour; they are possibly shared if several elements are used to specify that

behaviour. Well formedness rules establish the valid uses of interfaces in each element.

A Context is a BasicContext that has also interfaces. A BasicContext has Variables, Operations,
and Events. Variables are grouped in variable lists, with a modifier that indicates whether they

are constants or indeed variables. A Variable has a name, a Type, and an initial value.

13

[0.1] type

|. g Type | [0..] nodes H Module [0-*] connections _ [0. 1] eto g Event |
[0..1] efrom

— e —— = broadcast : EBoolean = false |

- [0..1] te

. ! 3
Ci L=
‘ 7 Conn o T from E Connection
L = async : EBoolean = false

= mult : EBoolean = false

‘ &5 RoboticPlatform

)

e

Figure 2.2: Metamodel of RoboChart modules

EE Context ‘ EE Controller |
£ wvariablel E leList
DI.:.-!'- perations - Operatior T

= pyents @ Event

| EE Machineetn e =t pinterfaces : Interface

&=t rinterfaces : Interface

|_ | =t interfaces : Interface

i}

-
: |5

[0..*] machines | B controllerDef | | H ControllerRef

| EE StateMachine |
I]

&2 connections : Connection | [0..1] ref [|

Figure 2.3: Metamodel of RoboChart controllers

Figure 2.4 also gives the metamodel for an Operation. It has an OperationSignature, which
defines its parameters, whether it terminates and its preconditions and postconditions. If there
is more than one precondition, the actual precondition of the operation is their conjunction.
If there is more than one postcondition, their disjunction is the actual postcondition. An

Operation can also be defined by a reference or by a StateMachineBody.

The metamodel of RoboChart state machines is similar to that of UML state machines. Fea-
tures that have been removed are parallel regions, history junctions, and interlevel transitions.
Whilst the state machines are designed with sequential control in mind, they may be in parallel
with other machines in the same controller and with other controllers. There is also space for

parallelism in the execution of during actions.

14

[0..*] operations @ BasicContext E Event |
i [0..*] variableList o [0-*levents | — proadcast : EBoolean = false
->
%5 Operation — = type: Type
g variableList
= modifier : EString -|—
¥ |
0.*]
[0..] vars 75 Context H Interface [OperationRef |
Fi E] Varisble [0..*] interfaces
J?: —Estring [0..#] pinterfaces
A o Jmodifier : EString [0..#] rinterfaces
[Operationsig = type: Type)
o terminates : EBoolean = false = initial : Expression

= parameters : Parameter - H stateMachineBody H operationDef
e [0..1] ref

= o .
&3 preconditions : Expression =
o0

&3 postconditions : Expression

&3 clocks : Clock

Figure 2.4: Metamodel of RoboChart context for elements and operations

The structure of a RoboChart state machine is shown in Figure 2.5. It can be specified by
a StateMachineReference or by a StateMachineDefinition. A definition gives a name to a
StateMachineBody, which, as already mentioned, describes a Context. A StateMachineBody
is a NodeContainer, which is composed a number of Nodes and Transitions. A State is a Node,

and can be final. a A Junction is also a Node and can be initial.

An initial node indicates where the execution of a state-machine starts, a connective node pro-
vides the means for structuring more complex path between nodes, and a final node indicates
the termination of the state-machine (or of the behaviour of a state). We note that a final
node is a state, as the machine can stay in a final node. An initial node, however, is actually a
junction, since a machine cannot remain in the initial node. A precise terminology is that the

initial state is the target of the only transition that can come out of an initial junction.

States are the main components of a state machine. A State has actions: entry, during, and exit
actions, executed in particular phases of its life-cycle. A State is also a NodeContainer, since it
can contain nodes and transitions supporting the hierarchical feature of state machines, where

composed states have a machine to define behaviour while in that state.

Transitions are directed connections between two nodes: a source and a target. They may be
triggered by an event, guarded by a condition, and contain an action that is executed when the

transition is taken. We can also specify start and end deadlines for a transition.

15

‘ @ StateMachine

'E Context

H stateMachineRef [0..1] ref [SstateMachineDef H stateMachineBody

o
———— 1 £ actions : Action

I i

‘ B Node [0-*]nodes | &9 nodecontainer

L]

5t clocks : Clock

[©..*] transitions

[0.1] target E Transition

[0..1] source =+ start : Expression

= trigger : Trigger

H Junction

| g Initial |
|) |) =+ action © Statement

| iy

| =+ end : Expression

= condition : Expression

Figure 2.5: Metamodel of RoboChart state machines

({Expression}>)? Trigger (<{Expression})? ([Expression])? (/Statement)?
Figure 2.6: Concrete syntax of transitions

The concrete syntax of transitions is shown in Figure 2.6. The first and second expression
are the start and end deadlines. The syntax of triggers is described in Figure 2.8. The third

expression is the transition conditions and the statement is the transition action.

A Trigger is defined in Figure 2.7. It has an event. It can be on its own, in which case we
have a SimpleTrigger. It, however, can also provide a synchronisation value (SyncTrigger) or

an output value (OutputTrigger), or yet take an input in a parameter variable (InputTrigger).

The concrete syntax of triggers is shown in Figure 2.8. It consists of an optional input, output,
sync or simple trigger, followed by an optional variable that record the time instant the trigger
occurs, and a (potentiall empty) list of clock resets. The concrete syntax of the different types

of triggers is shown in Table 2.1.

16

Q Trigger

%

H outputTrigger

=+ value : Expression

| [simpleTrigger

| B SyncTrigger | H InputTrigger

| | | =+ walue : Expression

=+ parameter : Variable

Figure 2.7: Metamodel of RoboChart triggers

(Input |Output|Sync|Simple)? (@Variable)? ClockReset*

Figure 2.8: Concrete syntax of triggers

Element Concrete Syntax Comment

Input Trigger (I) Event ? Variable | Receives any value from the event
and stores it on the variable.

Output Trigger (O) Event ! Expression | Sends the value of the expression
through the event.

Sync Trigger (Sync) Event . Expression | Synchronises on the event with the
value of the expression.

Simple Trigger (S) Event Synchronises on the event.

Table 2.1: Concrete syntax of triggers.

17

B Type

[0..1] domain

[0..1] range [0..1] domain
[0..1] domain [0..*] types
[0..1] domain

[0..1] range

[E RelationType] [B setType] [H FunctionType l [E TypeRef l [H ProductType] [E SeqType
L) () L J L J L J
J:ﬁ. 1] ref

[[
[B Enumeration] [B PrimitiveType] B DataType B TypeDed
(& constants : Constant |] £ felds : Field

Figure 2.9: Metamodel of RoboChart types

Element Concrete Syntax | Comment
Parenthesised Type (T)
Type Reference N N is the name of a declared type.
Product Type T1 * T2 Type of pairs whose first element has type T1
and second element has type T2.
Function Type T1 -> T2 Type of functions from T1 to T2.
Relation Type T1 <-> T2 Type of relations between T1 and T2.

Table 2.2: Concrete syntax of types

The metamodel for Types is given in Figure 2.9. As indicated, they include PrimitiveTypes,
given just by their names, Enumerations, records (DataType), sets, relations, functions, and
sequences (SetType, RelationType, and so on). A TypeDeclaration gives a name to type to be

used in TypeReferences. Table 2.2 gives the concrete syntax for the various type constructors.

Expressions include logical expressions of a first-order predicate calculus, and usual arithmetic
and relational expressions. We also have a LetExpression, an IFExpression, and expressions to
deal with tuples, enumerated types, function calls, and so on. Table 2.3 gives the concrete

syntax for expressions. We omit the simple metamodel diagrams here.

Similarly, the action language is very simple. Table 2.5 gives the concrete syntax of statements

used to define actions in states and transitions.

The time primitives are described separately in Figure 2.10. They are basically some extra ex-
pressions and statements. A ClockExpression since is a condition involving a clock. A State-

ClockExpression is a sinceEntry expression. A TimedStatement defines a deadline. A Wait

18

Element

Concrete Syntax

Comment

Integer (0..9)+

Float (0..9)+.(0..9)+

String nooun Quoted values

Boolean true | false

Reference N N is the name of a variable or constant.
Sequence <el,e2,...> Sequence with values ei.

Set {el,e2,...} Set with values ei.

Set Comprehension

{x:T | P @ e}

Set containing values e, calculated from
elements of type T, for which the predi-
cate P holds.

Interval [el,e2] or (e3,e4) Closed interval between el and e2, and
open interval between e3 and e4, or a
combination of both.

Tuple (lel,e2,...1) Tuple containing elements ei.

Array e[i] The i-th element of array e.

Selection e.n The n field of record e.

Negation -e Arithmetical negation of expression e.

Concatenation el~e2 Concatenate sequences el and e2.

Modulo el % e2 Remainder of dividing el by e2.

Division el / e2 Division of el by e2.

Multiplication el * e2 Multiplication of e1 by e2.

Sum el + e2 Sum of el and e2.

Subtraction el - e2 Subtraction of el and e2.

Conditional if ¢ then e else f end | If condition c is true, el else e2.

Local definition

let n == e @ f

Define locally n and use it to calculate £.

Definite description

the x: T | P @ e

The value e calculated based on the
unique x for which P holds.

Lambda expression lambda x: T | P @ e | The anonymous function that takes val-
ues of type T for which P holds, to values
e calculated based on x.

Equality el == e2 True if both expressions are equal.

Different el != e2 True if both expressions are different.

Greater than el > e2 True if el is greater than e2.

Greater than or equal to el >= e2 True if el is greater than or equal to e2.

Less than el < e2 True if el is less than e2.

Less than or equal to el <= e2 True if el is less than or equal to 2.

Table 2.3: Concrete syntax of expressions (1)

19

Element

Concrete Syntax

Comment

Logical not not e True if and only if e is false.

Logical and el /\ e2 True if and only if e1 and e2 are true.

Logical or el \/ e2 True if and only if at least one of the ex-
pressions 1s true.

Logical implies el => e2 Equivalent to 'not el \/ e2.

Logical iff el iff e2 Equivalentto el => €2 /\ e2 => el

Universal quantifier

forall x: T | P @Q

True if and only if for all elements of T, if
P is true, then e is true.

Existential quantifier

exists x: T | P @ Q

True if and only if there is an element of
T, for which P is true and Q is true.

Uniqueness Existen-

tial quantifier

existsl x: T | P @ e

True if and only if there is a unique ele-
ment of T, for which P and Q are true.

Table 2.4: Concrete syntax of expressions (2)

Element Concrete Syntax Comment

Skip skip Statement that terminates immediately.

Call o(etl,e2,...) Calls operation o with parameters ei.

Conditional if ¢ then S1 else 82 end | If c is true, execute S1, otherwise execute
S2.

Assignment x=e Assign expression e to variable x.

Output event evle Output value e through channel ev.

Input event ev?x Receive value through channel ev and
store it in variable x.

Synchronisation ev.e Synchronise on value e through channel
ev.

Synchronisation ev Synchronise on event ev.

Sequential com- S1;82 Execute S1, and then S2.

position

Table 2.5: Concrete syntax of statements

20

EB Expression

@ Statement

‘ % | [0..1] deadline ﬁ—“ |
Q ClockExp Q StateClockExp Q TimedStatement | Q Wait | | E! ClockReset
))
’ [0..1] duration
E clock EE State [0..1] deadline (] Transition [Trigger
)
[}
Figure 2.10: Metamodel of RoboChart time primitives
Element Concrete Syntax | Comment
Clock Expression since(C) Expression counting elapsed time since
the last reset of clock C.
State Clock Expression sinceEntry(S) | Expression counting elapsed time since
entry of state S.
Timed Statement S<{e} Statement S is required to terminate
within e time units.
Wait wait (e) Waits for e units of time.
Clock Reset #C Resets clock C.
Transition Trigger deadline t<{e} Transition trigger t is required to take

place within e units.

Table 2.6: Concrete syntax of time primitives

and ClockReset are also statements. Finally, a Transition possibly includes a deadline, and its

Trigger may have a ClockReset. Table 2.6 gives the concrete syntax.

This section has given a diagrammatic overview of the metamodel. A textual representation

that specifies all the details is presented in Appendix A.

21

Chapter 3

Well-formedness Conditions

The metamodel presented in the previous chapters defines models that are not meaningful. A
model is characterised by a module definition, and all other definitions used there, directly or
indirectly. We now define a number of well-formedness conditions for a model. They encode

restrictions that are necessary for an adequate semantics to be defined.

Well formedness requires well typedness. Here, however, we do not focus on this aspect, except
where this is not standard for an expression or statement. The type system of RoboChart is

the type system of Z[12].

We present the conditions related to each of the elements of the core language in Section 3.1.
We also provide here justifications for the restrictions. We follow that with conditions on
the timed language in Section 3.2. Finally, in Section ??, we provide a formalisation of all

conditions using the Z notation of axiomatic descriptions [12].

3.1 Core Language

o

3.1.1 "& Robotic Platforms
® Robotic platforms cannot require interfaces.
¢ Defined interfaces can only have events

¢ The names of variables, operations, and events are unique to the platform.

We note that variables and operations declared directly in the platform, outside an interface,
are considered as if declared in a provided interface, for the reasons already explained above.

Events declared directly in the platform, on the other hand, are defined.

22

3.1.2 C] Interfaces

e Provided and required interfaces contain only variables and operations
¢ Defined interfaces contain only variables and events

e Names of variables, events and operations are unique.

3.1.3 Modules

¢ A module must contain exactly one robotic platform and at least one controller.

e All variables and operations required by the module’s controllers must be provided by

the platform.

314 } Connection

Both modules and controllers contain connections. Their conditions restric the types of the
connected elements, the nature of the connection, and the types of the associated events, which

must be the same.

Connections of a module must associate only events of the robotic platform and its

controllers.

Connections involving a robotic platform are always asynchronous.

Connections of a controller must associate only its events and those of its state machines.

Only events of the same type may be connected.

3.15 O<8 Controllers

® A controller must contain at least one state machine.
¢ Controllers cannot provide variables or operations to other controllers.

¢ Operations cannot not be required by a controller, but those required by its state ma-

chines must be fully defined within the controller.

23

All variables required by the controller’s state-machines must be provided or required

by the controller.

All operations required by the controller’s state-machines must be required or defined

by the controller.

Operations cannot not be required by a controller, but those required by its state ma-

chines must be fully defined within the controller.

All variables required by the controller’s state-machines must be provided or required

by the controller.

All operations required by the controller’s state-machines must be required or defined

by the controller.

The names of variables, operations, and events are unique to the controller.

Variables and events declared directly in the controller are considered as part of a defined

interface.

3.1.6 &g State Machines

State machines cannot have provided interfaces

Operations in state machines can only be required, not defined.
Every state machine must have exactly one initial junction.
State machines must contain at least one state.

The names of variables, operations, and events are unique to the machine.

Like for controllers, variables and events declared direcly, outside of an interface, in a state

machine are regarded as part of a defined interface.

3.1.7 D States

If a state has a non-empty set of nodes, then conditions 3 and 4 of state machines apply.

A state has at most one of each type of action: entry, during, and exit,

24

3.1.8 6 Initial junctions
¢ An initial junction does not have incoming transitions.
¢ An initial junction must have exactly one outgoing transition.

¢ All junction conditions apply.

3.1.9 . Junction

® A junction must contain at least one outgoing transition.
® The guards of the transitions out of a junction must form a cover.

e Transitions starting in junctions cannot have triggers.

3.1.10 @ Final states

e Final states cannot be the source of transitions.

3.1.11 > Transitions

® The source and target of a transition must belong to the same container.

3.1.12 O Operations

e All state-machine conditions apply to operation definitions.

3.2 Timed Language

3.2.1 Timed Expressions
¢ Expressions involving since(C) and sinceEntry(S) are only permitted in transition guards.

¢ The clock C in an expression since(C) may only reference a clock declared within the

expression’s containing state-machine.

25

e The state S in an expression sinceEntry(S) may only reference a state within the contain-
ing expression’s state-machine. When the name S is ambiguous, because, for instance,
there is a state and a substate with the same name in the state machine, the fully qualified

name of the state S must be used.

¢ The expressions since(C) or sinceEntry(S) may only be compared with a constant ex-
pression, and only when using one of the following operators: >, <, >=, <=, ==. A
consequence of this restriction is that no expression can compare the value of two clocks

as given by since(C) or sinceEntry(S).

3.2.2 Timed Statements

* A clock reset #C may only reference a clock declared within the action’s containing

state-machine, or in the case of a trigger, within the trigger’s containing state-machine.

26

Chapter 4

Semantics

For the purpose of this semantics, the functions vid, eventld, tid and id calculate unique iden-
tifiers for their parameters, which are, respectively, variables, events, transitions and node
containers (states and state machines). One possible implementation of such functions is to

calculate the qualified name, and this is the implementation realised by RoboTool.

Additionally, in the semantics the set of events Event contains an event internal__, that cor-
responds to the event of a triggerless transitions. In the implementation RoboTool, this is
represent in the trigger by a null value, and the semantic rules have been adapter to handle it

appropriately.

Finally, we assume the existence of a function that takes an expression and returns the set of

variables used in that expression.

27

4.1 Detailed Semantics: Core Language

4.1.1 Modules

Rule 1. Semantics of modules
[m : Module]rq : CSPProcess =

I ¢: asyncs e buffer! (c)

|levasyncs]|

modMemory' (m)

@{em{_}Skip

[memoryChannels’ (m)]|

composeControllers' (m, rp, ctrls, cons)

\ (evasyncs L memoryChannels”(m))

\ {end__}

where

rp = m.roboticPlatform

ctrls = m.controllers

cons = m.connections

asyncs = {c : cons | c.async A {c.from,c.to} Z RP}

evasyncs = {c : asyncs e eventld(c.eto,c.to)} U

{c : asyncs e eventld(c.efrom, c.from)}

Rule 2. Memory channels
memoryChannels(m : Module) : ChannelSet =

{v : allLocalVariables' (rp) e set_vid(v)}U
| J{c : m.controllers {v : requiredVariables' (c) o set_EXT _vid(v)}}

28

Rule 3. Function allVariables
allVariables(c : Context) : Set(Variable) =

J{I : c.variableList o l.vars} U
U{i : c.PInterfaces o | J{I : i.variableList o l.vars}} U
J{i : c.RInterfaces o [J{I : i.variableList o |.vars}}

Rule 4. Function requiredVariables
requiredVariables(c : Context) : Set(Variable) =

(J{i : c.RInterfaces e [J{I : i.variableList o |.vars}}

Rule 5. Function allLocalVariables
allLocalVariables(c : Context) : Set(Variable) =

J{! : c.variableList o l.vars} U (J{i : c.PInterfaces e [J{l : i.variableList e |.vars}}

29

Rule 6. Module Memory
modMemory(c : Module) : CSPProcess =

let Memory(vars)=0Owv : lvars e ser_vid(v, rp)?x —
(s ¢ : rcontrollers(v) e ser_Ext_vid(v. c)lx — Skip); Memory(varsiname(v) :
within Memory(varvalues)

)

where

rp = roboticPlatformDefinition(m)

ctrls = m.controllers

lvars = allLocalVariables®(c)

vars = (v : Ivars e name(v))

varvalues = (v : lvars e initial(v))

rcontrollers = A v e {c: ctrls | v € requiredVariables®(c)}

The function initial picks an initial value of the appropriate type for a variable. If the variable

defines an initial value, this value is used.

30

Rule 7. Composition of controllers
composeControllers(m : Module, rp : RoboticPlatform,

ctrls : Seq(Controller), cons : Set(Connection)) : CSPProcess =

if#ctrls = 1
then

renamingController! (head ctrls, cons)

else

renamingController? (head ctrls, cons)

[[connevts||

composeControllers®(m, rp, tail ctrls, cons)

where

connevts = renCtrlEvts' (head ctrls, cons) N

| {c : tailctrls o renCtrlEvts? (c, cons)}

Rule 8. Renaming controller
renamingController(c : Controller, cons : Set(Connection)) : CSPProcess =

8 {x : internalConns U fromPlatform e eventld(e.eto) < eventld(e.efrom)}
¢’ || U{x: toPlatform e eventld(e.efrom) < eventld(e.eto)}

where

internalConns = {x : cons e {x.from, x.to} C Controller A = x.async A ¢ € {x.from,x.to}}

toPlatform = {x : cons e x.from = ¢ A x.to € RoboticPlatform}

fromPlatform = {x : cons e x.to = ¢ A x.from € RoboticPlatform}

31

Rule 9. Renaming controller events
renCtrlEvts(c : Controller, cons : Set(Connection)) : ChannelSet =

{x : internalConns e eventld(e.efrom)} U {end__}

where

internalConns = {x : cons e {x.from, x.to} C Controller A = x.async A ¢ € {x.from,x.to}}

Rule 10. Buffer
buffer(c : Connection) : CSPProcess =

if c.efrom.type # null
then
let Buffer(())=eventld(c.efrom)?x — Buffer((x))
Buffer((v))=eventld(c.efrom)?x — Buffer((x)) O eventld(c.eto)lv — Buffer(())
within Buffer(())
else
let Buffer(false)=eventld(c.efrom) — Buffer(true)
Buffer(true)=eventld(c.efrom) — Buffer(true) O eventld(c.eto) — Buffer(false)
within Buffer(false)

32

4.1.2 Controllers

Rule 11. Semantics of controllers
[c : ControllerDef]¢ : CSPProcess =

composeMachines' (¢, ms, cs) hvars
[Ivars U rvarg| \[U O (end__ySkip
ctrlMemory' (c) rvars

where

ms = c.machines

¢cs = c.connections

lvars ={]v : allLocalVariables®(c) eset_vid(v,c) [}

rvars —{Jv : requiredVariables® (c) eset_Ext_vid (v, c)[}

hvars = {v : allLocalVariables® (c) eset_vid(v,c) JU

v : allLocalVariables® (¢) eget_vid(v, ¢
8

33

Rule 12. Controller Memory
ctrlMemory(c : ControllerDef) : CSPProcess =

Oo: lvars e set_vid(v,c)?x —
(s m : rmachines(v) e set_Ext_vid(v, m)lx — Skip);

Memory(varsiname(v) := x|)

let Memory(vars)=| O
Ow : rvars e set_Ext_vid(v,c)?x —
(s m : rmachines(v) e set_Ext_vid(v, m)lx — Skip);

Memory(varsiname(v) := x|)

within
Memory(varvalues)
where

ms = c.machines

lvars = allLocalVariables®(c)

rvars = requiredVariables” (c)

vars = (v : rvars U Ivars @ name(v))

varvalues = (v : rvars U lvars e initial(v))

rmachines = A\v e {m : ms | v € requiredVariables®(m)}

34

Rule 13. Composition of machines
composeMachines(c : Controller, ms : Seq(StateMachine), cons : Set(Connection)) :
CSPProcess =

if#ms =1
then

renamingMachine’ (head ms, cons)

else

renamingMachine? (head ms, cons)

[[connevts||

composeMachines?(c, tail ms, cons)

where

connevts = renStmEvts' (head ms, cons, ¢) M [J{m : tail ms e renStmEvts®(m, cons, c)}

Rule 14. Renaming state machine
renamingMachine(m : StateMachine, cons : Set(Connection)) : CSPProcess =

[m]
STM!

where

{x : internalConns U fromController e eventld(e.eto) « eventld(e.efrom)}
U{x : toController e eventld(e.efrom) < eventld(e.eto)}

internalConns = {x : cons e {x.from, x.to} C StateMachine A m € {x.from,x.to}}

toController = {x : cons e x.from = m A x.to € Controller}

fromController = {x : cons e x.to = m A x.from € Controller}

35

Rule 15. Renaming machine events
renStmEvts(m : StateMachine, cons : Set(Connection)) : ChannelSet =

{x : internalConns e eventld(e.efrom)} U {end__}

where

internalConns = {x : cons e {x.from, x.to} C StateMachine A m € {x.from,x.to}}

4.1.3 State machines

Rule 16. Semantics of state machine
[stm : StateMachineDef] sy : CSPProcess =

initialisation® (stm)

[[flowevts]|

composeStates' ((x : stm.nodes | x € State), stm)

\ {enter, entered, exit, exited|}

[getsetChannels' (stm) U trigEvents’ (stm)]|

stmMemory' (stm)

\ getsetLocalChannels' (stm) U {Jinternal [}
@{end_}SkiP

where

flowevts =

[J{x : SIDS \ substates' (stm); y : substates’ (stm) o {lenter.x.y, entered.x.y, exit.x.y, exited.x.y |}

Rule 17. Function substates
substates(n : NodeContainer) : Set(State) =

x.nodes N (State U Final)

36

Rule 18. Initialisation
initialisation(n : NodeContainer) : CSPProcess =

if (#n.nodes > 0) then
[et : Transition | t.source = (ux : n.nodes | x € Initial), n, true]

Skip,Skip
T/

else Skip

Rule 19. Get and Set channels
getsetChannels(s : StateMachineDef) : ChannelSet =

{lv : allVariables' (s) o get_vid(v)[} U {v : allVariables®(s) e set_vid(v)[}

Rule 20. Composition of states
composeStates(ss : seq State, p : NodeContainer) : CSPProcess =

if#ss =1
then

restrictedState’ (p, head ss)

else
restrictedState” (p, head ss)
|[shflowevts|| \ shflowevts
composeStates” (tail ss, p)
where

shflowevts = flowEvents® (headss, p) M| J{x : tail ss e flowEvents®(x, p)}

37

Rule 21. Trigger events
trigEvents(s : StateMachineDef) : ChannelSet =

{t : allTransitions' (s) e triggerEvent' (t.trigger, id(t))[}

Rule 22. Get and set local channels
getsetLocalChannels(s : StateMachineDef) : ChannelSet =

{lv : allLocalVariables’(s) e get_vid(v)[} U {v : allLocalVariables®(s) e set_vid(v)[}

U{v : requiredVariables®(s) get_vid(v)[}

Rule 23. Flow events
flowEvents(s : State, p : NodeContainer) : ChannelSet =

|) {x: substates®(p); y : {id(s)} o

enter.y.x, entered.y x, exit.y.x, exited.y x,

enter.x.y, entered.x.y, exit.x.y, exited.x.y,

I8

Rule 24. Semantics of states
[s : State]s : CSPProcess =

This function is split in multiple rules according to the type of states.

38

Rule 25. Semantics of simple states
[s : State]s : CSPProcess =

let
Inactive=enter?x : sidslid(s) — Activating(x)
Activating(o)=|[s.entry] . initialisation?(s); entered!olid(s) —
Action’
([s-during] ; Stop) A
Aection”

Inactive,Activating

7‘;7

Ot : transitionsFrom' (s) e [t, s, false]

O
Oe: Event o if(e.type == null)

then eventld(e)?x : tids — exit; Inactive

else eventld(e)?x : tids?y — exit; Inactive
within
Inactive

where

#substates®(s) = 0

flowtrigevts — flow TriggerEvents' (s)
sids =SIDS \ {id(s)}

exit —exit?x : sidslid(s) — exitSubstates’ (s); [s.exit] exited!xlid(s) — Skip
Action’ T

tids =TIDS \ tIDS(s)

39

Rule 26. Semantics of composite states
[s : State]s : CSPProcess =

let
Inactive=enter?x : sidslid(s) — Activating(x)
Activating(o)=|[s.entry] . initialisation®(s); entered!olid(s) —
Action*
([s-during] ; Stop) A
Aection®

Inactive,Activating

7‘3

Ot : transitionsFrom?(s) e [t, s, false]

O
Oe: Event o if(e.type == null)

then eventld(e)?x : tids — exit; Inactive

else eventld(e)?x : tids?y — exit; Inactive

within

(Inactive |[flowtrigevts]| composeStates® (substates® (s), s)) \ flowtrigevts

where

#substates®(s) > 0

flowtrigevts = flow TriggerEvents? (s)
sids =SIDS \ {id(s)}

exit —exit?x : sidslid(s) — exitSubstates?(s); [s.exit] - exited!x!id(s) — Skip

Action®

tids =TIDS \ tIDS(s)

Rule 27. Semantics of final states
[s : Final]s : CSPProcess =

if (parent(s) € StateMachine)

enter?x : sidslid(s) — entered!x!id(s) — | then end__ — Skip

else Stop

40

Rule 28. Synchronisation events between parent state and substates
flow TriggerEvents(s : State) : ChannelSet =

({e : Event; t : TIDS e e.t]} \ substatesTriggers'(s)) U

LJ{x: SIDS \ substates’ (s); y € states(s) e{lenter.x.y, entered.x.y, exit.x.y, exited.x.y[} }

Rule 29. Triggers of substates
substatesTriggers(s : State) : ChannelSet =

{t : allTransitions?(s) e triggerEvent? (t.trigger, id(t))}

Rule 30. Restricted semantics of states
restrictedState(p : NodeContainer,s : State) : CSPProcess =

[s] |[all_other_transitions_S \ all_transitions_PS || Skip
S/

where

tidsfromwithin = {t : transitionsFrom®(s) U allTransitions®(s) id(t)}
all_other_transitions_S = {e : Event; tid : TIDS \ tidsfromwithin e eventld(e).tid }
all_transitions_PS = {e: Event; tid : TIDS e eventld(e).tid}

\{t : allTransitions*(p) e eventld(t.trigger.event).id(t)}

41

Rule 31. Semantics of transitions
[t : Transition, origin : NodeContainer, initial : booleanﬂ?ﬁQ: CSPProcess =

if src € State

]]id(t> ; exitlid(src)lid(src) — exitSubstates® (src); [src.exit] ;
Trigger! Action”

[t.trigger

exited!id(src)lid(src) — [t.action] ; compileTarget’ (tgt, src, false, P, Q)
Aection?

else if src € Initial

[[t.trigger]]id(t> ; [t.action] : compileTarget?(tgt, parent(src), true, P, Q)
Trigger’ Action?

else if src € Junction

[[t.trigger]]'d<t) ; [t.action] ; compileTarget®(tgt, origin, initial, P, Q)
Trigger’ Action’?

where
src = t.source

tgt = t.target

Rule 32. Compile target
compileTarget(tgt : Node, o : NodeContainer, i : boolean, P : CSPProcess, Q : CSPProcess) :
CSPProcess =

if (tgt € State) then
if (tgt = o) then enterlid(o)lid(tgt) — Q

else enterlid(o)!id(tgt) — entered!id(o)!id(tgt) —
else P

if (i) then Skip)

elseif (tgt € Junction) then

O{t: transitionsFrom4(tgt) e [t,o, i]]P’Q}
T4

42

Rule 33. Exit substates
exitSubstates(s : NodeContainer) : CSPProcess =

exitlid(s)?z : {x : substates®(s) e id(x)} — exited!id(s)!z — Skip

Rule 34. State-machine Memory
stmMemory (s : StateMachine) : CSPProcess =

let Memory(vars)=
get_vid(v,s)lname(v) — Memory(vars)

Ov:lvarse | O
set_vid(v,s)?x — Memory(varsiname(v) := x|)

O
Oo:rvars e
get_vid(v,s)lname(v) — Memory(vars)
O
set_vid(v.s)?x — Memory(varsname(v) := x|)
O
set_Ext_vid(v.s)?x — Memory(varsiname(v) := x|)

O

O¢ : allTransitions® (s) @ memoryTransition® (. Memory(vars))

within
Memory(varvalues)

where

rvars = requiredVariables’ (s)

lvars — allLocalVariables®(s)

vars = (v : rvars U Ivars e name(v))

varvalues = (v : rvars U lvars e initial(v))

43

Rule 35. Semantics of triggers

[t: Triggerﬂt}iqger : CSPProcess =

if t.event.type # null

id(t.event).tid?x__ — set_vid(t.parameter)!x__ — Skip
else
id(t.event).tid — Skip

Rule 36. Event for transition trigger
triggerEvent(t : Trigger, tid : TIDS) : CSPEvent =

id(t.event).tid

Rule 37. Memory transitions
memory Transition(t : Transition, P : CSPProcess) : CSPProcess =

if (t.condition # null) then

t.condition & [t.trigger id () ;P
([[) g8
Expr! Trigger”

else
[[t.triggerﬂ'd(t) ; P

Trigger®

Rule 38. Function transitionsFrom
transitionsFrom(s : State) : Set(Transition) =

{t : parent(s).transitions | t.source =s e t}

44

Rule 39. Function allTransitions
allTransitions(s : State) : Set(Transition) =

s.transitions U [J{x : s.nodes | s € State e allTransitions®(x)}

Rule 40. Function allSTMTransitions
allSTMTransitions(s : StateMachineDef) : Set(Transition) =

s.transitions U | J{x : s.nodes | s € State o allTransitions’ (x)}

4.1.4 Statements

Rule 41. Semantics of statements
[s : Statement]statement : CSPProcess =

This rule is split in multiple rules according to the subtype of the statement.

The semantics of statements, in general, has the format
get_x17x1 — ... — get_x,7x, — P

where the channels get_x; read values from the memory and the process P models the actual
statement. The input events get_x;?x; build a context where all the state components used in

the expressions of the statement are declared. The process P is then run on this context.

In order to simplify our semantic rules, we use the following function that helps in building

the context.

45

Rule 42. Read state of an expression
readState(vs : seq(Variable),P : CSPProcess) : CSPProcess =

if (#£vs = 0) then
P

else

get_vid(head vs)?(head vs).name — readState’ (tail vs, P)

This function reads a list of state variables and executes a process in that context. The variables
must be read in sequence so that the final process can be executed in the full context. The
order in which the variables are read is not important because the memory is always prepared

to respond to a get event.

We define the function []susementinContexs t0 separate the application of readState from the
core semantics of the statement given by the rule [_]suemens- We additionally use the function
used Variables that takes a statement and calculates the set of variables used by the expressions

in the statement.

Rule 43. Semantics of statements in context
[s : Statement] ssatementznContext : CSPProcess =

readState” (usedVariables' (s), [s]

Statement?!

46

Rule 44. Function usedVariables
usedVariables(s : Statement) : CSPProcess =

if s € Assignment then
usedV(s.right)
elseif s € Callthen
(J{x : s.args e usedV(x)}
elseif s € IfStatement then

usedV (s.expression)
elseif s € SendEvent A s.trigger.type € {SYNC, OUTPUT} then
usedV(s.trigger.value)

else

0

Rule 45. Semantics of assignment
[s : Assignment]siatement : CSPProcess =

set_vid(s.left)![s.right] — Skip
- Expr?

47

Rule 46. Semantics of call statement
[s : Call]statement : CSPProcess =

op.nameCall — body; op.nameRet — Skip
where

op = s.operation

opdef = findOperationDefinition(op)
if (opdef = null) then
(Skip 1 Stop)
else ;

[opdef] ({x:sargse[x] })
STM”? Expr’d

body =

Rule 47. Semantics of if statements
[s : IfStatement] statement : CSPProcess =

if [s.expression]
Expr?

then [s.then]
StatementInContext’

elseif (s.else # null) then [s.else] else Skip

StatementInContext”

48

Rule 48. Semantics of send event statements
[s : SendEvent]stutement : CSPProcess =

if (type = INPUT) then
eventld(event)?par.name — set_vid(par)!par.name — Skip
if (type = OUTPUT) then

eventld(event)![value] — Skip
- Expr®
if (type = SIMPLE) then

eventld(event) — Skip

else

eventld(event).[value] — Skip
. Exprt

where
type = s.trigger.type
event = s.trigger.event

value = s.trigger.value

par = s.trigger.parameter

Rule 49. Semantics of sequential composition
[s : SeqStatement]statement : CSPProcess =

g {x : s.statements e [X]
StatementInContext’

Rule 50. Semantics of skip
[s : Skip] statement : CSPProcess =

Skip

49

Rule 51. Semantics of actions
[a : Action] gction : CSPProcess =

[a.action]
StatementInContext”

4.1.5 Expressions

Rule 52. Semantics of expressions
[s : Expression] g,y : CSPExpression =

This rule is split in multiple rules according to the subtype of the expression.

Rule 53. Semantics of and expression
[s : And]gspr : CSPExpression =

[s.left] A [s.right]
Expr” Expr?

50

Rule 54. Semantics of array expression
[s : ArrayExp]eapr : CSPExpression =

[s.value] ({p : s.parameters o [p]
gxprf) gmrm

Rule 55. Semantics of boolean expression
[s : BooleanExp] gxpr : CSPExpression =

if (s.value = TRUE) then true else false

51

Rule 56. Semantics of call expression
[s : CallExp]gxpr : CSPExpression =

if (name = ‘size‘ A (head s.args hastype SetType)) then
card([heads.args])
Expr!!
elseif (name = ‘size’ A\ (head s.args has type SeqType)) then

length([head s.args|)
SXPT’/X

else

name({a : s.args e [a]
Expr’?

where

name = s.function.name

Rule 57. Semantics of concatenation expression
[s : Cat]gapr : CSPExpression =

[s.left] ™ [s.right]
gx—pr/‘f K‘:.Xp?"/b

Rule 58. Semantics of not equal expression
[s : Different] gy : CSPExpression =

[s.left] # [s.right]

Expr!6 Expr!”

52

Rule 59. Semantics of division
[s : Div] gxpr : CSPExpression =

[s.left] /[s.right]

Expr’? Expr’?

Rule 60. Semantics of equality
[s : Equals]gxpr : CSPExpression =

[s.left] = [s.right]
gxpr;)() g{t—pr;’/

Rule 61. Semantics of greater or equal expression
[s : GreaterOrEqual] gy, : CSPExpression =

[s.left] > [s.right]
Expr”? Expr??

Rule 62. Semantics of greater than
[s : GreaterThan]g.y,, : CSPExpression =

[sleft] > [s.right]

Expr?t

o5

Expr®

53

Rule 63. Semantics of if and only if expression
[s : ff]gapr : CSPExpression =

[s.left] & [s.right]
Expr?6 Expr?”

Rule 64. Semantics of implication
[s : Implies]gypr : CSPExpression =

[s.left] = [s.right]

Expr?s 29

Expr

Rule 65. Semantics of integer expression
[s : IntegerExp]eapr : CSPExpression =

s.value

Rule 66. Semantics of less or equal expression
[s : LessOrEqual]gspr : CSPExpression =

[s.left] < [s.right]
(c/'Xprﬁ(J Expr”

54

Rule 67. Semantics of less than
[s : LessThan] gy : CSPExpression =

[s.left] < [s.right]

Expr- Expr3?

Rule 68. Semantics of minus
[s : Minus] gxp : CSPExpression =

[s.left] — [s.right]
Exprt Expr?

Rule 69. Semantics of modulus
[s : Modulus] gxpr : CSPExpression =

[s.left] mod [s.right]
Expro Expr”

Rule 70. Semantics of multiplication
[s : Mult]gspr : CSPExpression =

[s.left] X [s.right]

SXP?" 6 39

Expr

55

Rule 71. Semantics of arithmetic negation
[s : Neg]eapr : CSPExpression =

—[s.exp]
Expr??

Rule 72. Semantics of logical negation
[s : Not]gpr : CSPExpression =

- [s.exp]
Exprt/!

Rule 73. Semantics of or expression
[s : Or]gxpr : CSPExpression =

[s.left] V [s.right]
Exprt’ Expr??

Rule 74. Semantics of parenthesised expression
[s : ParExp]cxpr : CSPExpression =

([s-exp])

Expr
where

56

Rule 75. Semantics of plus
[s : Plus]gxpr : CSPExpression =

[s.left] + [s.right]

Expr# Expr#o

Rule 76. Semantics of range expression
[s : RangeExp]gpr : CSPExpression =

{x: N | [s.Irange] rell x A xrel2 [s.rrange] }
Exprt’” Expr??

where
rell = if (e.linterval =/) then <
rel2 = if (e.linterval = /) then > else >

A

else

Rule 77. Semantics of sequence expression
[s : SeqExp]expr : CSPExpression =

{{x : s.values o [x]
gk‘p?”/‘”

Rule 78. Semantics of set expression
[s : SetExp]gapr : CSPExpression =

{{x : s.values o [x]
SXP‘V“,)”

57

Rule 79. Semantics of tuple expression
[s : TupleExp]gapr : CSPExpression =

({x : s.values o [x] 1)

51

Expr®!

4.2 Detailed Semantics: Timed Language

The semantics of modules and controllers is the same as the untimed semantics. Here we de-
scribe the rules of the timed semantics to accommodate the timed constructs of RoboChart,
namely clocks and deadlines over triggers and actions. The untimed semantics of state ma-
chines and states is largely reused, and so we present the rules by focusing on the changes

required to accommodate the timed semantics.

4.2.1 State machines

The semantics of state machines is changed to cope with clocks and trigger deadlines, while
the semantics of actions is changed to accommodate Wait and deadlines on actions. Clocks
are not modelled explicitly, instead for each transition whose trigger is guarded by an expres-
sion using since(C) or sinceEntry(S) we model the timed part of such an expression explicitly
using additional CSP processes. Their semantics, which is described in the sequel, is given

for a state machine as stmClocks(stm, wcs), which relies on the calculation of wcs, a partial

function form transitions to pairs, where the first component is the guard with occurrences
of since(C) and sinceEntry(S) replaced by a fresh boolean variable, and whose second compo-
nent is a partial function from the original expression to the fresh boolean variable. Because an
expression involving clocks can also depend on the value of other variables, the memory pro-

cess stmMemory(stm, wes) also takes wcs as a parameter. Finally, compared with the untimed

semantics of a state machine, the hiding on entered events is moved to the outer composition
of the memory and the states as sinceEntry(S) conditions require the clocks to observe entered

events.

58

Rule 80. Semantics of state machine
[stm : StateMachineDef] sy : TimedCSPProcess =

initialisation” (stm)

[[flowevts]|

composeStates”((x : stm.nodes | x € State), stm)

\ {enter, exit, exited|}

|getsetChannels®(stm) U trigEvents®(stm) U clockResets' (wcs) L deadlineEvents’ (stm)]|

(stmMemory (stm, wcs) |[clockMemSync]| stmClocks' (stm))

\ (clockMemSync \ trigEvents®(stm))

\ getsetLocalChannels? (stm) U clockResets” (stm) L deadlineEvents” (stm) U {Jinternal__, entered|}

C] {end__} S/ezp

where

wes = {t : allSTMTransitions' (stm) | t.condition # null e t — wc(t.condition)}

{lt - Transition | t € dom wcs e triggerEvent® (t)[}

clockMemSync =| U
{lv : allClockVariables' (wcs) o set WC_vid (v)[}

flowevts =

|J{x : SIDS \ substates’(stm); y : substates'?(stm) e {lenter.x.y, entered.x.y, exit.x.y, exited.x.y[} }

Clocks

Functions related to clocks are formalised in this section.

Rule 81. allClockVariables function
allClockVariables(wcs : Transition + (Expression, WC)) : P Variable

allClockVariables(wcs) =

{t : Transition, e : Expression, v : Variable | t € domwcs A (e — v) € mo(wes(t)) o v}

59

Rule 82. clockResets function
clockResets(wces : Transition -+ (Expression, WC)) : ChannelSet

t : Transition, e : Expression, v : Variable |

clockResets(stm) = | J{ t € domwcs A (e = v) € ma(wes(t))

e alphaClockReset' (e)

Rule 83. stmClocks function
stmClocks(wcs : Transition + (Expression, WC)) : TimedCSPProcess =

|| (¢,e,v) : {t : Transition, e : Expression, v : Variable | t € domwcs A (e — v) € ma(wes(t))}
o [@WC(t,e,v)]| compileWC(t,e,v)

where

aWC(t, e,v) ={triggerEvent?(t),set WC_vid(v)[} U alphaClockReset? (e)

Rule 84. alphaClockReset function
alphaClockReset(e : Expression) : ChannelSet =

This rule is defined by multiple rules according to the subtype of the expression:
(85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97).

Rule 85. alphaClockReset function
alphaClockReset (e : ParExp) : ChannelSet =

alphaClockReset(e) = alphaClockReset?(e.exp)

60

Rule 86. alphaClockReset function
alphaClockReset (e : Not) : ChannelSet =

alphaClockReset(e) = alphaClockReset” (e.exp)

Rule 87. alphaClockReset function
alphaClockReset(e : CallExp) : ChannelSet =

alphaClockReset(e) = alphaClockResetCallArgs’ (e.args)

Rule 88. alphaClockResetCallArgs function
alphaClockResetCallArgs(s : seq Expression) : ChannelSet =

if #(s) > 0then
alphaClockReset® (head(s)) U alphaClockResetCallArgs® (tail(s))

else

0
endif

Rule 89. alphaClockReset function
alphaClockReset(e : And) : ChannelSet =

alphaClockReset(e) = alphaClockReset® (e.left) L alphaClockReset’ (e.right))

61

Rule 90. alphaClockReset function
alphaClockReset(e : Or) : ChannelSet =

alphaClockReset(e) = alphaClockReset® (e.left) L alphaClockReset’ (e.right))

Rule 91. alphaClockReset function
alphaClockReset(e : Implies) : ChannelSet =

alphaClockReset(e) = alphaClockReset'"(e.left) U alphaClockReset! (e.right))

Rule 92. alphaClockReset function
alphaClockReset(e : Iff) : ChannelSet =

alphaClockReset(e) = alphaClockReset'?(e.left) U alphaClockReset!® (e.right))

Rule 93. alphaClockReset function
alphaClockReset(e : GreaterThan) : ChannelSet =

alphaClockReset(e) = alphaClockReset!* (e.left) U alphaClockReset'® (e.right))

62

Rule 94. alphaClockReset function
alphaClockReset (e : GreaterOrEqual) : ChannelSet =

alphaClockReset(e) = alphaClockReset'®(e.left) U alphaClockReset!” (e.right))

Rule 95. alphaClockReset function
alphaClockReset(e : LessThan) : ChannelSet =

alphaClockReset(e) = alphaClockReset'®(e.left) U alphaClockReset!? (e.right))

Rule 96. alphaClockReset function
alphaClockReset(e : LessOrEqual) : ChannelSet =

alphaClockReset(e) = alphaClockReset?”(e.left) U alphaClockReset? (e.right))

Rule 97. alphaClockReset function
alphaClockReset(e : Equals) : ChannelSet =

alphaClockReset(e) = alphaClockReset?” (e.left) U alphaClockReset? (e.right))

63

Rule 98. alphaClockReset function
alphaClockReset(e : ClockExp) : ChannelSet =

alphaClockReset(e) ={clockReset.id (e.clock)[}

Rule 99. alphaClockReset function
alphaClockReset(e : StateClockExp) : ChannelSet =

alphaClockReset(e) = {x : SIDS |entered.id(x).id(e.state) |}

Waiting Conditions

Waiting Condition elicitation The following rules defined wc used for eliciting waiting con-

ditions.

Rule 100. wc function
wc(e : Expression) : (Expression, Expression + Variable) =

This rule is split into multiple rules according to the expression subtype:
(101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113).

In every other case this function is defined by wc(e) = (e. ()

64

Rule 101. wc function (ParExp)
wc(e : ParExp) : (Expression, Expression + Variable) =

WC(G) = (enew~ 2 (Wcresult)>

where

WCresult = we' (e.exp)

Enew = € @ (exp — 1 (WCresult))

Rule 102. wc function (Not)
wc(e : Not) : (Expression, Expression - Variable) =

WC(G) = (enew-, 2 (Wcresult)>

where

WCresult = we? (e.exp)

€new — €D (eXP = T (Wcresult))

Rule 103. wc function (CallExp)
wc(e : CallExp) : (Expression, Expression - Variable) =

wc(e) = (enew, T2 (WCresult))

where

WCresult = WcArgSeq’ (e.args)

enew = € @ (args — 1 (WCesylt))

65

Rule 104. wcArgSeq function
wcArgSeq(s : seq(Expression)) : (seq Expression, Expression - Variable) =

if #(s) > Othen
({71 (Wehead)) 1 (WCtail), T2 (WChead) U T2 (WCtail))

where

WChead = wc’(head(s))

Wi = weArgSeq? (tail(s))

Ise

(),
ndi

[¢)

>

0)

o)
=S

Rule 105. we function (And)
wc(e : And) : (Expression, Expression + Variable) =

wc(e) = (enew: T2 (Wcleft) U 2 (Wcright))

where

Weiery = wet (e left)

WCright = wc® (e.right)

enew = € @ (left = 7y (weier), right — 71 (Wcright))

66

Rule 106. wc function (Or)

wc(e : Or) : (Expression, Expression - Variable) =

WC(e) = (enew~, ™2 (Wcleft) U 2 (Wcright))

where

WCiefe = web (e left)

WCright = wc' (e.right)

enew = € @ (left = 1 (wejer), right — my (Wcright))

Rule 107. we function (Implies)

wc(e : Implies) : (Expression, Expression + Variable) =

wc(e) = (enew, T2(WCieft) U 72 (WCyight)

where

WCefr = wcd (e left)

WCright = wc? (e.right)

enew = € @ (left = 7y (weer), right — 71 (Weright))

Rule 108. wc function (Iff)

wc(e : Iff) : (Expression, Expression + Variable) =

wc(e) = (enew, T2 (WCieft) U T2 (Weright)

where

WCjer; = welO(e.left)

WCright = wclt(eright)

Enew = €D (Ieft = T (Wcleft): right — 71 (Wcright>)

67

Rule 109. wc function (GreaterThan)
wc(e : GreaterThan) : (Expression, Expression + Variable) =

eleft € ClockExp \/ e.right € ClockExp
if | Vv then
e.left € StateClockExp \/ e.right € StateClockExp
(b, {e — b})
else
(e,0)
endif

where

b is a fresh identifier

Rule 110. wc function (GreaterOrEqual)
wc(e : GreaterOrEqual) : (Expression, Expression - Variable) =

eleft € ClockExp V e.right € ClockExp
if | v then
eleft € StateClockExp V e.right € StateClockExp
(b, {e — b})

Ise

(e, 0)
endif

where

[¢)

b is a fresh identifier

68

Rule 111. we function (LessThan)
wc(e : LessThan) : (Expression, Expression + Variable) =

eleft € ClockExp \/ e.right € ClockExp
if | Vv then
e.left € StateClockExp \/ e.right € StateClockExp
(b, {e — b})
else
(e,0)
endif

where

b is a fresh identifier

Rule 112. wc function (LessOrEqual)
wc(e : LessOrEqual) : (Expression, Expression - Variable) =

eleft € ClockExp V e.right € ClockExp
if | v then
eleft € StateClockExp V e.right € StateClockExp
(b, {e — b})

Ise

(e, 0)
endif

where

[¢)

b is a fresh identifier

69

Rule 113. wc function (Equals)
wc(e : Equals) : (Expression, Expression + Variable) =

eleft € ClockExp V e.right € ClockExp
if | v then
eleft € StateClockExp \V e.right € StateClockExp
(b, {e > b})

else

(©.0)

endif

where

b is a fresh identifier

Waiting Condition as CSP processes The following rules define the function compile\'WC

which is used to define the CSP semantics of waiting conditions.

Rule 114. compileWC function
compileWC(t : Transition, e : Expression, v : Variable) : TimedCSPProcess =

This rule is split into multiple rules (118, 119, 120, 121 and 122) according to the expression subtype.

Rule 115. getClockReset function
getClockReset(e : Expression) : TimedCSPProcess =

This rule is split into two rules 116 and 117 according to the subtype.

70

Rule 116. getClockReset function
getClockReset(e : StateClockExp) : TimedCSPProcess =

entered?x?id(e.state) — Skip

Rule 117. getClockReset function
getClockReset(e : ClockExp) : TimedCSPProcess =

clockReset.id(e.clock) — Skip

71

Rule 118. compileWC function
compileWC(t : Transition, e : GreaterThanOrEqual,v : Variable) : TimedCSPProcess =

if (e.left € ClockExp V e.left € StateClockExp) then
let

Reset = getClockReset! (e.left); set WC_vid(v)!false — Monitor
RUN ({triggerEvent® (1)[})

Momitor = Ale right] set WC_vid (v)!true — RUN ({triggerEvent” (t)]}) & Reset
&vpr*ﬁj
within
set WC_vid(v)false — Monitor
elseif (e.right € ClockExp V e.right € StateClockExp) then
let
Reset = getClockReset” (e.right); set WC_vid(v)true — Monitor
RUN ({triggerEvent® (t)[})
Momitor = Ale.left] set WC_vid (v)false — RUN ({JtriggerEvent® (t)[}) & Reset
8xpr53
within

set WC_vid (v)!true — Monitor
endif

72

Rule 119. compileWC function
compileWC(t : Transition, e : GreaterThan, v : Variable) : TimedCSPProcess =

if (e.left € ClockExp V e.left € StateClockExp) then
let

Reset = getClockReset® (e.left); set WC_vid(v)!false — Monitor
RUN ({triggerEvent’ (t)[})

Momitor = A(Jeright] +1) set WC_vid (v)ltrue — RUN ({ltriggerEvent® (t)[}) & Reset
gxp,f?/f
within
set WC_vid(v)false — Monitor
elseif (e.right € ClockExp V e.right € StateClockExp) then
let
Reset = getClockReset” (e.right); set WC_vid(v)!true — Monitor
RUN ({triggerEvent® (1)[})
Momtor = Ageterr] +1)setWC_vid (v)lfalse — RUN ({ltriggerEvent'®(t)]}) & Reset
Exprdd
within

set WC_vid (v)!true — Monitor
endif

73

Rule 120. compileWC function
compileWC(t : Transition, e : LessThanOrEqual,v : Variable) : TimedCSPProcess =

if (e.left € ClockExp V e.left € StateClockExp) then
let

Reset = getClockReset® (e.left); set WC_vid (v)!true — Monitor

RUN ({triggerEvent!’ (t)]})

Momitor = Aferight] set WC_vid (v)\false — RUN ({JtriggerEvent'?(t)[}) & Reset
5Xpr55
within
set WC_vid(v)!true — Monitor
elseif (e.right € ClockExp V e.right € StateClockExp) then
let
Reset = getClockReset® (e.right); set WC_vid(v)!false — Monitor
RUN ({triggerEvent!®(t)]})
Momitor = Afeleft] set WC_vid (v)!true — RUN ({triggerEvent'* (t)[}) & Reset
Exprd”
within
set WC_vid(v)false — Monitor
endif

74

Rule 121. compileWC function
compileWC(t : Transition, e : LessThan,v : Variable) : TimedCSPProcess =

if (e.left € ClockExp V e.left € StateClockExp) then
let

Reset = getClockReset’ (e.left); set WC_vid(v)!true — Monitor

RUN ({triggerEvent!®(t)]})

Momitor = A(erighty +1)setWC_vid(v)!false — RUN ({triggerEvent'®(t)[}) & Reset
gxp,f?a?
within
set WC_vid(v)!true — Monitor
elseif (e.right € ClockExp V e.right € StateClockExp) then
let
Reset = getClockReset® (e.right); set WC_vid(v)!false — Monitor
RUN ({triggerEvent!’ (t)]})
Momitor = Ageterr] +1)setWC_vid(v)!true — RUN ({triggerEvent® (t)[}) & Reset
5@7’59
within
set WC_vid(v)false — Monitor
endif

75

Rule 122. compileWC function
compileWC(t : Transition, e : Equal,v : Variable) : TimedCSPProcess =

if (e.left € ClockExp V e.left € StateClockExp) then
let

Reset = getClockReset” (e left); set WC_vid (v vid(v)Yfalse — Monitor
RUN ({triggerEvent'®(t)]})
Dl right] set WC_vid (v)!true — RUN ({triggerEvent”® (t)[})

Monitor = £pr0 A Reset
A([eright] +1) set WC_vid (v)false — RUN ({JtriggerEvent®! (t)[})
Expr0/
within
set WC_vid(v)false — Monitor
elseif (e.right € ClockExp V e.right € StateClockExp) then
let
Reset = getClockReset'? (e right); setWC_vid(v)false — Monitor
RUN ({|triggerEvent®? (t)[})
Monitor — A[[ejeftﬂgxprﬁ? set WC_vid (v)!true — RUN ({triggerEvent” (t)[}) A Reset
A 41y set WC_vid(v)false — RUN ({JtriggerEvent™ (t)[})
Expr03
within
set WC_vid (v)false — Monitor
endif

76

Trigger Deadlines

Rule 123. deadlineEvents function
deadlineEvents(s : StateMachineDef) : ChannelSet =

deadlineEvents(stm) = {|t : allSTMTransitions”(s) | t.end # null e deadline.id(t)]

Rule 124. triggerEvent function
triggerEvent(t : Transition) : CSPEvent =

if t.trigger # null

triggerEvent® (t.trigger, id(t))

else
internal__.id(t)

77

Memory

Rule 125. State-machine Memory
stmMemory (s : StateMachine, wcs : Transition + (Expression, WC)) : TimedCSPProcess =

~

let Memory(vars)
get_vid(v,s)name(v) — Memory(vars)

Oo:lvars e O

set_vid(v,s)?x — Memory(varsiname(v) := x|)

Oov:rvars e
get_vid(v,s)lname(v) — Memory(vars)

|

set_vid(v,s)?x — Memory(varsiname(v) := x|)

(|

set_Ext_vid(v.s)?x — Memory(varsiname(v) := x|)
|
Owo: cvars e set WC_vid(v)?x — Memory(varsiname(v) := x|)
|

Ot : allSTMTransitions® (s) @ memoryTransition” (t, wes) ; Memory(vars))
O

Ot : allTriggerDeadlineTransitions' (stm) e memoryDeadline’ (t, wcs); Memory(vars)

within
Memory(varvalues)

where

rvars = requiredVariables® (s)

lvars = allLocalVariables'’(s)

cvars = allClockVariables® (wcs)

vars = (v : rvars U lvars U cvars @ name(v))

varvalues = (v : rvars U lvars U cvars e initial(v))

78

Rule 126. allTriggerDeadlineTransitions function
allTriggerDeadlineTransitions(s : StateMachineDef) : P Transition =

allTriggerDeadlineTransitions(s) = {t : allSTMTransitions*(s) | t.end # null}

Rule 127. memoryTransition function
memory Transition(t : Transition, wcs : Transition -+ (Expression, WC)) : TimedCSPProcess

if (t.condition # null) then

([rr1 (wes(t))]) & [t.triggerﬂid(t)
Exprt Trigger®

else

[t.triggerﬂid(t)

Trigger”

Rule 128. Memory deadline
memoryDeadline(t : Transition, wcs : Transition - (Expression, WC)) : TimedCSPProcess

if (t.condition # null) then
([rr1 (wes(t))]) & deadlinelid (t)lon — Skip

g}l’p7’55 7

O
(= [r1(wes(t))]) & deadlinelid (t)!loff — Skip

(C/‘Xpr{;ﬁ -

else

deadlinelid (t)lon — Skip

79

4.2.2 States

The semantics of states is largely unchanged when compared to the untimed semantics, except
that we do not hide flowtrigevts so as to be able to give semantics to sinceEntry(s), and there

is an interleaving with the semantics of during action to give semantics to trigger deadlines.

Rule 129. Timed semantics of states
[s : State]s : TimedCSPProcess =

This function is split in multiple rules according to the type of states.

80

Rule 130. Timed semantics of simple states
[s : State]s : TimedCSPProcess =

let
Inactive=enter?x : sidslid(s) — Activating(x)

Activating(o)=|[s.entry] : initialisation®(s); entered!olid(s) —
Action’’

(triggerDeadlines' (s) ||| [s.during] ; Stop) A
Action’’

Inactive,Activating

TS

Ot : transitionsFrom®(s) e [t, s, false]

O
Oe: Event o if(e.type == null)
then eventld(e)?x : tids — exit; Inactive

else eventld(e)?x : tids?y — exit; Inactive
within
Inactive

where

#substates'!(s) = 0
sids =SIDS \ {id(s)}

exit —exit?x : sidslid(s) — exitSubstates®(s); [s.exit] s exited!xlid(s) — Skip
Action’’

tids =TIDS \ tIDS(s)

81

Rule 131. Timed semantics of composite states
[s : State]s : TimedCSPProcess =

let
Inactive=enter?x : sidslid(s) — Activating(x)

Activating(o)=|[s.entry] . initialisation®(s); enteredlolid(s) —
Aection’*

(triggerDeadlines?(s) ||| [s.during] ; Stop) A
Action’’

Ot : transitionsFrom®(s) e [, s, false] "2ctveActivating

Tti

O
Oe: Event o if(e.type == null)

then eventld(e)?x : tids — exit; Inactive

else eventld(e)?x : tids?y — exit; Inactive
within

(Inactive |[flowtrigevts]| composeStates' (substates'?(s), s))

where

#substates'®(s) > 0

flowtrigevts — flow TriggerEvents® (s)
sids =SIDS \ {id(s)}

exit —exit?x : sidslid(s) — exitSubstates®(s); [s.exit] : exited!x!id(s) — Skip
Action 0

tids =TIDS \ tIDS(s)

82

Rule 132. Semantics of trigger deadlines
triggerDeadlines(s : State) : TimedCSPProcess =

deadline!id(t)lon —

Il£:tDSe | uX e , [usedV(tend), . X
readState deadlinelid (t)loff — Skip » [t.end]

EX})r[ﬁ'
where

tDS = {t : transitionsFrom’(s) | t.end # null}

The composition of states is also largely unchanged when compared to the untimed Rule 20
except that the set shflowevts is not hidden, so as to allow a parent to observe all of its children’s
flow events, and the state-machine to observe entered events required to reset an implicit clock

in the case of sinceEntry(s).

Rule 133. Timed composition of states
composeStates(ss : seq State, p : NodeContainer) : TimedCSPProcess =

if#ss = 1
then

restrictedState® (p. head ss)

else
restrictedState” (p, head ss)
|[shflowevts||
composeStates? (tail ss, p)
where

shflowevts = flowEvents®(headss, p) M| J{x : tail ss e flowEvents®(x, p)}

83

4.2.3 Timed statements

Rule 134. Semantics of timed statements
[s : Statement]stutement : TimedCSPProcess =

This rule is split in multiple rules according to the subtype of the statement.

Rule 135. Function usedVariables for timed semantics
usedVariables(s : Statement) : CSPProcess =

if s € TimedStatement then
usedV(s.end) U usedVariables(s.stmt)
elseif s € Wait then
usedV(s.duration)

else

usedVariables’(s)

Rule 136. Semantics of Deadlines
[s : TimedStatement]sttement : TimedCSPProcess =

[s.stmt] » [s.end]
Statement? Expr68

Rule 137. Semantics of Wait
[s : Wait] statement : TimedCSPProcess =

Wait([[s.duration])
T e

84

Rule 138. Semantics of Clock Reset
[s : ClockReset]statement : TimedCSPProcess =

clockReset!id(s.clock) — Skip

85

Chapter 5

Conclusions

We have presented RoboChart, a diagrammatic notation for modelling of robotic systems.
It is based on UML state machines, but includes the notions of robotic platform and con-
troller, synchronous and asynchronous communications, an API of operations common to au-
tonomous and mobile robots, a well defined action language, pre and postconditions, and time
primitives. It also has a formal semantics suitable for verification. Examples of RoboChart

models and their verification can be found at www.cs.york.ac.uk/circus/RoboCalc/.

We have described the semantics for the core constructs of RoboChart. It uses CSP, but we
envisage its extension to use Circus [2], a process algebra that combines Z [12] and CSP, and
includes time constructs [11]. Use of Circusand its UTP foundation will enable use of theorem

proving as well as model checking.

An approach for writing object-oriented simulations of RoboChart diagrams has also been
defined. Automatic generation of simulations is possible and part of our future work. Verifi-
cation of correctness of simulations will use the object-oriented version of Circus [3], with a

semantics given by the UTP theory in [13].

RoboChart itself misses support for modelling the environment and the robotic platforms in
model detail. It is also in our plans to take inspiration from hybrid automata [6] to extend the

notation, and from the UTP model of continuous variables [4] to define the semantics.

86

www.cs.york.ac.uk/circus/RoboCalc/

Appendix A

Complete Metamodel: Core Language

Our core notation is a state-machine based language with specific components that provide
for sequential behaviours and parallelism in a restricted manner. Essentially, state-machines
are intended to specify sequential behaviours, whilst parallelism is modelled by controllers.
The top-level components of a RoboChart specification is a module, which represents a single

robot recording assumptions about the hardware as well as the controlling software.

A.1 Robotic Platforms

? A robotic platform is characterised by variables, events, and operations representing
Ea in-built facilities of the hardware. It represents the observables interactions between

the robot, its environment and controller.

abstract class RoboticPlatform extends ConnectionNode;

class RoboticPlatformDef extends NamedElement,Context,RoboticPlatform;

class RoboticPlatformRef extends NamedElement,RoboticPlatform {
property ref : RoboticPlatformDef [7];

¥

abstract class NamedElement {
attribute name : Stringl[?];

+

abstract class BasicContext {
property variableList : VariablelList[*|1] { ordered composes };
property operations : Operation[*|1] { ordered composes };
property events : Event[*|1] { ordered composes };

+

abstract class Context extends BasicContext {

property plnterfaces : Interface[*|1] { 'unique };

87

property rInterfaces : Interface[*|1] { !unique };

property interfaces : Interface[*|1] { !unique };

A.2 Interfaces

D An interface encapsulates events and variables declarations as well as operation signa-
tures. Interfaces are used to record information about the assumptions a component makes,

and what assumptions can be made about a component.

class Interface extends NamedElement,BasicContext;

A.3 Variables

(x)] An variable can be declared in interfaces, robotic platforms, controllers and state-
machines. Variable declarations in interfaces are used to validate a model with respect to as-
sumptions about definition and usage of variables in the context of a module (composition
of controllers and robotic platforms). Variables declared in controllers and robotic platforms
are shared among its associated elements (state-machines and controllers, respectively), but are
ultimately only used by state-machines. State-machines can themselves declare variables that

are local to the state-machine. Variables are typed and may declare an initial value.

class VariablelList {

attribute modifier : Stringl[?];

property vars : Variable[#|1] { ordered composes };
¥
class Variable extends NamedExpression {

attribute name : Stringl[?];

property type : Typel[?] { composes };

property initial : Expression[?] { composes I};

attribute modifier : String[?] { derived transient volatile };

88

A.4 Constants

l l A constant is similar to a variable except that its value cannot be changed. Besides its
usage as a meaningful name or abbreviation for otherwise complex or meaningless values, it

can also be used without a concrete value to indicate a loose values that is fixed but unspecified.

Variable with modifier == ’con’

A.5 Events

An event are the main form of interaction between a state-machine and its environ-
ment, be it other state-machines, controllers or the robotic platform. Events can be
typed or untyped, where typed events carry values, and untyped events model a simple
interaction where no extra information can be inferred except that two parallel components in-
teracted. Whilst events are not explicitly divided between input and output events, their roles
are exclusive (events cannot be used as both inputs and outputs) and are determined from
the connections in the model. The connections between events (not the events themselves)

determine if the communication takes place synchronously or asynchronously.

class Event extends NamedElement {
property type : Typel[?] { composes };

attribute broadcast : Boolean[?];

A.6 Required, Provided and Defined Interfaces

A required interface specifies the assumptions a state-machine or controller makes
about the environment, the robotic platform and other controllers. It is used to declare ab-
stract controllers and state-machines that do not depend on specific platforms, only on specific
operations and variables. It is worth mentioning that required interfaces can be used to specify
assumptions about the kind of state variables are available in a robotic plaform. This allows for

instance the specification of movement operations independently of the particular platform

89

based solely on the assumption that a potential target platform supports changing linear and

angular speed by setting specific variables.

rinterfaces of Context

P A provided interface specifies what variables and operations a robotic platform pro-

vides. It is used mainly to validate the well-formedness of controllers and modules by guaran-
teeing that the assumptions made (through required interfaces) are actually satisfied by some

component in the composition.
pInterfaces of Context

@ A defined interface is used to declare variables and events in an element. It has the same
eftect of declaring each variable and event separately. It is helpful to complement required

interfaces containing only variables.

interfaces of Context

A.7 State-Machines

A state-machine is the construct dedicated for the specification of sequential be-
haviours. It contains a number of nodes that represent steps (stable or not) of the
behaviour and transitions that describe when and how control is transferred from one node

to another.

abstract class StateMachine extends ConnectionNode;
abstract class ConnectionNode;
class StateMachineDef extends NamedElement,StateMachineBody,StateMachine;
class StateMachineRef extends Node,StateMachine {
property ref : StateMachineDef[?];
+
class StateMachineBody extends Context,NodeContainer {

property clocks : Clock[*|1] { ordered composes };

90

+
class Node extends NamedElement;
abstract class NodeContainer {
property nodes : Node[*|1] { ordered composes };

property transitions : Transition[*|1] { ordered composes };

A.8 States

(:) A state is one of the main components of a state-machine. It describes a stable configu-
ration of the state-machine and has three distinctive phases in its life-cycle: entering, executing

and exiting. Each of these phases has an associated action: entry, during and exit actions.

States are divided between simple and composite states. Simple states can only contain the
actions mentioned above, whilst composite states can themselves contain states as well as tran-

sitions and other nodes.

class State extends Node,NodeContainer {

property actions : Action[*|1] { ordered composes };

A.9 Final states

A final state represents the completion of the internal behaviours of a state-machine
or composite state. While the meaning of a final state is the same in both cases, state-
machines and composite states react differently to reaching a final state. While a composite
state rests in the final state and waits for one of its transitions (or the parents transitions) to

be executed, the state-machine terminates as soon as the final state is reached.

class Final extends State;

91

A.10 Junction node

A junction node represents an unstable configuration of the state-machine. Unlike in
a (stable) state, the state-machine cannot rest and execute other behaviours (actions,
substates, etc) while in a junction node. At this point, all it can do it follow one of the outgoing

transitions.

In order to guarantee that execution can progress once in a junction node, two well-formedness
condition are defined. The first requires that there are event triggers in the outgoing transi-
tions, and the second requires that the outgoing transitions form a cover, that is, the conjunc-
tion of all their guards is equivalent to true. Notice that we do not require them to be disjoint

as the selection of outgoing transition may be non-deterministic.

class Junction extends Node;

A.11 Initial nodes

An initial node represents en entry point of a state-machine or composite state. It
indicate where the state-machine or composite state must start executing to enter its

substates.

The main validation rule related to initial nodes is that any state-machine or composite state

(state with one or more subnodes) must have exactly one initial node.

class Initial extends Junction;

A.12 Transitions

; A transition defines one possible path between to nodes in a state-machine or compos-
ite state. It contains source and target nodes as well as, optionally, a trigger in the form
of an event, a boolean condition, and an action. The transition can only be executed if the

event in the trigger is available and the condition is true.

92

The transition action is executed after the source state (if it exists) is exited, but before the
target state (if it exists) is entered. Notice that source and target states are not necessarily

available. For example transitions between junction nodes have neither.

class Transition extends NamedElement {
property source : Node[?7];
property target : Node[7];
property start : Expression[?] { composes };
property trigger : Trigger[?] { composes };
property end : Expression[?] { composes };
property condition : Expression[?] { composes };
property action : Statement[?] { composes };
}
class Trigger {
property time : Variable[?];
property reset : ClockReset[*|1] { ordered composes };
property event : Event[7];
}
class InputTrigger extends Trigger {
attribute parameter : String[?];
+
class OutputTrigger extends Trigger {
property value : Expression[?] { composes };
+
class SyncTrigger extends Trigger {
property value : Expression[?] { composes };
+

class SimpleTrigger extends Trigger;

A.13 Controllers

A controller models a collection of potentially parallel cooperating state machines; it
can be used, for instance, to encapsulate specific well-defined functionalities that are imple-

mented by multiple state machines. Controllers are the elements of RoboChart that interact

93

directly with robotic platform.

abstract class Controller extends ConnectionNode;

class ControllerDef extends NamedElement,Context,Controller,MachineContainer
property connections : Connection[#|1] { ordered composes };

¥

abstract class MachineContainer {
property machines : StateMachine[#|1] { ordered composes 1};

+

class ControllerRef extends NamedElement,Controller {

property ref : ControllerDef[7];

A.14 Connection

% A connection is a link between events within (and on the boundary) of state machines,

controllers, and robotic platforms. These connections are used to specify the interac-
tions between state machines in a controller, and between controllers in a module. They are
used also to specify relays between the state machines and the containing controller, and be-

tween controllers and robotic platforms in a module.

class Connection {
property from : ConnectionNode[?];
property efrom : Event[7];
property to : ConnectionNode[?];
property eto : Event[7];
attribute async : Boolean[?];

attribute mult : Boolean[7];

94

A.15 Modules

class Module extends NamedElement {
property connections : Connection[*|1] { ordered composes };

property nodes : ConnectionNode[*|1] { ordered composes };

A.16 Statements

abstract class Statement;

class TimedStatement extends Statement {
property start : Expression[?] { composes };
property stmt : Statement[?] { composes };
property end : Expression[?] { composes };

}

class Wait extends Statement {
property duration : Expression[?] { composes };

}

class Skip extends Statement;

class IfStmt extends Statement {
property expression : Expression[?] { composes };
property _’then’ : Statement[?] { composes };
property _’else’ : Statement[?] { composes };

}

class Assignment extends Statement {
property left : Assignable[?] { composes };
property right : Expression[?] { composes };

+

class SendEvent extends Statement {
property trigger : Trigger[?] { composes };

}

class SeqStatement extends Statement {

property statements : Statement[*|1] { ordered composes };

95

class ParStmt extends Statement {

property stmt : Statement[?] { composes };
}
class Call extends Statement {

property operation : Operation[?];

property args : Expression[*|1] { ordered composes };

A.17 Expressions

abstract class Expression;
class ResultExp extends Expression;
class ArrayExp extends Expression {
property value : Expression[?] { composes };
property parameters : Expression[*|1] { composes 1};
}
class ClockExp extends Expression {
property clock : Clock[7];
¥
class StateClockExp extends Expression {
property state : State[7];
+
class Iff extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+
class Implies extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
}
class Or extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+

class Forall extends Expression {

96

property variables : Variable[*|1] { ordered composes };
property suchthat : Expression[?] { composes };
property predicate : Expression[?] { composes };

b

class Exists extends Expression {
property variables : Variable[*|1] { ordered composes };
property suchthat : Expression[?] { composes };
property predicate : Expression[?] { composes };
attribute unique : Boolean[?];

+

class LambdaExp extends Expression {
property variables : Variable[*|1] { ordered composes };
property suchthat : Expression[?] { composes };
property expression : Expression[?] { composes };

¥

class DefiniteDescription extends Expression {
property variables : Variable[*|1] { ordered composes };
property suchthat : Expression[?] { composes };
property expression : Expression[?] { composes };

by

class IfExpression extends Expression {
property condition : Expression[?] { composes };
property ifexp : Expression[?] { composes };
property elseexp : Expression[?] { composes };

}

class Declaration {
attribute name : String[?];
property value : Expression[?] { composes };

b

class LetExpression extends Expression {
property declarations : Declaration[*|1] { ordered composes };
property expression : Expression[?] { composes };

+

class And extends Expression {
property left : Expression[?] { composes };

property right : Expression[?] { composes };

97

}

class Not extends Expression {
property exp : Expression[?] { composes };

b

class InExp extends Expression {
property member : Expression[?] { composes };
property set : Expression[?] { composes };

}

class TypeExp extends Expression {
property type : Typel?] { composes };

¥

class Equals extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };

¥

class Different extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };

+

class GreaterThan extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };

+

class GreaterOrEqual extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };

}

class LessThan extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };

}

class LessOrEqual extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };

+

class Plus extends Expression {

98

property left : Expression[?] { composes };
property right : Expression[?] { composes };
b
class Minus extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
¥
class Modulus extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
¥
class Mult extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
¥
class Div extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+
class Cat extends Expression {
property left : Expression[?] { composes };
property right : Expression[?] { composes };
+
class Neg extends Expression {
property exp : Expression[?] { composes };
+
class Selection extends Expression {
property receiver : Expression[?] { composes };
property member : Member[?];
¥
class IntegerExp extends Expression {
attribute value : ecore::EInt[7];
+
class FloatExp extends Expression {

attribute value : ecore::EFloat[?];

99

class StringExp extends Expression {
attribute value : String[?7];
b
class BooleanExp extends Expression {
attribute value : String[?];
}
class VarExp extends Expression {
property value : Variable[?7];
ks
class RefExp extends Expression {
property ref : NamedExpression[?];
+
class EnumExp extends Expression {
property type : Enumeration[?];
property constant : Constant[?];
+
class ParExp extends Expression {
property exp : Expression[?] { composes };
+
class SeqExp extends Expression {
property values : Expression[*|1] { ordered composes };
b
class SetExp extends Expression {
property values : Expression[*|1] { ordered composes };
}
class SetComp extends Expression {
property variables : Variable[*|1] { ordered composes };
property predicate : Expression[?] { composes };
property expression : Expression[?] { composes };
¥
class SetRange extends Expression {
property start : Expression[?] { composes };
property end : Expression[?] { composes };
¥
class TupleExp extends Expression {

property values : Expression[*|1] { ordered composes };

100

}

class RangeExp extends Expression {
attribute linterval : String[?];
property lrange : Expression[?] { composes };
property rrange : Expression[?] { composes };
attribute rinterval : String[?];

¥
class CallExp extends Expression {
property function : Function[?];
property args : Expression[*|1] { ordered composes };

¥

class ElseExp extends Expression;

A.18 Type Declaration

class TypeDecl extends NamedElement;

A.19 Primitive Types

g | ' A primitive type ...

class PrimitiveType extends TypeDecl;

A.20 Datatypes

o—o

A datatype
D)

class DataType extends TypeDecl{
property fields : Field[*|1] { ordered composes };

101

I:: A field

class Field extends Member,NamedExpression;

A.21 Enumeration

class Enumeration extends TypeDecl {
property constants : Constant[*|1] { ordered composes };
*
abstract class NamedExpression;
class Constant extends NamedExpression {

attribute name : Stringl[?];

A.22 Type Constructors

abstract class Type;

class AnyType extends Type {
attribute identifier : String[?];

¥

class ProductType extends Type {
property types : Typel*|1] { ordered composes };

by

class FunctionType extends Type {
property domain : Typel?] { composes };
property range : Typel[?] { composes };

}

class RelationType extends Type {
property domain : Type[?] { composes };
property range : Typel[?] { composes };

+

class SetType extends Type {

102

property domain : Type[?] { composes };
}
class SeqType extends Type {

property domain : Typel[?] { composes };
¥
class TypeRef extends Type {

property ref : TypeDecl[?7];

103

Appendix B

Complete Metamodel: Timed Language

B.1 Clock

@ A clock

class Instant {

property instant : Clock[?];
}
class Clock {

attribute type : Stringl?];

attribute name : String[?];

B.2 Timed Statements

class Statement {

property start : Expression[?] { composes };
property stmt : Statement[?] { composes };

property end : Expression[?] { composes };

¥

class Wait extends Statement {

property duration : Expression[?] { composes };

104

B.3 Timed Expressions

class ClockExp extends Expression {
property instant : Clock[?];

i

class StateClockExp extends Expression {

property state : State[?7];

B.4 Timed Triggers

class Trigger {
property time : Variable[?];
property instant : Instant[*|1] { ordered composes };

property event : Event[?7];

class Transition extends NamedElement {
property source : Node[?];
property target : Nodel[7];
property start : Expression[?] { composes };
property trigger : Trigger[?] { composes };
property end : Expression[?] { composes };
property condition : Expression[?] { composes };

property action : Statement[?] { composes };

105

Appendix C

Credits

Icons used in RoboTool and this report have been obtained from www.flaticon.com. Individ-

ual credits are given below.

% Icon made by Iconnice from www.flaticon.com is licensed by CC 3.0 BY

O@ Icon made by Sarfraz Shoukat from www.flaticon.com is licensed by CC 3.0 BY

&g Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

D Icon made by Dario Ferrando from www.flaticon.com is licensed by CC 3.0 BY
; Icon made by Lyolya from www.flaticon.com is licensed by CC 3.0 BY

T Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

0 Icon made by Google from www.flaticon.com is licensed by CC 3.0 BY

@ Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

. Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

o

" Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

g . : .

Z® Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

Icon made by Revicon from www.flaticon.com is licensed by CC 3.0 BY

F Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

106

http://www.flaticon.com
http://www.flaticon.com/authors/iconnice
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/sarfraz-shoukat
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/dario-ferrando
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/lyolya
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/google
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/revicon
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/

O Icon made by Icomoon from www.flaticon.com is licensed by CC 3.0 BY
E Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
5 Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
TC Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
E Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
® Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
@ Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
® Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

@ Icon made by Popcic from www.flaticon.com is licensed by CC 3.0 BY

107

http://www.flaticon.com/authors/icomoon
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
https://www.flaticon.com/authors/popcic
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/

Bibliography

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

[2] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement Strategy
for Circus. Formal Aspects of Computing, 15(2 - 3):146-181, 2003.

[3] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Unifying Classes and
Processes. Software and System Modelling, 4(3):277-296, 2005.

[4] S. Foster, B. Thiele, A. L. C. Cavalcanti, and J. C. P. Woodcock. Towards a UTP se-
mantics for Modelica. In Unifying Theories of Programming, Lecture Notes in Computer

Science. Springer, 2016.

[5] T.Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 : A Modern
Refinement Checker for CSP. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 187-201, 2014.

[6] T. A. Henzinger. The theory of hybrid automata. In 11th Annual IEEE Symposium on
Logic in Computer Science, pages 278-292, 1996.

[7] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall, 1998.
[8] Object Management Group. OMG Unified Modeling Language, March 2015.

[9] A.W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer,
2011.

[10] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. Wiley, 2000.

[11] A. Sherif, A. L. C. Cavalcanti, J. He, and A. C. A. Sampaio. A process algebraic frame-
work for specification and validation of real-time systems. Formal Aspects of Computing,
22(2):153-191, 2010.

[12] J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof. Prentice-
Hall, 1996.

108

[13] F. Zeyda, T. L. V. L. Santos, A. L. C. Cavalcanti, and A. C. A. Sampaio. A modular
theory of object orientation in higher-order UTP. In Formal Methods, volume 8442 of
Lecture Notes in Computer Science, pages 627-642. Springer, 2014.

[14] H. Zhu, J. W. Sanders, He Jifeng, and S. Qin. Denotational Semantics for a Probabilistic
Timed Shared-Variable Language. In B. Wolff, M.-C. Gaudel, and A. Feliachi, editors,
Unifying Theories of Programming, volume 7681 of Lecture Notes in Computer Science,
pages 224-247. Springer, 2013.

109

Index of Semantic Rules

In this index you’ll find the list of semantic functions in alphabetic order, and page where they are
defined. Timed versions of existig semantic rules are indexed by a timed item under the entry for the
semantic function. Semantic functions exclusive to the timed model are identified by a timed anno-
tation in parenthesis after the rule name. Rules whose names are abbreviation (e.g., S) are annotated

with the full name in parenthesis.

Action, 50 clockResets (timed), 60
allClockVariables (timed), 59 compileTarget, 42
allLocalVariables, 29 compileWC (timed), 70, 72, 73, 74, 75, 76
allSTMTransitions, 45 composeControllers, 31
allTransitions, 45 composeMachines, 35
allTriggerDeadlineTransitions (timed), 79 composeStates, 37, 83
allVariables, 29 ctrlMemory, 34
alphaClockReset, 60
And (timed), 61 deadlineEvents (timed), 77

CallExp (timed), 61

ClockExp (timed), 64

Equals (timed), 63

GreaterOrEqual (timed), 63

GreaterThan (timed), 62

Iff (timed), 62

Implies (timed), 62

LessOrEqual (timed), 63

LessThan (timed), 63

Not (timed), 61

Or (timed), 62

ParExp (timed), 60

StateClockExp (timed), 64
alphaClockResetCallArgs (timed), 61

exitSubstates, 43

Expr (Expression), 50
And Expression, 50
Array Expression, 51
Boolean Expression, 51
Call Expression, 52
Concatenation Expression, 52
Division Expression, 53
Equals Expression, 53
Greater or Equal Expression, 53
Greater Than Expression, 53
If and Only If Expression, 54
Implies Expression, 54
Integer Expression, 54

buffer, 32 Less or Equal Expression, 54

Less Than Expression, 55
C (Controller), 33 Minus Expression, 55

110

Modulus Expression, 55 timed, 80

Multiplication Expression, 55 Composite State, 40
Negation Expression, 56 timed, 82

Not Equal Expression, 52 Final State, 40
Not Expression, 56 Simple State, 39
Or Expression, 56 timed, 81
Parenthesised Expression, 56 Statement, 45, 46, 47
Plus Expression, 57 timed, 84, 84
Range Expression, 57 ClockReset, 85
Sequence Expression, 57 Wait, 84

Set Expression, 57 Call Statement, 48
Tuple Expression, 58 If Statement, 48

Send Event, 49

flowEvens, 38 Sequential Composition, 49

flowTriggerEvents, 41

Skip, 49
getClockReset (timed), 70, 71, 71 StatementInContext, 46
getsetChannels, 37 STM (State Machine), 36
getsetLocalChannels, 38 timed, 59
stmClocks (timed), 60
initialisation, 37 stmMemory, 43
timed, 78

M (Module), 28

substates, 36
memoryChannels, 28

) . substatesTriggers, 41
memoryDeadline (timed), 79

memory Transition, 44 T (Transition), 42
timed, 79 transitionsFrom, 44
modMemory, 30 trigEvents, 38
Trigger, 44

i 1l : . .
renaangContr‘o er, 31 triggerDeadlines (timed), 83
renamingMachine, 35
renCtrlEvts, 32
renStmEvts, 36 usedVariables, 47, 84

requiredVariables, 29

triggerEvent, 44, 77

we (timed), 64, 65, 65, 65, 66, 67, 67, 67,
68, 68, 69, 69, 70
S (State), 38 wcArgSeq (timed), 66

restrictedState, 41

111

Index of Calls to Semantic Rules

In this index you’ll find the location of call to the semantic rules. For each call of a semantic function,

the page number superscripted with the usage index is provided. The index of the call is unique with

respect to the semantic function, and also shown superscripted in the call location.

Action , 391, 392, 39, 40%, 40°, 40°,
4210427 428 42° 8111 8112
8113, 8214 8215 §216

allClockVariables (timed) , 59!, 782

allLocalVariables , 281, 302, 333, 334,
33%,34% 387,388 43% 781°

allSTMTransitions , 591, 772, 783, 79*

allTransitions , 381, 412, 413, 414, 43,
45°, 457

allTriggerDeadlineTransitions (timed) ,
781

allVariables , 371, 372

alphaClockReset (timed) , 60!, 602, 60°,
61%,61°,61% 617, 621°, 6211,
62126213621 6213 628, 62,
6316, 6377, 6318, 631, 632,
6321, 6322, 6323

alphaClockResetCallArgs (timed) , 617,
612

buffer , 28!

C (Controller) , 311

clockResets (timed) , 59!, 592
compileTarget , 421, 422, 423
composeControllers , 281 312
composeMachines, 331 352
composeStates , 36!, 372, 40°, 594
composeStates (timed) , 82!, 837

112

ctrlMemory , 33!
deadlineEvents (timed) , 59!, 59>

exitSubstates , 391, 402, 42, 814, 82°

Expr (Expression) , 441 472 483, 48,
495, 49,507, 508,511, 517,
5211’ 5212, 5213’ 5214’ 5215,
5216, 5217’ 5318’ 5319, 5320,
5321’ 5322, 5323’ 5324’ 5325’
547, 5477, 5478, 547 54,
541, 55%2, 55%3, 553 553,
55%, 55Y7, 55%, 55%, 56%,
5641, 5642, 5643, 5644, 5745’
5746 5747 5748 5749 5750
5851: 7252: 7253: 7354: 7355:
7456 7457 7558 7559 7660
7661: 7662: 7663: 7964z 7965:
7966, 8367, 8468, 8469

flowEvents , 371, 372, 833, 83+
flowTriggerEvents , 391, 402, 823

getClockReset (timed) , 721,722 733,
734,743,745 757, 758,761°, 76°

getsetChannels , 36!, 592

getsetLocalChannels , 36!, 59°

initialisation , 361, 392, 40%, 594, 81>, 82°

memoryChannels , 28!, 28?

memoryDeadline (timed) , 781
memoryTransition , 43!
memoryTransition (timed) , 78!

modMemory , 28!

readState , 46', 462, 833
renamingController , 311, 312
renamingMachine , 35!, 352
renCtrlEvts , 311, 312
renStmEvts , 35!, 352
requiredVariables , 28!, 302, 333, 34%,
34° 38°% 437,788
restrictedState , 371, 372, 833, 83+

S (State) , 41!

Statement , 46!, 842
StatementInContext , 481, 482, 493, 50*
STM (State machine) , 35!, 482
stmClocks (timed) , 59!

stmMemory , 36!

stmMemory (timed) , 59!

113

substates , 36!, 367, 383, 394, 40°, 40°,
417, 438,591° 597, 8111, 8212,
8213

substatesTriggers , 411

T (Transition) , 371,392, 40°, 424, 81°,
82¢

transitionsFrom , 391, 402, 413, 424 815,
82¢, 837

trigEvents, 36!, 592, 59°

Trigger , 421, 422,423, 44%, 44°,79%,797

triggerDeadlines (timed) , 811, 822

triggerEvent , 38! 412, 77°

triggerEvent (timed) , 591 602,723, 724,
723,726,731 737 738 73
7411 7412 7413 7414 7515
7516 7517 7518 7419 7620
7621 7622, 7623, 7624

usedVariables , 46!, 842

we (timed) , 651, 652, 66°, 66*, 66>, 671°,
671, 67%,677, 678, 67°
wcArgSeq (timed) , 651, 667

Index

Connection
async, 13
bidirec, 13
Description, 12
efrom, 13
eto, 13
from, 12
to, 12
ConnectionNode

Description, 12

Event
Type, 13

114

MachineContainer
Description, 12

Module
Description, 13

RCPackage
Description, 12

Robotic Platform
Description, 12
Metamodel, 87
RoboticPlatformDef, 12
RoboticPlatformRef, 12
Well Formedness, 22

	Introduction
	Syntax
	RoboChart metamodel

	Well-formedness Conditions
	Core Language
	Robotic Platforms
	Interfaces
	Modules
	Connection
	Controllers
	State Machines
	States
	Initial junctions
	Junction
	Final states
	Transitions
	Operations

	Timed Language
	Timed Expressions
	Timed Statements

	Semantics
	Detailed Semantics: Core Language
	Modules
	Controllers
	State machines
	Statements
	Expressions

	Detailed Semantics: Timed Language
	State machines
	Clocks
	Waiting Conditions
	Trigger Deadlines
	Memory

	States
	Timed statements

	Conclusions
	Complete Metamodel: Core Language
	Robotic Platforms
	Interfaces
	Variables
	Constants
	Events
	Required, Provided and Defined Interfaces
	State-Machines
	States
	Final states
	Junction node
	Initial nodes
	Transitions
	Controllers
	Connection
	Modules
	Statements
	Expressions
	Type Declaration
	Primitive Types
	Datatypes
	Enumeration
	Type Constructors

	Complete Metamodel: Timed Language
	Clock
	Timed Statements
	Timed Expressions
	Timed Triggers

	Credits
	Index of Semantic Rules
	Index of Calls to Semantic Rules

